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Abstract

We consider the classic principal-agent model of contract theory, in which a principal designs an
outcome-dependent compensation scheme to incentivize an agent to take a costly and unobservable ac-
tion. When all of the model parameters—including the full distribution over principal rewards resulting
from each agent action—are known to the designer, an optimal contract can in principle be computed by
linear programming. In addition to their demanding informational requirements, such optimal contracts
are often complex and unintuitive, and do not resemble contracts used in practice.

This paper examines contract theory through the theoretical computer science lens, with the goal of
developing novel theory to explain and justify the prevalence of relatively simple contracts, such as linear
(pure commission) contracts. First, we consider the case where the principal knows only the first moment
of each action’s reward distribution, and we prove that linear contracts are guaranteed to be worst-case
optimal, ranging over all reward distributions consistent with the given moments. Second, we study
linear contracts from a worst-case approximation perspective, and prove several tight parameterized
approximation bounds.
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1 Introduction
Classic contract theory. Many fundamental economic interactions can be phrased in terms of two parties,
a principal and an agent, where the agent chooses an action and this imposes some (negative or positive)
externality on the principal. Naturally, the principal will want to influence which action the agent chooses.
This influence will often take the form of a contract, in which the principal compensates the agent contingent
on either the actions or their outcomes; with the more challenging and realistic scenario being the one in
which the principal cannot directly observe the agent’s chosen action. Instead, the principal can only observe
a stochastic outcome that results from the agent’s action.

For example, consider a salesperson working for a company producing a range of products with different
revenue margins. The salesperson chooses the amount of effort spent on promoting the various products.
The company may not be able to directly observe effort, but can presumably track the number of orders
the salesperson generates. Assuming this number is correlated with the salesperson’s actions (the harder
he works, the more sales of higher margin products he generates), it may make sense for the company to
base his pay on sales—i.e., to put him on commission—to induce him to expend the appropriate level of
effort.1 Another example is the interaction between a car owner and an insurance company. The car owner’s
behavior influences the risks his car is exposed to. If costs are borne only by the insurance company, the
owner might not bother to maintain the asset properly (e.g., might park in a bad neighborhood). This is
an example of the well-known moral hazard problem. Typically, such bad behavior is difficult to contract
against directly. But because this behavior imposes an externality on the insurance company, companies
have an interest in designing contracts that guard against it.

Both of these examples fall under the umbrella of the hidden action principal-agent model, arguably the
central model of contract theory, which in turn is an important and well-developed area within microeco-
nomics.2 Perhaps surprisingly, this area has received far less attention from the theoretical computer science
community than auction and mechanism design, despite its strong ties to optimization, and potential ap-
plications ranging from crowdsourcing platforms [23], through blockchain-based smart contracts [14], to
incentivizing quality healthcare [8].
The model. Every instance of the model can be described by a pair (An,Ωm) of n actions and m outcomes.
In the salesperson example, the actions are the levels of effort and the outcomes are the revenues from
ordered products. As in this example, we usually identify the (abstract) outcomes with the (numerical)
rewards associated with them. The agent chooses an action ai ∈ An, unobservable to the principal, which
incurs a cost ci ≥ 0 for the agent, and results in a distribution Fi with expectation Ri over the outcomes in
Ωm. The realized outcome x j ≥ 0 is awarded to the principal.

The principal designs a contract that specifies a payment t(x j) ≥ 0 to the agent for every outcome x j

(since the outcomes, unlike the actions, are observable to the principal). This induces an expected payment
Ti = Ex j∼Fi [t(x j)] for every action ai. The agent then chooses the action that maximizes his expected utility
Ti− ci over all actions (“incentive compatibility”), or opts out of the contract if no action with nonnegative
expected utility exists (“individual rationality”).

As the design goal, the principal wishes to maximize her expected payoff : the expected outcome Ri

minus the agent’s expected payment Ti, where ai is the action chosen by the agent. Therefore contract design
immediately translates into the following optimization problem: given (An,Ωm), find a payment vector t that
maximizes Ri−Ti, where ai is incentive compatible and individually rational for the agent. We focus on the
limited liability case, where the contract’s payments t are constrained to be non-negative (i.e., money only

1We shall address the agent as male and the principal as female.
2For example, the 2016 Nobel Prize in economics was awarded to Oliver Hart and Bengt Holmström for their contributions to

contract theory. The prize announcement stated: “Modern economies are held together by innumerable contracts... [T]ools created
by Hart and Holmström are valuable to the understanding of real-life contracts”.
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flows from the principal to the agent).3 A detailed description of the model appears in Section 2.
Optimal contracts and their issues. It is straightforward to solve the optimization problem associated
with finding the optimal contract maximizing the principal’s expected payoff, by solving one linear program
per action. Each linear program minimizes the expected payment to the agent subject to the constraint
that he prefers this action to any other—including opting out of the contract—and subject to the payments
all being non-negative. The best of these linear programs (achieving the highest expected payoff for the
principal) gives the best action to incentivize and an optimal contract incentivizing it. However, this is not
the end of the story: this approach can result in contracts that are nothing like the contracts used in practice.4

Example 1 demonstrates this critique—it is not clear how to interpret the optimal contract nor how to justify
it to a non-expert. The optimal payment scheme in this example is not even monotone, i.e., a better outcome
for the principal can result in a lower payment for the agent! In the salesperson example, this would create
an incentive for the salesperson to manipulate the outcome, for example by hiding or canceling orders.

Example 1. There are m = 6 outcomes x = (1,1.1,4.9,5,5.1,5.2), and n = 4 actions with the following
outcome distributions and costs: F1 = (3/8, 3/8, 1/4,0,0,0), F2 = (0, 3/8, 3/8, 1/4,0,0), F3 = (0,0, 3/8, 3/8, 1/4,0),
F4 = (0,0,0, 3/8, 3/8, 1/4), and (c1,c2,c3,c4) = (0,1,2,2.2). The LP-based approach shows that the optimal
contract in this case incentivizes action a3 with payments t ≈ (0,0,0.15,3.93,2.04,0). The analysis appears
for completeness in Appendix A.1.

Linear contracts as an alternative. Perhaps the simplest non-trivial contracts are linear contracts, where
the principal commits to paying the agent an α-fraction of the realized outcome (i.e., payments are linear in
the outcomes). Unlike optimal contracts, linear contracts are the most ubiquitous contract form in practice;5

they are conceptually simple and easy to explain; payments are automatically monotone; and the agent is
guaranteed non-negative utility with probability one. From an optimization standpoint, however, they can
be suboptimal even in simple settings, as the next example demonstrates:

Example 2. There are m = 2 outcomes x = (1,3), and n = 2 actions a1 and a2 with F1 = (1,0),c1 = 0 and
F2 = (0,1),c2 = 4/3, respectively. The optimal contract incentivizes action a2 with payments t = (0, 4/3),
resulting in expected payoff of 3− 4/3 = 5/3 for the principal. The maximum expected payoff of any linear
contract is 1 (regardless of which action is incentivized).

Simple versus optimal contracts in the economic literature. The complexity critique of optimal con-
tracts is well known to economists. The dominant paradigm in the economics literature for addressing this
is to justify simple contracts such as linear ones on robustness grounds.6 Several works have attempted to
characterize linear contracts as optimally robust in various max-min senses—see, e.g., [15, 13]; for a survey
see [12]; for concurrent work see [18, 41] and Appendix C.2.

Perhaps most notable among these is the recent work of Carroll [11]. In this work, a key change to the
standard principal-agent model is introduced: the set of actions available to the agent is completely unknown
to the principal. Because in this new setting no guarantee is possible, Carroll relaxes the new model by
adding the assumption that some set of actions A is fully known to the principal (that is, she is fully aware

3Without some such assumption there is a simple but unsatisfying optimal solution for the principal when the agent is risk-
neutral: simply sell the project to the agent, at a price just below the maximum expected welfare Ri− ci that the agent can generate
by choosing an action. The agent may as well accept (and then select the welfare-maximizing action), and the principal pockets
essentially the full welfare. This solution is incompatible with practical principal-agent settings, e.g., a salesperson does not
typically buy the company from its owner.

4A similar issue arises in auction theory: linear programs can be used to characterize optimal auctions, which often turn out to
be impractically complicated and unintuitive (see, e.g., [21]).

5To our knowledge, the only other common contract form according to the economics literature is “debt contracts,” which are
similar to linear contracts except with zero payments for a set of the lowest outcomes [22]. Our results do not qualitatively change
for such contracts—see Appendix F. We thank S. Matthew Weinberg for bringing this contract form to our attention.

6For example, in their classic paper on linear contracts in dynamic environments, Holmström and Milgrom [24] write: “It is
probably the great robustness of linear rules based on aggregates that accounts for their popularity.”
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of the distributions the actions induce over outcomes as well as of their costs). See [11, p. 546] for “[o]ne
way to make sense of this combination of non-quantifiable and quantifiable uncertainty”, i.e., completely
known and completely unknown actions. The main result is that a linear contract is max-min optimal in the
worst case over all possible sets of actions B that contain the known set A (where B can be anything). Carroll
sees the main contribution not in a literal interpretation of the model, but rather in finding a “formalization
of a robustness property of linear contracts—a way in which one can make guarantees about the principal’s
payoff with very little information” [12, Sec. 2.1].

1.1 Our Contributions
Our main goal is to initiate the study of simple contracts and their guarantees through the lens of theoretical
computer science. We utilize tools and ideas from worst-case algorithmic analysis and prior-independent
auction design to make contributions in two main directions, both justifying and informing the use of linear
contracts.
Max-min robustness of linear contracts. Our first contribution is a new notion of robustness for linear
contracts. Our robustness result fits within the family of max-min characterizations championed by eco-
nomic theory, but our setup and assumptions are more natural from an optimization perspective. Instead of
assuming that there are completely unknown actions available to the agent alongside a fully known action
set, we assume that the principal has partial knowledge of all actions—she knows their costs and has mo-
ment information about their reward distributions. This is similar in spirit to previous work in algorithmic
game theory on prior-independent parametric auctions, which sought max-min robust mechanisms in the
worst case over all distributions with known first and second moments (see [2], and also the robust opti-
mization approach of [7]). Our result thus offers an alternative formulation of the robustness property of
linear contracts, in a natural model of moment information that is easy to interpret.

Theorem (See Section 4). For every outcome set, action set, action costs, and expected action rewards,
a linear contract maximizes the principal’s worst-case expected payoff, where the worst case is over all
reward distributions with the given expectations.

Approximation guarantees. Our second contribution is to conduct the first study of simple contracts from
an approximation perspective. Studying the worst-case approximation guarantees of classic microeconomic
mechanisms—linear contracts in this case—has been a fruitful approach in other areas of algorithmic game
theory. Applying this approach, we achieve a complete and tight analysis of the approximation landscape
for linear contracts. For each of the four main parameters of the principal-agent model—number of actions
n, number of outcomes m, range of expected rewards Ri, and range of costs ci—we give tight approximation
guarantees in that parameter, which apply uniformly across the other three parameters:

Theorem (See Section 5). Let ρ denote the worst-case ratio between the expected principal payoff under
an optimal contract and under the best linear contract. Then

(a) Among principal-agent settings with n actions, ρ = n.
(b) Among settings where the ratio of the highest and lowest expected rewards is H, ρ = Θ(logH).
(c) Among settings where the ratio of the highest and lowest action costs is C, ρ = Θ(logC).
(d) Among settings with m≥ 3 outcomes, ρ can be arbitrarily large in the worst case.

The upper bounds summarized in the above theorem hold even with respect to the strongest-possible
benchmark of the optimal expected welfare (rather than merely the optimal principal expected payoff); they
thus answer the natural question of how much of the “first-best” welfare a linear contract can extract. The
matching lower bounds in the above theorem all apply even when we add a standard regularity condition to
the principal-agent settings, called the monotone likelihood ratio property (MLRP) (see Appendix E.1). In
Appendix F we show an extension of our lower bounds to all monotone (not necessarily linear) contracts: we
show that among principal-agent settings with n actions, the worst-case ratio between the expected principal
payoff under an optimal contract and under the best monotone contract can be n−1.
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Discussion. We view parts (a)–(c) of the above theorem as surprisingly positive results. A priori, it is com-
pletely unclear which of the many parameters of principal-agent settings, if any, governs the performance
of simple contracts. Our results show that there is no finite approximation bound that holds uniformly over
all of the model parameters, but that we can obtain the next best thing: by fixing just one of the model’s
ingredients (either the number of actions, the range of the outcomes, or the range of the costs, as preferred),
it is possible to obtain an approximation guarantee that holds uniformly over all other parameters. Our theo-
rem shows that linear contracts are far from optimal only when the number of actions is large, and there is a
huge spread in expected rewards, and there is a huge spread of action costs. Few if any of the most popular
instantiations of the principal-agent model have all three of these properties.

1.2 Further Related Work
Contract theory is one of the pillars of microeconomic theory. We refer the interested reader to the classic
papers of [38, 20, 35, 25], the excellent introductions of [10, 40], the comprehensive textbooks [29, 9] (see
also [30, Chapters 13-14]), and the scientific background to the 2016 Nobel Prize in Economics [36].
Computational approaches to contract design. To our knowledge, decidedly computational approaches
to contract design have appeared so far only in the work of [6] (see also follow-ups [4, 5]), the work of [3],
and the work of [23] (see also follow-up [28]). The first paper [6] initiates the study of a related but different
model known as combinatorial agency, in which combinations of agents replace the single agent in the
classic principal-agent model. The challenge in the new model stems from the need to incentivize multiple
agents, while the action structure of each agent is kept simple (effort/no effort). The focus of this line of
work is on complex combinations of agents’ efforts influencing the outcomes, and how these determine the
subsets of agents to contract with. The second paper [3] introduces a notion of contract complexity based
on the number of different payments specified in the contract, and studies this complexity measure in an
n-player normal-form game framework. In their framework there are no hidden actions, making our model
very different from theirs. The third paper [23] develops a model of dynamic contract design: in each
sequential round, the principal determines a contract, an agent arrives and chooses an action (effort level),
and the principal receives a reward. Agents are drawn from an unknown prior distribution that dictates their
available actions. The problem thus reduces to a multi-armed bandit variant with each arm representing
a potential contract. The main focus of this line of work is on implicitly learning the underlying agent
distribution to minimize the principal’s regret over time.
(Non)relation to signaling. Since one of the main features of the principal-agent model is the informa-
tion asymmetry regarding the chosen action (the agent knows while the principal is oblivious), and due to
the “principal” and “agent” terminology, on a superficial level contract theory may seem closely related to
signaling [39, 31, 32]. This is not the case, and the relationship is no closer than that between auction theory
(screening) and signaling. As Dughmi [16] explains, the heart of signaling is in creating the right informa-
tion structure, whereas the heart of contract design is in setting the right payment scheme.7 Put differently,
in signaling, it is the more-informed party that faces an economic design problem; in hidden-action con-
tract theory, it is the less-informed party (i.e., the principal). For more on signaling from a computational
perspective the reader is referred to [19, 34, 17].
Concurrent work on algorithmic delegation. Two recent papers [26, 27] study algorithmic aspects of
another loosely related but distinct problem called optimal delegation [1]. In this problem, a principal has to
search for and decide upon a solution, and wishes to delegate the search to an agent with misaligned incen-
tives regarding which solution to choose. Crucially, there are no monetary transfers, making the problem
very different from contract design.

7“There are two primary ways of influencing the behavior of self-interested agents: by providing incentives, or by influencing
beliefs. The former is the domain of traditional mechanism design, and involves the promise of tangible rewards such as [...] money.
The latter [...] involves the selective provision of payoff-relevant information to agents through strategic communication” [16, p. 1].
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2 The Hidden Action Principal-Agent Model
The principal-agent model. An instance is described by a pair (An,Ωm) of n actions and m outcomes.

• Outcomes: We identify the jth outcome for every j ∈ [m] with its reward x j to the principal, and
assume w.l.o.g. that the outcomes are increasing, i.e., 0≤ x1 ≤ x2 ≤ ·· · ≤ xm.

• Actions: Each action is a pair a = (Fa,ca), in which Fa is a distribution over the m outcomes and
ca ≥ 0 is a cost. The agent chooses an action a ∈ An and bears the cost ca, whereas the principal
receives a random reward x j drawn from Fa. Crucially, the action is hidden: the principal observes
the outcome x j but not the action a.

Notation and terminology Denote by Fa, j the probability of action a to lead to outcome x j; we assume
w.l.o.g. that every outcome has some action leading to it with positive probability. Denote the expected
outcome (i.e., reward to the principal) from action a by Ra =E j∼Fa [x j] =∑ j∈[m] Fa, jx j. The difference Ra−ca

is the expected welfare from choosing action a. When an action ai is indexed by i, we write for brevity
Ri,Fi, j,ci (rather than Rai ,Fai, j,cai).
Standard assumptions. Unless stated otherwise we assume:

A1 There are no “dominated” actions, i.e., every two actions a,a′ have distinct expected outcomes Ra 6=
Ra′ , and the action with the higher expected outcome Ra > Ra′ also has higher cost ca > ca′ .

A2 There is a unique action a with maximum welfare Ra− ca.
A3 There is a zero-cost action a with ca = 0.

Assumption A1 means there is no action with lower expected outcome and higher cost than some other
action, although we emphasize that there can be an action with lower welfare and higher cost (in fact, incen-
tivizing the agent to avoid such actions is a source of contract complexity). Our main results in Sections 4-5
do not require this assumption (see Section 5 for details). Assumptions A2 and A3 are for the sake of expo-
sitional simplicity. In particular, Assumption A3 means we can assume the agent does not reject a contract
with nonnegative payments, since there is always an individually rational choice of action; alternatively,
individual rationality could have been imposed directly.
Contracts. A contract defines a payment scheme t with a payment (transfer) t j ≥ 0 from the principal to
the agent for every outcome x j. We denote by Ta the expected payment E j∼Fa [t j] = ∑ j Fa, jt j for action a,
and by Ti the expected payment for ai. Note that the payments are contingent only on the outcomes as the
actions are not observable to the principal. The requirement that t j is nonnegative for every j is referred to in
the literature as limited liability [11], and it plays the same role as the standard risk averseness assumption
in ruling out trivial solutions where a contract is not actually required [20]. Limited liability (or its parallel
agent risk averseness) is the second crucial feature of the classic principal-agent model, in addition to the
actions being hidden from the principal.
Implementable actions. The agent’s expected utility from action a given payment scheme t is Ta− ca.
The agent chooses an action that is: (i) incentive compatible (IC), i.e., maximizes his expected utility among
all actions in An; and (ii) individually rational (IR), i.e., has nonnegative expected utility (if there is no IR
action the agent refuses the contract). We adopt the standard assumption that the agent tie-breaks among IC,
IR actions in favor of the principal.8 We say a contract implements action a∗ if given its payment scheme t,
the agent chooses a∗; if there exists such a contract we say a∗ is implementable.
Optimal contracts and LPs. The principal seeks an optimal contract: a payment scheme t that maximizes
her expected payoff Ra−Ta, where a is the action implemented by the contract (i.e., a is both IC and IR for
the agent, with ties broken to maximize the expected payoff of the principal). Notice that summing up the
agent’s expected utility Ta−ca with the principal’s expected payoff Ra−Ta results in the contract’s expected

8The idea is that one could perturb the payment schedule slightly to make the desired action uniquely optimal for the agent. For
further discussion see [10, p. 8].
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welfare Ra− ca. A contract’s payment scheme thus determines both the size of the pie (expected welfare),
and how it is split between the principal and agent.

Given an action a, the linear program (LP) appearing in Appendix A either finds a payment scheme that
implements a at minimum expected payment to the agent, or establishes that a is not implementable. The
optimal contract can be found by solving n such LPs—one for each action—and comparing the principal’s
expected payoff in each case after paying the agent. The LP and its dual can also be used to characterize
implementable actions and to show that the optimal contract will have at most n−1 nonnegative payments—
see Appendices A.2-A.3 for details.
Linear/monotone contracts. In addition to optimal contracts we consider the following simple classes.

Definition 1. A contract is linear if the payment scheme is a linear function of the outcomes, i.e., t j =αx j ≥ 0
for every j ∈ [m]. We refer to α as the linear contract’s parameter, which is ≥ 0 due to limited liability.

A natural generalization is a degree-d polynomial contract, in which the payment scheme is a nonnega-
tive degree-d polynomial function of the outcomes: t j = ∑

d
k=0 αkxk

j ≥ 0 for every j ∈ [m]. If d = 1 we get an
affine contract; such contracts play a role in Section 4. Linear and affine contracts are monotone:

Definition 2. A contract is monotone if its payments are nondecreasing in the outcomes, i.e., t j ≤ t j′ for
j < j′.

Max-min evaluation and approximation. We apply two approaches to evaluate the performance of sim-
ple contracts: max-min in Section 4, and approximation in Section 5. We now present the necessary defini-
tions, starting with the max-min approach.

Definition 3. A distribution-ambiguous action is a pair a = (Ra,ca), in which Ra ≥ 0 is the action’s expected
outcome and ca≥ 0 is its cost. Distribution Fa over outcomes {x} is compatible with distribution-ambiguous
action a if Ex∼Fa [x] = Ra.

Definition 4. A principal-agent setting (An,Ωm) is ambiguous if it has m ≥ 3 outcomes and n distribution-
ambiguous actions, and there exist distributions F1, . . . ,Fn over the outcomes compatible with the actions.

(A setting with m = 2 outcomes cannot be ambiguous since the expectation determines the distribution;
moreover the conundrum of “optimal but complex” vs. “suboptimal but ubiquitous” never arises as the
optimal contract has a simple form—see Appendix G.)

In ambiguous settings, it is appropriate to apply a worst-case performance measure to evaluate contracts:

Definition 5. Given an ambiguous principal-agent setting, a contract’s worst-case expected payoff is its
infimum expected payoff to the principal over all distributions {Fi}n

i=1 compatible with the known expected
outcomes {Ri}n

i=1.

We follow [11] in making the following assumption, which simplifies but does not qualitatively affect
the results in Section 4.9

A4 In ambiguous principal-agent settings, the outcome 0 belongs to Ωm, i.e., x1 = 0.

In Section 5, we are interested in bounding the potential loss in the principal’s expected payoff if she is
restricted to use a linear contract. Formally, letA be the family of principal-agent settings. For (An,Ωm)∈A,
denote by OPT (An,Ωm) the optimal expected payoff to the principal with an arbitrary contract, and by
ALG(An,Ωm) the best possible expected payoff with a contract of the restricted form (we omit (An,Ωm)

from the notation where clear from context). We seek to bound ρ(A) := max(An,Ωm)∈A
OPT (An,Ωm)
ALG(An,Ωm)

.

9As explained in [11, Footnote 2], Assumption A4 is simply an additive normalization of the principal’s payoffs. Without this
assumption, a robustly optimal contract would take the form t j = α(x j− x1). Further justification for assuming x1 = 0 is that the
principal may have ambiguity not just with respect to the action distributions but also as to her possible rewards, and she prefers a
contract robust to the possibility (however slim) of receiving a zero reward.
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Figure 1: Linearly-implementable actions via upper envelope.

3 Properties and Geometry of Linearly-Implementable Actions
Our goal in this section is to establish a geometric characterization of linearly-implementable actions and to
derive from it several useful consequences. See Appendix B for details and missing proofs.

Definition 6. In a principal-agent setting (An,Ωm), an action a∈ An is linearly-implementable if there exists
a linear contract with parameter α ≤ 1 that implements a.10

Let N denote the number of linearly-implementable actions, and let IN ⊆ An denote the set of such
actions. Index the actions in IN in order of their expected outcomes, i.e., for ai,ai′ ∈ IN , i < i′ ⇐⇒ Ri < Ri′ .
We now define two different mappings, and in Lemma 1 establish their equivalence.

• Linear-implementability mapping a(·). Denote by a(·) : [0,1]→ IN ∪{∅} the mapping of α to either
the action implemented by the linear contract with parameter α (observe there is at most one such
action under our assumptions—for completeness we state and prove this in Appendix B), or to ∅ if
there is no such action. So mapping a(·) is onto IN by definition. Denote by αi the smallest α ∈ [0,1]
such that action ai ∈ IN is implemented by a linear contract with parameter α , then αi is the smallest
α such that a(α) = ai.

• Upper envelope mapping u(·). For every action a ∈ An, consider the line αRa− ca and let `a denote
the segment between α = 0 and α = 1; these segments appear in Figure 1, where the x-axis represents
the possible values of α from 0 to 1. Take the upper envelope of the n segments {`a}a∈An and consider
its nonnegative portion. Let u(·) : [0,1]→ An∪{∅} be the mapping from α to either ∅ if the upper
envelope is negative at α , or to the action whose segment forms the upper envelope at α otherwise. If
there is more than one such action, let u(α) map to the one with the highest expected outcome Ra.

Our main structural insight in this section is that the upper envelope mapping precisely captures linear
implementability:

Lemma 1. For every α ∈ [0,1], a(α) = u(α).

Lemma 1 has three useful implications: (1) The actions {ai ∈ IN} appear on the upper envelope in the
order in which they are indexed (i.e., sorted by increasing expected outcome); (2) These actions are also
sorted by increasing welfare, i.e., R1− c1 ≤ R2− c2 ≤ ·· · ≤ RN − cN ; (3) The smallest α that incentivizes
action ai (which we refer to as αi) is the same α that makes the agent indifferent between action ai and
action ai−1. We denote this “indifference α” by αi−1,i and observe that αi−1,i =

ci−ci−1
Ri−Ri−1

(Observation 6 in
Appendix B). Using this notation, we can rewrite the third implication as: αi = αi−1,i for every i ∈ [N].

The three implications above are formulated as Corollaries 4, 5 and 6, respectively, and appear with their
proofs in Appendix B. We shall use Lemma 1 in Sections 4-5 and its corollaries in Section 5.

10The requirement α ≤ 1 is w.l.o.g.
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4 Robust Optimality of Linear Contracts
In this section we establish a robust optimality result for linear contracts. All deferred proofs appear in
Appendix C. Our main result in this section is that a linear contract maximizes the principal’s expected
payoff in ambiguous settings, in the worst case over the unknown distributions.

Theorem 1 (Robust optimality). For every ambiguous principal-agent setting, an optimal linear contract
has maximum worst-case expected payoff among all limited liability contracts.

In Theorem 1, “an optimal linear contract” is well-defined: For a (non-ambiguous) principal-agent set-
ting, a linear contract is optimal if it maximizes the principal’s expected payoff over all linear contracts. For
an ambiguous principal-agent setting, a linear contract has the same expected payoff to the principal over all
compatible distributions, thus an optimal one is still defined as maximizing the principal’s expected payoff
(see also Corollary 7 in Appendix B). In the remainder of the section we prove Theorem 1.

4.1 Main Lemma for Robust Optimality
The key step in the proof of Theorem 1 is to show that we may restrict the search for optimally robust
contracts to affine contracts.

Lemma 2. Consider an ambiguous principal-agent setting (An,Ωm). For every limited liability contract
with payment scheme t, there exist compatible distributions {Fi}n

i=1 and an affine contract with parame-
ters α0,α1 ≥ 0, such that the affine contract’s expected payoff is at least that of contract t for distribu-
tions {Fi}n

i=1.

Proof. The payment scheme t maps the outcomes 0 = x1 < · · · < xm to payments t1, . . . , tm ≥ 0. Consider
the two extreme outcomes x1,xm and their corresponding payments t1, tm. We begin by defining simple
compatible distributions {F ′i }n

i=1 whose support is the extreme outcomes, as follows. For every distribution-
ambiguous action ai, set F ′i,m := Ri/xm (this is a valid probability since Ri ≤ xm; otherwise there could not
have been compatible distributions). Set F ′i,1 := 1−F ′i,m and let the other probabilities be zero. The expected
outcome of distribution F ′i is F ′i,1x1 +F ′i,mxm = Ri. The defined distributions already enable us to prove the
lemma for the case of t1 > tm:

Claim 1. Lemma 2 holds for the case of t1 > tm.

Proof of Claim 1. A proof of this claim appears in Appendix C.

Assume from now on that t1 ≤ tm. If t is affine, this means that its slope parameter α1 must be nonneg-
ative. Similarly, we can write t1 = α0 +α1x1 and plug in our assumption that x1 = 0 to get t1 = α0, and so
by limited liability (t ≥ 0), α0 must also be nonnegative. Thus if t is affine, Lemma 2 holds. We focus from
now on on the case that t is non-affine; this guarantees the existence of a point (x j, t j) as appears in Figures
2a and 2b. We argue this formally and then proceed by case analysis.

Claim 2. If t is non-affine, there exists an index 1 < j < m such that the 3 points (x1, t1), (x j, t j) and (xm, tm)
on the Euclidean plane are non-collinear.

Proof of Claim 2. A proof of this claim appears in Appendix C.

We introduce the following notation – denote the line between (x1, t1) and (xm, tm) by l1, the line between
(x1, t1) and (x j, t j) by l2, and the line between (x j, t j) and (xm, tm) by l3 (see Figures 2a and 2b). We denote
the parameters of line l1 by α0 and α1 (i.e., t1 = α0 +α1x1 and tm = α0 +α1xm). These naturally give rise to
a corresponding affine contract. As argued above, since t1 ≤ tm we have α1 ≥ 0, and since x1 = 0 and t1 ≥ 0
we have α0 ≥ 0, so the affine contract has nonnegative parameters.

Recall that the support of compatible distributions {F ′i }n
i=1 is the endpoints of l1. We define alternative

compatible distributions {F ′′i }n
i=1, whose support is either the endpoints of l2 or of l3, as follows: For every

distribution-ambiguous action ai, if Ri ≤ x j set F ′′i, j := Ri/x j (by assumption this is a valid probability), and
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(a) Point (x j, t j) is strictly above line l1. (b) Point (x j, t j) is strictly below line l1.

Figure 2: Case distinction

F ′′i,1 := 1− F ′′i, j. If Ri > x j set F ′′i,m := Ri−x j
xm−x j

and F ′′i, j := 1− F ′′i,m. All other probabilities are set to zero.
Observe that in either case, the expected outcome of distribution F ′′i is Ri. With the two sets of compatible
distributions {F ′i }n

i=1 and {F ′′i }n
i=1 at hand, the analysis proceeds by addressing separately the two cases

depicted in Figures 2a and 2b.
The following simple observation will be useful in the case analysis:

Observation 1. Consider a contract t and two outcomes x,x′; let l : R→ R be the line determined by
points (x, t(x)) and (x′, t(x′)). If action ai induces an outcome distribution Fi over the support {x,x′} with
expectation Ri, then its expected payment to the agent is l(Ri).

Claim 3. Lemma 2 holds for the case that (x j, t j) is strictly above l1.

Proof of Claim 3. We prove the claim by showing that the affine contract with parameters α0,α1 (corre-
sponding to l1) has at least as high expected payoff to the principal as that of contract t for distributions
{Fi}n

i=1, which are defined as follows: Let ai∗ be the action incentivized by the affine contract with param-
eters α0,α1. Set Fi∗ = F ′′i∗ and Fk = F ′k for every k 6= i∗. We argue that for distributions {Fi}n

i=1 as defined,
contract t will also incentivize action ai∗ , but at a (weakly) higher expected payment to the agent compared
to the affine contract.

Consider first the affine contract. By definition, for every action ai with expected outcome Ri, the
expected payment to the agent for choosing ai is α0 +α1Ri. Now consider contract t. For every action ak
where k 6= i∗, by Observation 1 the expected payment to the agent taken over F ′k is l1(Rk) = α0 +α1Rk,
i.e., the same as in the affine contract. For action ai∗ , by Observation 1 the expected payment to the agent
taken over F ′′k is either l2(Ri∗) or l3(Ri∗). In either case, since l2 and l3 are above l1, the expected payment
(weakly) exceeds l1(Ri∗). Since ai∗ maximizes the agent’s expected utility in the affine contract, and the
expected payment for ai∗ only increases in contract t while staying the same for other actions, this completes
the proof of Claim 3.

Claim 4. Lemma 2 holds for the case that (x j, t j) is strictly below l1.

Proof of Claim 4. A proof of this claim appears in Appendix C.

This completes the analysis of the cases depicted in Figures 2a and 2b, thus proving Lemma 2.

4.2 Proof of Theorem 1
Having established Lemma 2, Theorem 1 is now easy to prove using the following observation:

Observation 2. Consider an affine contract with parameters α0,α1 ≥ 0. For any distributions {Fi}n
i=1,

the expected payoff to the principal from the affine contract is at most the expected payoff from the linear
contract with parameter α = α1.

Corollary 1. For every affine contract with parameters α0,α1 ≥ 0, there is a linear contract with (weakly)
higher worst-case expected payoff.
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Proof of Theorem 1. Consider an ambiguous principal-agent setting. For every limited liability contract t,
by Lemma 2 there exist compatible distributions {Fi}n

i=1 and an affine contract with parameters α0,α1 ≥ 0
such that the worst-case expected payoff of contract t is at most the expected payoff of the affine contract
for distributions {Fi}n

i=1. But the expected payoff of an affine contract is identical for all compatible distri-
butions, and so for every limited liability contract t there exists an affine contract with parameters α0,α1 ≥ 0
and higher worst-case expected payoff. By Corollary 1, the optimal linear contract has even higher worst-
case expected payoff, completing the proof.

5 Approximation Guarantees of Linear Contracts
In this section we study linear contracts and their approximation guarantees. We show tight bounds on the
approximation guarantee of linear contracts in all relevant parameters of the model. Our upper bounds in
fact apply to the stronger benchmark of optimal welfare. Our lower bounds continue to hold under standard
regularity assumptions (see Appendix E.1).
Tight approximation guarantee in number of actions. Our first pair of results provides tight bounds on
the approximation guarantee of linear contracts, as parametrized by the number of actions n.

Theorem 2. Consider a principal-agent setting (An,Ωm) with n actions and N ≤ n linearly-implementable
actions. Then the multiplicative loss in the principal’s expected payoff from using a linear contract rather
than an arbitrary one is at most N.

Theorem 3. For every n and ε > 0, there is a principal-agent setting (An,Ωm) with n actions and m = n
outcomes, such that the multiplicative loss in the principal’s expected payoff from using a linear contract
rather than an arbitrary one is at least n− ε .

Tight approximation guarantee in range of expected rewards. Our second pair of results is parametrized
by the range of the expected outcomes {Ri} normalized such that Ri ∈ [1,H) for all ai ∈ An. Consider buck-
eting these actions by their expected outcomes into dlogHe buckets with ranges [1,2), [2,4), [4,8), etc. Let
K be the number of non-empty buckets.

Theorem 4. Consider a principal-agent setting (An,Ωm) such that for every action a ∈ An, its expected
outcome Ra is ∈ [1,H). The multiplicative loss in the principal’s expected payoff from using a linear contract
rather than an arbitrary one is at most 2K = O(logH).

Corollary 2. For every range [1,H), there is a principal-agent setting (An,Ωm) with n = logH for which
∀a ∈ An : Ra ∈ [1,H), such that the multiplicative loss in the principal’s expected payoff from using a linear
contract rather than an arbitrary one is at least Ω(logH)

Tight approximation guarantee in range of costs. Our final pair of results concerns the costs. As in
the case of expected outcomes, suppose costs are normalized such that ci ∈ [1,C) for all ai ∈ An, consider
bucketing these into dCe buckets [1,2), [2,4), ... etc., and let L be the number of non-empty buckets.

Theorem 5. Consider a principal-agent setting (An,Ωm) such that for every action a ∈ An, its cost ca is
∈ [1,C). The multiplicative loss in the principal’s expected payoff from using a linear contract rather than
an arbitrary one is at most 4L = O(logC).

Corollary 3. For every range [1,C) such that log(2C) ≥ 3, there is a principal-agent setting (An,Ωm) with
n = log(2C) for which ∀a ∈ An : ca ∈ [1,C), such that the multiplicative loss in the principal’s expected
payoff from using a linear contract rather than an arbitrary one is at least 1

2 n = Ω(logC).

Additional tight bounds and optimality among all monotone contracts. In Appendix E we strengthen
Theorem 3 by showing that it applies even if m= 3, thus implying that the approximation ratio as parametrized
by the number of outcomes m can be unbounded. In Appendix F we show that the approximation guarantee
of n provided by linear contracts is asymptotically optimal among all monotone contracts.
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5.1 Proofs for Selected Approximation Guarantees
To give a gist of our techniques, we now give the proofs of the upper and lower bounds in the number of
actions (Theorems 2 and 3), and in the range of rewards (Theorem 4 and Corollary 2).

The upper bound in Theorem 5, the stronger version of Theorem 3 that holds for m= 3, and the strength-
ening of Theorem 3 to monotone contracts pose further technical challenges, and the proofs are deferred to
Appendices D, E and F, respectively.
Notation. Recall that IN denotes the set of N ≤ n linearly-implementable actions, indexed such that their
expected outcomes are increasing, i.e., IN = {a1, . . . ,aN} and R1 < · · ·< RN . Note that by Assumption A1,
c1 < · · ·< cN , and recall that this does not imply that R1− c1 ≤ R2− c2 ≤ ·· · ≤ RN− cN .

5.2 Proofs of Upper Bounds in Theorem 2 and Theorem 4
The key tools in proving the upper bounds is the following observation and the two lemmas below, which
rely on the geometric insights from Section 3.

Observation 3. Consider two actions a,a′ such that a has higher expected outcome and (weakly) higher
welfare, i.e., Ra > Ra′ and Ra− ca ≥ Ra′− ca′ . Let αa′,a =

ca−ca′
Ra−Ra′

. Then

(Ra− ca)− (Ra′− ca′)≤ (1−αa′,a)Ra. (1)

Proof. Since Ra−ca ≥ Ra′−ca′ we have Ra−Ra′ ≥ ca−ca′ . Using that Ra−Ra′ > 0 we get αa′,a =
ca−ca′
Ra−Ra′

≤
1. So we can write Ra′ − ca′ ≥ αa′,aRa′ − ca′ = αa′,aRa− ca, where the equality follows from our definition
of αa′,a. Hence, (Ra− ca)− (Ra′− ca′)≤ (Ra− ca)− (αa′,aRa− ca) = (1−αa′,a)Ra, as required.

Below we shall apply Observation 3 to actions ai,ai−1 ∈ IN . In this context, the intuition behind the
observation is as follows: Consider the linear contract with parameter αi−1,i ∈ [0,1]. By Observation 6, in
this contract the agent is indifferent among actions ai and ai−1. The left-hand side of (1) is the increase in
expected welfare by switching to action ai from ai−1. For the agent to get the same expected utility from ai

and ai−1, the principal must get this entire welfare increase as part of her expected payoff. The right-hand
side of (1) is the principal’s expected payoff, and so the inequality holds.

The next lemma uses Observation 3 to upper-bound the expected welfare of the k-th linearly-implementable
action.

Lemma 3. For every k ∈ [N] and linearly-implementable action ak ∈ IN , Rk− ck ≤ ∑
k
i=1(1−αi−1,i)Ri.

Proof. The proof is by induction on k. For k = 1, recall that α0,1 = 0 by definition, and it trivially holds
that R1− c1 ≤ R1. Now assume the inequality holds for k− 1, i.e., Rk−1− ck−1 ≤ ∑

k−1
i=1 (1−αi−1,i)Ri (*).

By Corollary 5, the welfare of ak is at least that of ak−1, and we know that Rk > Rk−1. We can thus apply
Observation 3 to actions a = ak,a′ = ak−1 and get (Rk− ck)− (Rk−1− ck−1)≤ (1−αk−1,k)Rk (**). Adding
inequality (*) to (**) completes the proof for k.

The next lemma shows an upper bound on the payoff that the principal can achieve with an optimal
(unconstrained) contract.

Lemma 4. Consider a principal-agent setting (An,Ωm) with linearly-implementable action set IN ⊆ An. The
expected payoff of an optimal (not necessarily linear) contract is at most RN− cN .

Proof. In a linear contract with parameter α = 1, the agent’s expected utility for any action a is its welfare
Ra − ca. Thus an action is implemented by such a contract if and only if it maximizes welfare among
all actions An. By Corollary 4, a(1) = aN and so aN must be the welfare-maximizing action. In every
contract, the IR property ensures that the agent’s expected payment covers the cost ca of the implemented
action a, and so the principal’s expected payoff is always upper-bounded by Ra− ca. We conclude that
OPT ≤maxa∈An{Ra− ca}= RN− cN , as required.

With Lemma 3 and Lemma 4 at hand it is now relatively straightforward to show the upper bounds.
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Proof of Theorem 2. To prove the approximation guarantee of N ≤ n claimed in the theorem, observe that

OPT ≤ RN− cN ≤ ∑
i≤N

(1−αi−1,i)Ri = ∑
i≤N

(1−αi)Ri ≤ N ·max
i≤N
{(1−αi)Ri}= N ·ALG, (2)

where the first inequality holds by Lemma 4, the second inequality holds by Lemma 3, and the equality
holds by Corollary 6.

Proof of Theorem 4. Recall the bucketing of actions in IN by their expected outcome. For every bucket
k ≤ K, let h(k) be the action with the highest Ri in the bucket, and let l(k) be the action with the lowest
Ri. The bucketing is such that Rh(k)/2 < Rl(k) ≤ Rh(k). Since the actions in IN are ordered by their expected
outcome, then h(k) and l(k) are increasing in k, and h(k− 1)+ 1 = l(k) ≤ h(k). For the last bucket K we
have that h(K) = aN , and by Lemma 4 this implies OPT ≤ Rh(K)− ch(K).

Consider the subset of linearly-implementable actions IK = {ah(k) | k ∈ [K]} ⊆ IN . These will play a sim-
ilar role in our proof as actions IN in the proof of Theorem 2. Let αh(k−1),h(k) = (ch(k−1)− ch(k))/(Rh(k−1)−
Rh(k)). Observation 3 applies to actions in IK , and so we can apply a version of Lemma 3 to get

OPT ≤ Rh(K)− ch(K) ≤ ∑
k≤K

(1−αh(k−1),h(k))Rh(k). (3)

Our goal is now to upper-bound the right-hand side of (3).

Claim 5. αh(k−1),h(k) ≥ αl(k).

Proof of Claim 5. Assume for contradiction that αh(k−1),h(k) < αl(k). By definition of αh(k−1),h(k) we have
that αh(k−1),h(k)Rh(k)− ch(k) = αh(k−1),h(k)Rh(k−1)− ch(k−1). Substituting h(k−1) = l(k)−1 we get

αh(k−1),h(k)Rh(k)− ch(k) = αh(k−1),h(k)Rl(k)−1− cl(k)−1. (4)

Since the expected outcomes of actions in IK are strictly increasing, it holds that Rh(k) > Rl(k)−1, and so re-
placing αh(k−1),h(k) with the larger αl(k) in (4) gives αl(k)Rh(k)−ch(k) > αl(k)Rl(k)−1−cl(k)−1. By Corollary 6,
αl(k) = αl(k)−1,l(k), and so the right-hand side αl(k)Rl(k)−1−cl(k)−1 equals αl(k)Rl(k)−cl(k). We conclude that
αl(k)Rh(k)− ch(k) > αl(k)Rl(k)− cl(k), i.e., in a linear contract with parameter αl(k), action h(k) has higher
expected utility for the agent than action l(k). But by definition, parameter αl(k) implements action l(k), and
so we have reached a contradiction.

Applying Claim 5 to (3) we get the following chain of inequalities:

OPT ≤ ∑
k≤K

(1−αl(k))Rh(k) < 2 ∑
k≤K

(1−αl(k))Rl(k) ≤ 2K ·max
k≤K

{
(1−αl(k))Rl(k)

}
≤ 2K ·ALG,

where the strict inequality follows from Rh(k)/2 < Rl(k).

5.3 Proofs of Lower Bounds in Theorem 3 and Corollary 2
We conclude this section by showing matching lower bounds for the upper bounds established above.

Proof of Theorem 3. For every n, consider a family of principal-agent instances {(Aε
n,Ωn) | ε > 0}, each

with n actions and m = n outcomes. For every i ∈ [n], the ith action ai = (Fi,ci) ∈ Aε
n has Fi,i = 1, i.e.,

deterministically leads to the ith outcome xi ∈Ωn. Every principal-agent instance is thus a full information
setting in which the outcome indicates the action, and for which MLRP (Definition 8) holds. We define
action ai’s expectation Ri (equal to outcome xi) and its cost ci recursively:

Ri+1 =
Ri

ε
, ci+1 = ci +(Ri+1−Ri)

(
1− 1

Ri+1

)
,
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where R1 = 1 and c1 = 0.
We establish several useful facts about instance (Aε

n,Ωn): For every i ∈ [n], it is not hard to verify by
induction that

Ri =
1

ε i−1 , ci =
1

ε i−1 − i+ ε(i−1), (5)

Ri− ci = i− ε(i−1). (6)

Observe that the actions are ordered such that Ri, ci, and Ri− ci are strictly increasing in i. Plugging the
values in (5) into αi−1,i =

ci−ci−1
Ri−Ri−1

we get

αi−1,i = 1− ε i−1,

(1−αi−1,i)Ri = 1. (7)

αi−1,i is also strictly increasing in i.
Let OPT ε (resp., ALGε ) denote the optimal expected payoff from an arbitrary (resp., linear) contract in

the principal-agent setting (Aε
n,Ωn). In a full information setting, the principal can extract the maximum ex-

pected welfare. This can be achieved by paying only for the outcome that indicates the welfare-maximizing
action, and only enough to cover its cost. From (6) we thus get

OPT ε = max
i
{i− ε(i−1)}= n− ε(n−1)−→

ε→0
n.

In Lemma 7 in Appendix D, we analyze linear-implementability in the setting (Aε
n,Ωn), showing that αi =

αi−1,i for every i ∈ [n]. Thus from (7) it follows that

ALGε ≤ 1,

completing the proof.

Proof of Corollary 2. We use the same construction as in the proof of Theorem 3, but set ε = 1/2. Since
n = logH, it indeed holds that Rn = 2n−1 < H. We know OPT can achieve at least n− ε(n−1)> 1

2 n while
ALG can’t do better than 1, completing the proof.

6 Conclusion
One of the major contributions of theoretical computer science to economics has been the use of approxima-
tion guarantees to systematically explore complex economic design spaces, and to identify “sweet spots” of
the design space where there are plausibly realistic solutions that simultaneously enjoy rigorous performance
guarantees. For example, in auction and mechanism design, years of fruitful work by dozens of researchers
has clarified the power and limitations of ever-more-complex mechanisms in a wide range of settings. Con-
tract theory presents another huge opportunity for expanding the reach of the theoretical computer science
toolbox, and we believe that this paper takes a promising first step in that direction.
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A Linear Programming Formulation and Implications
The LP for incentivizing action a at minimum expected payment has m payment variables {t j}, which by
limited liability must be nonnegative, and n−1 IC constraints ensuring that the agent’s expected utility from
action a is at least his expected utility from any other action. Note that by Assumption A3, there is no need
for an IR constraint to ensure that the expected utility is nonnegative. The LP is:

min ∑ j∈[m] Fa, jt j (8)

s.t. ∑ j∈[m] Fa, jt j− ca ≥ ∑ j∈[m] Fa′, jt j− ca′ ∀a′ 6= a,a′ ∈ An,

t j ≥ 0 ∀ j ∈ [m].

The dual of LP (8) has n−1 nonnegative variables, one for every action other than a:

max ∑a′ 6=a λa′(ca− ca′) (9)

s.t. ∑a′ 6=a λa′(Fa, j−Fa′, j)≤ Fa, j ∀ j ∈ [m],

λa′ ≥ 0 ∀a′ 6= a,a′ ∈ An.

In the following subsections, we first use the LP-based approach to provide additional details for Exam-
ple 1. We then show two implications of the LP-based approach. First, the LP and its dual can be used to
characterize if an action is implementable or not, whether by an arbitrary contract or by a monotone one.
Second, there always exists an optimal contract with at most n−1 positive payments.

A.1 Nonmonotonicity of the Optimal Contract
We analyze Example 1 in Section 1, which demonstrates nonmonotonicity of the optimal contract.

For payment profile t ≈ (0,0,0.15,3.93,2.04,0) all IC constraints in the LP are tight, i.e., the agent’s
utility is the same for all actions. The agent tie-breaks in favor of action a3, which has the highest expected
payoff of 2.95 = 4.99− 2.04 for the principal (where 4.99 is the expected outcome and 2.04 the expected
payment).

No other action can achieve expected payoff for the principal as high as a3. Moreover, if the payments
are constrained to be monotone, or if the number of positive payments is constrained to be < 3, then a3 can
no longer be implemented for expected payment of merely 2.04.

A.2 Implementable and Monotonically-Implementable Actions
The following propositions characterize when actions are implementable, both by an arbitrary contract and
by a monotone one.

Proposition 1 (Implementability). An action a is implementable (up to tie-breaking) if and only if there is
no convex combination of the other actions that results in the same distribution ∑a′ 6=a λa′Fa′ = Fa but lower
cost ∑a′ 6=a λa′ca′ < ca.

Proposition 1 is immediate from linear programming duality of LP (8) with the objective replaced by
“min0”.

Proposition 2 (Monotonic implementability). An action a is implementable by a monotone contract (up
to tie-breaking) if and only if there is no convex combination of the other actions that results in a first-order
stochastically dominating distribution ∑a′ 6=a λa′Fa′ with lower cost ∑a′ 6=a λa′ca′ < ca.

Proposition 2 is immediate from linear programming duality of the following LP:
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min 0

s.t. ∑ j∈[m] Fa, jt j− ca ≥ ∑ j∈[m] Fa′, jt j− ca′ ∀a′ ∈ An \{a},
t j ≥ t j−1 2≤ j ≤ m,

t j ≥ 0 ∀ j ∈ [m].

The dual has n− 1 nonnegative λ -variables, one for every action other than a, and m− 1 nonnegative
µ-variables µ2, . . . ,µm. It can be written w.l.o.g. as:

max ca−∑a′ 6=a λa′ca′

s.t. Fa,1 ≤ ∑a′ 6=a λa′Fa′,1 +µ2 ,

Fa, j ≤ ∑a′ 6=a λa′Fa′, j +µ j+1−µ j 2≤ j ≤ m−1,

Fa,m ≤ ∑a′ 6=a λa′Fa′, j−µm ,

∑a′ 6=a λa′ = 1 ,

λa′ ≥ 0 ∀a′ 6= a,a′ ∈ An.

µ j ≥ 0 2≤ j ≤ m.

A.3 Number of Nonzero Payments in Optimal Contract
The next lemma implies the existence of an optimal contract with at most n−1 nonzero payments.

Lemma 5. Consider a principal-agent setting (An,Ωm) with n actions and m outcomes. For every imple-
mentable action a, there is an implementing contract with minimum expected payment, such that its payment
scheme is positive for ≤ n−1 outcomes.

Proof. Because we assume action a is implementable, LP (8) is feasible and bounded, and so has an optimal
basic feasible solution for which m constraints are tight [33]. There are only n− 1 constraints other than
non-negativity constraints, so at least m−n+1 of the non-negativity constraints are tight, meaning that the
corresponding payments equal zero. Thus at most n−1 payments can be positive.

B Appendix for Section 3

B.1 Basic Properties of Linearly-Implementable Actions
This section contains three observations on linear contracts and the incentives they create for the agent.

Observation 4. If a linear contract with parameter α implements action a∗, then the agent’s expected utility
and the principal’s expected payoff are, respectively,

αRa∗− ca∗ ; (1−α)Ra∗ .

Observation 5. Under Assumptions A1-A3, a linear contract implements at most one action.

Proof. A contract implements more than one action only if two actions have the same maximum expected
utility for the agent, and the same expected payoff for the principal (since the agent tie-breaks in favor of
the principal). In a linear contract with parameter α < 1, the principal’s expected payoff is (1−α)Ra, and
as Ra 6= Ra′ for any two actions by Assumption A1, the necessary condition cannot hold. In a linear contract
with parameter α = 1, the agent’s expected utility is Ra− ca, and so by Assumption A2 there is a unique
action that maximizes this, completing the proof.
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Observation 6. Let a,a′ be a pair of actions such that Ra′ > Ra and ca′ > ca. Then a linear contract with
parameter αa,a′ =

ca′−ca
Ra′−Ra

makes the agent indifferent among actions a′ and a (but does not necessarily
incentivize either of these actions).

For brevity we use αi−1,i to denote the parameter αai−1,ai that makes the agent indifferent among actions
ai−1 and ai.

Proof of Observation 6. The agent’s expected utility from action a is αa,a′Ra− ca, which is equal by def-
inition of αa,a′ to action a′’s utility αa,a′Ra′ − ca′ . For an example in which αa′,a2 incentivizes neither a′

nor a2, consider the following. If the actions are a1 = (F1,c1) = ((1,0,0), 0), a′ = (F ′,c′) = ((0,1,0), 1),
and a2 = (F2,c2) = ((0,0,1), 2) and the outcomes are (x1,x2,x3) = (1,3,6), then only a1 and a2 can be
implemented.

B.2 Proof of Key Structural Lemma and its Implications
Our goal in this section is to prove Lemma 1 and derive implications.

We begin by showing the following monotonicity property of the upper envelope mapping u: Let α

denote the smallest α at which the upper envelope intersects the x-axis (or α = 1 if no such α exists). As α

goes from α to 1, u(α) maps to actions with increasingly higher expected outcomes {Ra}, costs {ca} and
expected welfares {Ra− ca}.
Lemma 6. For every two parameters 0≤ α < α ′ ≤ 1, either u(α) =∅, or it holds that u(α) = a ∈ An and
u(α ′) = a′ ∈ An such that (i) Ra < Ra′; (ii) ca < ca′; and (iii) Ra− ca ≤ Ra′− ca′ .

Proof. Notice that for every action a and corresponding line αRa− ca, the slope Ra is non-negative. A key
fact is that an upper envelope of affine functions with non-negative slopes is convex [37]. From convexity it
follows that the upper envelope crosses the x-axis at most once, so u(α) ∈ An =⇒ u(α ′) ∈ An. Also from
convexity, the slopes of the line segments forming the upper envelope are increasing in α , so Ra < Ra′ . By
Assumption A2 it follows that ca < ca′ . Assume for contradiction that Ra− ca > Ra′ − ca′ . But this means
that segment `a intersects α = 0 at a higher point than segment `a′ (as−ca >−ca′), and also intersects α = 1
at a higher point (as Ra− ca > Ra′ − ca′). Segment `a thus completely overshadows `a′ , in contradiction to
the fact that u(α ′) = a′ and so `a′ is part of the upper envelope.

Lemma 1 states that the linear-implementability mapping and the upper envelope mapping defined in
Section 3 are equivalent. We now prove this lemma.

Proof of Lemma 1. Fix α ∈ [0,1] and consider the linear contract with parameter α . Action a is IR when
αRa− ca ≥ 0, i.e., if and only if its corresponding segment `a is at or above the x-axis at α . Action a is IC
when αRa−ca ≥ αRa′−ca′ for every a′, i.e., if and only if its segment `a participates in the upper envelope
at α . Thus both a(α) and u(α) return ∅ when all segments at α are below the x-axis, equiv., no action is IR
given the linear contract with parameter α . Otherwise, both return the action a whose segment `a forms the
upper envelope at α above the x-axis, equiv., the IC and IR action given the linear contract with parameter
α . In case of a tie, both break the tie in favor of the action with the highest expected outcome Ra—mapping
u(·) does so by definition and mapping a(·) since this is the action that maximizes the principal’s expected
payoff (1−α)Ra. This completes the proof.

We state and prove three corollaries of Lemma 1.

Corollary 4. For every α ∈ [0,1],

∀i ∈ [N−1] : a(α) = ai ⇐⇒ αi ≤ α < αi+1, (10)

a(α) = aN ⇐⇒ αN ≤ α ≤ 1.
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Proof. Recall that mapping a(·) is onto IN . Lemma 1 shows that a(·) is equivalent to the upper envelope
mapping u(·). In the upper envelope, every segment appears once. This means that a(·) maps to action
ai ∈ IN for a consecutive range of αs, starting at αi (by its definition as the smallest α such that a(α) = ai).
In the upper envelope, the segments {`a} are ordered by their expected outcomes {Ra} (Lemma 6). Since
the actions in IN are also ordered by their expected outcomes (i.e., R1 < · · ·< RN), the range of αs mapping
to ai is immediately followed by the range mapping to ai+1, establishing (10). The final range of αs ending
at 1 maps to action aN , completing the proof.

Corollary 5. The welfare Ri− ci of linearly-implementable action ai ∈ IN is increasing in i.

Proof. Follows directly from Corollary 4 and Lemma 6.

Corollary 6. For every i ∈ [N], αi = αi−1,i.

Proof. For every i ∈ [N], denote by `i the segment corresponding to action ai. By Lemma 1 and Corollary 4,
parameter αi is precisely the intersection point between `i−1 and `i for every i ≥ 2. Observe that the inter-
section between αRi− ci and αRi−1− ci−1 is at point αi−1,i. It remains to consider the case of i = 1, and in
this case α1 is the intersection point between `1 and the x-axis, which occurs at α = ci/Ri.

The final corollary in this section highlights the fact that in terms of linear-implementability, two principal-
agent settings whose actions have the same expected outcomes and costs are equivalent. The distributions,
outcome values and even number of outcomes matter for linear-implementability only as far as determining
the expected outcome of each action. This is special to linear contracts—optimal contracts can depend on
the details of the distributions beyond just expected outcomes, adding to their complexity.

Corollary 7. Consider two principal-agent settings (An,Ωm), (A′n,Ω
′
m′) for which there exists a bijection

b : An→ A′n between the action sets, such that actions a and b(a) have the same expected outcome Ra = Rb(a)
and cost ca = cb(a) for every a ∈ An. Let a,a′ be the linearly-implementability mappings of the two settings,
respectively. Then for every parameter α ∈ [0,1], b(a(α)) = a′(α), and the principal’s expected payoff from
a linear contract with parameter α is the same in both settings.

Proof. The first part of the corollary follows from Lemma 1, which establishes equivalence between the
linearly-implementability mapping and the upper envelope mapping, and from the fact that the upper enve-
lope depends only on lines αRa−ca parameterized by Ra,ca. The second part of the corollary follows from
the fact that the principal’s expected payoffs are (1−α)Ra(α) and (1−α)Ra′(α), respectively, and we have
that Ra′(α) = Rb(a(α)) = Ra(α).

C Appendix for Section 4

C.1 Deferred Proofs
Proof of Claim 1. In this case, let Fi = F ′i for every action ai. We argue that the linear contract with pa-
rameter α = 0 has expected payoff at least as high as that of contract t. Observe that since t1 > tm,
the expected payments for the actions are decreasing in the actions’ expected outcomes: if Ri < Rk then
Fi,m = F ′i,m < F ′k,m = Fk,m and so Fi,1 > Fk,1; thus Fi,1t1 +Fi,mtm > Fk,1t1 +Fk,mtm. Consider the zero-cost
action a1 (which exists by Assumption A3), and let ai∗ be the action incentivized by contract t. The ex-
pected outcome of action ai∗ must be (weakly) lower than that of action a1—its cost is (weakly) higher so
its expected payment must be (weakly) higher. Since the agent’s choice of action ai∗ is IR, its expected
outcome is an upper bound on contract t’s expected payoff to the principal. But the linear contract with
parameter α = 0 incentivizes an action with (weakly) higher expected outcome at no cost to the principal,
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thus guaranteeing (weakly) higher expected payoff to the principal. This completes the proof for the case of
t1 > tm.

Proof of Claim 2. A characterization of affine mappings is that they map every 3 collinear points to points
that are themselves collinear. Thus there must exist 3 points (x, t(x)),(x′, t(x′)),(x′′, t(x′′)) where (w.l.o.g.)
x < x′ < x′′ such that these points are not collinear. Now consider the line between the 2 points (x1, t1) and
(xm, tm). It cannot be the case that the 3 points (x, t(x)),(x′, t(x′)),(x′′, t(x′′)) are all on this line. Thus we
have shown the existence of an index j as required.

Proof of Claim 4. We prove the claim by showing that the affine contract with parameters α0,α1 (corre-
sponding to l1) has as high expected payoff to the principal as that of contract t for distributions {Fi}n

i=1,
which are defined as follows: Let ai∗ be the action incentivized by the affine contract with parameters α0,α1.
Set Fi∗ = F ′i∗ and Fk = F ′′k for every k 6= i∗. A similar argument as in the proof of Claim 3 establishes that for
distributions {Fi}n

i=1 as defined, contract t will also incentivize action ai∗ , and at the same expected payment
to the agent as the affine contract. This is because the expected payment for ai∗ is the same in contract t as
in the affine contract, while the expected payments for all other actions (weakly) decrease compared to the
affine contract.

Proof of Observation 2. Fix α0 ≥ 0, and consider the mapping from α1 to the action implemented by the
affine contract with parameters α0,α1. This mapping is identical to the mapping from α to the action
implemented by the linear contract with parameter α = α1. This follows from the analysis in Section 3 and
in particular Lemma 1,11 and by observing that the line segments forming the upper envelope for the affine
contract are the same as those of the linear contract, with an additional vertical shift of magnitude α0. So for
every α1, the linear contract with α = α1 implements the same action as the affine contract; but its expected
payment to the agent is lower by α0 ≥ 0 than that of the affine contract. Thus its expected payoff to the
principal is higher by α0 ≥ 0, completing the proof.

C.2 Further Robustness Models in the Literature
In this section we briefly explain how our model in Section 4 differs from two other robustness models for
linear contracts considered in previous and concurrent economic literature. While in our model distributions
are adversarial, in Diamond [15] one can predict what the distributions will be given the contract (and the
focus is on only n = 2 actions). Two concurrent working papers [18, 41] crucially assume uncertainty about
the distributions coupled with max-min behavior on the agent side too. In [18], the principal does not know
what the agent knows; this makes their model very different from ours, in which the principal knows that
the agent has knowledge of the distributions.

D Appendix for Section 5

D.1 Auxiliary Lemma used in the Proof of Theorem 3
Lemma 7. Consider the principal-agent settings (Aε

n,Ωn) defined in the proof of Theorem 3. Then, αi =
αi−1,i.

Proof. Recall from Lemma 1 that a linear contract with parameter α implements the action whose segment
forms the upper envelope at α . The next claim shows that for every α > αi−1,i, the segment of every action
ai′ such that i′ < i is (weakly) below that of action ai. It can similarly be shown that for every α < αi,i+1 (or
α ≤ 1 for i = n), the segment of every action ai′ such that i′ > i is below that of action ai.

11Note that we are not limiting α1 to be ≤ 1; this is not an issue since everything in Section 3 technically holds for α1 > 1 (of
course, α1 > 1 does not make sense for the principal since it leaves her with negative expected payoff).
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Claim 6. For every α ≥ αi−1,i, the agent’s expected utility from action ai is at least his expected utility from
any “previous” action ai′ where i′ < i.

Proof of Claim 6. The claim holds trivially for the base case i = 1. Assuming the claim holds for i− 1, to
establish it for i it is sufficient to show that for every α ≥ αi−1,i, the agent’s expected utility from action
ai is at least his expected utility from action ai−1. For every α = 1− ε i−1 + δ where δ ≥ 0, action ai

has expected utility αRi− ci = (i− 1)(1− ε)+ δ

ε i−1 for the agent, whereas action ai−1 has expected utility
αRi−1− ci−1 = (i−1)(1− ε)+ δ

ε i−2 , which is lower as required to establish Claim 6.

We conclude that for every α ∈ [αi−1,i,αi,i+1) (or α ∈ [αn−1,n,1) for i = n), the linear contract with
parameter α implements action ai, and so αi = αi−1,i. This completes the proof of Lemma 7.

D.2 Proof of Theorem 5 and Corollary 3
Proof of Theorem 5. Consider the set IN of linearly implementable actions. Denote by C = maxa∈IN ca the
highest cost of any of the linearly implementable actions. We will bucket the set of linearly implementable
actions into L = dlog2(C)e buckets B1, . . . ,BL such that

Bi = {a | 2i−1 ≤ ca < 2i}.

Note that this bucketing ensures that every implementable actions is in some bucket. By Lemma 6 within
each bucket actions are sorted simultaneously by expected outcome, cost, and welfare.

As in the proof of Theorem 4 let h(k) denote the action a∈ Bk with the highest Ra (and hence highest ca),
and let l(k) denote the action a ∈ Bk with the lowest Ra (and hence lowest ca). Now by the same argument
as in Theorem 4

OPT ≤ Rh(k)− ch(k) ≤ ∑
k≤L

(1−αh(k),h(k)−1)Rh(k). (11)

Claim 7. For every bucket Bk either (C1) Rl(k) ≥ Rh(k)/4 or (C2) there exist an action ai ∈ Bk such that
Ri ≥ Rh(k)/2 and αi ≤ 1/2.

Before we prove this claim let’s see how it implies a logarithmic approximation guarantee. The high
level idea is that in each bucket Bk we will identify a linearly implementable action τ(k) whose expected
payoff to the principal is at least one quarter of that bucket’s contribution to the sum in on the RHS of
inequality (11).

Consider a fixed bucket Bk. We say that bucket Bk is of Type 1 if it meets condition (C1) and of Type
2 if it meets condition (C2). For Type 1 buckets we choose τ(k) = l(k), and for Type 2 buckets we choose
τ(k) = i.

Then for Type 1 buckets:

(1−αh(k),h(k)−1)Rh(k) ≤ (1−αl(k))Rh(k) ≤ 4 · (1−αl(k))Rl(k) = 4(1−ατ(k))Rτ(k)

And for Type 2 buckets:

(1−αh(k),h(k)−1)Rh(k) ≤ Rh(k) ≤ 4(1−αi)Ri = 4(1−ατ(k))Rτ(k)

Where for the derivation of the inequalities for Type 1 buckets we used Claim 1 in the proof of Theorem
4, which shows that αh(k),h(k)−1 ≥ αl(k), and for Type 2 buckets we used that αh(k),h(k)−1 ≥ 0.
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We thus get,

OPT ≤ ∑
k∈[L]

(1−αh(k),h(k)−1)Rh(k)

≤ L ·max
k∈[L]
{(1−αh(k),h(k)−1)Rh(k)}

≤ 4L ·max
k∈[L]
{(1−ατ(k))Rτ(k)}

≤ 4L ·ALG

To complete the proof of Theorem 5 it remains to show Claim 7.

Claim 7. Fix a bucket Bk. Consider the actions l(k), . . . ,h(k) in Bk. Note that αl(k) ≤ αl(k)+1 ≤ ·· · ≤ αh(k).
If Condition (C1) is met, we are done. So assume Condition (C1) is not met. That is, assume that Rl(k) <
Rh(k)/4. Note that this is possible only if l(k) 6= h(k) and, thus, l(k)< h(k). Further note that if αh(k) ≤ 1/2
then Condition (C2) would be met by i = h(k). So the only cases left are those where for a non-empty suffix
of the indices l(k), . . . ,h(k) it holds that α j > 1/2.

We claim that it can’t be that α j > 1/2 for all j ∈ {l(k), . . . ,h(k)}. Indeed, if this was the case, we could
use that for all j′ = l(k)+1, . . . ,h(k) by the definition of α j′

R j′−R j′−1 =
1

α j′
(c j′− c j′−1)≤ 2 · (c j′− c j′−1).

Summing this inequality over all j′ = l(k)+1, . . . ,h(k) would give us

Rh(k)−Rl(k) =
h(k)

∑
j′=l(k)+1

(R j′−R j′−1)≤
h(k)

∑
j′=l(k)+1

2 · (c j′− c j′−1) = 2 · (ch(k)− cl(k)).

Since ch(k) < 2cl(k) and cl(k) ≤ Rl(k) this would show

Rl(k) ≥
1
3
·Rh(k),

but this would contradict our assumption that Condition (C1) is not met.
So there must be a largest index i with l(k) ≤ i < h(k) for which it holds that ai ≤ 1/2 and αi′ > 1/2

for all i′ > i. We claim that this i satisfies Condition (C2). It certainly has ai ≤ 1/2. For the expected
outcome we can use the same argument that we used when we assumed that all the α j’s are strictly positive
to conclude that

Rh(k)−Ri = Rh(k)−Ri′−1 ≤ 2 · (ch(k)− ci′−1) = 2 · (ch(k)− ci).

Because the actions in each bucket are sorted by costs, ci ≥ cl(k). Also, as we have argued before, ch(k) <
2cl(k) and cl(k) ≤ Rl(k). So,

Rh(k)−Ri ≤ 2 · (ch(k)− ci)≤ 2cl(k) ≤ 2Rl(k).

But now because Condition (C1) is not met

Rh(k)−Ri ≤ 2Rl(k) ≤
1
2

Rh(k),

which shows that Ri ≥ Rh(k)/2 as claimed. This established Claim 7.
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Proof of Corollary 3. Consider the construction of the lower bound in Theorem 3.3 (Workshop version)
with ε = 1/2. Then ci =

1
2(2

i− i− 1) for all 1 ≤ i ≤ n. In particular, cn ∈ (1
2 ·2

n−1, 1
2 ·2

n) = (C
2 ,C) where

we used log(2C) ≥ 3. With an arbitrary contract the principal can guarantee himself an expected payoff of
OPT = n− ε(n− 1) > n

2 , while with a linear contract he can achieve at most ALG ≤ 1. So OPT/ALG ≥
n
2 = Ω(logC).

E Strengthened Lower Bound for Linear Contracts
In this appendix we present a lower bound construction for linear contracts that requires only three outcomes.
The proof of this lower bound also demonstrates that many actions can be linearly-implementable even if
there are just a few outcomes.

E.1 The Regularity Assumption of MLRP
The economic literature (see, e.g., [20]) introduces a regularity assumption called the monotone likelihood
ratio property (MLRP) for principal-agent settings. Intuitively, the assumption asserts that the higher the
outcome, the more likely it is to be produced by a high-cost action than a low-cost one (in a relative sense).
We adapt the standard definition to accommodate for zero probabilities, as follows:

Definition 7 (MLR). Let F,G be two distributions over m values v1, . . . ,vm. The likelihood ratio Fj/G j is
monotonically increasing in j if

Fj/G j ≤ Fj′/G j′

for every j < j′ such that at least one of Fj,G j is positive, and at least one of Fj′ ,G j′ is positive.

Definition 8 (MLRP). A principal-agent problem satisfies MLRP if for every pair of actions a,a′ such that
ca < ca′ , the likelihood ratio Fa′, j/Fa, j is monotonically increasing in j.

Proposition 3 (MLR =⇒ FOSD [40]). If the likelihood ratio Fj/G j is monotonically increasing in j, then
F first-order stochastically dominates G. The converse does not hold.

We demonstrate MLRP and non-MLRP through the following examples:

Example 3 (Two outcomes). Assume there are m = 2 outcomes ` < h, and that a higher action cost means
higher expected outcome. Then the probability Fi,h of action i to achieve the high outcome is strictly increas-
ing in i. Thus MLRP holds.

Example 4 (Spanning condition [20]). Assume that the agent has two basic actions, such as “effort”
(costly) and “no effort” (cost zero), for which MLR holds, and the agent can interpolate among these (this
is known as a setting satisfying the “spanning condition”). Then the resulting action set satisfies MLRP.

Example 5 (Binomial distributions). Assume that higher cost means more effort on behalf of the agent,
that the level of effort determines the probability of the agent’s success in a Bernoulli trial, and that the
outcome is the Binomially distributed number of successful trials out of a total of m− 1 trials. Then the
action set satisfies MLRP: one can verify that(m−1

j−1

)
p j−1(1− p)m− j(m−1

j−1

)
q j−1(1−q)m− j

is increasing in j when p > q.

Example 6 (No MLRP [10]). Let n = 2 and m = 3. We define a principal-agent setting (An,Ωm) where
An = (a1,a2) and Ωm = (x1,x2,x3) = (0,1,2). The actions are defined as follows:

a1 = (F1,c1) = ((1/3,1/3,1/3), 0),

a2 = (F2,c2) = ((1/3,1/6,1/2), 1).
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These distributions can be viewed as convex combinations of distributions with MLR (analogously to combi-
nations of regular distributions leading to irregularity in auction theory). Namely: Fi =

1
3 F1

i + 2
3 F2

i , where
F1

1 = (1,0,0), F2
1 = (0,1/2,1/2), F1

2 = (1,0,0), F2
2 = (0,1/4,3/4), and the likelihood ratios F1

2, j/F1
1, j and

F2
2, j/F2

1, j are both monotonically increasing.12

In addition to MLRP, there are other less natural regularity assumptions in the literature, such as CDFP
(see Definition 9).

E.2 Lower Bound Statement and Proof
Theorem 6. For every number of actions n, there is a principal-agent setting (A′′n,Ω3) with m = 3 outcomes
for which MLRP holds, such that the multiplicative loss in the principal’s expected payoff from using a
linear contract rather than an arbitrary one is at least n.

Proof. Let (Aε
n,Ωm) be the principal-agent setting defined in the proof of Theorem 3, where Ri = 1/ε i−1 and

ci = Ri− i+ε(i−1). Let ALG be the best achievable expected payoff to the principal using a linear contract,
and let OPT be the same using an arbitrary contract. From the proof of Theorem 3 we know that ALG = 1
and OPT → n as ε → 0. To prove Proposition 6, we define two additional principal-agent settings, (A′n,Ω2)
and (A′′n,Ω3), with ALG′,OPT ′ and ALG′′,OPT ′′ denoting their optimal linear and optimal expected payoffs,
respectively. Our settings will be such that MLRP holds, and ALG′′→ 1 while OPT ′′→ n, thus establishing
the proposition.
Auxiliary setting (A′n,Ω2). Let Ω2 be an outcome space with 2 outcomes x1 = 0,x2 = Rn. For every
action ai ∈ Aε

n, we define a corresponding action b(ai) with the same cost ci, which leads to outcome x2
with probability Ri/Rn and to outcome x1 otherwise. The expected outcome of action b(ai) is thus Ri. Let
A′n = {b(ai)}i∈[n] be the collection of all actions corresponding to those in Aε

n. Observe that MLRP holds for
A′n, since for every i′ > i, the likelihood ratio of outcome x2 is Ri′/Ri > 1, and the likelihood ratio of outcome
x1 is (Rn−Ri′)/(Rn−Ri)< 1.

Invoking Corollary 7 for principal-agent settings (Aε
n,Ωm) and (A′n,Ω2), we get that the principal’s ex-

pected payoff from any linear contract is the same in both settings, so ALG′ = ALG = 1. While action b(an)
has welfare approaching n as ε → 0, we are not in a full information setting and thus OPT ′ may be much
lower.
Setting (A′′n,Ω3). Our goal now is to define a principal-agent setting (A′′n,Ω3) for which ALG′′ ≈ ALG′,
OPT ′′ ≈ n, and MLRP still holds. We start from (A′n,Ω2) and add an outcome x3 = x2+1 = Rn+1 to get the
new outcome set Ω3. We change action b(an) such that it leads to outcome x3 with some small probability δ

(to be determined below); the probabilities over the other outcomes are renormalized by factor (1−δ ). We
denote the resulting action by a′′n , and its expected outcome by R′′n = (1−δ )Rn +δx3 = Rn +δ . We change
every other action b(ai) only by adding zero probability that it leads to outcome x3, and denote the new
action by a′′i . The new action set A′′ is {a′′i }i∈[n]. Observe that MLRP still holds, since the likelihood ratio of
action a′′n and any other action a′′i for outcome x3 is ∞.

In the new setting, OPT ′′ = R′′n−cn = Rn +δ −cn = OPT +δ , by paying cn/δ for outcome x3 and zero
for any other outcome, thus incentivizing the agent to choose action a′′n while paying cn in expectation. As
for ALG′′, the only change relative to the original setting (Aε

n,Ωm) and the auxiliary setting (A′n,Ω2) is that
action a′′n becomes linearly-implementable by a contract with a smaller parameter α than the original action
an. Denoting this parameter by α ′′n , we have that ALG′′ = (1−α ′′n )R

′′
n , since linearly-implementing any other

12A possible economic story behind this example could be that the agent chooses between “no effort” (action a1) and “effort”
(action a2). Without effort, the distribution is (1/2,1/2) over outcomes (x2,x3), and with effort the distribution is (1/4,3/4).
However, regardless of the agent’s effort level, with probability 1/3 some exogenous bad event occurs (e.g., the market adopts a
different technology as the industry standard, causing sales to drop), resulting in an outcome of x1 = 0.
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action has inferior expected payoff of 1. By Corollary 6, α ′′n = (cn− cn−1)/(R′′n−Rn−1). So

ALG′′ = (1−α
′′
n )R

′′
n

= (1− cn− cn−1

Rn +δ −Rn−1
)(Rn +δ )

=
εn−1− εn +δεn−1

1− ε +δεn−1 (ε−(n−1)+δ )

≤ (εn−1 +δε
n−1)(ε−(n−1)+δ )

= 1+δ + ε
n−1

δ (1+δ ).

By letting δ → 0 and ε → 0 we get OPT ′′/ALG′′→ n, completing the proof.

F Lower Bound for Monotone Contracts
In this appendix we show that a similar lower bound to our bound for linear contracts (Theorem 3) applies
to all monotone contracts (Definition 2); the only difference is that our lower bound of n (the number of
actions) is slightly relaxed to n− 1. That is, we construct an (MLRP – see Appendix E.1) instance with n
actions in which the best monotone contract cannot guarantee better than a 1

n−1 -approximation to the optimal
contract’s expected payoff. Since the class of monotone contracts captures in particular debt contracts (see
Footnote 5), this shows our results do not qualitatively change for this alternative family of simple contracts.

Theorem 7. For every number of actions n, there is a principal-agent setting (Aε,δ
n ,Ωm) parameterized by

ε � δ > 0 for which MLRP holds, such that the multiplicative loss in the principal’s expected payoff from
using a monotone contract rather than an arbitrary one approaches n−1 as ε,δ → 0.

The instance we construct to prove Theorem 7 is based upon the construction of Proposition 6 for
n− 1 actions, with an additional nth high-cost action. Intuitively, the IC constraint with this extra action
together with monotonicity enforce relatively homogeneous payments over the highest outcomes, whereas
the optimal contract requires a single high payment for the second-highest outcome.

Proof of Theorem 7. Let ε,δ ,γ > 0 be vanishingly small, and define an m-outcome vector and n×m distri-
bution matrix as follows, where m = 4:

x =
(
0 1

εn−2
1

εn−2 + γ
1

εn−2 +2γ
)
,

F =



1− εn−2 εn−2 0 0
1− εn−1 εn−1 0 0

...
...

...
...

1− εn−i−1 εn−i−1 0 0
...

...
...

...
1− ε ε 0 0

0 1−δ δ 0
0 0 0 1


.

The costs are ci =
1

ε i−1 − i+ ε(i−1) for i≤ n−1, and cn =
1

εn−2 .
Observe that in the above setting, MLRP holds; the expected outcomes are Ri =

1
ε i−1 for i ≤ n− 2,

Rn−1 =
1

εn−2 +δγ , and Rn =
1

εn−2 +2γ; the expected welfares are Ri− ci = i− ε(i−1) for i≤ n−2, Rn−1−
cn−1 = n−1− ε(n−2)+δγ , and Rn− cn = 2γ . We now analyze several possible contracts to establish the
theorem.
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Optimal contract. The optimal contract incentivizes action n− 1 by setting t3 =
cn−1

δ
(such that actions

a1,an−1 both have expected utility 0 for the agent, all other actions have negative expected utilities, and
tie-breaking is in favor of the principal). The expected payoff to the principal is Rn−1−δ t3 ≈ n−1 (action
an−1’s welfare).
Optimal monotone contract incentivizing ai 6= an−1. We claim that the payoff that the principal can
achieve by incentivizing any action ai with i 6= n−1 is at most 1, so that it suffices to consider action an−1.
For action a1 the payoff to the principal is upper bounded by the welfare this action obtains, which is 1. For
every action ai where 2≤ i≤ n−2, dis-incentivizing deviation from ai to ai−1 necessitates

(1− ε
n−i−1)t1 + ε

n−i−1t2− ci ≥ (1− ε
n−i)t1 + ε

n−it2− ci−1

⇔ (1− ε)εn−i−1t2 ≥
(
ci− ci−1

)
+(1− ε)εn−i−1t1

⇒ t2 ≥
1

(1− ε)εn−i−1

(
ci− ci−1

)
,

where

ci− ci−1 =

(
1

ε i−1 − i+ ε(i−1)
)
−
(

1
ε i−2− (i−1)+ ε(i−2)

)
= (1− ε)

(
1

ε i−1 −1
)
.

We get that

t2 ≥
1

εn−i−1

(
1

ε i−1 −1
)
,

and the payoff to the principal is at most

1
ε i−1 − ε

n−i−1 1
εn−i−1

(
1

ε i−1−1

)
= 1.

The expected welfare of an is almost zero.
Optimal monotone contract incentivizing an−1. It is w.l.o.g. to set t1 = 0. To dis-incentivize deviations
from an−1 to an−2 and to an:

(1−δ )t2 +δ t3− cn−1 ≥ εt2− cn−2, (12)

(1−δ )t2 +δ t3− cn−1 ≥ t4− cn. (13)

From (13) and monotonicity we have that (1−δ )t2 +δ t3 ≥ t4− (cn− cn−1)≥ t3− (cn− cn−1). So:

t2 ≥ t3−
cn− cn−1

1−δ
.

Combining this with (12) we get (1−δ−ε)t2 ≥ cn−1−cn−2−δ t3 ≥ cn−1−cn−2−δ t2− δ (cn−cn−1)
1−δ

, and after
rearranging,

(1− ε)t2 ≥ cn−1− cn−2−
δ (cn− cn−1)

1−δ
.

Since cn−1− cn−2 =
1−ε

εn−2 − (1− ε),

t2 ≥
1

εn−2 −1− δ (cn− cn−1)

(1−δ )(1− ε)
.

So the expected payment in the optimal monotone contract incentivizing action an−1 is at least 1
εn−2 − 1

minus a term that is vanishing with δ , leaving an expected payoff of ≈ 1 for the principal. This completes
the proof of Theorem 7.
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G Special Cases in Which Simple Contracts are Optimal
In several special cases of interest, a simple contract with a single nonzero payment is optimal. An obvious
such case (given Lemma 5, which bounds the number of non-negative payments by n− 1) is that of n = 2
actions. We state here for completeness the optimal contract in this case:

Proposition 4. For n = 2 actions, if the optimal contract incentivizes the nonzero-cost action a2 rather than
a1 with cost 0, then there is an optimal contract that pays only for the outcome that maximizes the likelihood
ratio F2, j/F1, j, and the payment is c2

F2, j−F1, j
.

Proof. Consider an optimal solution with a single positive payment (Lemma 5). The constraint ∑ j F1, j p j−
c = ∑ j F0, j p j must be tight. For every j, if p j > 0 and the rest of the payments are zero, then p j =

c
F1, j−F0, j

and the expected payment is F1, j p j =
c

1−F0, j/F1, j
. To minimize this expected payment, F0, j/F1, j must be

minimized, completing the proof.

The next proposition shows additional cases of interest in which such a simple contract is optimal. We
use the following standard definition from the contract theory literature:

Definition 9. An action a satisfies the concavity of distribution function property (CDFP) if for every two
actions such that a’s cost ca is a convex combination of their costs, it holds that a’s distribution over out-
comes first-order stochastically dominates the convex combination of their distributions. A principal-agent
setting satisfies CDFP if it holds for every action.

To establish Proposition 5 we also use a lemma (Lemma 8) whose statement and proof is deferred to
Section G.1.

Proposition 5. Consider a principal-agent setting (An,Ωm) with n actions and m outcomes. Then there
exists an optimal contract with a single nonzero payment for the highest outcome xm if either of the following
holds:

• The setting satisfies MLRP and there exists an optimally-implementable action satisfying CDFP.
• There are m = 2 outcomes.
• The setting satisfies MLRP and the actions have strictly increasing welfare.

We divide the proof into three claims.

Claim 8. Proposition 5 holds for CDFP.

Proof of Claim 8. The proof follows that of Proposition 12 in [10]. Assume there exists an optimal contract
with payment profile t implementing a CDFP action ai at expected cost T . Denote the principal’s expected
payoff by OPT . We show there is simple contract of the required format implementing ai at the same
expected cost (thus achieving OPT ).

Consider a new setting with actions {ak | k ≤ i}. Action ai is implementable in this setting (e.g., by
transfer profile t) and MLRP holds. Thus by Lemma 8, there is a contract implementing ai at minimum
expected cost with nonzero payment only for xm. Denote this payment by t ′m, and let T ′ be its expected cost.
Since removing actions could not have increased the cost of implementing ai, T ′ ≤ T . Denote the principal’s
expected payoff by OPT ′ and observe OPT ′ ≥ OPT . Let i′ < i be such that the IC constraint is binding for
action ai′ (such an action must exist or T ′ could have been lowered).

Now add back the actions {ak | k > i}. We argue that the same simple contract still implements ai.
Indeed, assume for contradiction that the simple contract implements ai′′ rather than ai, where i′′ > i. We
will use CDFP to show that in this case, the principal’s payoff is > OPT ′, in contradiction to the optimality
of the contract achieving OPT ≤ OPT ′.

Since ci′ < ci < ci′′ , we can write ci = λci′ +(1−λ )ci′′ for λ ∈ [0,1]. By CDFP, the distribution of ai

first-order stochastically dominates that of the mixed action λai′ +(1− λ )ai′′ . Since the simple contract
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only pays for the highest outcome, this means that the agent’s utility from ai is at least his utility from
λai′ + (1− λ )ai′′ . By tightness of the IC constraint for ai′ and by the agent’s preference for ai′′ , the IC
constraint must be tight for ai′′ as well. We know that the agent breaks ties in favor of the principal, and so
the principal’s payoff from ai′′ must exceed her payoff of OPT ′ from ai.

Claim 9. Proposition 5 holds for m = 2.

Proof of Claim 9. Assume there are 2 outcomes, low (`) and high (h). There are n actions numbered in
(strictly) increasing order of their expected outcome Ri. Observe that the probability Fi,h of action i to
achieve the high outcome is also strictly increasing. This implies that MLRP holds. Let ai be an optimally-
implementable action. If i= 1 (so ai is the zero-cost action), the trivial contract with no payments is optimal;
if i = n, the claim follows from Lemma 8. We now show that if 1 < i < n, action ai must satisfy CDFP, and
so the proof is complete by Claim 8.

Assume for contradiction that ai is not CDFP. So there exist two actions ai′ ,ai′′ where i′ < i < i′′, and
λ ∈ [0,1], such that

ci = λci′+(1−λ )ci′′ ,

Fi,h < λFi′,h +(1−λ )Fi′′,h.

This implies existence of λ < λ ′ < 1 such that

ci > λ
′ci′+(1−λ

′)ci′′ ,

Fi,h = λ
′Fi′,h +(1−λ

′)Fi′′,h.

But by Proposition 1 this means that action ai is not implementable, contradiction.

Claim 10. Proposition 5 holds for MLRP and increasing welfare.

Proof of Claim 10. Assume there is an optimal contract with payment profile t incentivizing ai. Let j < m
be the lowest outcome such that t j > 0. Due to MLRP we can move weight from t j to tm at such a ratio
that it will weakly decrease (resp., increase) the utility of all actions below (resp., above) ai, and not change
the utility of ai. If at any point the utilities of ai and ak where k > i become the same, then we have
found a payment profile that incentivizes ak with the same utility to the agent as in the optimal contract that
incentivizes ai. But since the welfare of ak is larger, the principal’s payoff must be larger in contradiction to
the optimality of the contract. Thus we can move weight until t j becomes 0. We conclude that with MLRP
and increasing welfare, there is always an optimal contract that pays only for the highest outcome.

G.1 Statement and Proof of Lemma 8
Lemma 8. Consider a principal-agent setting (An,Ωm) with n actions and m outcomes, for which MLRP
holds. If the highest-cost action an is implementable, then there is an implementing contract with minimum
expected payment that is a 2-partition contract. Moreover, this contract has a single nonzero payment, which
is rewarded for the highest outcome xm.

Proof. Recall the implementability primal LP from Appendix A. Its variables are the payments t1, . . . , tm.
We need to show that there is an optimal solution to this LP for action an that is a simple 2-partition contract,
with a single nonzero variable tm. We achieve this by creating a reduced version of the primal LP with only
one variable tm, and showing that its optimal objective value is no worse (no larger) than that of the original
LP. Our argument uses the dual LP, in which there is a constraint for every one of the m outcomes. Our proof
proceeds as follows:
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Step 1. Create a reduced dual by dropping all the constraints except for the one corresponding to the maximum
outcome m.

Step 2. Solve the relaxed dual LP to optimality.

Step 3. Verify that the resulting solution is feasible (and hence optimal) for the original dual LP.

These steps are sufficient to complete the proof: The reduced dual has the same optimal objective value
as the original one. Dualizing back, the optimal value of the reduced primal LP is the same as that of the
original primal LP, as required. Hence there is an optimal primal solution that only uses tm.
Step 1 The reduced dual is:

max ∑i<n λi(cn− ci)

s.t. ∑i<n λi(Fn,m−Fi,m)≤ Fn,m ,

λi ≥ 0 ∀i < n.

Step 2 To solve the reduced dual, we note that (cn−ci)≥ 0 for every i< n (using that an is the highest-cost
action). Thus, all coefficients in our objective are nonnegative. Also, since MLRP implies stochastic domi-
nance, (Fn,m−Fi,m)≥ 0 for every i < n. Thus, all coefficients in our (sole) dual constraint are nonnegative.
The optimal solution is then to “max out” on the action with the maximum “bang-per-buck,” meaning an
action in argmaxi(cn− ci)/(Fn,m−Fi,m). To make the dual constraint tight, we set λi = Fn,m/(Fn,m−Fi,m)
(and other variables to 0).
Step 3 In this step we need to verify feasibility of the original dual constraints. Pick an arbitrary out-
come j < m. With our choice of λi, feasibility becomes Fn,m(Fn, j−Fi, j)/(Fn,m−Fi,m)≤ Fn, j. After clearing
denominators and canceling terms, this reduces to MLRP (i.e., Fn,m/Fi,m ≥ Fn, j/Fi, j), which holds by as-
sumption.
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[22] B. Hébert. Moral hazard and the optimality of debt. The Review of Economic Studies, pages 55–73,
2017.

[23] C. Ho, A. Slivkins, and J. W. Vaughan. Adaptive contract design for crowdsourcing markets: Bandit
algorithms for repeated principal-agent problems. J. Artif. Intell. Res., 55:317–359, 2016.

[24] B. Holmström and P. Milgrom. Aggregation and linearity in the provision of intertemporal incentives.
Econometrica, 55(2):303–328, 1987.

[25] B. Holmström and P. Milgrom. Multitask principal-agent analyses: Incentive contracts, asset owner-
ship, and job design. Journal of Law, Economics, & Organization, 7:24–52, 1991.

[26] A. Khodabakhsh, E. Pountourakis, and S. Taggart. Algorithmic delegation. Working paper, 2018.

[27] J. M. Kleinberg and R. Kleinberg. Delegated search approximates efficient search. In Proceedings of
the 19th ACM Conference on Economics and Computation (EC), pages 287–302, 2018. doi: 10.1145/
3219166.3219205. URL http://doi.acm.org/10.1145/3219166.3219205.

28

http://doi.acm.org/10.1145/3219166.3219205


[28] M. Koren and A. Cohen. Incentivizing the dynamic workforce: Learning contracts in the gig-economy.
Working paper, 2018.

[29] J.-J. Laffont and D. Martimort. The Theory of Incentives. Princeton University Press, Princeton, NJ,
2002.

[30] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University Press,
Oxford, UK, 1995.

[31] E. Maskin and J. Tirole. The principal-agent relationship with an informed principal: The case of
private values. Econometrica, 58(2):379–409, 1990.

[32] E. Maskin and J. Tirole. The principal-agent relationship with an informed principal, II: Common
values. Econometrica, 60(1):1–42, 1992.
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