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The hazard of pluvial flooding is largely influenced by the spatial and temporal depen-
dence characteristics of precipitation. When extreme precipitation possesses strong spa-
tial dependence, the risk of flooding is amplified due to catchment factors such as topog-
raphy that cause runoff accumulation. Temporal dependence can also increase flood risk
as storm water drainage systems operating at capacity can be overwhelmed by heavy
precipitation occurring over multiple days. While transformed Gaussian processes are
common choices for modeling precipitation, their weak tail dependence may lead to
underestimation of flood risk. Extreme value models such as the generalized Pareto pro-
cesses for threshold exceedances and max-stable models are attractive alternatives, but
are difficult to fit when the number of observation sites is large, and are of little use for
modeling the bulk of the distribution, which may also be of interest to water management
planners. While the atmospheric dynamics governing precipitation are complex and diffi-
cult to fully incorporate into a parsimonious statistical model, non-mechanistic analogue
methods that approximate those dynamics have proven to be promising approaches to
capturing the temporal dependence of precipitation. In this paper, we present a Bayesian
analogue method that leverages large, synoptic-scale atmospheric patterns to make pre-
cipitation forecasts. Changing spatial dependence across varying intensities is modeled
as a mixture of spatial Student-t processes that can accommodate both strong and weak
tail dependence. The proposed model demonstrates improved performance at capturing
the distribution of extreme precipitation over Community Atmosphere Model (CAM)
5.2 forecasts.
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1. INTRODUCTION

In this paper, we develop a mixture model for daily precipitation allowing for varying
spatial dependence for different storm magnitudes. Instead of constructing a parametric
formulation of the atmospheric dynamics regulating precipitation, we develop a Bayesian
analogue method that can accommodate complex temporal dependence patterns, wherein
precipitation analogues are established by identifying similar synoptic-scale atmospheric
patterns from a historical library of observed climate states that are associated with precip-
itation outcomes.

Our goal is to make pluvial flood risk assessments under future climate projections. As
such, we focus our modeling efforts on two key, intricately interacting, features. The first
is the right tail of the precipitation distribution, since intense rains, all other things being
equal, present the greatest flood risk. This does not mean we can ignore the bulk of the
distribution, as moderately intense rainfall can also cause severe flooding, if the storm is
widespread or persistent enough. This dovetails with our second key consideration, which
is spatial dependence, because spatial characteristics are a key determinant of flood risk in
a drainage basin.

Global climate models (GCMs) are the main tool for forecasting future climate conditions,
providing a means to assess potential changes in the frequency and magnitudes of events
such as heat waves, droughts and floods, all of which can have profound impacts on human
health. Unfortunately, the coarse spatial resolution of GCMs cannot resolve fine scale hydro-
meteorological processes associated with precipitation extremes (Boé et al. 2006; Maraun
et al. 2010). However, GCMs also produce smoothly varying atmospheric variables such
as atmospheric pressure and temperature whose spatiotemporal patterns are closely linked
with precipitation outcomes (Xoplaki et al. 2004; Raziei et al. 2012).

Analogue methods try to address the problem of making forecasts in the presence of com-
plex temporal dependence without a model parameterization of any geophysical dynamics.
In their simplest form, analogue methods match the current climate state to observed climate
states from a library of historical observations in order to forecast some future quantity (e.g.,
precipitation tomorrow) with the observed successor of the historical match (e.g., precip-
itation on the day following the historical match). While the atmosphere is known to be a
chaotic dynamical system that is unstable under slight perturbations of initial conditions
(Lorenz 1969), analogue approaches are justified by the tendency of that system to regularly
revisit subsets of the phase space over time. Analogue methods were originally developed as
empirical tools for short-term weather forecasting (Krick 1942) and climate modeling (Bar-
nett and Preisendorfer 1978), but researchers have begun to recognize their utility in a variety
of contexts, including machine learning (Zhao and Giannakis 2016; Lguensat et al. 2017),
wind-speed modeling (Nagarajan et al. 2015), and air quality monitoring (Delle Monache
etal. 2014). Historically, analogue methods have been empirical, somewhat ad hoc tools, but
recently there have been attempts at putting these into a probabilistic framework (McDermott
and Wikle 2016; McDermott et al. 2018).

Precipitation has been the subject of extensive study as it plays a central role in agricul-
ture, flood risk, and hydrology. Distributional forecasts of precipitation are critical for water
management, infrastructure design, and developing disaster preparedness strategies. While
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modern numerical forecasting weather models have achieved considerable success at mak-
ing short-term forecasts by approximating solutions to the complex atmospheric processes
governing the generation of precipitation, they typically do not account for uncertainty in
their inputs. The function of stochastic weather generators, in contrast, is not to make short-
term forecasts, but to accurately reproduce the distributional characteristics of precipitation
on a fine spatial grid, while quantifying the uncertainty associated with those estimates (see
Ailliot et al. 2015 for a review).

As precipitation is an inherently spatial phenomenon, several approaches have been pro-
posed to model the spatial dependence features of both occurrences (the presence/absence of
rain) and intensities (positive rain accumulations). A popular stochastic weather generator
was proposed in a seminal paper by Wilks (1998) that models precipitation across multiple
sites in two parts: (1) a two-state Markov process controlling the occurrence of precipitation
at a given site and (2) a precipitation intensity model that accounts for spatial dependence
between sites but ignores temporal dependence. Berrocal et al. (2008) and Kleiber et al.
(2012) develop similar two-stage spatiotemporal models for observations from rain-gauge
stations, wherein a latent Gaussian process is thresholded to model precipitation occur-
rence, while another marginally transformed Gaussian process controls precipitation inten-
sity. While most models assume the same spatial dependence structure across precipitation
intensities, Bardossy and Pegram (2009) raise the issue of varying spatial dependence types
across different intensities and aim to address it with an empirical copula approach. In this
paper, we address the issue of varying spatial dependence types by modeling precipitation as
a mixture of Student-t processes with different spatial correlation structures. Our approach
to this problem is similar to that of Gelfand et al. (2005), who treat precipitation intensities
as a Dirichlet process (DP) mixture of Gaussian processes. In the context of extreme value
modeling, Fuentes et al. (2013) have also explored DP mixtures of Gaussian processes to
flexibly model spatial dependence, but in the context of modeling maxima, which support
marginal transformations to generalized extreme value (GEV) margins. Gaussian processes
and their mixtures, however, are characterized by weak tail dependence, and in the presence
of strong spatial dependence among extremes, their application can lead to underestimation
of flood risk. To allow for stronger tail dependence, similar approaches have been taken by
Morris et al. (2017) and Hazra et al. (2018) who use skew-t processes and their mixtures,
which possess strong tail dependence, to model ozone and fire threat extremes, respectively.

Since extreme precipitation stands to do the most damage, accurately capturing the spa-
tial dependence for high intensities necessitates special consideration. The last decade has
produced many new methods for modeling spatial extremes. Two common approaches to
modeling spatial extremes are based on liming results: max-stable processes (see Davison
et al. 2012 for a review), which are appropriate for component-wise maxima over large
temporal blocks, and generalized Pareto processes for high threshold exceedances (Ferreira
and De Haan 2014). These models possess restrictive spatial dependence due to their max-
stability and threshold stability properties. Moreover, while they are theoretically justified
models for modeling asymptotic tail distributions, they are less useful for modeling the bulk
of the distribution.

Along with limiting models, several Bayesian hierarchical models that borrow ideas from
classical geostatistics have been developed (Cooley et al. 2007; Sang and Gelfand 2009;
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Sang 2010; Reich and Shaby 2012; Zhang et al. 2019). Unlike in the classical setup to
modeling extremes, which requires a somewhat arbitrary qualification of an extreme event
(e.g., the threshold in a peaks-over-threshold model or block size in a model for block
maxima), our proposed mixture model incorporates the entire distribution of data, while
accommodating different dependence types for different storm intensities.

In addition to accurately representing the spatial dependence, capturing temporal depen-
dence has also been central to the field of precipitation modeling. Several hidden Markov
models for unobserved weather states have been proposed that aim to capture temporal
dependence at various scales, including those attributable to large, synoptic-scale weather
patterns (Bellone et al. 2000; Ailliot et al. 2009; Flecher et al. 2010). Latent multivariate
autoregressive models are also common approaches to modeling temporal dependence for
both occurrence and intensity processes (Bardossy and Plate 1992; Makhnin and McAllis-
ter 2009; Rasmussen 2013). Methods based in physics have also appeared in the statistical
literature; recently, Liu et al. (2018) have proposed a Lagrangian advection reference frames
approach to modeling storm dynamics that couples radar reflectivity and wind field data to
make short-term precipitation forecasts.

In the remainder of the paper, we take up a similar aim to that of Gao et al. (2014)
and Gao and Schlosser (2019) who use analogue methods to couple GCM forecasts of
predictive atmospheric variables with the historical precipitation so as to understand the
changes in the distributions of extreme precipitation under different climate forcing scenar-
ios. Our method is different from these earlier efforts in that it is a hierarchical Bayesian
model-based approach that makes use of the full data likelihood and can easily account for
multiple sources of uncertainty. The following sections are outlined as follows: in Sect. 2,
we develop a Bayesian models for precipitation occurrences and intensities that capture
temporal dependence with a probabilistic analogue formulation. In Sect. 3, we apply the
model to precipitation data over the northeastern USA and compare it with climate model
and reanalysis distributional forecasts of extreme precipitation. Finally, in Sect. 4 we provide
some concluding remarks and summary of the proposed method.

2. MODEL DEFINITIONS

One of the main challenges of modeling precipitation fields is that their distribution
consists of a mixture of a preponderance of zeros and positive precipitation amounts. To
account for this, the proposed spatiotemporal model for precipitation is made up of two
parts: (1) an occurrence model for the presence versus absence of precipitation and (2) an
intensity model for positive precipitation amounts (Wilks 1990; Berrocal et al. 2008). We
begin by describing the occurrence model for precipitation.

2.1. OCCURRENCE MODEL

A common approach to modeling spatially varying, binary data is via data augmentation,
wherein a continuous latent process is thresholded into two categories (Albert and Chib 1993;
Heagerty and Lele 1998; Collett 2002). To model the point referenced, binary occurrence
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of precipitation, we use a Gaussian process for the unobserved, latent component, such that
it is positive at a location s whenever there is precipitation at s and negative otherwise. This
commonly used model is referred to as a clipped Gaussian process or spatial probit model
(De Oliveira 2000, 2020).

The spatiotemporal occurrence process {O;(s), s € S}, t=1,...,T,S C R2, consists
of spatial random fields that encode the presence versus absence of precipitation (1: presence,
0: absence) at a location s and time ¢. It is defined in terms of a zero-thresholded, latent
spatiotemporal Gaussian process {Z;(s), s € S}, t =1,...,T:

1, ifZ;(s) >0
O,(s) = .
0, ifZ,(s) <0.

The latent processes Z;(s) (by abuse of notation) are parameterized by a mean function
i (s) and covariance function C(s, s’) that induce spatial dependence in the occurrence
process to reflect the fact that nearby locations are more likely to have common presence
or absence of rain than distant ones. Conditional on the mean and covariance functions, the
spatially dependent processes are assumed to be independent in time, each distributed as:

indep. ,
Zi(s) ~ GP(us(s),C(s,s")), fort=1,...,T.

Temporal dependence is contained in the mean function. The covariance function can be
expressed as a product of a variance parameter U% and correlation function c(s, s’) as
C(s,s) = a%c(s, s"). However, since the variance term of this model is unidentifiable (De
Oliveira 2020), it is fixed at a% = 1, making it sufficient to focus on the spatial correlation
function. Due to the flexibility provided by a parameter governing the smoothness of the
process, we assume a correlation function from the general Matérn class (Stein 1999), which
is both stationary and isotropic, making it expressible as a function of distance between
locations h = ||s — §'||: c(s, 8) = cv(h) = % ( Zv%)v K, ( 2\}% , h > 0 for range
p > 0 and smoothness v > 0 parameters, where K, is a modified Bessel function of the
second kind.

Using this construction, the marginal probability of occurrence at time ¢ and site s can
be expressed in terms of the mean function of the latent Z;(s) process as Pr(O;(s) =
1) = Pr(Z;(s) > 0) = ®(us(s)), where @ is a standard normal distribution function. To
allow for spatially varying marginal occurrence probability, the mean function is further
modeled as a linear combination of L spatial basis functions {1 (s) : RZ>R;seS, =
1, ..., L}. For the spatial basis functions, we use Gaussian kernels, although other choices
are viable. For generic knot locations v; € S,1 = 1, ..., L, the basis functions are defined
as Yy (s) = qb(W), where ¢ denotes a standard Gaussian density function and A > 0
is a bandwidth parameter. Denoting the vector of basis functions at location s as ¥ (s) =
(Y1(s), ..., ¥r(s)), we model the mean function at time ¢ as a sum of an offset term yt(o)
and a spatially varying term ¥ (s)//sﬁ‘” as s (s) = y,(o) +¥ (s)’,B,(O). For the vector of spatial

. . . . iid
basis coefficients Z(O), we assume an independent normal prior /350) ~ N (0, 02(0) D, t=

1,..., T. Note that in the presence of seasonality, a more complex prior that allows for
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differing variances for different seasons may be necessary. However, in the sequel, we
consider data from a single season in multiple years.

Since the presence or absence of precipitation is determined by whether Z,(s) is pos-

(0)

itive or negative, the y, ~~ offset term can be thought of as governing the overall (non-

spatially varying) probability of precipitation on day ¢. We will use this term to capture
the temporal dependence in occurrence of precipitation by leveraging synoptic-scale cli-

mate forcings (e.g., geopotential height and temperature) that are concomitant with pre-

cipitation by construction of a prior on y,(o)
y[(o), t =1,..., T until Sect. 2.3 as it is also used in the model for precipitation intensities.

. We defer discussion of the analogue prior on

The priors for the Matérn dependence parameters are taken to be p ~ Uniform(p;, p,) and
v ~ Uniform(0, 2), where in subsequent sections p; and p, are taken to be the minimum
and maximum distance between observation locations.

2.2. INTENSITY MODEL

In this section, we develop a Bayesian model for the positive spatial precipitation intensity
process. The intensity process is treated as a continuous process defined on the entire spatial
domain, S, that is masked by the occurrence process. In other words, the intensity process
is only observed at locations where the occurrence process is positive. We make use of
the Student-t process because of its flexibility in capturing heavy tailed behavior, which is
commonly observed in precipitation data (Vrac and Naveau 2007; Naveau et al. 2016).

Denote the precipitation intensity process by {¥;*(s),s € S} fortimes ¢t = 1,...,T.
While precipitation intensities are strictly positive, it is much more convenient to work with a
spatial process defined on the whole real line. The softplus function f(x) = log(exp(x)—1),
maps f : (0,00) — R and is strictly increasing, preserving the natural ordering of the
data. Both the softplus function and its inverse leave moderate to large values effectively
unchanged. In the remainder of this section, we define a model for the transformed precip-
itation intensities, Y;(s) = f(¥;*(s)).

A location-zero Student-t process can be expressed as a Gaussian process scale mixture
(see e.g., Shah et al. 2014):

U(s) =oe(s)
€(s) ~ GP(0, C(s,s)))

o ~1G c—l,@
272

where IG (5, %) denotes a inverse-gamma distribution with shape a /2 and scale ab/2. After
marginalizing over o, U (s) is a Student-t process with degrees of freedom a and scale b. A
Gaussian process is a limiting case of a Student-t process as a — o0.

To allow flexible spatial dependence types across different precipitation intensity levels,
the transformed precipitation amounts Y;(s) are modeled as a finite mixture of Student-
t processes. Finite mixtures can easily be accommodated via data augmentation. Let
& € {l,..., K} denote the latent mixture label for time ¢, where K is the total number
of mixture components. A multinomial logistic model, also referred to as the Luce model in
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the probabilistic-choice econometrics literature when modeling latent classes (Luce 1959;
McFadden 1973), is used for the mixture class membership. Denote covariates (e.g., contain-
ing synoptic-scale atmospheric information) by u; € R? fortimes¢ =1, ..., T, vectors of
coefficients foreachclassk = 1, ..., K by a; € R”. Then, for linear predictor n;;, = u;ak,
the probability 7r; ; that the process at time ¢ belongs to mixture component class k is
modeled as:

exp(1:k)

e = Pr(g = k) = — Pk
e K expGn)

k=1,...,K:t=1,...,T. (1)

For identifiability, the loadings for the K'th class are fixed e x = 0, while the remaining
loadings have independent normal priors:

y
ar ~N,0,021,), k=1,...,K—1.

Instead of using a common spatial dependence structure, each mixture class is free to have
different spatial covariance, degrees of freedom ay, and scale by parameters. Any spatial
variation in the location surface at time ¢ is captured by an offset term and a linear expansion
of spatial basis functions p; (s) = y,(l) +v (s)/ﬂgl) ,justas was done in Sect. 2.1. Conditional
on the mixture label at time ¢, & = k, the intensity process is modeled as follows:

Yi(s) = v + 9 (s) B + arei(s)
€ (s) ~ GP(0, cx (-, -))

ind b
a2 "<"1G (%" —a"z"> .

For each mixture class, we assume an isotropic Matérn correlation function with poten-
tially different smoothness v and range pj parameters:

21w h A\ h
ck(h) = <\/2Uk—) K, (\/ka—), k=1,...,K.
Pk

I'(ve) Pk

Just as in Sect. 2.1, we assume independent normal priors for the spatial basis coefficients

;I) X N(0, aél), t =1,...,T, and we use an analogue prior for yt(l), t=1,...,T,
which we discuss in Sect. 2.3. The following priors are used for the degrees of freedom and
scale parameters: a S Uniform(0, 30), k =1, ..., K, and by S Gamma(0.1, 10), where
the Gamma distribution is parameterized with shape and scale, respectively. Priors for the
Matérn covariance parameters pr and v are assumed to be independent across k and the
same as those in the occurrence model.

Because we use a mixture of Student-t processes, different mixture components are
capable of capturing different spatial dependence types, allowing for varying dependence
strengths across different intensities. The upper tail dependence of a generic stationary and
isotropic spatial process {W (s), s € S} can be characterized by the tail dependence function
atlevel u € (0, 1), defined as:
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Xu(h) = Pr{w<s +h) > F ') |w(s) > F“(u)}, 2)

where F denotes the marginal distribution function of W (s). The limit x (k) = lim,_, | x,, (h)
determines the tail dependence class. The process is said to be asymptotically independent at
distance & if x (h) = 0 and asymptotically dependent at distance % otherwise. Gaussian pro-
cesses are asymptotically independent processes with x (h) = O for all # > 0, making them
suitable for modeling physical phenomena exhibiting weak tail dependence (Sibuya 1960).
Student-t processes and their finite mixtures possess asymptotic dependence making them
suitable in the case of strong tail dependence, but also exhibit weakening spatial dependence
at extreme but finite levels, making them flexible tools in practice (Nikoloulopoulos et al.
2009). Because a Gaussian process is a limiting case of the Student-t process, a Student-t
process with large degrees of freedom is capable of capturing relatively weak dependence
at sub-asymptotic levels.

2.3. ANALOGUE PRIOR

Both models described in Sects. 2.1 and 2.2 possess location offset terms y,(o) and yt(l) ,
which here we will denote generically as y;, + = 1, ..., T. The priors for the offset param-
eters have thus far been left unspecified. In this section, we describe how the similarities
between climate forcings at different times can be used to model the temporal dependence
in the offset term. Following McDermott and Wikle (2016) and McDermott et al. (2018),
who take a similar approach to forecasting soil moisture and waterfowl settling behavior,
we will refer to this as an analogue prioron y;, t =1,...,T.

The presence and intensity of precipitation is closely related to other atmospheric con-
ditions such as atmospheric pressure, temperature, and water vapor. Rather than explicitly
model the complex precipitation dynamics, we use closely related atmospheric variables
to identify historical analogues (times t’, t' # t) of the atmospheric conditions at time ¢.
Because of concomitance of atmospheric conditions with precipitation, the precipitation
conditions during identified historical analogue times can then be used to inform the pre-
cipitation for the reference time. In a classical analogue model (Barnett and Preisendorfer
1978; Sugihara and May 1990), identified historical analogue precipitation fields and their
weighted averages would be used as the forecasts for the reference time. Instead, we make
a weaker assumption, and only borrow information about the location offset terms y; from
analogue precipitation fields.

To formalize this, for each time t+ = 1,..., T, define a vector of weights w;, =
(Wi 15 vos We—1, Wrt41, - - -, Wy, T), quantifying the similarity between the atmospheric
conditions at time ' # ¢ and those at time . For identifiability, the elements of the
weight vectors are restricted to w; p € [0, 1], w;; = 0, and Zt,#t w,py = 1, for
all 7. Combining the location parameters for other times ¢/ # ¢ into a single vector
Y_: = Vs Yi—1s Yi+1s - - -» 1), We specify conditional normal priors on the location
parameters y;|y _; ~ N(yLlw,, O'}%), t =1,...,T, so that the prior mean is a weighted
average of the precipitation location parameters from historical conditions with strong sim-
ilarity to the reference conditions.
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The weights are calculated using a kernel function applied to distances between atmo-
spheric conditions at different times, such that more similar historical atmospheric condi-
tions receive larger weights. We use an unnormalized, compact Gaussian kernel function:
gd;0,7t) = exp(_z—gz)l{d <1}, d > 0, where d is a measure of distance, 6 is a ker-
nel bandwidth parameter, and 7 is a threshold ensuring that the kernel is compact, which
prevents irrelevant non-analogue days from receiving positive weight. In subsequent sec-
tions, it is fixed such that on average (across times t) only the top m nearest analogues
receive weight. When the kernel bandwidth is large, many historical analogues will con-
tribute a small weight, and when the bandwidth is small, fewer historical analogues will
contribute a larger weight. Given distances d; ,» between all times ¢’, ' # ¢ and ¢, unnor-
malized weights w; . are calculated as wt*, » = 8(d;; 0, 7), and normalized to give weights
We = W] Do WY

Due to the high-dimension of geopotential height fields and temperature fields, some
dimension reduction is needed before calculating distances between atmospheric covari-
ates. To reduce the dimension while preserving the relevant variation in the data, each of
the atmospheric variables is projected onto the first several components of the empirical
orthogonal functions (EOFs) calculated from the data (Jolliffe 2002; Hannachi et al. 2007;
Demsar et al. 2013). Rather than rely on snapshots of the atmospheric conditions on any
given day, we employ the time lagging approach of Takens (1981). Combining lagged EOF
loadings into trajectories of atmospheric conditions over time gives a fuller reconstruction
of the state-space of the dynamical system (Sugihara and May 1990). Let x; denote the
loadings for the first several components of relevant EOFs on day ¢, we construct a new
embedding matrix as X; = [X;, X;—1, . . . , X,—], Wwhere r is the number of lagged time steps.
Doing this for all time points, the quality of Y,/ as an analogue for Y; is determined by the
distance (e.g., Euclidean norm) d; = || X; — X,|| between X, and X;.

To summarize the proposed approach, the precipitation process is broken into two compo-
nents, occurrence and intensity, which are modeled independently. The spatial dependence
in both processes are modeled using (1) a linear combination of basis functions in the
mean function which captures smoothly varying spatial features and (2) a mixture of spa-
tial stochastic processes which capture residual spatial dependence. To model the temporal
dependence in both models, an analogue prior is used, wherein the random intercept of the
process at each time has a conditional mean that is a weighted average of intercepts from
times which share similar covariates to the current time.

For both the occurrence and intensity models, posterior samples are made using Markov
chain Monte Carlo (MCMC), the details of which can be found in “Appendix A.” Gibbs
updates are available for some parameters, and the remaining are made with Metropolis—
Hastings updates. Samples of the parameters are made for all observation times, and in-
sample posterior predictive draws can be made directly, e.g., Y;(s') | .7 fort € {1,..., T}
and non-observation location s” ¢ {s1, ..., s, }. However, to make out-of-sample posterior
predictive draws, for example of ¥, |Y .7 for time ¢ > T, distances between atmospheric
conditions on the future day and historical days must first be calculated, e.g., dy ; as well as
their corresponding normalized weights wy ; from w}, = g(dy ;0,7) fort =1,..., T,
conditional on posterior samples of 6. ’
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To assess the utility of the model, we perform two simulation studies, the results of which
are summarized in the Supplementary Material.

3. PRECIPITATION ANALYSIS

In this section, we apply our model to daily precipitation observed over the Susquehanna
river basin in southern New York and Pennsylvania. By coupling daily precipitation accu-
mulations observed at rain-gauge stations with predictive atmospheric conditions, we can
apply the proposed analogue model to make forecasts of precipitation over watersheds. The
rain-gauge data come from the National Oceanic and Atmospheric Administration (NOAA)
(https://www.ncdc.noaa.gov/ghcnd-data-access) and consist of daily precipitation accumu-
lations (in millimeter) observed between 1986 and 2017 for n = 174 gauge stations. While
precipitation data are often rounded to the nearest millimeter, we do not consider the role
of quantization here. This is in part because our focus is on the bulk and right tail of the
distribution where the rounding is comparatively negligible for larger precipitation amounts.
To capture the temporal dependence, meteorological reanalysis estimates of geopotential
height and surface temperature are used to construct the distance matrix for the analogue
prior on location terms in the occurrence and intensity models. Reanalysis computer mod-
els infill meteorological fields on a spatial grid by assimilating historical, spatially varying
atmospheric observations, which are treated as boundary conditions in a consistent model of
the climate system. We consider 500 hPa geopotential height and surface temperature from
the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-
2) project (Gelaro et al. 2017) for identifying analogues. The analogue prior distance matrix
is constructed using the lagged EOF loading approach described in Sect. 2.3 with r = 3
lagged time steps and the first 10 PCs of each of the two MERRA-2 atmospheric vari-
ables. An example of the 500 hPA and surface temperature fields for reference and nearest
analogue days is shown in Fig. 1. For covariates u;, we use the EOF loadings of 500 hPa
geopotential height and surface temperature at time ¢. Based on preliminary MCMC runs,
we fix the number of mixture components K = 5 to allow for additional flexibility in spatial
dependence types, but not so large as to generate nearly empty classes. Finally, we assume a
A ~ TN(O, O’i, 0, 0o) prior, where o is taken to be the 5th percentile of distances between
all pairs of coordinates.

We evaluate three models for daily precipitation: occurrence and intensity models with

(M1) independence priors on y,(o) and y,(l), (M2) analogue priors on yt(o)

and y," with dis-
tance matrix calculated using MERRA-2 atmospheric variables over the continental United
States (CONUS), and (M3) analogue priors on yt(O) and y(l ) with distance matrix cal-
culated using MERRA-2 atmospheric variables over the region surrounding Pennsylvania
(local PA). The data are split into training (1986-2000) and holdout periods (2001-2017),
during each year of which we consider only the months April, May, and June. During the
training period, 20 stations are also held out for model evaluation of in-sample prediction
(interpolation). Inference on each is performed with a Metropolis within Gibbs Markov
chain Monte Carlo (MCMC) algorithm run for 100,000 iterations. The models are eval-
uated by two measures: by their ability to capture the distribution of precipitation when
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Figure 1. The 500 hPa geopotential heights and surface temperatures for a reference day are shown in the leftmost
column. The middle and right columns show the corresponding fields for the top two most similar days based on
the Euclidean distance between lagged vectors of the top 10 PC loadings of both variables.

making (1) out-of-sample forecasts and (2) in-sample, kriging predictions. To evaluate (1),
out-of-sample posterior predictive draws are made from each model during holdout period
at each of the 174 gauge locations, and to evaluate (2), in-sample posterior predictive draws
are made at holdout stations for each day of the training period. In addition to these three
models, we also consider the distributional forecasts of precipitation from the LENS his-
torical run during the holdout period and MERRA-2 estimates during the training period.
LENS fields of 500 hPa geopotential height and surface temperature are projected onto
the MERRA-2 EOF basis for comparability of fields when calculating distances. Whereas
LENS is used to make comparisons with out-of-sample predictions, MERRA-2 reanalysis
estimates are used for in-sample (i.e., kriging) comparisons, because reanalysis models are
effectively conditioning on the observed gauge measurements and atmospheric boundary
conditions to infill precipitation.

Both MERRA-2 and LENS precipitation forecasts are made on a grid. To resolve the
spatial mismatch between grid cells and gauge locations, gauge station forecasts for the
LENS and MERRA-2 models are made by assigning each gauge station the precipitation
amount from its nearest LENS and MERRA-2 grid cell.

The models are evaluated based on how well they capture the distributional characteristics
of extreme precipitation. For each day of the holdout period, the maximum daily precipitation
accumulation across all stations is calculated. The distribution of maxima is then compared
to the predictions from each model using tail weighted continuously ranked probability
scores (TWCRPS) (Gneiting and Katzfuss 2014). For a single sample y, the TWCRPS is
calculated as:
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Table 1. Tail weighted continuously ranked probability scores (TWCRPS) for the Student-t process mixture,
LENS model forecasts of the distribution of daily maximum precipitation among all rain-gauge locations
during the holdout period (2001-2017), and MERRA-2 model forecasts of the distribution of daily
maximum precipitation among holdout gauge locations during the training period (1986-2000)

Predictions TW fun.  Indep. prior CONUS Local PA LENS MERRA-2
In-sample w1 (x) 7.43(7.35,7.55) 7.41(7.32,7.54) 7.37(7.28,7.48) 7.30 (—-)
In-sample wy (x) 6.66 (6.59,6.77)  6.64 (6.56,6.77)  6.61 (6.53, 6.70) 6.54 (—-)

Out-of-sample ~ wj (x) 209 (13.1,25.2) 163 (152,17.4) 11.8(11.2,12.5) 13.7 (--)
Out-of-sample ~ wo(x) 19.6 (12.0,23.7) 15.0 (14.0, 16.1) 10.7 (10.2,11.4) 12.7 (—-)

The better value for each criterion is given in bold. Estimated standard errors are given in parentheses

TWCRPS{F, y} = /oo (F(x) — 1{y < x})?w(x)dx, 3)

—00

where F refers to the model estimate of the target distribution from which y is drawn,
and w(x) is a weight function. In practice, as we do here, the TWCRPS is averaged
over a sample yi, ..., y7 as TWCRPS = ZiT=1 TWCRPS{I:", yi} (where T = T for in-
sample prediction and T is the number of holdout days for out-of-sample prediction). Lower
TWCRPS scores correspond to better correspondence between the empirical and model-
based distributions. We consider two TWCRPS weight functions: wi(x) = 1{x > qos}
and wa(x) = ®{(x — q0.5)/Semp} Where go.5 and se;,p are the sample median and standard
deviation of the observed precipitation. The TWCRPS results are summarized in Table 1.
Both versions of the analogue prior model outperform the independence prior model in
capturing the distribution of precipitation extremes during the holdout period. Interestingly,
the model with analogue distance matrix constructed from locally defined EOFs around PA
shows greater predictive skill than both the one constructed from CONUS EOFs and the
LENS model forecasts. Moreover, the in-sample forecasts of precipitation using the Local
PA analogue prior model are also competitive with the MERRA-2 model. GCMs like LENS
tend to oversmooth precipitation extremes. The proposed analogue model is able to incor-
porate information on temporal dependence encoded in the MERRA-2 and LENS models
while preserving the heavy tailed nature and spatial features of extreme precipitation. We
focus the remainder of our analysis on the analogue prior model using local PA fields.

A map of the pointwise, marginal 99th percentile estimates of the posterior predictive
distribution of daily precipitation over the study region is shown in Fig. 2. Estimated pre-
cipitation levels tend to be highest over the northeastern part of the state as well as over
parts of New Jersey and New York. To assess the correspondence between the empirical and
model estimates of the spatial pattern of tail dependence, we also examine the F-madogram
for monthly maxima (Cooley et al. 2006). The F-madogram is analogous to the more tra-
ditional madogram from classical geostatistics, but is guaranteed to exist even when the
first moment of the process under consideration is undefined. For a generic, stationary and
isotropic spatial process {W(s),s € S}, S C R2, with marginal distribution function F,
and spatial lag & > 0, the F-madogram, defined as



PROJECTING FLOOD- INDUCING PRECIPITATION WITH A BAYESIAN ANALOGUE MODEL 241

43 N S
0.16 . .
iz -
§ 0151 e
(o)) .
% [e) .®
£ 8o °*
g 0 -
[T 0
40 0.131 .
0.124 7
39 . T T T T
P o) L S 0 100 200 300 400
Longitude Distance (km)

Figure 2. Left: Pointwise estimates of the 99th percentile of daily precipitation over the observation region based
on the fitted analogue prior model overlaid with upper (0501), western (0502), and lower (0503) branch Susque-
hanna drainage basin boundaries. Right: Empirical F-madogram estimates (points) and 95% credible intervals
(ribbons) for monthly maxima of daily precipitation accumulations based on the fitted Local PA analogue model.
A dashed horizontal line corresponding to independence is plotted for reference.

1
Ap(h) = JE F{W(s"} = F{W(s)} |, forlls —s'|| =1, “4)

and describes the dependence in the pairs (W (s), W (s’)) that are a distance & apart. When
the pair is perfectly dependent, Az (h) = 0, and when the pair is independent, A (h) = 1/6.
Figure 2 shows both good correspondence between the empirical and model estimates of
Ar(h) as well as apparent nonzero dependence of monthly maxima even at spatial lags of
h = 400 km, which suggests that the model is capturing the spatial dependence properties
of extreme precipitation well.

To assess the degree to which the Student-t mixture analogue model captures the spatial
dependence across precipitation intensities, we compare empirical and model estimates of
Xu(h) for a fixed lag h = 200 km for varying u. The results are shown in Fig. 3. The overlap
between model and empirical estimates suggests a good model fit of spatial dependence
across intensities.

For illustration of the model-based forecasts, the observed daily precipitation accumula-
tions, a posterior predictive draw, and posterior predictive mean and standard deviation for
a single day are shown in Fig. 4. Observed and predicted zero accumulations are shown as
gray. The figure shows good correspondence of the general spatial surface and smoothness
characteristics in the observed and predicted precipitation amounts. Under the assumption
that the library of observed historical climate states is sufficiently rich to match future states,
our model can be used to make forecasts of future daily precipitation accumulations under
various climate forcing scenarios. To do this, the 500 hPa geopotential height and surface
temperature fields of the LENS RCP8.5 run are projected onto the first 10 principal compo-
nents of their respective MERR A reanalysis fields. The distances between lagged trajectories
of LENS EOF loadings and historical MERRA EOF loadings are calculated for all future
days (e.g., for some future day ¢/, the distance vector d,- consists of Euclidean distances
between covariates on day ¢’ and all historical days 7 = 1, ..., T'). LENS RCP8.5 forecasts
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Figure 3. Empirical estimates of x; (1) (dots) at spatial lag 7 = 200 km and pointwise 95% confidence intervals
(gray ribbon) are compared with Local PA Student-t mixture analogue model pointwise 95% credible intervals
(blue ribbon). The overlap between model and empirical estimates suggests a good model fit of spatial dependence
across precipitation intensities (Color figure online).

of geopotential height and surface temperature are coupled with the fitted analogue model
to make out-of-sample posterior predictive draws of precipitation on a 10km? grid over
three Susquehanna drainage basins from 2006-2100. Since the proposed model is defined
on a continuous domain, predictions can be made on an arbitrarily fine grid. Summaries of
the 3-month (April-May—June) maximum daily total precipitation volumes over basins are
shown in Fig. 5. The figure shows high uncertainty in the estimates, with 95% credible bands
capturing slight increasing trends over time for all three basins. To quantify the flood risk,
the forecasts from this model could be input into a hydrological flow model that accounts
for topography and land use among other factors.

4. DISCUSSION

While analogue methods have a long history in meteorology, there have been relatively
few attempts at using them in a fully probabilistic framework for precipitation modeling. The
analogue prior is a very general approach to modeling temporal dependence that leverages
climate model forecasts of atmospheric variables that are concomitant with precipitation.
Since this model is developed in a Bayesian framework, it is possible to account for uncer-
tainty in the predictive skill of concomitant atmospheric variables that are used to select
analogues. Moreover, the Student-t process mixture is a flexible model that can accommo-
date a wide variety of spatial dependence types in both the bulk and tail of the distribution.
Because we use a fixed data transformation, rather than a classical copula approach, the mix-
ture of t processes must carry the load of representing both the marginal and dependence
characteristics of the data. Ordinarily, it is seen as advantageous to separate marginal and
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Figure 4. Observed daily precipitation amounts at gauge locations (top left), posterior predictive draw (top right),
posterior predictive mean (bottom left), and posterior predictive standard deviation (bottom right) for a single day
during the observation period. Gray points and cells correspond to zero precipitation amounts. The general spatial
mean surface as well as degree of smoothness in the observed precipitation data is well captured by that of the
posterior predictive sample.

dependence sub-models, but the mixture approach that we take here seems to be sufficiently
flexible to provide excellent fits to, both marginally and jointly, to data arising from a variety
of different mechanisms (Hazra et al. 2018).

This model could be extended further by considering nonlinear dimension reduction
techniques for identifying analogues such as Laplacian eigenmaps (Belkin and Niyogi 2002),
self-organizing maps (Kohonen 1984), and diffusion maps (Coifman and Lafon 2006).
Similar to other analogue methods, the ability of the proposed model to produce accurate
forecasts is predicated on the condition that there exist close historical analogues to future
conditions (see Van den Dool 1994 for a discussion). As part of our ongoing and future
work, we plan to apply our precipitation forecasts to a hydrological water-flow model to
more directly interrogate changes in flood risk over the Susquehanna drainage basins.
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Figure 5. Global Historical Climate Network (GHCN) daily gauge station locations over Pennsylvania and
surrounding states are overlaid with upper (0501), western (0502), and lower (0503) branch Susquehanna drainage
basin boundaries (left). Forecasted yearly (during April-May—June) maximum total precipitation 95% credible
intervals for each basin are plotted on the right.
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A. MCMC DETAILS

Metropolis—Hastings MCMC algorithms were implemented for making posterior draws
of the parameters in both the occurrence and intensity models using the R programming
language (http://ww.r-project.org).

A.1. OCCURRENCE MODEL METROPOLIS—HASTINGS ALGORITHM

The parameters p, v, and 8 were updated using variable-at-a-time random walks.
Truncated normal Gibbs updates are available for the latent Gaussian process at obser-
vation locations Z; = (Z;(s1), ..., Z:(sp)). Denoting occurrence indicators O; =
(O;(s1), ..., Os(sy)) and mean function u, = (u;(s1), ..., :(sy)), the Gibbs updates
for the latent Gaussian process are

Zl|0t7 ,"[a ;07 v~ TNn(I"z’ E\),pa 117 ul)

where X, , is the spatial covariance matrix for the n observation locations, lower bounds
I; = ((s1),...,Il(s,)) have elements
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0, if O/(s;)) =1
I(s;) = _
—o0 if Os(s;) =0

and upper bounds u; = (u(sy), ..., u(s,)) have elements

{oo, if 0,(s;) = 1
u(s;) =
0 ifOi(s;)=0

Gibbs updates are also available for both the location parameters y,(o), t=1,...,T and
;O). For the location parameter, the Gibbs update is

w (0)
( >|v 0,0, },(0) t(O)’Zt NN{<1’>:;})[Z,—11/’/3 0)]+ ’y ! )

V(O)
1 -1 1 -1
(1’2 1+ —— ) (12 1+ ) }
y(()) y<<>>

For the basis coefficients ﬁ,(o), the Gibbs update is

—1
o 0 _ 1
B\Zy, v/ ),v,,o,oé(o) ’“Np{<'/’/2u,;'/’+ 2 Ip)
9400

-1
x(w/E;L[zt—y,(")l]),(w/z ¥+ ) }
,3(0)

Inverse-gamma Gibbs updates are used for 05(0) and a§< 0)- Using inverse gamma parame-

_(‘”‘l)exp(——) x> 0.

terized with shape a and scale b, having density f(x; a, b)

F(cz)
With prior o2 J0) ~ 1G(ay, by ), the Gibbs update for o2 L) is

T
1
0
05(0)“’;( ' ~1G {ay +n/2.by + 3 > - W;)’—t(o))Z] ,

t=1

and the Gibbs update for 0§<0)» assuming prior oé(o) ~ 1G(ag, bp) is

0 0
052(0)|:B(1:T IG{aﬂ +np/2,bg + = Z'B< ) ( )}’

t 1

A.2. INTENSITY MODEL METROPOLIS—-HASTINGS ALGORITHM

The parameters p, v, ax, br, a for k = 1,..., K, and 8 were updated using variable-
at-a-time random walks. The cluster labels & were also updated variable-at-a-time, but
with discrete uniform independence proposals, each on 1:K. The location offset and basis
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functions Gibbs updates are similar to those in the occurrence model but are also dependent
on the mixture labels.

1)
_ wiyl
v e, ok, 0. & =k o2 B 2, ~ N{ <1/Ek Y — 981+ %)

[
y
1! 1!
x(1/2k11+ 5 ) ,(1’2k11+ : ) }
ag g
y@ y

where the covariance matrix X is calculated using dependence parameters p; and v cor-

responding to mixture class k.
Similarly, the basis coefficients ﬁtu) have Gibbs update

_ 1 !
ﬂ;l)|Yt7 J/t(l), Vk, Pk, & =k, Ué(n ~ Np{('ﬁ/xk 1'/’ + 2 11’)
)
I 1 -
X <¢/Ek1[Y1 - Vt( )1]>, (1”/2](1'# + 2 Ip) }
)

The Gibbs updates for the prior variances 05< 5 and aﬂz( 1, are completely analogous to those
in the occurrence model.
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