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Abstract—We investigate whether it is possible to achieve sub-
millisecond latency for the discovery of multiple neighbors in
laser-based Free Space Optical (FSO) networks. Given a large
programmable array of micromirrors, we propose the use of
adaptive boolean combinatorial group testing algorithms that are
practical and efficient. The time taken scales as O(N log(L/N))
for N neighbors even if N is unknown, but no additional
computation (e.g., matrix inversion) is required. Compared to
Raster and Lissajous pattern-based scanning, we report 99.92%
and 87% reduction in latency, respectively, for an array of 10°
micromirrors (approximately XGA resolution). We conclude that
it is indeed possible to achieve sub-ms latency given realistic
network parameters. Our proposed algorithms are evaluated
in simulation, and are compared against state of art neighbor
discovery schemes.

I. INTRODUCTION

Laser-based Free Space Optical (FSO) networks have the
potential to be interference-free while simultaneously pro-
viding several Tbps of throughput. This is possible due to
highly directional laser beams, whose beamwidth is typically
measured in micro or milli-radians, and whose bandwidth
spans hundreds of GHz. In FSO-based mobile networks, this
advantage becomes problematic due to the need for discover-
ing and tracking these highly directional beams. FSO network
hardware must be able to quickly steer beams in 3D space,
be able to select a subset of multiple incident beams, be pro-
grammable enough to accommodate the algorithms required
by higher layer protocols, and be able to demodulate/decode
the incident power while suffering low loss.

MicroElectroMechanical Systems (MEMS) have found pop-
ularity in both radio frequency and optical wireless and
mobile network [1]. A particular type of MEMS device,
Digital Micromirror Device (DMD), consists of an array of
micromirrors, each on the order of 10um in width with an
individually controllable tilt degree of freedom. These DMDs
have been used in FSO networks to perform beam alignment
and scanning. Each element in the array can be controlled
individually, by sending a binary vector representing the per-
mirror on/off state to a DMD controller. Through repeatedly
sending different patterns and synchronizing with a R/G/B
light source, a digital video projector can be built.

These DMDs can be to solve the neighbor discovery prob-
lem, where the locations and orientations of an unknown
number of neighbors N is to be calculated by a receiver. The
laser beams transmitted by neighbors will be incident on a
subset of size k < L mirrors of the L-sized DMD array at any
instant. Our task is to find an efficient algorithm that finds
this subset, and to investigate its scalability as L — 108. It is
not impossible to imagine an omnidirectional fly-eye receiver

in the shape of a sphere that is tesselated with micromirrors;
the key question is how neighbor discovery algorithms will
perform at such scale, and if sub-millisecond discovery times
are possible.

Since it is unlikely that the entire array is “lit” by the
neighbors due to the very low beamwidths, ¥k <« L; in
our simulations, k = 400 for N = 5 and L = 10°. So,
compressive sensing or other approaches that take advantage
of sparsity, such as matrix completion, can be used. But in
reality, k is typically unknown and may not even be sparse
in certain extremes. Therefore, and for reasons explained in
the next section, we investigate combinatorial group testing
as a solution. We are interested in not just the theoretical
asymptotic complexity, but also the performance of a practical
implementation for a given k & L. Even if two algorithms
have the same asymptotic performance, their time complexity
could vary in the constant term - which could make a massive
difference in the implementation. Additionally, k£ could vary
non-linearly with network parameters of interest such as
number of neighbors N, transmit power etc. The ultimate aim
is to understand if sub-ms discovery time is possible, and if it
is, then to understand the tradeoffs that need to be made.

We characterize the above problems and propose solutions.
Our contributions are as follows: 1) casting neighbor discovery
with unknown N as a boolean combinatorial group testing
problem and proposing solutions that can handle unknown
k and also non-sparsity; 2) improving implementation per-
formance by finding different solutions that have the same
asymptotic complexity but differ in the constant term; and
3) characterizing the tradeoffs needed for achieving sub-ms
neighbor discovery latency in MEMS-based FSO networks.

The rest of this paper is laid out as follows: we motivate the
need for our research and review related work in Section II.
In Section III, we present a framework for neighbor discovery
in FSO networks. Possible application scenarios and state of
art techniques are reviewed. This is followed by a discussion
of the proposed algorithms, based on boolean combinatorial
group testing algorithms. A performance evaluation of these
schemes is presented in Section IV (including discussion of
sub-ms discovery), after which we discuss future work.

II. BACKGROUND & RELATED WORK

Let X (with L = |X|) be a set of items with a subset ¥
that are defective. In group testing, we perform a “test” by
selecting a subset of X, and this query returns 1 if it contains
at least one defective item. The aim is to reliably identify all
the defective items while minimizing the number of queries
or measurements M. Equivalently, x is a binary vector with



k = |Y| ones. A binary query vector ® chooses positions in
x; the result of the query is \/I.L= o Xi¢i. Typically, L is very
large while k is a few orders of magnitude smaller. Clearly,
one could test each element of x individually, resulting in a
time complexity of O(L) queries, but research has shown that
this can be improved. Solutions to the group testing problem
can be classified into adaptive, where a query can depend
on the result of previous queries, & non-adaptive, where the
queries can be parallelized; into noisy, where the result of the
query is affected by noise resulting in bit flips, & non-noisy;
into probabilistic, where the items are identified correctly
with a probability < 1 even if the queries are non-noisy, &
deterministic.

If the k ones are equally likely to occur anywhere in the
vector X, then the number of possible outcomes are (i ) , and the
entropy is [log, (i)'l =~ klog,(L/k) which establishes a lower
bound on M. In the noiseless case, when k scales as O(Ll/ 3),
M scales as (klog,(L/k))(1 + o(1)) in both the adaptive
and non-adaptive settings [2]. This remains unchanged in
the adaptive setting when k scales as @(L?), 6 € [1/3,1].
Adaptive algorithms that perform close to the lower bound
are known to be practically usable and efficient in terms
of implementation [2]. The best known adaptive algorithm
has a complexity of O(klog(L/k)) + O(k) [3]. Competitive
group testing [4], [5] deals with unknown k. With a c-
competitive algorithm, M is within a constant factor ¢ > 1
of the corresponding M when k is known. Du and Park [5]
proposed the notion of strong competitiveness, and showed
that c — 1 as L — inf for k > 1. Their algorithm achieves
M < klog,(L/k) + 4k.

In compressed sensing (CS), a k-sparse signal x of dimen-
sion L can be recovered by constructing a measurement matrix
® such that the output y = ®x can be decoded to recover Xx. y
is of size M X 1 with k < M <« L; thus M = O(klog(L/k))
measurements are needed in the non-adaptive and noiseless
case. In a sense, CS is a continuous version of group testing
which is combinatorial. Practical applications of compressed
sensing such as the single pixel camera [6] either require some
knowledge of k for the minimization of M, or overestimate
M for reliable signal recovery.

Decoding algorithms for y include [y pursuit which is
optimal but NP-hard, /; pursuit which is a widely used
heuristic, and techniques such as LASSO. Practically, such
algorithms contribute additional latency to the process. For
example, orthogonal matching pursuit and basis pursuit run
in O(kML) [7] and O(L?) [8] time respectively. Also, k is
generally not known in advance (as is the case in this paper).
Because of these two reasons, in this paper we only consider
approaches which do not rely on prior knowledge of k. Even if
an upper bound k on the number of incident mirrors is known
in advance, the cost of decoding and recovery is prohibitive
due to large L x 10°.

Over the past few years there have been some efforts in
the area of MEMS-based optical networking. In [9], [10], a
demonstration of a 10 Gbps gimbal-less MEMS-based recon-

figurable FSO link for data center applications is presented.
These efforts utilize a secondary channel (visible red laser
beam) for target acquisition. In our approach however, we
do not use a secondary channel for acquisition. FSONet [11]
uses a combination of galvo mirrors and a motorized rotation
stage for beam steering. In addition, the acquisition scheme
in [9], [10] requires some knowledge of initial node location.
In contrast, the acquisition scheme presented in this work is
totally oblivious to initial target location.

In MEMSEye [12], [13], a spiral scan pattern is employed
for target acquisition. Spiral scan is an exhaustive and linear
search approach and is therefore not suitable for extremely
low latency applications such as neighbor discovery. An adap-
tive field of view MEMS-based wireless optical transmitter
achieved by varying the lens-laser distance, and capable of
delivering a throughput of 3 Gbps over 7 m is presented
in [14]. The device built in [14] uses a feedback channel from
the receiver to the transmitter for beam alignment and does
not address the multi-node neighbor discovery problem.

A link establishment protocol in LED-based networks for a
pair of nodes is presented in [15], [16]. This is achieved in-
band via the exchange of frames of short length on steerable
transceivers rotating at different speeds. In [16], the assump-
tion is made that an omnidirectional RF link is available for
the dissemination of transceiver orientation information. The
three-way handshake discovery mechanism is extended to a
3D space [17]. These neighbor discovery efforts are limited
to just a pair of nodes. In this paper however, the schemes
presented are oblivious to the number of discoverable nodes.

III. GROUP TESTING FRAMEWORK FOR FSO NETWORKS

In this section, we design a neighbor discovery, and cluster-
ing framework using group testing (GT) algorithms applied to
array-oriented MEMS hardware such as DMDs. As mentioned
previously, the decoding/recovery complexity of compressive
sensing (CS) algorithms is prohibitive, and eliding it is the
key to reducing latency. This is possible with GT algorithms
which do not have any recovery complexity due to their
boolean nature. Additionally, an upper bound on k for CS
algorithms would mostly be inaccurate if the network topology
is unknown or ad hoc.

We first present the problem formulation, followed by the
chosen adaptive GT algorithm. As mentioned previously, this
algorithm can be implemented in multiple ways, leading to
schemes that have the same asymptotic complexity but differ-
ent constants; we present one and two stage implementations
of state of the art GT algorithms that can be applied to
neighbor discovery.

A. Problem Formulation and System Model

Consider a DMD array with L elements organized as a
two dimensional array of R rows and C columns (Figure 1b).
This array is present at the receiver of each node in a FSO
network. A given node has N neighbors whose locations and
orientations are unknown, in addition to N being unknown.
The aim of the neighbor discovery process is to reliably find
N and the indices of the mirrors corresponding to each N.
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Figure 1: Architecture of the MEMS-based optical neighbor
discovery system (a) Nodes ny, ny, and n3 are within the field of
view of the discoverer (b) Incident spots on discoverer’s DMD
array (k =9, L = 63) (c) In the process of discovering ny, ny,
and n3, mirrors m, where x = 14,37, 38,46,47,53,54, 62,63
have to be in the ON state at certain instances.

The transmit beams emanating from neighbors are incident
on the DMD array. The diameter of the beam of wavelength 1
emanating from a neighbor at a distance D is 2w = 41 f;/nd;
where f; is the focal length of the lens having a diameter
dy, and d; = min(d,,2D tan %V) where 6, is the vertical
beamwidth. Note that it is assumed that for both nodes, the
DMD is located at a distance f; from it’s lens. Thus, there
are N such spots incident on the DMD array in question. In
particular, k o« N elements of the array (of size L) are “lit”
by the neighbors. Note that N and hence k is unknown.

The neighbor discovery problem is now to find the k
array elements that are lit (Figure 1). In Figure la, the node
performing the discovery has three neighbors (n;, n, and n3)
within the field of view of its DMD array. The incident beams
appear as Gaussian spots on the DMD array (Figure 1b).
To accurately determine the collection of k incident mirrors,
any solution has to set the state of individual mirrors using
adaptive/non-adaptive patterns. This is achieved via the DMD
Controller. Mirrors set to the 1 state reflect incident signals
unto the photodetector (PD). In the O state, they reflect signals
unto a light absorber as is highlighted in Figure lc. In the
adaptive case, the DMD controller sets mirror patterns based
on PD current measurements from a Field Programmable Gate
Array (FPGA) device. Neighbor discovery latency d; is the
duration it takes to identify all £ incident mirrors; d; = M)
where f, is the maximum bit pattern rate f, of the DMD. '

B. Application Scenarios and State of Art

We now present a scenario in which MEMS based optical
neighbor discovery can be applied to, after which we discuss

the state of art in discovery approaches.

Application Scenarios:- Before two nodes can commu-
nicate with each other, they initially need to identify the
spatial directions via which both can be reached. This is
the neighbor discovery stage and it involves the identification
of all nodes within one hop of a reference node. Extremely
low latency multi node neighbor discovery in FSO networks
is a prerequisite for high throughput multicast in 5G and
other emerging wireless technologies which support point to
multipoint communications. A potential application of MEMS
based neighbor discovery is the provision of an inter-rack
networking solution in data center networks [10]. The current
state of art employs scan patterns for neighboring Top-of-Rack
switch discovery which either do not guarantee the detection
of all k incident mirrors, or are exhaustive but with linear
search patterns.

To clarify, “exhaustive” means that all L mirrors are tested,
and “linear” means that each mirror is tested one-by-one (i.e.,
M = L measurements or tests are performed). In contrast, in
this paper, we propose an exhaustive approach which requires
M < L measurements. We assume that all nodes are static
with transceivers whose transmit/receive pointing angles are
unknown, and we do not address mobility. We now discuss
state of art scanning techniques, and the M incurred by them.

Raster and Lissajous-pattern Scans:- The target acquisi-
tion problem in beam steerable MEMS-based FSO networks
has been explored in [10]. In the considered scenarios, at most
one target’s exact location is to be determined subject to some
knowledge of a constrained angular range in which the target
can be precisely found. Directly applying the schemes in [10]
to oblivious multiple node neighbor discovery is a non trivial
problem, as we shall show. The scan patterns used in [10]
are the raster, spiral and Lissajous patterns. The raster and
spiral scans are exhaustive patterns and require M = L mea-
surements. But, armed with knowledge of the potential node’s
transceiver orientation, the search space can be significantly
reduced leading to lower latency, using Lissajous patterns.
They are defined by parametric equations of the form
x[i] = Esin(za—”i+(s),\ﬁ s.t.1<i<[VA]
2 VA

y[j] = ﬁsin(zﬂj),vj st 1<j<[VA] (1)
2 VA

where A is the number of mirror elements in a square-shaped

search space on the MEMS array, i, j are the indexes of the

mirrors on the MEMS array.

For example, in the scan of the entire MEMS array pre-
sented in Figure 2¢, A = L, § = %, a =3 and B = 2.
Note that for the single node location acquisition problem,
even if some knowledge of node position is available, there
is no guarantee that all £ incident mirrors are identified. This
stems from the observation that the Lissajous pattern follows
a trajectory which does not sequentially activate all mirrors
(one at a time) in its path. To absolutely guarantee that all
k incident mirrors are identified, each mirror in the search
space has to be switched to the 1 state at least once. As we
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Figure 2: Neighbor discovery via Raster and Lissajous scan
patterns (a) A raster scan pattern for the discovery of a single
neighbor. Mirrors m, where x = 7,8,9,12, 13,14 detect the
presence of radiation when in the 1 state. (b) Lissajous scan
with some knowledge of node’s 1 location, a restricted search
space is scanned (c) Lissajous scan with no knowledge of any
node’s location, the entire MEMS array is scanned.

observe in Figure 2c, blindly applying the @ = 3, 8 = 2
Lissajous pattern on the entire MEMS array results nodes
2 and 3 being undiscovered eventhough they are within the
discoverer’s FOV. Another interesting observation to bear in
mind is that due to the sequential nature of the tests associated
with Lissajous scan patterns, the number of measurements M
does not depend on network parameters such as the number
of neighbors N, the aperture focal length f; and the average
distance D from neighbor which determine the size of the
Gaussian spot each neighbor generates on the MEMS device
(i.e. k does not affect M). We analyze the performance of the
a = 3, B = 2 Lissajous pattern (LIS) vis-4-vis our proposed
group testing based approaches in Section IV.

When there is no prior neighbor information, a simple raster
scan (RAS) can be employed to identify all k incident mirrors.
We use Figure 2a to illustrate this approach. The sequential
scan starts by placing mirror m; into the 1 state, with all
other mirrors in the O state. The trajectory of the scan if no
incident signal is detected is the activation of mirrors m; to ms
to mg to myg...in that order, terminating at mps. In the event
incident signals are detected in row rp,, and assuming the spot
on the MEMS array traverses g other rows, the scan ends at the
end of oW 7p44+1. In Figure 2a, after all mirrors in the first
row are scanned sequentially, no incident beam is detected.
When mirrors m, where x =7,8,9,12, 13, 14 are sequentially
activated, each of them reflects incident signals unto the PD.
For this example, p=2, g=1 and the scan terminates at the end
of row r4 (mirror mjy;). For this scheme, M in the best case is
2C. The best case corresponds to a spot which encompasses
a single mirror in the first row. The worst case M = R x C
occurs when (i) no incident spot is detected or (ii) either the
last detected spot occurs in the (R — D™ or R™" row.

C. Group Testing-based Solution

It is easy to see that the RAS scheme, oblivious of N,
requires M = R X C measurements but yields a 100% accurate
N. LIS reduces M by only testing mirrors that are part of the
chosen Lissajous pattern, which means means that N may be

underestimated. Thus, the state of art approaches are either
exhaustive but linear (e.g. raster) or do not guarantee the
detection of all k£ incident mirrors (e.g. Lissajous scan). We
now show how we can significantly improve upon the number
of measurements M that are required, despite being exhaustive
in nature and guaranteeing a 100% accurate N.

The optical neighbor discovery problem can be modeled
as a group testing problem [18] (see Section II). The “lit”
elements (Section III-A) are analogous to “defective” items,
and the elements of the DMD array are the set of L items.
A measurement (or a “test” in GT terminology) returns 1 if
at least one element in the group is lit. Physically, this is
implemented using a PD which measures the total energy
incident (reflected) by the mirror elements. If the current
generated is more than the noise floor, then it can be deduced
that at least one element is lit. Note that the beams are
assumed to be Gaussian, meaning that the intensity reduces
exponentially as one moves away from the center of the beam,
greatly reducing false positives.

GT algorithms which achieve close to the information
theoretic lower bound are already well known. We adapt the
algorithm provided in [19] (called GT-A in this paper) which
requires a total of M < 1.65k(log2% + 1.031) + 5 tests. It
(Alg. 1) takes as input a collection D of L mirror elements
and produces a subcollection of D’ of all k incident elements.
In line 1, the state S of all mirrors in D is set to 1. This
ensures that at this stage, all mirrors focus light onto the
PD. From lines 2 to 27, the algorithm considers situations
in which there are at least three undetected incident mirror
elements. The algorithm then proceeds to measure the power
from activating disjoint collections of mirror elements of size
3,12,48, ..., 20 4 o+l (h is the group size parameter) till the
presence of optical irradiance is detected by the PD.

The presence or absence of a beam is determined by a
simple threshold comparison test. We compare the measured
output to the PD’s noise floor. If a beam is not detected (line
6), the states of all elements in that collection Sx is updated to
0, and we no longer need to test those elements. In the event
that 2 = 10, we test for the presence of a beam with the input
set being all mirrors with a state of 1 (lines 7-9).

In the case that the presence of irradiance is detected in the
previous steps, D’ is updated with the collection of incident
elements out of a maximum of 3 elements in a 1 state that
produces this signal detection via lines 12 to 20. When the
input set consists of more than 3 mirror elements with a state
of 1 (lines 22 to 27), binary search is used to extract a single
incident element. In lines 28 to 30, if there are at most 2
elements with a state of 1, then, each of them is checked
independently for the presence of irradiation.

In addition to GT-A, we implement another GT algorithm,
[20] called GT-B in this paper, which is conceptually similar
to [19] but requires M < (1.5 + €)k(log, % +1.09) + O—f tests
with 0 < € < 0.01. Unlike in [19], whereby at least one
incident mirror element out of a possible three is identified
(lines 12-20 of Alg. 1), in [20], three out of four mirror
elements are individually tested to determine the presence or



otherwise of radiation. In addition, lines 22-25 are modified
in [20] to identify a set of mirror elements of cardinality 4%~
which contains at least one single incident element.

Algorithm 1: A GT based discovery algorithm

Input: A collection D of L mirror elements
Output: A subcollection D’ of all k incident mirrors elements
1D 0
Set state of all L elements to 1 ie. Sy, ;< 1
2 while L > 3 do

3 h«0
4 do
5 X « pick from D min(2" + 27+ L)

elements with 1 state
if (yx < y;) then

6 LSX<—O;h<—h+2;L<—L—1;

7 if (h = 10) then

8 X « pick from D all elements with 1 state
if (yx < y:) then

9 | Sx < 0; L < L-|X|;

10 while (L #0)V (yx < y));
1 if (yx > y¢) then

12 if (h =0) then
13 u,v,w < 3 elements from X with 1 state
if (yu > y;) then
14 | D' <D'uu;
15 if (y, > y;) then
16 | D' <D"Uv;
17 if (yu < yt) A (yv < y;) then
18 LD’:D,UW;SM’V’WHO;LHL—3
19 else
20 LSM’V<—O;L<—L—2
21 if (h > 0) then
2 X’ « pick from D min(2", |X])
elements with 1 state
if (yx» > y;) then
23 | XX’
24 else
25 X—X-X';8x « 0, L« L-|X’"|; Element
d «— Apply binary search to X
| DPe—D'Ud;S;g—0;,L—L-1;

26 while L # 0 do

27 x « an element of D with a state of 1; L « L —1;
if (yx > y;) then
28 LSX<—O;D’<—D’Ux;

D. Hierarchical Implementation and Clustering

The above algorithm can be implemented in various stages,
leveraging the two dimensional layout (R rows, C columns)
of the DMD array. We present multiple ways to implement
GT. These schemes are: One-Stage Group Testing (OSGT-A,
OSGT-B), and Two-Stage Group Testing (TSGT-A, TSGT-B).
Note that the schemes presented in this paper are fully adaptive
i.e in addition to subsequent stages using the outcomes of
previous stages to decide which mirrors should be tested, all
tests within a stage are adaptive. In all these schemes, a scan
pattern is generated by setting individual mirror states to either
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Figure 3: Avg. num. of incident mirrors k vs. network param-
eters. (a) Effect of N on k for N=1-5, (b) Effect of D on k
for D=20-100, (c) Effect of f; on k for f;=50-150 mm.

a 1 or 0. In transitioning from one state to the other, it takes
a period of duration equal to the mirror switching time 7.

In One-Stage Group Testing (OSGT-A), Algorithm 1 is
applied to the entire collection of DMD mirrors |D| = RXC i.e.
L = R x C, which discovers all k incident mirrors in a single
step. In Two-Stage Group Testing (TSGT-A), we first discover
the “lit” rows by treating all the elements of a row as a single
element & applying GT-A, followed by the “lit” columns and
then take the intersection. We apply algorithm 1 to all rows to
obtain the collection of rows of mirrors D, which are incident
to a beam. In this step, |D| = L = R and D’ = D;.. We then
reapply algorithm 1 to all columns to obtain D... In this step,
[D| = L = C and D’ = D... The application of algorithm 1
to rows and columns constitute the first stage. In the second
stage, using all mirrors in the intersection of D] and D, as
input, algorithm 1 is subsequently applied to obtain D’. For
OSGT-B and TSGT-B, GT-B replaces GT-A.

IV. PERFORMANCE EVALUATION

In this section we analyze and compare simulation results,
including achieving sub-ms discovery times. The schemes
compared are: One-Stage Group Testing (OSGT-A, OSGT-B
with € = 0.01) and Two-Stage Group Testing (TSGT-A, TSGT-
B with € = 0.01). We benchmark these algorithms against the
a = 3, § =2 Lissajous (LIS) and raster (RAS) pattern-based
acquisition scans of [10]. We measured the performance using
number of measurements M, number of incident mirrors k
and neighbor discovery time d; as metrics, with a Java based
simulator. Each data point is sampled across 1000 random
runs. The parameters we use for the analysis are number of
neighbors N, aperture focal length f;, number of elements L
in DMD array and average distance from the neighbor D.

The realistic default values (and ranges) used are: N = 3 (1-
5), f; = 100 mm (50-150 mm), L = 10° (10*-10%) each with
an area of 107!% m? and D = 60 m (20-100 m). Additionally,
we used an optical wavelength 4 = 1550 nm, a lens aperture
diameter d,, = 30 mm, a photodetector (PD) sensitivity of -30
dBm which determines the threshold for detection, a transmit
power P, = =2 dB, and a maximum binary pattern rate f, of
48K binary patterns/sec. Note that M for LIS and RAS depend
only on L and are independent of k.

A. Number of Incident Mirrors

Incident mirrors are those which can each individually
generate a PD current greater than the noise threshold, when
its incident light is directed to the PD; k is the number of
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incident mirrors. In Figure 3a, it is intuitive that as the number
of neighbors N within the field of view of the discoverer
increases, k increases linearly. This is because a cluster of
mirrors is associated with a discovered node. Assuming each
neighbor is equidistant from the discoverer, then k oc N. As the
distance D of a neighbor increases, k decreases as presented in
Figure 3b. This observation is a consequence of the spot size
equation 2w = % (see subsection III-A). In addition to these
results, we found through simulation that transmit P, does not
significantly affect k at reasonable neighbor distances. This is
because the 6—12 spot diameter does not depend on the received
optical power but on f; and d,.

B. Number of Measurements M and Scalability

Generally as k increase, M increases for each of the evalu-
ated schemes. The complexity of the OSGT schemes is M =
Ok log(%)). TSGT schemes have a measurement complexity
of M = O(ID;|log(1y) + D Tog(p5y) + K log(1P=512))).
For any particular GT-based neighbor discovery algorithm, two
stage schemes perform better than their corresponding one
stage counterparts (e.g. TSGT-A requires a lower M compared
to OSGT-A). The reason for this is that, the first stage of two
stage schemes reduces the search space for the second stage.

In one stage schemes however, the search space is the entire
collection of mirrors in the DMD array. On average OSGT-B
requires about 29% more tests compared to TSGT-B (this is
similar to results for OSGT-A and TSGT-A) . From the results
in Figure 4, two stage schemes have a lower discovery time
compared with their one stage counterparts. This is because
after the first stage, the search space reduces leading to a
smaller discovery time. Discovery latency dj, plotted on the
right side Y-axes of Figure 4 is o« M.

We observe that GT-B outperforms GT-A (e.g. TSGT-
B (OSGT-B) performs better than TSGT-A (OSGT-A)). For
sparse scenarios (k < L; k = 400 for N =5 and L = 10° in
our simulations) in which the distribution of the coordinates
mirrors which form a cluster are dependent on each other (e.g.
follow a Gaussian distribution in this work), many unnecessary
tests on sets which do not contain incident mirror elements can
be avoided by adaptively testing larger disjoint sets. For GT-B,
disjoint sets of size 4, 16, ..., 4m=1 are tested till a set of mirror
elements which contains at least one incident element incident
is discovered in the m'”* test. For GT-A, if a disjoint set of size
3(4"1) is discovered during the n'" test, then disjoint sets of

Scheme | L=10" [ L=10° | L=10° [ L=10" | L =108
LIS 10.6ms 34.7ms 111.9ms | 355.1ms 1124.8ms
RAS 208.3ms | 2.1s 20.8s 208.3s 2083.3s
OSGT-A 11.4ms 13.6ms 14.6ms 17.1ms 18.8ms

Table I: Average neighbor discovery time d; for various
schemes for L = 10*-108.

size 3, 12, ..., 3(4”‘2) tested to contain no incident element in
the preceding n — 1 tests. Note that since 7 € Z*, 4' > 3(4'™1),
m <= n and GT-B saves n-m tests over GT-A.

Investigating scalability of d; with L is one of the goals of
this paper. In Figure 4d, increasing L from 10* to 10® results in
a 25% increase in M for TSGT-A, a 23% rise in M for TSGT-
B, a 66% increase in M for OSGT-A, and a 65% increase in M
for OSGT-B. The logarithmic trends in Figures 4d is because
M o log L. The logarithmic scaling results are particularly
important since we envisage the use of omnidirectional fly-
eye receivers in the shape of a sphere that is tesselated with
tens/hundreds of millions of micromirrors. We note that in all
scenarios, with these group testing algorithms, the neighbor
discovery time is less than 45ms.

C. Comparison with the State of Art

In Table I, we compare the performance of one of our pro-
posed GT-based schemes (OSGT-A) to the Lissajous pattern
(LIS, subsection III-B) and raster scan (RAS, subsection III-B)
based discovery methods. We select OSGT-A for comparison
because it has a slightly worse scalability performance relative
to our other TSGT-A, TSGT-B, OSGT-B algorithms as is
shown in Figure 4d. Recall that RAS is an exhaustive-but-
linear approach when applied to oblivious neighbor discovery,
and the number of measurements M = L since L mirrors have
to be individually scanned to guarantee the discovery of all N
neighbors. LIS is quasi exhaustive, so as the search space L
increases, the number of mirrors in the trajectory of Lissajous
pattern path also increases. With LIS, all mirrors in this path
are individually scanned for the presence of an incident signal.
Note that LIS discovers < N neighbors in the oblivious
case since some mirrors are never placed in the 1 state (see
subsection III-B). The adaptive OSGT-A and by extension all
our proposed algorithms significantly outperforms both LIS
and RAS as L — 108 w.r.t. neighbor discovery latency while
guaranteeing the detection of all N neighbors in the oblivious
case despite being an exhaustive scheme.
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Figure 5: Illustrating sub-ms detection using the virtual grid
concept for kg, = 1 — 5 over different L.

D. Achieving Sub-ms Discovery Time

Our implemented algorithms yield discovery times in the
order of tens of ms for GT based neighbor discovery schemes.
We believe that this result can be significantly improved to
sub-ms time using techniques such as 1) reducing L and k by
creating virtual grids within the DMD, which we call succes-
sive approximation; and 2) techniques such as random hashing.
In 2), assuming large non-contiguous arrays of mirrors are
selected from L, the probability of detecting groups which are
not incident to a beam is high if k << L. With 1), virtual non-
overlapping grid elements that correspond to a collection of
mirrors can be created and tested at a go for incident radiation.
Once energy is detected, a refinement step is applied to the
virtual grid element to accurately identify incident mirrors. To
buttress our position that sub-ms detection latency is indeed
possible, we simulated (Figure 5) a scenario whereby mirrors
in the DMD array were grouped into L, elements in a virtual
grid, with the area of a single element in the grid = the average
2w. If there are k, spots on the DMD array, then the problem
translates into finding k, out of L, virtual elements that are
incident to radiation. Results in Figure 5 which is based on
the theoretic M upper bound for OSGT-A indicate that sub-ms
is indeed achievable for some k, and L.

In addition to these enhancements, we assumed in this work
that the coordinates of the k incident mirrors are indepen-
dent of each other. However, these k are clustered into P
(=N) spots which correspond to the N neighbors. In reality,
the coordinates of incident mirrors in each cluster are not
independent of each other. Relaxing this assumption would
further reduce significantly the number of measurements (and
discovery latency), since we no longer need to discover all k
mirrors to reconstruct the spatial directions of neighbors.

V. CONCLUSION AND FUTURE WORK

For fast neighbor discovery in MEMS-based FSO networks,
exhaustive search schemes do not perform efficiently. We
formulated the neighbor discovery problem as a boolean
adaptive combinatorial group testing problem and provided
solutions based on group testing. We showed via simulation
that the discovery of neighbors using MEMS-based optical
devices can be achieved with a latency of a few ms while sub-

ms detection is possible. We also envision that this latency can
be significantly improved when additional techniques such as
randomized hashing and/or successive approximation methods
are employed.

The next steps in our work are integrating an efficient
scheme to track a given neighbor, investigating successive
approximation methods and randomized hashing to further
speed up the discovery time, and the building of a hardware
prototype that achieves sub-millisecond detection time. Fi-
nally, all these components will be combined into a generalized
rendezvous protocol.
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