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Abstract—We investigate whether it is possible to achieve sub-
millisecond latency for the discovery of multiple neighbors in
laser-based Free Space Optical (FSO) networks. Given a large
programmable array of micromirrors, we propose the use of
adaptive boolean combinatorial group testing algorithms that are
practical and efficient. The time taken scales as O(N log(L/N))
for N neighbors even if N is unknown, but no additional
computation (e.g., matrix inversion) is required. Compared to
Raster and Lissajous pattern-based scanning, we report 99.92%
and 87% reduction in latency, respectively, for an array of 106

micromirrors (approximately XGA resolution). We conclude that
it is indeed possible to achieve sub-ms latency given realistic
network parameters. Our proposed algorithms are evaluated
in simulation, and are compared against state of art neighbor
discovery schemes.

I. INTRODUCTION

Laser-based Free Space Optical (FSO) networks have the

potential to be interference-free while simultaneously pro-

viding several Tbps of throughput. This is possible due to

highly directional laser beams, whose beamwidth is typically

measured in micro or milli-radians, and whose bandwidth

spans hundreds of GHz. In FSO-based mobile networks, this

advantage becomes problematic due to the need for discover-

ing and tracking these highly directional beams. FSO network

hardware must be able to quickly steer beams in 3D space,

be able to select a subset of multiple incident beams, be pro-

grammable enough to accommodate the algorithms required

by higher layer protocols, and be able to demodulate/decode

the incident power while suffering low loss.

MicroElectroMechanical Systems (MEMS) have found pop-

ularity in both radio frequency and optical wireless and

mobile network [1]. A particular type of MEMS device,

Digital Micromirror Device (DMD), consists of an array of

micromirrors, each on the order of 10µm in width with an

individually controllable tilt degree of freedom. These DMDs

have been used in FSO networks to perform beam alignment

and scanning. Each element in the array can be controlled

individually, by sending a binary vector representing the per-

mirror on/off state to a DMD controller. Through repeatedly

sending different patterns and synchronizing with a R/G/B

light source, a digital video projector can be built.

These DMDs can be to solve the neighbor discovery prob-

lem, where the locations and orientations of an unknown

number of neighbors N is to be calculated by a receiver. The

laser beams transmitted by neighbors will be incident on a

subset of size k < L mirrors of the L-sized DMD array at any

instant. Our task is to find an efficient algorithm that finds

this subset, and to investigate its scalability as L → 108. It is

not impossible to imagine an omnidirectional fly-eye receiver

in the shape of a sphere that is tesselated with micromirrors;

the key question is how neighbor discovery algorithms will

perform at such scale, and if sub-millisecond discovery times

are possible.

Since it is unlikely that the entire array is “lit” by the

neighbors due to the very low beamwidths, k ≪ L; in

our simulations, k ≅ 400 for N = 5 and L = 106. So,

compressive sensing or other approaches that take advantage

of sparsity, such as matrix completion, can be used. But in

reality, k is typically unknown and may not even be sparse

in certain extremes. Therefore, and for reasons explained in

the next section, we investigate combinatorial group testing

as a solution. We are interested in not just the theoretical

asymptotic complexity, but also the performance of a practical

implementation for a given k & L. Even if two algorithms

have the same asymptotic performance, their time complexity

could vary in the constant term - which could make a massive

difference in the implementation. Additionally, k could vary

non-linearly with network parameters of interest such as

number of neighbors N , transmit power etc. The ultimate aim

is to understand if sub-ms discovery time is possible, and if it

is, then to understand the tradeoffs that need to be made.

We characterize the above problems and propose solutions.

Our contributions are as follows: 1) casting neighbor discovery

with unknown N as a boolean combinatorial group testing

problem and proposing solutions that can handle unknown

k and also non-sparsity; 2) improving implementation per-

formance by finding different solutions that have the same

asymptotic complexity but differ in the constant term; and

3) characterizing the tradeoffs needed for achieving sub-ms

neighbor discovery latency in MEMS-based FSO networks.

The rest of this paper is laid out as follows: we motivate the

need for our research and review related work in Section II.

In Section III, we present a framework for neighbor discovery

in FSO networks. Possible application scenarios and state of

art techniques are reviewed. This is followed by a discussion

of the proposed algorithms, based on boolean combinatorial

group testing algorithms. A performance evaluation of these

schemes is presented in Section IV (including discussion of

sub-ms discovery), after which we discuss future work.

II. BACKGROUND & RELATED WORK

Let X (with L = |X |) be a set of items with a subset Y

that are defective. In group testing, we perform a “test” by

selecting a subset of X , and this query returns 1 if it contains

at least one defective item. The aim is to reliably identify all

the defective items while minimizing the number of queries

or measurements M . Equivalently, x is a binary vector with
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k = |Y | ones. A binary query vector Φ chooses positions in

x; the result of the query is
∨L

i=0 xiφi . Typically, L is very

large while k is a few orders of magnitude smaller. Clearly,

one could test each element of x individually, resulting in a

time complexity of O(L) queries, but research has shown that

this can be improved. Solutions to the group testing problem

can be classified into adaptive, where a query can depend

on the result of previous queries, & non-adaptive, where the

queries can be parallelized; into noisy, where the result of the

query is affected by noise resulting in bit flips, & non-noisy;

into probabilistic, where the items are identified correctly

with a probability < 1 even if the queries are non-noisy, &

deterministic.

If the k ones are equally likely to occur anywhere in the

vector x, then the number of possible outcomes are
(L
k

)

, and the

entropy is ⌈log2

(L
k

)

⌉ ≅ k log2(L/k) which establishes a lower

bound on M . In the noiseless case, when k scales as O(L1/3),
M scales as (k log2(L/k))(1 + o(1)) in both the adaptive

and non-adaptive settings [2]. This remains unchanged in

the adaptive setting when k scales as Θ(Lθ ), θ ∈ [1/3, 1].
Adaptive algorithms that perform close to the lower bound

are known to be practically usable and efficient in terms

of implementation [2]. The best known adaptive algorithm

has a complexity of O(k log(L/k)) + O(k) [3]. Competitive

group testing [4], [5] deals with unknown k. With a c-

competitive algorithm, M is within a constant factor c ≥ 1

of the corresponding M when k is known. Du and Park [5]

proposed the notion of strong competitiveness, and showed

that c → 1 as L → inf for k ≥ 1. Their algorithm achieves

M ≤ k log2(L/k) + 4k.

In compressed sensing (CS), a k-sparse signal x of dimen-

sion L can be recovered by constructing a measurement matrix

Φ such that the output y = Φx can be decoded to recover x. y

is of size M × 1 with k ≪ M ≪ L; thus M = O(k log(L/k))
measurements are needed in the non-adaptive and noiseless

case. In a sense, CS is a continuous version of group testing

which is combinatorial. Practical applications of compressed

sensing such as the single pixel camera [6] either require some

knowledge of k for the minimization of M , or overestimate

M for reliable signal recovery.

Decoding algorithms for y include l0 pursuit which is

optimal but NP-hard, l1 pursuit which is a widely used

heuristic, and techniques such as LASSO. Practically, such

algorithms contribute additional latency to the process. For

example, orthogonal matching pursuit and basis pursuit run

in O(kML) [7] and O(L3) [8] time respectively. Also, k is

generally not known in advance (as is the case in this paper).

Because of these two reasons, in this paper we only consider

approaches which do not rely on prior knowledge of k. Even if

an upper bound k on the number of incident mirrors is known

in advance, the cost of decoding and recovery is prohibitive

due to large L ≅ 106.

Over the past few years there have been some efforts in

the area of MEMS-based optical networking. In [9], [10], a

demonstration of a 10 Gbps gimbal-less MEMS-based recon-

figurable FSO link for data center applications is presented.

These efforts utilize a secondary channel (visible red laser

beam) for target acquisition. In our approach however, we

do not use a secondary channel for acquisition. FSONet [11]

uses a combination of galvo mirrors and a motorized rotation

stage for beam steering. In addition, the acquisition scheme

in [9], [10] requires some knowledge of initial node location.

In contrast, the acquisition scheme presented in this work is

totally oblivious to initial target location.

In MEMSEye [12], [13], a spiral scan pattern is employed

for target acquisition. Spiral scan is an exhaustive and linear

search approach and is therefore not suitable for extremely

low latency applications such as neighbor discovery. An adap-

tive field of view MEMS-based wireless optical transmitter

achieved by varying the lens-laser distance, and capable of

delivering a throughput of 3 Gbps over 7 m is presented

in [14]. The device built in [14] uses a feedback channel from

the receiver to the transmitter for beam alignment and does

not address the multi-node neighbor discovery problem.

A link establishment protocol in LED-based networks for a

pair of nodes is presented in [15], [16]. This is achieved in-

band via the exchange of frames of short length on steerable

transceivers rotating at different speeds. In [16], the assump-

tion is made that an omnidirectional RF link is available for

the dissemination of transceiver orientation information. The

three-way handshake discovery mechanism is extended to a

3D space [17]. These neighbor discovery efforts are limited

to just a pair of nodes. In this paper however, the schemes

presented are oblivious to the number of discoverable nodes.

III. GROUP TESTING FRAMEWORK FOR FSO NETWORKS

In this section, we design a neighbor discovery, and cluster-

ing framework using group testing (GT) algorithms applied to

array-oriented MEMS hardware such as DMDs. As mentioned

previously, the decoding/recovery complexity of compressive

sensing (CS) algorithms is prohibitive, and eliding it is the

key to reducing latency. This is possible with GT algorithms

which do not have any recovery complexity due to their

boolean nature. Additionally, an upper bound on k for CS

algorithms would mostly be inaccurate if the network topology

is unknown or ad hoc.

We first present the problem formulation, followed by the

chosen adaptive GT algorithm. As mentioned previously, this

algorithm can be implemented in multiple ways, leading to

schemes that have the same asymptotic complexity but differ-

ent constants; we present one and two stage implementations

of state of the art GT algorithms that can be applied to

neighbor discovery.
A. Problem Formulation and System Model

Consider a DMD array with L elements organized as a

two dimensional array of R rows and C columns (Figure 1b).

This array is present at the receiver of each node in a FSO

network. A given node has N neighbors whose locations and

orientations are unknown, in addition to N being unknown.

The aim of the neighbor discovery process is to reliably find

N and the indices of the mirrors corresponding to each N .
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Figure 1: Architecture of the MEMS-based optical neighbor

discovery system (a) Nodes n1, n2, and n3 are within the field of

view of the discoverer (b) Incident spots on discoverer’s DMD

array (k = 9, L = 63) (c) In the process of discovering n1, n2,

and n3, mirrors mx where x = 14, 37, 38, 46, 47, 53, 54, 62, 63

have to be in the ON state at certain instances.

The transmit beams emanating from neighbors are incident

on the DMD array. The diameter of the beam of wavelength λ

emanating from a neighbor at a distance D is 2ω = 4λ fl/πdi
where fl is the focal length of the lens having a diameter

dr , and di = min(dr, 2D tan
θv
2
) where θv is the vertical

beamwidth. Note that it is assumed that for both nodes, the

DMD is located at a distance fl from it’s lens. Thus, there

are N such spots incident on the DMD array in question. In

particular, k ∝ N elements of the array (of size L) are “lit”

by the neighbors. Note that N and hence k is unknown.

The neighbor discovery problem is now to find the k

array elements that are lit (Figure 1). In Figure 1a, the node

performing the discovery has three neighbors (n1, n2 and n3)

within the field of view of its DMD array. The incident beams

appear as Gaussian spots on the DMD array (Figure 1b).

To accurately determine the collection of k incident mirrors,

any solution has to set the state of individual mirrors using

adaptive/non-adaptive patterns. This is achieved via the DMD

Controller. Mirrors set to the 1 state reflect incident signals

unto the photodetector (PD). In the 0 state, they reflect signals

unto a light absorber as is highlighted in Figure 1c. In the

adaptive case, the DMD controller sets mirror patterns based

on PD current measurements from a Field Programmable Gate

Array (FPGA) device. Neighbor discovery latency dl is the

duration it takes to identify all k incident mirrors; dl =
M
fp

where fp is the maximum bit pattern rate fp of the DMD.

B. Application Scenarios and State of Art

We now present a scenario in which MEMS based optical

neighbor discovery can be applied to, after which we discuss

the state of art in discovery approaches.

Application Scenarios:- Before two nodes can commu-

nicate with each other, they initially need to identify the

spatial directions via which both can be reached. This is

the neighbor discovery stage and it involves the identification

of all nodes within one hop of a reference node. Extremely

low latency multi node neighbor discovery in FSO networks

is a prerequisite for high throughput multicast in 5G and

other emerging wireless technologies which support point to

multipoint communications. A potential application of MEMS

based neighbor discovery is the provision of an inter-rack

networking solution in data center networks [10]. The current

state of art employs scan patterns for neighboring Top-of-Rack

switch discovery which either do not guarantee the detection

of all k incident mirrors, or are exhaustive but with linear

search patterns.

To clarify, “exhaustive” means that all L mirrors are tested,

and “linear” means that each mirror is tested one-by-one (i.e.,

M = L measurements or tests are performed). In contrast, in

this paper, we propose an exhaustive approach which requires

M ≪ L measurements. We assume that all nodes are static

with transceivers whose transmit/receive pointing angles are

unknown, and we do not address mobility. We now discuss

state of art scanning techniques, and the M incurred by them.

Raster and Lissajous-pattern Scans:- The target acquisi-

tion problem in beam steerable MEMS-based FSO networks

has been explored in [10]. In the considered scenarios, at most

one target’s exact location is to be determined subject to some

knowledge of a constrained angular range in which the target

can be precisely found. Directly applying the schemes in [10]

to oblivious multiple node neighbor discovery is a non trivial

problem, as we shall show. The scan patterns used in [10]

are the raster, spiral and Lissajous patterns. The raster and

spiral scans are exhaustive patterns and require M = L mea-

surements. But, armed with knowledge of the potential node’s

transceiver orientation, the search space can be significantly

reduced leading to lower latency, using Lissajous patterns.

They are defined by parametric equations of the form

x[i] =
√

A

2
sin

(

2απ
√

A
i + δ

)

, ∀i s.t. 1 ≤ i ≤ ⌈
√

A⌉

y[ j] =
√

A

2
sin

(

2βπ
√

A
j

)

, ∀ j s.t. 1 ≤ j ≤ ⌈
√

A⌉ (1)

where A is the number of mirror elements in a square-shaped

search space on the MEMS array, i, j are the indexes of the

mirrors on the MEMS array.

For example, in the scan of the entire MEMS array pre-

sented in Figure 2c, A = L, δ = π

2
, α = 3 and β = 2.

Note that for the single node location acquisition problem,

even if some knowledge of node position is available, there

is no guarantee that all k incident mirrors are identified. This

stems from the observation that the Lissajous pattern follows

a trajectory which does not sequentially activate all mirrors

(one at a time) in its path. To absolutely guarantee that all

k incident mirrors are identified, each mirror in the search

space has to be switched to the 1 state at least once. As we
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Figure 2: Neighbor discovery via Raster and Lissajous scan

patterns (a) A raster scan pattern for the discovery of a single

neighbor. Mirrors mx where x = 7, 8, 9, 12, 13, 14 detect the

presence of radiation when in the 1 state. (b) Lissajous scan

with some knowledge of node’s 1 location, a restricted search

space is scanned (c) Lissajous scan with no knowledge of any

node’s location, the entire MEMS array is scanned.

observe in Figure 2c, blindly applying the α = 3, β = 2

Lissajous pattern on the entire MEMS array results nodes

2 and 3 being undiscovered eventhough they are within the

discoverer’s FOV. Another interesting observation to bear in

mind is that due to the sequential nature of the tests associated

with Lissajous scan patterns, the number of measurements M

does not depend on network parameters such as the number

of neighbors N , the aperture focal length fl and the average

distance D from neighbor which determine the size of the

Gaussian spot each neighbor generates on the MEMS device

(i.e. k does not affect M). We analyze the performance of the

α = 3, β = 2 Lissajous pattern (LIS) vis-á-vis our proposed

group testing based approaches in Section IV.

When there is no prior neighbor information, a simple raster

scan (RAS) can be employed to identify all k incident mirrors.

We use Figure 2a to illustrate this approach. The sequential

scan starts by placing mirror m1 into the 1 state, with all

other mirrors in the 0 state. The trajectory of the scan if no

incident signal is detected is the activation of mirrors m1 to m5

to m6 to m10...in that order, terminating at m25. In the event

incident signals are detected in row rp , and assuming the spot

on the MEMS array traverses q other rows, the scan ends at the

end of row rp+q+1. In Figure 2a, after all mirrors in the first

row are scanned sequentially, no incident beam is detected.

When mirrors mx where x = 7, 8, 9, 12, 13, 14 are sequentially

activated, each of them reflects incident signals unto the PD.

For this example, p=2, q=1 and the scan terminates at the end

of row r4 (mirror m21). For this scheme, M in the best case is

2C. The best case corresponds to a spot which encompasses

a single mirror in the first row. The worst case M = R × C

occurs when (i) no incident spot is detected or (ii) either the

last detected spot occurs in the (R − 1)th or Rth row.

C. Group Testing-based Solution

It is easy to see that the RAS scheme, oblivious of N ,

requires M = R×C measurements but yields a 100% accurate

N . LIS reduces M by only testing mirrors that are part of the

chosen Lissajous pattern, which means means that N may be

underestimated. Thus, the state of art approaches are either

exhaustive but linear (e.g. raster) or do not guarantee the

detection of all k incident mirrors (e.g. Lissajous scan). We

now show how we can significantly improve upon the number

of measurements M that are required, despite being exhaustive

in nature and guaranteeing a 100% accurate N .

The optical neighbor discovery problem can be modeled

as a group testing problem [18] (see Section II). The “lit”

elements (Section III-A) are analogous to “defective” items,

and the elements of the DMD array are the set of L items.

A measurement (or a “test” in GT terminology) returns 1 if

at least one element in the group is lit. Physically, this is

implemented using a PD which measures the total energy

incident (reflected) by the mirror elements. If the current

generated is more than the noise floor, then it can be deduced

that at least one element is lit. Note that the beams are

assumed to be Gaussian, meaning that the intensity reduces

exponentially as one moves away from the center of the beam,

greatly reducing false positives.

GT algorithms which achieve close to the information

theoretic lower bound are already well known. We adapt the

algorithm provided in [19] (called GT-A in this paper) which

requires a total of M ≤ 1.65k(log2
L
k
+ 1.031) + 5 tests. It

(Alg. 1) takes as input a collection D of L mirror elements

and produces a subcollection of D′ of all k incident elements.

In line 1, the state S of all mirrors in D is set to 1. This

ensures that at this stage, all mirrors focus light onto the

PD. From lines 2 to 27, the algorithm considers situations

in which there are at least three undetected incident mirror

elements. The algorithm then proceeds to measure the power

from activating disjoint collections of mirror elements of size

3, 12, 48, . . . , 2h + 2h+1 (h is the group size parameter) till the

presence of optical irradiance is detected by the PD.

The presence or absence of a beam is determined by a

simple threshold comparison test. We compare the measured

output to the PD’s noise floor. If a beam is not detected (line

6), the states of all elements in that collection SX is updated to

0, and we no longer need to test those elements. In the event

that h = 10, we test for the presence of a beam with the input

set being all mirrors with a state of 1 (lines 7-9).

In the case that the presence of irradiance is detected in the

previous steps, D′ is updated with the collection of incident

elements out of a maximum of 3 elements in a 1 state that

produces this signal detection via lines 12 to 20. When the

input set consists of more than 3 mirror elements with a state

of 1 (lines 22 to 27), binary search is used to extract a single

incident element. In lines 28 to 30, if there are at most 2

elements with a state of 1, then, each of them is checked

independently for the presence of irradiation.

In addition to GT-A, we implement another GT algorithm,

[20] called GT-B in this paper, which is conceptually similar

to [19] but requires M ≤ (1.5 + ǫ)k(log2
L
k
+ 1.09) + 0.4

ǫ
tests

with 0 < ǫ < 0.01. Unlike in [19], whereby at least one

incident mirror element out of a possible three is identified

(lines 12-20 of Alg. 1), in [20], three out of four mirror

elements are individually tested to determine the presence or
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otherwise of radiation. In addition, lines 22-25 are modified

in [20] to identify a set of mirror elements of cardinality 4(h−1)

which contains at least one single incident element.

Algorithm 1: A GT based discovery algorithm

Input: A collection D of L mirror elements
Output: A subcollection D′ of all k incident mirrors elements

1 D′ ← ∅
Set state of all L elements to 1 i.e. S1,...,L ← 1

2 while L ≥ 3 do
3 h← 0
4 do

5 X ← pick from D min(2h + 2h+1, L)
elements with 1 state
if (yX ≤ yt ) then

6 SX ← 0; h← h + 2; L ← L − 1;

7 if (h = 10) then
8 X ← pick from D all elements with 1 state

if (yX ≤ yt ) then
9 SX ← 0; L ← L − |X |;

10 while ((L , 0) ∨ (yX ≤ yt ));
11 if (yX > yt ) then
12 if (h = 0) then
13 u, v,w ← 3 elements from X with 1 state

if (yu ≥ yt ) then
14 D′ ← D′ ∪ u;

15 if (yv ≥ yt ) then
16 D′ ← D′ ∪ v;

17 if (yu ≤ yt ) ∧ (yv ≤ yt ) then
18 D′ = D′ ∪ w; Su,v,w ← 0; L ← L − 3

19 else
20 Su,v ← 0; L ← L − 2

21 if (h > 0) then

22 X ′ ← pick from D min(2h, |X |)
elements with 1 state
if (yX′ > yt ) then

23 X ← X ′

24 else

25 X ← X − X ′; SX′ ← 0; L ← L − |X ′ |; Element
d ← Apply binary search to X
D′ ← D′ ∪ d; Sd ← 0; L ← L − 1;

26 while L , 0 do
27 x ← an element of D with a state of 1; L ← L − 1;

if (yx ≥ yt ) then
28 Sx ← 0; D′ ← D′ ∪ x;

D. Hierarchical Implementation and Clustering

The above algorithm can be implemented in various stages,

leveraging the two dimensional layout (R rows, C columns)

of the DMD array. We present multiple ways to implement

GT. These schemes are: One-Stage Group Testing (OSGT-A,

OSGT-B), and Two-Stage Group Testing (TSGT-A, TSGT-B).

Note that the schemes presented in this paper are fully adaptive

i.e in addition to subsequent stages using the outcomes of

previous stages to decide which mirrors should be tested, all

tests within a stage are adaptive. In all these schemes, a scan

pattern is generated by setting individual mirror states to either
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Figure 3: Avg. num. of incident mirrors k vs. network param-

eters. (a) Effect of N on k for N=1-5, (b) Effect of D on k

for D=20-100, (c) Effect of fl on k for fl=50-150 mm.

a 1 or 0. In transitioning from one state to the other, it takes

a period of duration equal to the mirror switching time ts .

In One-Stage Group Testing (OSGT-A), Algorithm 1 is

applied to the entire collection of DMD mirrors |D| = R×C i.e.

L = R × C, which discovers all k incident mirrors in a single

step. In Two-Stage Group Testing (TSGT-A), we first discover

the “lit” rows by treating all the elements of a row as a single

element & applying GT-A, followed by the “lit” columns and

then take the intersection. We apply algorithm 1 to all rows to

obtain the collection of rows of mirrors D′r which are incident

to a beam. In this step, |D| = L = R and D′ = D′r . We then

reapply algorithm 1 to all columns to obtain D′c . In this step,

|D| = L = C and D′ = D′c . The application of algorithm 1

to rows and columns constitute the first stage. In the second

stage, using all mirrors in the intersection of D′r and D′c as

input, algorithm 1 is subsequently applied to obtain D ′. For

OSGT-B and TSGT-B, GT-B replaces GT-A.

IV. PERFORMANCE EVALUATION

In this section we analyze and compare simulation results,

including achieving sub-ms discovery times. The schemes

compared are: One-Stage Group Testing (OSGT-A, OSGT-B

with ǫ = 0.01) and Two-Stage Group Testing (TSGT-A, TSGT-

B with ǫ = 0.01). We benchmark these algorithms against the

α = 3, β = 2 Lissajous (LIS) and raster (RAS) pattern-based

acquisition scans of [10]. We measured the performance using

number of measurements M , number of incident mirrors k

and neighbor discovery time dl as metrics, with a Java based

simulator. Each data point is sampled across 1000 random

runs. The parameters we use for the analysis are number of

neighbors N , aperture focal length fl , number of elements L

in DMD array and average distance from the neighbor D.

The realistic default values (and ranges) used are: N = 3 (1-

5), fl = 100 mm (50-150 mm), L = 106 (104-108) each with

an area of 10−10 m2 and D = 60 m (20-100 m). Additionally,

we used an optical wavelength λ = 1550 nm, a lens aperture

diameter dr = 30 mm, a photodetector (PD) sensitivity of -30

dBm which determines the threshold for detection, a transmit

power Pt = −2 dB, and a maximum binary pattern rate fp of

48K binary patterns/sec. Note that M for LIS and RAS depend

only on L and are independent of k.

A. Number of Incident Mirrors

Incident mirrors are those which can each individually

generate a PD current greater than the noise threshold, when

its incident light is directed to the PD; k is the number of
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Figure 4: Average number of measurements M and discovery time dl versus various network parameters. (a) Effect of N for

N=1-5, (b) Effect of D for D=20-100, (c) Effect of fl for fl=50-150 mm., (d) Effect of L for L = 104-108.

incident mirrors. In Figure 3a, it is intuitive that as the number

of neighbors N within the field of view of the discoverer

increases, k increases linearly. This is because a cluster of

mirrors is associated with a discovered node. Assuming each

neighbor is equidistant from the discoverer, then k ∝ N . As the

distance D of a neighbor increases, k decreases as presented in

Figure 3b. This observation is a consequence of the spot size

equation 2ω =
4λ fl
πdi

(see subsection III-A). In addition to these

results, we found through simulation that transmit Pt does not

significantly affect k at reasonable neighbor distances. This is

because the 1
e2 spot diameter does not depend on the received

optical power but on fl and dr .

B. Number of Measurements M and Scalability

Generally as k increase, M increases for each of the evalu-

ated schemes. The complexity of the OSGT schemes is M =

O(k log( L
k
)). TSGT schemes have a measurement complexity

of M = O(|D′r | log( R
|D′r | ) + |D

′
c | log( C

|D′c | ) + k log( |D
′
r |× |D′c |
k

)).
For any particular GT-based neighbor discovery algorithm, two

stage schemes perform better than their corresponding one

stage counterparts (e.g. TSGT-A requires a lower M compared

to OSGT-A). The reason for this is that, the first stage of two

stage schemes reduces the search space for the second stage.

In one stage schemes however, the search space is the entire

collection of mirrors in the DMD array. On average OSGT-B

requires about 29% more tests compared to TSGT-B (this is

similar to results for OSGT-A and TSGT-A) . From the results

in Figure 4, two stage schemes have a lower discovery time

compared with their one stage counterparts. This is because

after the first stage, the search space reduces leading to a

smaller discovery time. Discovery latency dl , plotted on the

right side Y-axes of Figure 4 is ∝ M .

We observe that GT-B outperforms GT-A (e.g. TSGT-

B (OSGT-B) performs better than TSGT-A (OSGT-A)). For

sparse scenarios (k ≪ L; k ≅ 400 for N = 5 and L = 106 in

our simulations) in which the distribution of the coordinates

mirrors which form a cluster are dependent on each other (e.g.

follow a Gaussian distribution in this work), many unnecessary

tests on sets which do not contain incident mirror elements can

be avoided by adaptively testing larger disjoint sets. For GT-B,

disjoint sets of size 4, 16, ..., 4m−1 are tested till a set of mirror

elements which contains at least one incident element incident

is discovered in the mth test. For GT-A, if a disjoint set of size

3(4n−1) is discovered during the nth test, then disjoint sets of

Scheme L = 104 L = 105 L = 106 L = 107 L = 108

LIS 10.6ms 34.7ms 111.9ms 355.1ms 1124.8ms
RAS 208.3ms 2.1s 20.8s 208.3s 2083.3s
OSGT-A 11.4ms 13.6ms 14.6ms 17.1ms 18.8ms

Table I: Average neighbor discovery time dl for various

schemes for L = 104-108.

size 3, 12, ..., 3(4n−2) tested to contain no incident element in

the preceding n− 1 tests. Note that since t ∈ Z+, 4t > 3(4t−1),
m <= n and GT-B saves n-m tests over GT-A.

Investigating scalability of dl with L is one of the goals of

this paper. In Figure 4d, increasing L from 104 to 108 results in

a 25% increase in M for TSGT-A, a 23% rise in M for TSGT-

B, a 66% increase in M for OSGT-A, and a 65% increase in M

for OSGT-B. The logarithmic trends in Figures 4d is because

M ∝ log L. The logarithmic scaling results are particularly

important since we envisage the use of omnidirectional fly-

eye receivers in the shape of a sphere that is tesselated with

tens/hundreds of millions of micromirrors. We note that in all

scenarios, with these group testing algorithms, the neighbor

discovery time is less than 45ms.

C. Comparison with the State of Art

In Table I, we compare the performance of one of our pro-

posed GT-based schemes (OSGT-A) to the Lissajous pattern

(LIS, subsection III-B) and raster scan (RAS, subsection III-B)

based discovery methods. We select OSGT-A for comparison

because it has a slightly worse scalability performance relative

to our other TSGT-A, TSGT-B, OSGT-B algorithms as is

shown in Figure 4d. Recall that RAS is an exhaustive-but-

linear approach when applied to oblivious neighbor discovery,

and the number of measurements M = L since L mirrors have

to be individually scanned to guarantee the discovery of all N

neighbors. LIS is quasi exhaustive, so as the search space L

increases, the number of mirrors in the trajectory of Lissajous

pattern path also increases. With LIS, all mirrors in this path

are individually scanned for the presence of an incident signal.

Note that LIS discovers ≤ N neighbors in the oblivious

case since some mirrors are never placed in the 1 state (see

subsection III-B). The adaptive OSGT-A and by extension all

our proposed algorithms significantly outperforms both LIS

and RAS as L → 108 w.r.t. neighbor discovery latency while

guaranteeing the detection of all N neighbors in the oblivious

case despite being an exhaustive scheme.
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Figure 5: Illustrating sub-ms detection using the virtual grid

concept for kg = 1 − 5 over different Lg.

D. Achieving Sub-ms Discovery Time

Our implemented algorithms yield discovery times in the

order of tens of ms for GT based neighbor discovery schemes.

We believe that this result can be significantly improved to

sub-ms time using techniques such as 1) reducing L and k by

creating virtual grids within the DMD, which we call succes-

sive approximation; and 2) techniques such as random hashing.

In 2), assuming large non-contiguous arrays of mirrors are

selected from L, the probability of detecting groups which are

not incident to a beam is high if k << L. With 1), virtual non-

overlapping grid elements that correspond to a collection of

mirrors can be created and tested at a go for incident radiation.

Once energy is detected, a refinement step is applied to the

virtual grid element to accurately identify incident mirrors. To

buttress our position that sub-ms detection latency is indeed

possible, we simulated (Figure 5) a scenario whereby mirrors

in the DMD array were grouped into Lg elements in a virtual

grid, with the area of a single element in the grid ≅ the average

2ω. If there are kg spots on the DMD array, then the problem

translates into finding kg out of Lg virtual elements that are

incident to radiation. Results in Figure 5 which is based on

the theoretic M upper bound for OSGT-A indicate that sub-ms

is indeed achievable for some kg and Lg.

In addition to these enhancements, we assumed in this work

that the coordinates of the k incident mirrors are indepen-

dent of each other. However, these k are clustered into P

(=N) spots which correspond to the N neighbors. In reality,

the coordinates of incident mirrors in each cluster are not

independent of each other. Relaxing this assumption would

further reduce significantly the number of measurements (and

discovery latency), since we no longer need to discover all k

mirrors to reconstruct the spatial directions of neighbors.

V. CONCLUSION AND FUTURE WORK

For fast neighbor discovery in MEMS-based FSO networks,

exhaustive search schemes do not perform efficiently. We

formulated the neighbor discovery problem as a boolean

adaptive combinatorial group testing problem and provided

solutions based on group testing. We showed via simulation

that the discovery of neighbors using MEMS-based optical

devices can be achieved with a latency of a few ms while sub-

ms detection is possible. We also envision that this latency can

be significantly improved when additional techniques such as

randomized hashing and/or successive approximation methods

are employed.

The next steps in our work are integrating an efficient

scheme to track a given neighbor, investigating successive

approximation methods and randomized hashing to further

speed up the discovery time, and the building of a hardware

prototype that achieves sub-millisecond detection time. Fi-

nally, all these components will be combined into a generalized

rendezvous protocol.
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