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Species range shifts and the spread of diseases are both likely to be driven by extreme
movements, but are difficult to statistically model due to their rarity. We propose a statis-
tical approach for characterizing movement kernels that incorporate landscape covariates
as well as the potential for heavy-tailed distributions. We used a spliced distribution for
distance travelled paired with a resource selection function to model movements biased
toward preferred habitats. As an example, we used data from 704 annual elk movements
around the Greater Yellowstone Ecosystem from 2001 to 2015. Yearly elk movements
were both heavy-tailed and biased away from high elevations during the winter months.
We then used a simulation to illustrate how these habitat effects may alter the rate of dis-
ease spread using our estimated movement kernel relative to a more traditional approach
that does not include landscape covariates.

Supplementary materials accompanying this paper appear online.

Key Words: Animal movement; Disease spread; Resource selection; Heavy-tailed;
MCMC.

1. INTRODUCTION

Brucellosis is a zoonotic disease caused by the bacteria, Brucella abortus, which was
introduced by cattle to wildlife in the Greater Yellowstone Ecosystem (GYE) during the
initial European settlement (Meagher and Meyer 1994). From 1998 to 2016, there have
been 27 affected livestock herds, all of which were likely to have been infected from elk
(National Academies of Sciences, Engineering, and Medicine 2017; Kamath et al. 2016).
The transmission of brucellosis is highest in March through May due to abortion events
(Cross et al. 2015). Our goal is to model winter-to-winter elk yearly movements and use
estimates of movement rates to better understand how landscape features and extreme move-
ments affect connectivity of GYE elk. We used data provided by State and Federal agencies
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Figure 1. 704 elk movements from one winter to the next around the Greater Yellowstone Ecosystem in Montana,
Wyoming and Idaho. The data were both heavy-tailed (a) and biased toward some landscape features like elevation

(b).

around the GYE on 521 unique elk over 704 yearly elk movements from 2001-2015. One
of the individuals in the dataset was a male. We included his movement in the analysis for
completeness, but as there was only one male, we chose not to directly model any differ-
ences in movement behavior between male and female elk. A single elk was included at
most three times in the data, and we considered each year of data to be independent samples
of annual elk movements. We identified all elk with telemetry locations in the months of
January—February of two successive years. The temporal resolution of the elk telemetry data
varied, with fixes occurring at intervals ranging from 1 to 9 days. For each elk, we identified
the telemetry location closest to January 1st of each year but not later than February. A
single yearly movement was a pair of such points from consecutive years for a single elk.
We see that in these data yearly movements appear to show a heavy tail, with most year-to-
year movements less than 40 km, but with a handful of extreme movements observed up to
100 km (Fig. 1a).

In addition to these data, we created grids of agricultural land, forest cover and water
from the National Land Cover Database. We rasterized private land polygons obtained from
Surface Management Agency spatial data. We created a grid of primary and secondary
roads from Transportation Investment Generating Economic Recovery (TIGER). We used a
digital elevation map for elevation and terrain roughness. The raster and movement data are
freely available on ScienceBase.gov (https://doi.org/10.5066/POCN4X34). We aggregated
the original rasters by a factor of four to improve computational efficiency and interpolated
any missing values (see Appendix A). The annual movements are in Fig. 1b) mapped over
the raster layer Elevation. The 8 raster layers are shown in Fig. 2. The R package raster
(Hijmans 2016) was used in handling the raster layers. We converted the raster layers as well
as the movement data from longitude and latitude coordinates to UTM coordinates prior to
analysis.
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Figure 2. Landcover raster layers.

An individual yearly elk movement is the sample unit, and the desired inference is at
the population level. That is, we are most interested in population-level understanding of
movements from year to year, and the individuals are assumed to be samples from the
population of elk.

Our goal is to model the yearly movement of elk incorporating both resource selection
and any heavy-tailed behavior in movements. To our knowledge, previous studies have not
addressed both these issues in a single, unified approach. We illustrate how implementing
this approach leads to important insights about the relative speed of disease invasion in
different habitat structures due the effect of landscape covariates on the movement kernel.
Morales (2002) discusses how behavior over patchy terrain can produce leptokurtic move-
ment distributions. Jointly modeling heavy-tailed movements and resource selection will
allow us to better understand the relative importance of these two processes.

2. THE RESOURCE SELECTION MODEL

Resource selection models (RSMs) consider a weighted distribution formulation of a
point process model to model-independent individual locations. These models seek inference
concerning the preference that individuals make given the type of environment. The use of
“resources’ by the individual is explicitly modeled by a nonnegative function that influences
the spatial density of individual locations (Hooten et al. 2017).

A wide variety of models that fall into the area of resource selection are discussed in
Johnson et al. (2008) which proposes a general framework for analyzing telemetry data.
Coulon et al. (2008) modeled a step selection function (SSF) that represented the probabil-
ity of selecting a given movement as a function of landscape variables and distance travelled.
SSFs are similar to RSMs except that while RSMs analyze locations of animals indepen-
dently, SSFs analyze the segments separating the successive locations (Coulon et al. 2008).
Forester et al. (2009) proposed a model for a SSF that includes a resource selection function
and a resource-independent movement kernel. An exponential distance kernel and a spline
function were used to model distance. This form makes parameter estimation straightfor-
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ward but is unable to capture heavy-tailed movements. Avgar et al. (2016) propose a model
that simultaneously models resource selection as well as movement through time. However,
we are not interested in modeling temporal correlation in the data since we have at most
three time points for each elk, which we assume to be independent of one another.

Resource utilization function (RUF) models (Marzluff et al. 2004) are similar in concept
to RSMs but use a two-step approach. In the first step, the density of space use is estimated
over the region of interest and in the next step the output of step 1 is linked to a set of spatial
covariates in a regression model. For a comparison of RUF and RSF models, see Hooten et al.
(2013). In this study, we look at yearly movements independently and do not consider the
time component since we do not have sufficient data for individual elk over multiple years.
However, there is a rich body of literature for modeling animal movement in time. Point
process models are straightforward when the goal is resource selection inference. When the
temporal component is included explicitly, these models become increasingly more involved.
Instead of point process models, it is more common to model temporally dependent telemetry
data using discrete-time dynamic models (Morales et al. 2004; McClintock et al. 2012).
These models allow for explicit modeling of the temporal dependence (Hooten et al. 2017).
When measurement error is formally accounted for in these models, they are commonly
called state space models.

Hooten et al. (2017) argue that discrete-time models have their advantages as they can
borrow from well-established tools in time series literature, model dynamics can be easily
thought of in discrete time, and discretizing is needed at some level when implementing these
models digitally. However, movement is inherently a process that happens in continuous
space and time. Continuous-time processes conceptually consider time to be continuous,
although some discretizing may occur when implementing these models (Hooten et al.
2010; Hanks et al. 2015). McClintock et al. (2014) review both discrete- and continuous-
time models and discuss the similarities and differences between them, giving guidance as
to under which circumstances one type of model is preferable over the other. For the elk
data we consider here, we do not consider temporal dependence, as the data are year-to-year
movements. As each year’s movement can be reasonably assumed to be independent, our
model will be most similar to RUFs and SSFs.

We consider the following form of a resource selection model. Let (s;, e;) be the ith
movement, where s; and e; are the coordinates of the start and end locations given in terms
of UTM coordinates. We consider an RSM based on a weighted distribution (Johnson et al.
2008). The model for the ith observation has the following form

e |si] = et Pq(eissi, 0)
i 151 = 7
/ex @B (z; si, 0)dz
s

ey

where x(e;) denotes the features of the ith end location, the bracket notation denotes a
probability density function, and f8 is the coefficients associated with the landscape features.
The integral in the denominator is over the study region S € R? which has compact support.
q(z; si, 0) is the density of the end location z. It is of the form
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1 1
q(z; i, 0) = o————— f(llz —si[]).
27 ||z — si]|

Let f be the density of the distance kernel. Let d and ¢ be distance travelled and bearing,
respectively, each distributed as d ~ f and ¢ ~ U(0, 2m). Let (s1,s2) be the UTM
coordinates of the start location and (z1, z2) be the UTM coordinates of the end locations.
We can obtain (z1, z2) as 71 = s1 + d cos(p) and zo = s2 + d sin(p). The joint density for
z = (z1, 22), which we denote as ¢(z; sj, @) above, is obtained using standard change-of-
variable methods.

We hypothesized that elk prefer medium elevation values in winter months, and therefore,
we include a quadratic term for this covariate to capture such a preference. We consider only
linear terms for all other landscape features. Other functional forms of the covariates can
be easily incorporated into this model. However, finding the best possible combination of
covariates is not the primary goal of this paper. The function f is the density kernel for the
Euclidean distance ||e; — s;|| computed in kilometers. We compare two functional forms
for f in this study. We first consider a Gamma kernel, which is a distance kernel with a
light tail. We then consider a distance kernel with a flexible tail defined by standard extreme
value theory (EVT) models.

EVT is a theoretical framework for modeling extremes of data and has been used in
many scientific disciplines like hydrology and climatology. However, the use of EVT in
ecology and specifically in modeling heavy-tailed movement is limited. Garci-a and Borda-
de Agua (2017) claim to be the first to use EVT methods in modeling plant dispersal. One
of the initial proponents of capturing long-range dispersals was Kot et al. (1996) who used
integro-difference equations to model the spread of invading organisms. These models were
extended to a mixed model by Clark (1998) who applied these methods to the invasion of
different tree species at the end of Pleistocene. A drawback of these models is that the tail
parameters were not estimated; only model comparison was done between models. Clark
etal. (1999) suggested a model which overcame this drawback by using a two-dimensional
t distribution to model the dispersal kernel. Clark et al. (2003) proposed a new stochastic
model which used a Bayesian framework and modeled the dispersal kernel as a discrete
multinomial distribution. Clark et al. (2003) also state that classical diffusion models are
more useful in modeling animal dispersal than plant dispersal and that long distance dispersal
events are less common in animal dispersals. However, our data show evidence of long-range
movements for elk winter-to-winter and therefore we are interested in capturing any such
extreme movements.

We consider a distance kernel obtained by splicing a Gamma distribution and a gen-
eralized Pareto distribution (GPD) together. This spliced distribution is flexible enough to
capture a wide range of tail behavior, including heavy and light tailed movements. Pairing
this with the RSM (1) results in a flexible model that allows for both resource selection and
heavy-tailed dispersal.
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2.1. THE GAMMA DISTANCE KERNEL

The Gamma distance kernel has the following form

1 x
h(d|k,0) = d¥le™s 2
@1k 0) = 7o 2)
where k and 6 are the shape and scale parameters, respectively, and I" is the Gamma function.

The Gamma distance kernel has a light tail, and this may not account for extreme movements
of elk.

2.2. THE SPLICED DISTANCE KERNEL

We consider two forms for a spliced distribution where the functional form of the distance
kernel f takes different forms below and above a threshold u. MacDonald et al. (2011)
suggested modeling the CDF of the spliced kernel as

H(d |k, 0) ford < u,
_ | maien
PR 0 £ 0 {u —®) + 6. Gd|0,§) ford > u. v

Here, u denotes the threshold and ¢, = Pr(d > u) is the tail fraction: the probability mass
above u. H is the CDF of the “bulk model,” which models yearly movements shorter than u.
We model H as a Gamma distribution with shape and scale parameters k and 6, respectively.
G is the CDF of the tail model, which we model as a GPD with shape and scale parameters
& and 0. The form of the PDF is

h(d|k,0) ford <u,
_ ) Hulk®)
fd|k,0,0,&, ¢,) {(ﬁug(dlﬁ £) ford > u. @

where 1 and g are the Gamma and GPD densities, respectively. The GPD density g has the

d_
g(d|o. &) = ( S(U”)>( ) )

with the constraint that d > u when & > 0,and u < d <u — o/& when & < 0. The scale

parameter o is constrained to be positive, and the shape parameter & controls the heaviness

following form

of the tail of the movement kernel, where & > 0, & < 0 and & = 0 correspond to a heavy
tail, finite tail and a light tail, respectively.

Specifying the tail fraction ¢, has generated some discussion (Scarrott 2015; Hu 2013).
A special case of [4] is where ¢, = 1 — H(u|6p). This will be referred to as the “bulk
model-based tail fraction model” (BTFM). A benefit of this approach is that it borrows
information from the “bulk model” which usually has ample data. A majority of spliced
models adopt this approach, and it is advantageous when the “bulk model” is known to be
correct. However, it may be inappropriate in scenarios where the bulk model is not a good
descriptor of the tail (Scarrott 2015).

The tail fraction ¢, can also be considered as an additional model parameter which
controls the probability of coming from the tail distribution. Hu (2013) shows that this
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approach provides more flexibility and is clearly better than the BTFM when the “bulk
model” is mis-specified. Scarrott (2015) shows that the maximum likelihood estimator of
the tail fraction is the sample proportion of excesses, i.e., (]3,4 = % where n,, is the number
of excesses above the threshold u and n is the sample size. Fixing bu = 4 in (4) will be
referred to as the “Parameterized Tail Fraction Model” (PTFM).

Although the above model specifications guarantee a continuous CDF, the PDF is not
necessarily continuous. Scarrott (2015) gives a simple approach to constrain the pdf to be
continuous at the threshold «. The right limit of the GPD pdf evaluated at the threshold u is
equated to the bulk model pdf evaluated at the threshold giving the following restriction on
the GPD scale parameter o,,. For the BTFM,

1 — H(ulk,0)
oy = —-———
" h(u|k,0)

and for the PTEM,

_Hulk0) ¢y
“T 1=y h(ulk,0)

Under this constraint, o,, does not have to be estimated in either the BTFM or the PTFM.
The R package evmix was used to specify the spliced kernels (Scarrott and Hu 2017).

3. PARAMETER ESTIMATION

3.1. APPROXIMATION OF THE LIKELIHOOD IN THE RESOURCE SELECTION
MODEL (RSM)

A major hurdle in fitting the RSM (1) is the evaluation of the intractable normalizing

constant C(s;, 8,60) = / eX (z)ﬂq(z; s;, 0)dz.
s

It is clear that C(s;, B,0) can be expressed as the expectation E,(e* @B where
q(z; s;, 0) is the PDF of the end location z, ignoring any resource selection. We thus consider
a Monte Carlo approximation to C, with

N X @B "
~ Z j=1 € iid .
C(Sivﬂag)NTv ZjNQ(Z7Si,9)~

Each end location z; is obtained by simulating a distance d; from the distance kernel ¢
(this is done by the inverse CDF method), simulating a bearing ¢; from a uniform circular
distribution and then using the transformation z; = (s; ;1 +d; cos(¢;), si.2 +d; sin(p;)) to
obtain the resulting end location. N is the Monte Carlo sample size.

When covariates are not considered, the normalizing constant reduces to C(s;,0) =

/ q(z; s;, 0)dz. The Monte Carlo approximation in this case is
N

Z;V:I I(zj €S) iid

C(si, 0) ~ N » Zj ~q(Z; 8, 0).
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where /(z; € §) is an indicator function with value 1 if the simulated end location z; falls
in the region of interest S and O otherwise.

Note that C(s;, B, 0) is different for each start location i, so we must approximate
C(si, B, 0) for each of the 704 start locations in the yearly movement data. We parallelized
this operation using the parallel package in R (R Core Team 2016).

3.2. BAYESIAN FRAMEWORK AND MCMC

We adopt a Bayesian approach for model estimation similar to Behrens et al. (2004). We
specify diffuse prior distributions for all parameters. The Gamma distribution shape and
scale parameters k and 6 are estimated on the log scale. We use N (0, 100) priors for the
feature covariates Bo, B1, ..., Bp, log(k), log(f) and the shape parameter & of the GPD.
Samples from the posterior distribution are drawn using a Markov Chain Monte Carlo
(MCMC) algorithm. All parameters are updated jointly using Metropolis—Hastings steps,
and we use adaptive tuning (Roberts and Rosenthal 2009) to tune the random walk proposal
variance. A critical step in using the spliced model is specifying the threshold u. It is often
problematic to estimate this parameter jointly with other model parameters (Scarrott and
MacDonald 2012). We tried estimating this jointly with other model parameters with little
success (results not shown). Behrens et al. (2004) do this and warn that the threshold is
difficult to estimate in this manner. In this study, we used a mean excess plot (Davison
and Smith 1990) to guide our choice in picking several candidate thresholds and then used
goodness-of-fit techniques to select the best . Candidate thresholds were picked by looking
for linearity above the threshold and by considering a range of reasonable quantiles.

The method we used approximates the likelihood using a Monte Carlo estimate within
a MCMC sampler; it stores the current value of the likelihood without re-sampling or
approximating it afresh at each iteration. This method falls into the framework of a grouped
independence metropolis—hastings (GIMH) sampler introduced by Beaumont (2003). A
generalization of this sampler together with theoretical results that discuss the convergence
properties of it is given in Andrieu and Roberts (2009).

We note that the denominator of the approximation of the likelihood is unbiased for
the denominator of the actual likelihood, but this does not guarantee the approximation is
unbiased for the entire likelihood. In order to assess if this in fact induces a systematic bias in
our parameter estimation, we conducted a simulation study in which we considered an RSM
with a Gamma distance kernel and one covariate, elevation, and simulated 1000 data sets
with fixed true parameters. The details can be found in Appendix B. The distributions of the
MAP estimates are given in Fig. 6, which demonstrates that there is no trace of systematic
bias in the estimation, although the likelihood itself is biased. We did a second simulation in
which we simulated movement data based on Gamma, PTFM and BTFM distance kernels,
and attempted to recover the true parameter values. We used a single covariate (elevation) in
this study. The posterior distributions for the parameters captured the true parameters very
well for all three types of kernels. See Fig. 7.

Beaumont (2003) notes that taking larger Monte Carlo sample sizes leads to better MCMC
convergence. We found that the number of Monte Carlo samples used had a large impact
on how well the chains mixed. Larger Monte Carlo sample sizes lead to lower variance of
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the likelihood estimation and better mixing of the MCMC sampler. More complex models
such as the models that included covariates and a spliced distance kernel needed a higher
number of samples to achieve a similar variance than simpler models which did not include
covariates. We decided on having the same number of samples across all the models to
facilitate comparison and chose a Monte Carlo sample size of N = 30,000, which gave
a standard deviation of approximately 0.1 using 10 replicates for the likelihood of the
most complex models. We ran the MCMC sampler for 50,000 iterations for each model and
checked convergence visually using trace plots. The computing times in minutes for running
the chains are given in Table 1. The cluster used 3 dual 10-core Xeon E5-2680 processors
run in a Red Hat Enterprise Linux 6 computing environment. The computer code can be
found in the supplementary materials.

3.3. APPLICATION TO ELK YEARLY MOVEMENTS

We used the deviance information criterion (DIC) (Spiegelhalter et al. 2002) and
cross-validated log scores (Gneiting and Raftery 2007) for model comparison. For cross-
validation, we divided the data set into training (80%) and testing (20%) sets, obtained
posterior distributions using the training set and calculated the cross-validation score based
on the posterior samples and the log-likelihood of the testing set as

K M
1
CV Score = » " E(logler | s¢. 01) ~ Y 7 > "loglex |si. 0
k=1 k=1 j=1
K is the number of data points in the testing set, M the number of posterior samples, and
0; the posterior samples of the parameters from the jth iteration of the chain.

4. RESULTS

4.1. MODEL COMPARISON

We considered fourteen different models based on the form of the distance kernel, the
threshold used, and whether the feature covariates were included or not. The thresholds
we picked were u = 10, 13 and 27 corresponding to the 66th, 75th and 90th empirical
percentiles of the yearly movements distribution. The mean excess plot given in Fig. 3
guided our choice of thresholds. Our goal was not to pick the optimal threshold, as this is
very difficult to do, but to pick several thresholds and use model comparison methods to
pick the best model.

We present the DIC and cross-validation scores for each model together with the com-
puting time (in minutes) in Table 1. Models with Gamma distance kernels had much lower
computing times compared to the models with spliced distance kernels. Cross-validation
scores of -Inf denote models where the posterior distributions of the parameters lead to
zero likelihood of some of the data points in the test set. This occurs when the parameter
estimates specify a finite tail for the movements, and there are test points that exceed the
estimated maximum distance. Based on DIC and the cross-validation score, we found that
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Table 1. Model comparison.

Model no. Covariates Distance u DIC C.V. score Comp.
kernel time (min)
1 No Gamma NA 15414.6 —1503.2 565
2 No BTFM 10 15396.0 —1499.7 4858
3 No BTEM 13 15400.4 —1500.2 4782
4 No BTFM 27 15413.2 —1503.0 4924
5 No PTFM 10 15378.7 —Inf 4928
6 No PTFM 13 15377.8 —Inf 4969
7 No PTFM 27 15386.3 —Inf 5034
8 Yes Gamma NA 15308.2 —1495.0 700
9 Yes BTEM 10 15299.1 —1493.0 4462
10 Yes BTFM 13 15300.8 —14934 5406
11 Yes BTEM 27 15308.7 —1495.1 5079
12 Yes PTFM 10 15290.5 —1491.1 4720
13 Yes PTFM 13 15290.8 —1491.6 4632
14 Yes PTFM 27 15290.9 —1491.8 5404

The best model with covariates and without covariates are given in bold

15 20 25 30
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Figure 3. Mean excess plot for yearly movements. We considered thresholds of u= 10, 13 and 27, shown as
vertical dashed lines.

Model 12 was the best model overall. We also found that Model 2 was the best model when
resource selection is not considered.

4.2. PARAMETER ESTIMATES

We give the parameter estimates for Models 12, 2 and 5 in Table 2. Model 12 is the best
model overall, and Model 2 is the best model when no covariates are considered. We also
give the parameter estimates for Model 5, which has the same distance kernel as Model 12
but does not account for resource selection. We present the parameter estimates for Model
5 to see the effect of including the resource selection component. We obtain Monte Carlo
standard error using the bat chmeans package in R (Haran and Hughes 2016). For all three
models, we obtained positive point estimates for the shape parameter & of the GPD with the
95% equal tailed credible intervals for & not overlapping zero in both models. A positive &
denotes a heavy tail. However, we see that including the covariates accounts for some of the
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Table 2. Parameter Estimates for Models 12, 2 and 5. Point and interval estimates are rounded to the nearest
second decimal.

Model Parameter Mode Mean LL UL MCMC
S.E.

12 Agricultural land —0.44 —-045 —-0.75 —0.18 0.0075
Elevation 0.18 0.21 -0.27 0.65 0.0150
Elevation? —0.83 —0.85 -1.13 —0.53 0.0090
Forest cover -0.19 -0.19 -0.35 —0.04 0.0033
Major roads 0.01 0.02 —0.08 0.12 0.0015
Private/public land 0.02 0.03 —0.12 0.19 0.0032
Road density —0.04 —0.04 —0.18 0.10 0.0026
Terrain roughness 0.13 0.13 —0.05 0.30 0.0036
Water —0.01 —0.05 —0.26 0.13 0.0040
log(k) 0.19 0.21 0.08 0.35 0.0034
log(0) 1.58 1.60 1.35 1.88 0.0072
& 0.13 0.14 0.01 0.30 0.0031

2 log(k) —0.01 0.00 —0.11 0.10 0.0013
log(6) 2.23 2.24 2.08 241 0.0022
& 0.30 0.35 0.19 0.55 0.0025

5 log(k) 0.19 0.20 0.06 0.34 0.0022
log(0) 1.54 1.56 1.33 1.85 0.0043
& 0.15 0.15 0.00 0.33 0.0021

Significant covariates are given in bold

heavy-tailed behavior of the movements, as the point estimates for £ are slightly lower in
Model 12 compared to Model 5. Considering Model 12, we found that the 95% equal tailed
credible intervals for resource selection function parameters corresponding to agricultural
land, elevation and percent forest cover do not overlap zero, indicating that elk prefer lesser
values for agricultural land and forest cover. Interpretation of the coefficients for elevation
has to be done with more caution due to the inclusion of the quadratic term. We found that
elk prefer mid-level elevation by plotting the function exp(Bejevx + ﬂelevzxz) with x taking
values from the range of elevation seed in the GYE.

4.3. SIMULATION OF SPREAD

To illustrate the differences between our fitted models, and the importance of modeling
both resource selection and heavy-tailed movements, we conducted a simulation of the
spread of an infectious disease across our study system using the best model with and
without covariates, Models 12 and 2 respectively. We assume that the elk within a grid cell
are well mixed (all can contact all others with equal probability) and that elk do not recover
and are always infectious after contracting the disease. These assumptions are not meant to
exactly replicate the spread of Brucella in GYE elk, but instead are meant to clearly illustrate
how movement behavior can affect the spread of the disease.

At each time point in our simulation, we allow the infected elk population to first grow
and then spread spatially across the GYE. For the growth step, we use a logistic growth
model (Bacaér 2011). The differential equation for the infected population P(¢) at time ¢ is
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Figure 4. a-—e gives the simulation of disease spread using a logistic growth model for time points 7=1, 5, 10,
15 and 20 using parameter estimates of Model 2. f—j gives the simulation of the spread for the same times using
parameter estimates of Model 12. Model 12 accounts for resource selection, but Model 2 does not.

PO _ rP(t) <1 - @>
dr K

where r is the growth rate and K the carrying capacity. The solution for this differential
equation is

KP(t — Dexp &
K +P(t — 1)(exp™® — 1)

P(t) =

where At is a time interval (Bacaér 2011). We used K = 100 as the carrying capacity and
r = 1.05 as the growth rate.

From the growth step, we obtained the number of infected elk in each grid cell at time
t. In the propagate step, we then simulated an end cell for each infected elk. The elk are
allowed to move freely without a restriction on the number of elk within a landscape cell.
For the model without covariates (Model 2), this was simply done by simulating a bearing
and a distance for each elk individual using the parameter estimates and obtaining its end
location. For the model with covariates (Model 12), we did this by first simulating 1000
bearings and distances from the current location of each elk using our parameter estimates,
weighting each movement by w; = exp(X(;)#), and sampling an end location based on
these weights. The simulation was carried out for 20 time steps. We present the spread at
time points 1, 5, 10, 15 and 20 in Fig. 4.

4.4. DISCUSSION OF SIMULATION STUDY RESULTS

For both simulations in Fig. 4, we can see long-range movements in the spread of the
disease. When comparing the spread in Fig. 4, we can see that the disease seems to spread
faster when resource selection is not considered. This is further illustrated in Fig. 5, where the
number of landscape cells infected through time is greater when Model 2 is used. However,
looking at the lower panel in Fig. 4, we can see that the density of infected elk is patchy.
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Figure 5. The dotted and dashed lines give the number of landscape cells infected through time for simulations
based on Model 12 and Model 2, respectively. We sampled 1000 parameter values post-burn-in and ran the
simulation of spread for each. 90% credible regions are given with dashed gray lines and solid gray color for
Models 12 and 2, respectively. Spread using Model 2 is faster.

There are pockets of high infection, corresponding to patches of habitat that are highly
preferred by GYE elk in the winter months.

S. DISCUSSION

5.1. MAJOR FINDINGS

Unlike previous studies, we have simultaneously allowed for movement kernels to be
both heavy-tailed and a function of landscape covariates. We found that the movement kernel
is not solely a function of the animal species, but is an interaction between the animal and
its environment, whereby increased habitat patchiness is likely to result in slower invasion
speeds. This result is contrary to early studies, which suggest that heavier-tailed distributions
will result in faster wave speeds (Clark 1998; Kot et al. 1996) and similar to the findings of
Urban et al. (2008) and Lindstrom et al. (2011). We found that in the presence of habitat
selection, the distance kernel of elk became less heavy-tailed as movements were biased
toward closer preferred habitats.

In this study, we modeled the yearly movement of elk by simultaneously considering
resource selection and extreme movements by using a resource selection function and a
spliced dispersal kernel. We found that some of the heavy tail behavior seen when resource
selection is not considered is accounted for when it is included. We found that the PTFM
model with a threshold of =10 was the best fitting model and that elk prefer less agricultural
lands and forest cover and medium elevation in winter months.

Resource selection has two important effects. Firstly, it clusters animals in good terrain,
and this will make density-dependent diseases spread faster locally. Secondly, resource
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selection can make spatial transmission slower; as in some habitat scenarios, including the
landscape of the GYE, movements between patches of good terrain are separated by large
enough distances that only very rarely will individuals move to a new patch of good terrain.
The simulation study was meant to explore the second aspect in particular and illustrates
that spatial spread of disease may be slowed by resource selection. In order to investigate
the effect of including a resource selection function in a movement model, we compared the
simulation of disease spread using two models: one that included resource selection (Model
12) and one that did not (Model 2). We found that including resource selection affected
the nature of spread of the disease with more patchy spread than a more uniform spread
when resource selection is not considered. Also we found that there was a difference in
the speed of disease spread with the model that did not include resource selection, showing
higher speeds of spread. We believe this provides motivation to include a resource selection
component when modeling the spread of infectious diseases through patchy habitat.

5.2. FUTURE WORK

The intractable normalizing constant in our weighted distribution model makes inference
computationally expensive. This impedes the use of this model for very large datasets. Future
work will consider ways to lower the computing costs, including using graphics processing
units (GPUs) to compute the Monte Carlo estimate of the normalizing constant.

When fitting the spliced distributions, we did not attempt to find an optimal threshold
u. Instead, we chose two thresholds and then used model selection techniques to choose
between them. Obtaining an optimal threshold was not computationally feasible. A possi-
bility to circumvent this issue could be to specify a distance kernel that has flexibility in its
tails but does not need the specification of a threshold, similar to that given in Naveau et al.
(2016).

We considered only a fixed resource selection model. Different functional forms of the
covariates can be easily included within this framework; however, the primary objective of
this paper was not to find the “best” possible model to explain elk movement. In the future, we
will explore ways to do variable selection for the covariates in a computationally efficient
manner, through Bayesian regularization priors, such as the Bayesian LASSO (Park and
Casella 2008). In addition, a full analysis of the effects of resource selection, heavy-tailed
movement, and disease dynamics is the subject of the ongoing research.

Our approach successfully models both resource selection and heavy-tailed movements,
allowing for a more complete understanding of how disease might spread through a popu-
lation of animals when preferred resources are scarce. Capturing the interplay of these two
processes will allow for more accurate prediction of future spread of brucellosis in the GYE,
and the future progression of invasions in a wide range of wildlife systems.
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APPENDIX A: TREATMENT OF MISSING VALUES

We encountered missing values in certain landcover rasters. Aggregating the raster
reduced the number of missing values significantly. We observed that missing values were
in landscape cells that fell on the boundaries of certain rasters (this is clearly seen in Fig. 2).
We also noted that landscape cells with missing values were far away from the region where
we observed elk movements. We used a 27 x 27 grid to interpolate the value of a missing
landscape cell. We weighted the grid giving landscape cells closer to the missing landscape
cell higher weights than those further away.

APPENDIX B: SIMULATION STUDY TO TEST BIAS IN
ESTIMATION

In order to check if there is a systematic bias induced by approximating the normalizing
constant using a Monte Carlo approximation, we conducted a simulation study with a single
covariate (Elevation) and a gamma distance kernel. We set the true parameter values to
(B.k,0) = (—1,0.8615017, 12.63035). We simulated 1000 datasets each with 200 yearly
movements where the start locations for the 200 movements were chosen randomly from the
704 movements in the dataset. We simulated from our model using importance sampling.
We first simulated many end locations e; for each start location by simulating bearings and
distances from the distance kernel. We then sampled a single end location drawn randomly
from the simulated end locations, with probabilities proportional to e*®)# _ After simulating
200 yearly movements in this way, we estimated model parameters using the Bayesian
method given in Sect. 3. We used 2500 Monte Carlo samples to approximate the normalizing
constant. We fit the model to the simulated data running the MCMC sampler for 30,000
iterations and removed the first 5000 runs as burn in. We obtained the posterior mode for
each parameter from each dataset and plotted their densities in Fig. 6. The true values are
given using a solid vertical line. It is clearly evident from Fig. 6 that there is very little
systematic bias induced when using the proposed estimation procedure.

We also simulated 3 datasets using gamma and spliced distance kernels. The true param-
eters used were (B8, k,0) = (—1,0.8615017, 12.63035) and &€ = 0.2 with u = 10 and
¢, = 0.3. The start locations were taken to be those of the actual data. We simulated the
end locations similarly to that given above using the relevant distance kernel. We used 5000
Monte Carlo samples in the likelihood estimation. The results are given in Fig. 7. We found
that all the true parameters were captured well giving us the assurance that the estimation
procedure does well for models with spliced kernels too.
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Figure 6. The distributions of posterior modes for the parameters a 8, b log(k) and ¢ log(#) for models with a
fixed covariate elevation and a gamma distance kernel. The true values of the parameters are § = —1, log(k) =
—0.1490782 and log(#) = 2.536103. There is no evidence of an estimation bias.

(b)

T T T T T T T
-05 -04 -03 -02 -01 00 01

log(k)

(d)

2 3 4 5 6 7
|

1
|

0
]

0.0 0.2 0.4 0.6
log(6) 3

Figure 7. The posterior distributions of the parameters a 8, b log(k), ¢ log(9) and d & for models with a
fixed covariate elevation and a Gamma distance kernel (dotted line), a BTFM distance kernel (dashed line) and
a PTFM distance kernel (solid line). The true values of the parameters are 8 = —1, log(k) = —0.1490782,
log(0) = 2.536103 and &£ = 0.2.
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