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1 The Optimal Mechanism Design Paradigm: Success Stories

Optimal mechanism design enjoys a beautiful and well-developed theory, and also a number of
killer applications. Let’s review two famous examples.

1.1 Example: The Vickrey Auction

In the Vickrey or second-price single-item auction (Vickrey, 1961), there is a single seller with a
single item; assume for simplicity that the seller has no value for the item. There are n bidders,
and each bidder i has a valuation vi that is unknown to the seller. The Vickrey auction is designed
to maximize the welfare, which in a single-item auction just means awarding the item to the bidder
with the highest valuation. This sealed-bid auction collects a bid from each bidder, awards the
item to the highest bidder, and charges the second-highest price. The point of the pricing rule is to
ensure that truthful bidding is a dominant strategy for every bidder. Provided every bidder follows
its dominant strategy, the auction maximizes welfare ex post (that is, for every valuation profile).

In addition to being theoretically optimal, the Vickrey auction has a simple and appealing
format. Plenty of real-world examples resemble the Vickrey auction. In light of this confluence of
theory and practice, what else could we ask for? To foreshadow what lies ahead, we mention that
when selling multiple non-identical items, the generalization of the Vickrey auction is much more
complex.

1.2 Example: Myerson’s Auction

What if we want to maximize the seller’s revenue rather than the social welfare? Since there is
no single auction that maximizes revenue ex post, the standard approach here is to maximize the
expected revenue with respect to a prior distribution over bidders’ valuations. Assume bidder
i’s valuation is drawn independently from a distribution Fi that is known to the seller. For the
moment, assume also that bidders are homogeneous, meaning that their valuations are drawn i.i.d.
from a known distribution F .
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Myerson (1981) identified the optimal auction in this context, which is a simple twist on the
Vickrey auction — a second-price auction with a reserve price r.1 Moreover, the optimal reserve
price is simple and intuitive—it is the monopoly price argmaxp[p · (1 − F (p))] for the distribution
F , the optimal take-it-or-leave-it offer to a single bidder with valuation drawn from F . Thus, to
implement the optimal auction, you don’t need to know much about the valuation distribution
F—just a single statistic, its monopoly price.

Once again, in addition to being theoretically optimal, Myerson’s auction is simple and appeal-
ing. It is more or less equivalent to an eBay auction, where the reserve price is implemented using
an opening bid. Given this success, why do we need to enrich the traditional optimal mechanism
design paradigm? As we’ll see, when bidders’ valuations are not i.i.d., the theoretically optimal
auction is much more complex and no longer resembles the auction formats that are common in
practice.

1.3 The Optimal Mechanism Design Paradigm

Having reviewed two well-known examples, let’s zoom out and be more precise about the optimal
mechanism design paradigm. The first step is to identify the design space of possible mechanisms,
such as the set of all sealed-bid auctions. The second step is to specify some desired properties. In
this survey, we focus only on cases where the goal is to optimize some objective function that has
cardinal meaning, and for which relative approximation makes sense. We have in mind objectives
such as the seller’s revenue (in expectation with respect to a prior) or social welfare (ex post) in
a transferable utility setting. The goal of the analyst is then to identify one or all points in the
design space that possess the desired properties—for example, to characterize the mechanism that
maximizes the welfare or expected revenue.

What can we hope to learn by applying this framework? The traditional answer is that by
solving for the optimal mechanism, we hope to receive some guidance about how to solve the
problem. With the Vickrey and Myerson auctions, we can take the theory quite literally and simply
implement the mechanism advocated by the theory. More generally, one looks for features present
in the theoretically optimal mechanism that seem broadly useful. For example, Myerson’s auction
suggests that combining welfare maximization with suitable reserve prices is a potent approach to
revenue-maximization.

There is a second, non-traditional answer that we exploit explicitly when we extend the paradigm
to accommodate approximation. Even when the theoretically optimal mechanism is not directly
useful to the practitioner, for example because it is too complex, it is directly useful to the ana-
lyst. The reason is that the performance of the optimal mechanism can serve as a benchmark, a
yardstick against which we measure the performance of other designs that stand a chance of being
implemented.

2 The Optimal Mechanism Design Paradigm: Failure Modes

The Vickrey and Myerson auctions are exceptions that prove a rule: theoretically optimal mech-
anisms are generally too complex to be used in practice. “Complexity” can take many forms,

1That is, the winner is the highest bidder with bid at least r, if any. If there is a winner, it pays either the reserve
price or the second-highest bid, whichever is larger.
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including excessive computation, excessive communication, or unrealistic informational assump-
tions. We next illustrate this point with three examples. These examples motivate the alternatives
to optimal mechanisms described in Sections 4–6.

2.1 Optimal Single-Item Auctions (Excessive Information)

We now return to expected revenue-maximization in single-item auctions, but allow heterogeneous
bidders, meaning that each bidder i’s private valuation vi is drawn independently from a distribution
Fi that is known to the seller. Myerson (1981) characterized the optimal auction, as a function
of the distributions F1, . . . , Fn. We assume for simplicity that each distribution Fi has bounded
support and a density function fi.

The trickiest step of Myerson’s optimal auction is the first one, where each bid bi is transformed
into a virtual bid ϕi(bi), defined by

ϕi(bi) = bi −
1− Fi(bi)
fi(bi)

.

The exact functional form in this equation is not important for this survey, except to notice that
computing ϕi(bi) requires knowledge of the distribution, namely of fi(bi) and Fi(bi).

Given this transformation, the rest of the auction is straightforward. The winner is the bidder
with the highest positive virtual bid (if any). To make truthful bidding a dominant strategy, the
winner is charged the minimum bid at which it would continue to be the winner.2

When all the distributions Fi are equal to a common F , and hence all virtual valuation functions
ϕi are identical, the optimal auction simplifies and is simply a second-price auction with a reserve
price of ϕ−1(0), which turns out to be the monopoly price for F . In this special case, the optimal
auction requires only modest distributional knowledge (the monopoly price). In general, the optimal
auction does not simplify further than the description above. A major impediment to implementing
such a “virtual welfare maximizer” is that accurate distributional details are not always available –
this widely-accepted criticism is known as Wilson’s doctrine (Wilson, 1987). Second, even if such
details are available, the corresponding optimal mechanism can be too inscrutable for real-world
deployment. For example, on the second point, an optimal single-item auction might award the
item to a low bidder over a high bidder (even if the latter clears its reserve).

2.2 Welfare-Maximizing Multi-Item Auctions (Excessive Communication)

In the standard setup for allocating multiple items via a combinatorial auction, there are n bidders
and m non-identical items. Each bidder has, in principle, a different private valuation vi(S) for
each bundle S of items it might receive. Thus, each bidder has 2m private parameters. In this
example, we assume that the objective is to determine an allocation S1, . . . , Sn that maximizes the
social welfare

∑n
i=1 vi(Si).

The Vickrey auction can be extended to the case of multiple items; this extension is the Vickrey-
Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973). The VCG mecha-
nism is a direct-revelation mechanism, so each bidder i reports a valuation bi(S) for each bundle

2We have only described the optimal auction in the special case where each distribution Fi is regular, meaning
that the virtual valuation functions ϕi are nondecreasing. The general case “monotonizes” or “irons” the virtual
valuation functions and then applies the same three steps (Myerson, 1981). (Monotonicity is essential for incentive-
compatibility.)
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of items S. The mechanism then computes an allocation that maximizes welfare with respect to
the reported valuations. As in the Vickrey auction, suitable payments make truthful revelation a
dominant strategy for every bidder.

Even with a small number of items, the VCG mechanism is a non-starter in practice, for a
number of reasons (Ausubel and Milgrom, 2006). For example, the VCG mechanism, as a direct-
revelation mechanism, solicits 2m numbers from each bidder. This is an exorbitant number: roughly
a thousand parameters already when m = 10, roughly a million when m = 20. In modern spectrum
auctions, m might be in the hundreds or larger.3

2.3 Welfare-Maximization with Single-Minded Bidders (Excessive Computa-
tion)

If bidders’ preferences are easy to communicate, does the VCG mechanism become easy to im-
plement? For example, suppose each bidder i is single-minded and only cares about a (publicly
known) subset Ti of items (Lehmann et al., 2002). Bidder i has a private value vi for every superset
of Ti, and 0 for every other set. This is a single-parameter environment, so communication between
the bidders and the mechanism is not an issue. “All” the VCG mechanism has to do is compute a
welfare-maximizing allocation (with respect to the reported valuations) and appropriate prices.

The problem is that, for single-minded bidders and many other examples of succinctly described
valuations, it is difficult to compute a welfare-maximizing allocation in a reasonable amount of time
(less than a year, say). The problem is that the number of candidate solutions grows exponentially
with the number n of bidders. A subset W of bidders can all receive their desired subsets simulta-
neously if and only if if Ti ∩ Tj = ∅ for distinct i, j ∈W (since no item can be allocated more than
once). With n bidders, there are 2n possibilities for W . For modestly large n (at least 50, say),
there is no hope of checking them all in a reasonable amount of time.4 For some computational
problems with exponentially many candidate solutions, there is a clever algorithm that shortcuts
to the optimal solution while examining only a tiny fraction of the possibilities. For “NP -hard”
optimization problems, including the problem of welfare-maximization with single-minded bidders,
the exponential scaling appears fundamental, with no clever shortcut in sight.

3 Approximately Optimal Mechanism Design

3.1 Benchmarks and Approximate Optimality

The examples in Section 2 demonstrate that, for many different reasons, it is not always feasible to
implement the theoretically optimal mechanism. To give better design guidance in such settings,
we have no choice but to take a different approach. This brings us to the main theme of this
survey: using the relaxed goal of approximate optimality to make new progress on fundamental but
challenging mechanism design problems.

To study approximately optimal mechanisms, we again begin with a design space and an ob-
jective function. Often the design space will proxy for the set of “plausibly implementable mecha-
nisms,” and is accordingly limited by side constraints such as a “simplicity” constraint. For example,

3Cramton (1998) writes: “The setting of spectrum auctions is too complex to guarantee full efficiency.”
4Auctions for online advertising can have dozens or even hundreds of participants. The reverse auction in the

FCC Incentive Auction (Section 6.2) had thousands of participants.
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we later consider mechanisms with a restricted number of pricing parameters, with low-dimensional
bid spaces, and with limited computational power.

The new ingredient of the paradigm is a benchmark. This is a target objective function value that
we would be ecstatic to achieve. Generally, the working hypothesis will be that no mechanism in the
design space realizes the full value of the benchmark, so the goal is to get as close to it as possible.
In the examples we discuss, where the design space is limited by a simplicity constraint, a natural
benchmark is the performance achieved by an unconstrained, arbitrarily complex mechanism. The
goal of the analyst is to identify a mechanism in the design space that approximates the benchmark
as closely as possible.

A typical positive result in approximately optimal mechanism design identifies a mechanism in
the desired design space that always guarantees an objective function value (social welfare, expected
revenue, etc.) that is at least an α percentage of the benchmark value. (The closer α is to 100%,
the better.) A typical negative result proves that there is no mechanism in the design space with
such a guarantee (for some fixed percentage α).

3.2 Goals of Approximately Optimal Mechanism Design

What is the point of applying this design paradigm? The first goal is exactly the same as with the
traditional optimal mechanism design paradigm. Whenever you have a principled way of choosing
one mechanism from many, you can hope that the distinguished mechanism is literally useful or
highlights features that are essential to good designs. The approximation paradigm provides a
novel way to identify candidate mechanisms.

There is a second reason to use the approximately optimal mechanism design paradigm, which
has no analog in the traditional approach. The approximation framework allows the analyst to
quantify the cost of imposing side constraints on a mechanism design space. For example, if there
is a simple mechanism with performance close to that of the best arbitrarily complex mechanism,
then this fact suggests that simple solutions might be good enough. Conversely, if every point in the
design space is far from the benchmark, then this provides a forceful argument that complexity is
an essential feature of every reasonable solution to the problem. Our second case study (Section 5)
is a particularly clear example of this perspective.

3.3 Coming Up: Three Case Studies

Sections 4–6 describe three such instantiations, each addressing a different drawback of theoretically
optimal mechanisms. First, we study expected revenue-maximization in single-item auctions, with
bidders that have independent but not necessarily identically distributed valuations. Virtual welfare
maximizers are an overparameterized class of auctions, and selecting the right one requires detailed
distributional knowledge. We use the approximation paradigm to understand fundamental trade-
offs between optimality and simplicity.

Our second case study concerns the problem of selling multiple non-identical items to maximize
the social welfare. The theoretically optimal mechanism is well known (the VCG mechanism) but
suffers from several drawbacks that preclude direct use. We apply the approximation paradigm
to identify when mechanisms with low-dimensional bid spaces can perform well, and when high-
dimensional bid spaces are necessary for non-trivial welfare guarantees.

Our final case study concerns settings where computation is the primary obstacle to optimality.
Multi-unit auctions are one canonical example. We use the approximation framework to identify
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mechanisms that guarantee near-optimal social welfare and are also computationally efficient.
An enormous amount of research over the past twenty years, largely but not entirely in the

computer science literature, can be viewed as instantiations of the approximately optimal mecha-
nism design paradigm. The case studies in this survey are representative but far from exhaustive.
The book of Hartline (2017) is a good source for additional examples.

3.4 In Defense of Approximation Ratios

The positive results in our three case studies have the form: “the objective function value of
the simple mechanism M is always at least an α percentage of that of the (complex) optimal
mechanism.” In some cases, α will be close to 100%, and the utility of the guarantee is self-evident.
In most settings, however, the best-possible approximation guarantee is bounded away from 100%.
What use is an approximate guarantee of, say, 63%?5

In the authors’ experience, researchers tend to fixate unduly on and take too literally the
numerical values in approximation guarantees. There are several points to keep in mind:

1. Both of the primary motivations for applying the approximately optimal mechanism design
paradigm (Section 3.2) strive for qualitative rather than quantitative insights. This holds both
for identifying mechanism features that are potentially useful in practice, and for assessing the
cost of a simplicity side-constraint on the mechanism. For example, if the pursuit of a best-
possible approximation guarantee justifies a widely-used mechanism or guides the analyst to
an interesting new mechanism, is the exact numerical value of the guarantee so important?

2. A reader who, against our advice, insists on interpreting approximation guarantees literally,
is likely to ask: “what about the other 37% of the welfare or expected revenue being left
on the table?” But in all of the canonical applications of approximately optimal mechanism
design, the benchmark of full optimality is only a utopia in the analyst’s mind, and not one of
the available options. For example, in a multi-item auction with more than a few items, it is
flat-out impossible to implement a welfare-maximizing mechanism like the VCG mechanism.
The choice is not whether to implement an optimal mechanism; it’s whether to implement a
suboptimal mechanism that has a good approximation guarantee or one that doesn’t. While
the mechanism with the best-possible approximation guarantee may or may not be the best
one to implement in practice, it is always worth considering.

3. Approximation guarantees are usually “worst case,” meaning that they hold for every possible
setting (e.g., for an arbitrary valuation profile, or in expectation for an arbitrary prior distri-
bution). An approximately optimal mechanism usually performs better than its worst-case
guarantee in most settings of interest. For example, a mechanism with a worst-case guarantee
of 50% might well achieve at least 90% of the benchmark value on “typical” inputs. In some
cases, this property can be proved formally by establishing better approximation guarantees
under additional assumptions about the setting; in other cases, the argument is best made
through simulations.

4. Is a number like “63%” big or small? As in real life, the answer depends on the context.6

The best way to justify theoretically an approximation guarantee is to prove a matching

5For the most part, we focus on relative approximation guarantees, which have the advantage of canceling out
units of measurement. Absolute approximation guarantees are also meaningful in some settings (e.g., Theorem 4.2).

6A professional basketball team that wins 63% of its games is good but not great, while a baseball team with the
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impossibility result, stating that there is no mechanism in the class of interest with a superior
guarantee. With a few exceptions, like “large market”-type results (Section 7.3), optimal
approximation guarantees tend to be bounded well away from 100% (e.g., 50% or 63%).

Whatever the merits of approximately optimal mechanism design, the unimplementability of op-
timal mechanisms in complex settings is real and will not go away (cf., footnotes 3 and 14). Any
theorist who wants to reason seriously about such settings must work with an alternative to the
classical optimal mechanism design paradigm. Approximation is by no means the only possible
alternative (see also Section 7), but it is one of the most successful approaches to date.

Finally, like any general analysis framework, the approximation paradigm can be abused and
should be applied with good taste. In settings in which the paradigm does not give meaningful
results, different modeling or benchmark choices should be made, or a completely different analysis
framework should be considered.

4 Case Study #1: Simple vs. Optimal Results

When bidders are heterogeneous, with different valuation distributions, the expected revenue-
maximizing single-item auction can be complex and highly dependent on the details of the dis-
tributions (Section 2.1). Are there simpler auctions that perform almost as well? Section 4.1
studies approximation guarantees for the Vickrey auction supplemented with reserve prices. Sec-
tion 4.2 presents t-level auctions, which offer a smooth trade-off between simplicity and optimality.
Section 4.3 discusses the state-of-the-art for multi-item auctions.

4.1 Vickrey with Reserves

Recall the single-item auction setting of Section 2.1. There are n bidders, with bidder i’s private
valuation vi drawn independently from a distribution Fi (with density fi) that is known to the seller.
We assume that every distribution is regular, meaning that the corresponding virtual valuation
function is nondecreasing.7 The optimal auction is a virtual welfare maximizer, and it computes a
virtual bid for each bidder, awards the item to the bidder with highest positive virtual bid (if any),
and charges the lowest winning bid that the bidder could have made. This auction depends in a
detailed way on the distributions F1, . . . , Fn.

Virtual welfare maximizers are a rich class of auctions, parameterized by the virtual valuation
functions ϕ1, . . . , ϕn. Intuitively, there is an infinite number of degrees of freedom in specifying
such an auction. A natural and practically useful class of auctions with far fewer parameters is that
of reserve price-based auctions. Vickrey auctions with bidder-specific reserves have only n degrees
of freedom, the reserve prices r1, . . . , rn.8 Such an auction awards the item to the highest bidder
that meets its reserve, and charges the smallest bid that would have won (the winning bidder’s
reserve price, or the highest bid by a different bidder that clears its reserve, whichever is larger).

Perhaps the most natural choice for bidder i’s reserve price ri is the monopoly price for its
distribution Fi (Section 1.2). This choice guarantees a constant fraction of the optimal expected
revenue, where the constant is independent of the number of bidders and the valuation distributions.

same record would be one of the favorites to win the World Series. Similarly, is a six-week turnaround for referee
reports fast or slow? The answer depends on whether the submission was sent to Econometrica or Science.

7Recall the virtual valuation function is given by ϕi(bi) = bi − (1− Fi(bi))/fi(bi).
8The informal notion of “degrees of freedom” in an auction class can be made precise using concepts from statistical

learning theory, such as the pseudodimension. See Morgenstern and Roughgarden (2015) for further details.
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Theorem 4.1 (Simple Versus Optimal Auctions) For all n ≥ 1 and regular distributions
F1, . . . , Fn, the expected revenue of an n-bidder single-item Vickrey auction with monopoly reserve
prices is at least 50% of that of the optimal auction.

Thus, knowing a single statistic about each bidder’s valuation distribution (its monopoly price)
already suffices for approximately optimal expected revenue.9

Theorem 4.1 follows from Chawla et al. (2007) and Hartline and Roughgarden (2009). It can
also be derived from the “prophet inequality” of Samuel-Cahn (1984); see Chapter 4 of Hartline
(2017) or Lecture 6 of Roughgarden (2016b).

The guarantee of 50% can be improved for many distributions. It is tight in the worst case,
however, even with only two bidders and arbitrary, not necessarily monopoly, reserve prices (Hart-
line and Roughgarden, 2009). To improve the guarantee without making additional assumptions,
we must add complexity to the auction format. The next section describes a principled way of
doing so.

4.2 t-Level Auctions and Simplicity-Optimality Trade-Offs

Virtual welfare maximizers are theoretically optimal but overly complex. Reserve-price-based auc-
tions are reasonably simple but extract only 50% of the optimal expected revenue in the worst case.
Can we interpolate between these two extremes? Can we quantify the trade off between simplicity
and optimality? It’s not clear how to make sense of this question without using the approximately
optimal mechanism design paradigm.

Morgenstern and Roughgarden (2015) proposed t-level single-item auctions for this purpose.
Such an auction has t parameters per bidder, which can be viewed as an increasing sequence of t
reserve prices. Given a bid profile, the level of a bidder is defined as the number of its reserves that
its bid clears. For example, if a bidder has three reserves 5, 7, and 9 and submits a bid of 8, then
it has level 2.

The allocation rule of a t-level auction is defined as follows. If every bidder has level 0, then
the item remains unallocated. Otherwise, the item is awarded to the bidder with the largest level,
with ties broken by bid. That is, the winner is the highest bidder at the top occupied level. Since
different bidders can have different reserve prices, the winner need not be the highest bidder overall.
As usual, the winning bidder pays the lowest bid at which it would continue to win. 1-level auctions
are the same as Vickrey auctions with bidder-specific reserves.

t-level auctions are naturally interpreted as discrete approximations to virtual welfare maximiz-
ers. Each level ` corresponds to a constraint of the form “If any bidder has level at least `, do not
sell to any bidder with level less than `.” For every `, we can interpret bidders’ `th reserve prices
as the bidder values that map to some common virtual value. For example, 1-level auctions treat
all values below a reserve price as having a negative virtual value, and above the reserve use values
as proxies for virtual values. 2-level auctions use the second reserve to refine the virtual value
estimates, and so on. With this interpretation, it is intuitively clear that as t→∞, it is possible to
estimate bidders’ virtual valuation functions and thus approximate Myerson’s optimal auction to
arbitrary accuracy. The next theorem is a quantitative version of this intuition; for normalization
purposes, it restricts attention to distribution with support [0, 1]. The proof idea is to “round” an

9Even simpler are the Vickrey auctions with a single anonymous reserve price. Anonymous reserve prices also
suffice to extract a constant fraction of the optimal expected revenue, although the constant degrades to 37% (Alaei
et al., 2015).
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optimal auction to a t-level auction without losing much expected revenue, using the reserve prices
to approximate each bidder’s virtual value.

Theorem 4.2 (Morgenstern and Roughgarden (2015)) There is a constant c > 0 such that,
for every number n of bidders, ε > 0, and valuation distributions F1, . . . , Fn with support [0, 1],
there is a c

ε -level auction with expected revenue within ε of optimal.

The guarantee in Theorem 4.2 translates to a relative approximation of 1 − ε (with a different
constant c′ in place of c), except in the uninteresting case where the optimal expected revenue is
very close to 0.

4.3 Multi-Parameter Problems

The approximation guarantees in Theorems 4.1 and 4.2 hold more generally in most single-parameter
environments (Hartline and Roughgarden, 2009; Morgenstern and Roughgarden, 2015), almost at
the level of generality of Myerson’s optimal auction theory (Myerson, 1981).

Multi-parameter problems like multi-item auctions, however, pose a notorious challenge to
optimal auction theory. In most such settings, there is no understanding of the optimal auction,
other than being the solution to an astronomically large linear program. For an overview of the
solvable special cases, see Daskalakis et al. (2017) and the references therein.

Hart and Reny (2015) suggested studying the seemingly simple case of a single buyer and
multiple items, where the buyer has an additive valuation and its values for different items are
independent. They documented several troublesome and counterintuitive properties possessed by
optimal multi-item auctions, even in this restricted setting.

Hart and Nisan (2017) proposed using approximation to make progress on this class of multi-
item auction problems. Passing to approximation can bypass the challenge of characterizing the
optimal auction. The reason is that the analyst can instead use an analytically tractable upper
bound on the optimal expected revenue, and prove that an auction of interest captures a significant
fraction of this upper bound.

Hart and Nisan (2017) focused on two simple mechanisms: selling items separately (one price
per item, with the buyer picking a utility-maximizing bundle); and a take-it-or-leave-it offer for
the bundle of all items. They proved that, as the number of items grows large, neither mechanism
guarantees a constant fraction of the optimal revenue. In a significant advance, Babaioff et al.
(2014) proved that, for every distribution over additive valuations with independent item values,
one of these two mechanisms extracts a constant fraction of the optimal revenue.10 Yao (2015)
extended this result to multiple buyers, and Rubinstein and Weinberg (2015) to more general
valuation distributions.

5 Case Study #2: Low-Dimensional Message Spaces

In this section we switch gears and study the problem of allocating multiple items to bidders
with private valuations to maximize the social welfare. We instantiate the approximately optimal

10Because the mechanism’s expected revenue is compared to an upper bound on the optimal expected revenue,
there are two sources of suboptimality: in the auction itself (due to revenue loss relative to an optimal auction), and
in the analysis (due to slack between the upper bound and the actual expected revenue of an optimal auction). For
this reason, the numerical value of the constant is not particularly satisfying when taken at face value.
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mechanism design paradigm to identify conditions on bidders’ valuations that are necessary and
sufficient for the existence of simple combinatorial auctions with near-optimal welfare at equilib-
rium. The take-away from this section is that rich bidding spaces are an essential feature of every
good combinatorial auction when items are complements, while simple auctions can perform well
when bidders’ valuations are complement-free.

5.1 Motivating Question

Recall from Section 2.2 the standard setup for allocating multiple items via a combinatorial auction.
There are n bidders and m non-identical items. Each bidder has, in principle, a different private
valuation vi(S) for each bundle S of items it might receive. In this section, we assume that the
objective is to determine an allocation S1, . . . , Sn that maximizes the social welfare

∑n
i=1 vi(Si).

The VCG mechanism is dominant-strategy incentive-compatible and welfare-maximizing but, as a
direct-revelation mechanism, it requires an exorbitant number of bids (2m) from each bidder.

In this case study, we apply the approximately optimal mechanism design paradigm to study
the following question.

Does a near-optimal combinatorial auction require rich bidding spaces?

Thus, as in the previous case study, we seek conditions under which “simple auctions” can “perform
well.” This time, our design space of “simple auctions” consists of mechanism formats in which the
dimension of every player’s bid space is growing polynomially with the number m of items (say m
or m2), rather than exponentially with m as in the VCG mechanism.

“Performing well” means, as usual, achieving objective function value (here, social welfare)
close to that of a benchmark. We use the VCG benchmark, meaning the welfare obtained by the
best arbitrarily complex mechanism (the VCG mechanism), which is simply the maximum-possible
social welfare.

This case study contributes to the debate about whether or not package bidding is an important
feature of combinatorial auctions, a topic over which much blood and ink has been spilled over the
past twenty years. We can identify auctions with no or limited packing bidding with low-dimensional
mechanisms, and those that support rich package bidding with high-dimensional mechanisms. With
this interpretation, our results make precise the intuition that flexible package bidding is crucial
when items are complements, but not otherwise.

5.2 A Simple Auction: Selling Items Separately

Our goal is to understand the power and limitations of the entire design space of low-dimensional
mechanisms. To make this goal more concrete, we begin by examining a specific simple auction
format.

The simplest way of selling multiple items is by selling each separately. Several specific auc-
tion formats implement this general idea. We analyze one such format, simultaneous first-price
auctions (Bikhchandani, 1999). In this auction, each bidder submits simultaneously one bid per
item—only m bidding parameters, compared with its 2m private parameters—and each item is sold
in parallel using a first-price auction.

When do we expect simultaneous first-price auctions to have reasonable welfare at equilibrium?
Not always. With general bidder valuations, and in particular when items are complements, we
might expect severe inefficiency due to the “exposure problem” (e.g., Milgrom (2004)). For example,
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Figure 1: A hierarchy of valuation classes.

consider a bidder in an auction for wireless spectrum licenses that has large value for full coverage
of California but no value for partial coverage. When items are sold separately, such a bidder has
no vocabulary to articulate its preferences, and runs the risk of obtaining a subset of items for
which it has no value, at a significant price.

Even when there are no complementarities amongst the items, we expect inefficiency when items
are sold separately (e.g., Krishna (2010)). The first reason is “demand reduction,” where a bidder
pursues fewer items than it truly wants, in order to obtain them at a cheaper price. Second, if
bidders’ valuations are drawn independently from different valuation distributions, then even with
a single item, Bayes-Nash equilibria are not always fully efficient.

5.3 Valuation Classes

Our discussion so far suggests that simultaneous first-price auctions are unlikely to work well with
general valuations, and suffer from some degree of inefficiency even with simple bidder valuations.
To parameterize the performance of this auction format, we introduce a hierarchy of bidder valu-
ations (Figure 1); the literature also considers more fine-grained hierarchies (Feldman et al., 2015;
Lehmann et al., 2006).

The biggest set corresponds to general valuations, which can encode complementarities among
items. The other three sets denote different notions of “complement-free” valuations. In this survey,
we focus on the most permissive of these, subadditive valuations. Such a valuation vi is monotone
(vi(T ) ⊆ vi(S) whenever T ⊆ S) and satisfies vi(S ∪ T ) ≤ vi(S) + vi(T ) for every pair S, T of
bundles. This class is significantly larger than the well-studied classes of gross substitutes and
submodular valuations.11 In particular, subadditive valuations can have “hidden complements,”
with two items becoming complementary once a third item is acquired, while submodular valuations
cannot (Lehmann et al., 2006).

11Submodularity is the set-theoretic analog of “diminishing returns:” vi(S ∪ {j}) − vi(S) ≤ vi(T ∪ {j}) − vi(T )
whenever T ⊆ S and j /∈ S. The gross substitutes condition—which states that a bidder’s demand for an item only in-
creases as the prices of other items rise—is strictly stronger and guarantees the existence of Walrasian equilibria (Kelso
and Crawford, 1982; Gul and Stacchetti, 1999).
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5.4 When Do Simultaneous First-Price Auctions Work Well?

Our intuition about the performance of simultaneous first-price auctions translates nicely into
rigorous statements. First, for general valuations, selling items separately can be a disaster.

Theorem 5.1 (Hassidim et al. (2011)) With general bidder valuations, simultaneous first-price
auctions can have mixed-strategy Nash equilibria with expected welfare arbitrarily smaller than the
VCG benchmark.

For example, equilibria of simultaneous first-price auctions need not obtain even 1% of the maximum-
possible welfare when there are complementarities between many items.

On the positive side, even for the most permissive notion of complement-free valuations—
subadditive valuations—simultaneous first-price auctions suffer only bounded welfare loss.

Theorem 5.2 (Feldman et al. (2013)) If every bidder’s valuation is drawn independently from
a distribution over subadditive valuations, then the expected welfare obtained at every Bayes-Nash
equilibrium of simultaneous first-price auctions is at least 50% of the expected VCG benchmark
value.

In Theorem 5.2, the valuation distributions of different bidders do not have to be identical, just
independent. The guarantee improves to roughly 63% for the special case of submodular bidder
valuations (Syrgkanis and Tardos, 2013).

Taken together, Theorems 5.1 and 5.2 suggest that simultaneous first-price auctions should
work reasonably well if and only if there are no complementarities among items.

5.5 Negative Results

We now return to the question of when simple mechanisms, meaning mechanisms with low-dimensional
bid spaces, can achieve non-trivial welfare guarantees. Section 5.4 considered the special case of
simultaneous first-price auctions; here we consider the full design space.

First, the poor performance of simultaneous first-price auctions with general bidder valuations is
not an artifact of the specific format: every simple mechanism is vulnerable to arbitrarily large wel-
fare loss when there are complementarities among items. This impossibility result argues forcefully
for a rich bidding language, such as flexible package bidding, in such environments.

Theorem 5.3 (Roughgarden (2014b)) With general bidder valuations, no family of simple mech-
anisms guarantees equilibrium welfare at least a constant fraction of the VCG benchmark.

In Theorem 5.3, the mechanism family is parameterized by the number of items m; “simple” means
that the number of dimensions in each bidder’s bid space is bounded above by some polynomial
function of m. The theorem states that for every such family and constant c > 0, for all sufficiently
large m, there is a valuation profile and a full-information mixed Nash equilibrium of the mechanism
with expected welfare less than c times the maximum possible.12 The proof of Theorem 5.3 builds on
techniques from the field of complexity theory, specifically communication complexity (Kushilevitz
and Nisan, 1996; Roughgarden, 2016a).

12Technically, Theorem 5.3 proves this statement for an ε-approximate Nash equilibrium—meaning every player
mixes only over strategies with expected utility within ε of a best response—where ε > 0 can be made arbitrarily
small. The same comment applies to Theorem 5.4.
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We already know from Theorem 5.2 that, in contrast, simple auctions can have non-trivial
welfare guarantees with complement-free bidder valuations. Our final result states that no simple
mechanism outperforms simultaneous first-price auctions with these bidder valuations.

Theorem 5.4 (Roughgarden (2014b)) With subadditive bidder valuations, no family of simple
mechanisms guarantees equilibrium welfare more than 50% of the VCG benchmark.

6 Case Study #3: Algorithmic Mechanism Design

In this section we address a third possible failure of optimal mechanisms: excessive computation.
As in the previous section, we study the problem of allocating resources to players with private
valuations to maximize the social welfare.

Section 6.1 introduces the theory of computational complexity, which studies the amount of
computational resources necessary and sufficient to solve different computational problems. Sec-
tion 6.2 interprets this theory in the context of the recent FCC Incentive Auction. Section 6.3
states our design goals. Sections 6.4 and 6.5 instantiate the approximately optimal mechanism
design paradigm in single- and multi-parameter settings, respectively. Our single-parameter exam-
ple concerns allocating a limited-capacity shared resource, and we’ll see that “greedy” mechanisms
often perform well. Our main multi-parameter example is multi-unit auctions, and we’ll see how
to modify the VCG mechanism, with bounded loss of social welfare, so that it becomes computa-
tionally tractable.

6.1 Computational Complexity

The field of computational complexity analyzes the amount of computational resources, such as the
amount of time, required to solve a computational problem. Examples of computational problems
include sorting a given set of numbers, sequencing a given set of tasks, computing a shortest path
between a given origin and destination in a network, and so on. A positive result in this field
takes the form of a computationally efficient algorithm—an algorithm that solves every instance
of a problem in a reasonable amount of time. The most common definition of “reasonable” is
as a polynomial-time algorithm: the running time (i.e., number of elementary steps) performed
by the algorithm grows as a polynomial function of the size of the instance (e.g., the number of
tasks to be sequenced, or the number of vertices and edges in the given network). Equivalently,
the input sizes that the algorithm can solve in a fixed amount of time scales multiplicatively with
increasing computational power. An example of an inefficient algorithm is one that exhaustively
searches through an exponential number of possible solutions (cf., Section 2.3). A standard textbook
treatment of computational complexity is Sipser (2006); see also Roughgarden (2010) for a survey
aimed at economists.

Unfortunately, many computational problems, including many that arise in economics, are
“NP -hard.” A formal definition of this term is outside the scope of this survey, but the bottom
line is that NP -hard problems do not admit computationally efficient algorithms under widely
believed mathematical assumptions (specifically, the “P 6= NP” conjecture).

While the NP -hardness of a problem rules out any always-fast, always-correct algorithm for
the problem (assuming P 6= NP ), it is not a death sentence. In some (but not all) applications,
the instances of an NP -hard problem relevant to practice are relatively easy and can be solved in
a reasonable amount of time.
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6.2 Computational Complexity in Practice: The FCC Incentive Auction

The lessons of computational complexity show up frequently in the real world. For an example
germane to this survey, consider the US FCC Incentive Auction of 2016–17. This auction consisted
of two phases: (i) freeing up a designated band of spectrum by buying it back from TV broadcasters;
and (ii) reselling the cleared spectrum to interested companies (Milgrom, 2017). Two computational
problems are closely associated with the buying-back phase. The first is the problem of checking
whether a given set of broadcasters can stay on-air, i.e., can be feasibly repacked into the band
of spectrum not designated for sale to companies. In the second computational problem, given
every broadcaster’s value for remaining on-air, the goal is to find the subset of broadcasters with
maximum total value (welfare) that can be feasibly repacked.

While both computational problems are NP -hard, the problem of checking feasibility can be
reformulated as a satisfiability (SAT) problem, for which effective SAT-solver software exists (New-
man et al., 2017).13 For the problem of welfare maximization, however, no effective heuristic is
known.14 This demonstrates that computational complexity can be a true hurdle for mechanism de-
sign, forcing the designer to embrace an approximation approach, as was done in the FCC Incentive
Auction.

6.3 Design Goals

For the rest of this section, our goal is to design a mechanism that: (i) is dominant-strategy
incentive-compatible, or DSIC (an important requirement in our motivating example—the Incentive
Auction should be simple for broadcasters to participate in); (ii) is welfare-maximizing, subject
to feasibility; and (iii) runs in polynomial time. When the welfare maximization requirement
involves solving an NP -hard problem, properties (ii) and (iii) are incompatible (even ignoring
the DSIC requirement) and one of them must be relaxed. We consider relaxing (ii) and settling
for approximate welfare-maximization. A fundamental question in algorithmic game theory, first
posed by Nisan and Ronen (2001), is whether the DSIC requirement leads to further loss in the
approximation factor. In other words, is mechanism design fundamentally more difficult than
algorithm design?15

6.4 Approximation in Single-Parameter Settings

We introduce a single-parameter abstraction of the packing scenario described in our motivating
example (Section 6.2). There are n players (broadcasters) with single-parameter values v1, . . . , vn
for being chosen by the mechanism (staying on-air). There is a feasibility constraint F ⊆ 2[n] over
player sets, where A ∈ F if and only if the player set A can be feasibly chosen (repacked).16 The
auction outcome is the chosen (on-air) player set A∗ ∈ F , and its welfare is

∑
i∈A∗ vi.

13An instance of the satisfiability problem is a logical formula in a specific format with a number of free Boolean
variables; the question is whether it’s possible to assign values to the free variables so that the formula is satisfied
(i.e., is true).

14Milgrom (2017), Section 4.3: “In the actual auction, Vickrey outcomes [...] cannot be computed at all.”
15We focus on the case of DSIC mechanism design, where in general the answer is yes (Papadimitriou et al., 2008;

Dobzinski, 2011; Dughmi and Vondrák, 2015; Dobzinski and Vondrák, 2016; Daniely et al., 2018). The same question
makes sense for Bayesian incentive-compatible (BIC) mechanisms, and for this version of the question, recent research
has produced strong and general positive results (Hartline and Lucier, 2015; Hartline et al., 2015; Bei and Huang,
2011; Dughmi et al., 2017).

16We assume that F is downward-closed, i.e., if A is feasible and A′ ⊆ A then A′ is also feasible.
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Myerson (1981) characterizes the range of DSIC mechanisms in such single-parameter settings
as monotone allocation rules coupled with critical bid payments (analogous to the second-price
payment). The approximate mechanism design question therefore reduces in these settings to
approximation algorithm design, subject to the extra condition of monotonicity.

6.4.1 Example: Knapsack

A knapsack constraint corresponds to a shared resource with limited capacity W . Every player
has a publicly-known size wi ≤W (e.g., the size of bandwidth it needs to stay on-air), and A ∈ F
if and only if the set of players A fits within the knapsack (

∑
i∈Awi ≤ W ). The computational

problem of finding a welfare-maximizing player set among the sets that fit within the knapsack is
NP -hard; assuming P 6= NP , there is no polynomial-time algorithm that solves the problem in
general.

The classic algorithm of Ibarra and Kim (1975) achieves the next best thing: it guarantees
99% of the optimal welfare in polynomial time.17 This algorithm is not monotone, but Briest
et al. (2011) show how to tweak it to get a monotone allocation rule without compromising on the
approximation factor. Together with Myerson’s critical bid pricing, this gives a mechanism that
satisfies all three desiderata (i)–(iii) above (up to a tiny loss in welfare).

6.4.2 A Simple Greedy-Based Mechanism

Next we consider a mechanism for the knapsack problem that is based on the “greedy” approach,
which is remarkably simple to describe and analyze.

DSIC Greedy-Based Mechanism for the Knapsack Problem

1. Solicit bids b1, . . . , bn, and re-index the players so that b1
w1
≥ · · · ≥ bn

wn
.

2. Choose the biggest prefix {1, 2, . . . , i} of players with total size at most W .

3. Return either this greedy solution or the highest bidder, whichever has a higher sum of
bids.

4. Charge Myerson’s critical bid prices.

In effect, this mechanism greedily considers players one at a time, ordered according to their
“bang-per-buck.” (The second solution is needed only to handle the case where there is a single
bidder that is both very big and also has a very high valuation.) Holding all other bids fixed,
by bidding higher a player can only go from being unchosen to being chosen by the mechanism.
This monotonicity coupled with the pricing rule ensures that the mechanism is DSIC. It also has a
non-trivial approximation guarantee:

Theorem 6.1 (Folklore) The greedy-based mechanism for the knapsack problem runs in polyno-
mial time and, assuming truthful bids, achieves at least 50% of the optimal welfare.

17In fact, the guarantee is (100 − c)% of the welfare, where c can be an arbitrarily small constant. Formally, for
any precision parameter ε, the algorithm guarantees (1− ε) ·100% of the optimal welfare and runs in time polynomial
in n and 1

ε
. Similar comments apply to uses of “99%” later in this survey.

15



To see why, first imagine that the greedy prefix {1, 2, . . . , i} of players filled up the knapsack
exactly, with no space left over. In this case, this prefix is an optimal solution—the player ordering
ensures that every unit of space in the knapsack is used in the most-valuable possible way. The
only issue is when the greedy prefix leaves some of the knapsack unfilled, because the sum of the
sizes of the first i players is less than W and that of the first i+ 1 players is W ′ > W . The prefix
{1, 2, . . . , i+ 1} would be optimal for a knapsack with capacity W ′, and hence is only better-than-
optimal for the smaller knapsack capacity W . Each of the sets {1, 2, . . . , i} and {i+ 1} is a feasible
solution with the original capacity W , so one of them captures at least 50% of the optimal welfare.
The greedy-based mechanism does at least as well.18

6.4.3 Performance of the Greedy Approach in Practice

The FCC Incentive Auction is more complicated than a knapsack setting, because its feasibil-
ity constraint F must take into account not only sizes but also potential interferences among
geographically-close broadcasters. This results in a more difficult welfare-maximization problem,
and greedy approaches cannot guarantee any constant fraction of the optimal welfare. However,
when a greedy approach is applied in simulations, its empirical performance is excellent, achieving
95% of the optimum on average (Newman et al., 2017).19

What characteristics of “typical instances” make them easier to approximate that arbitrary
instances? Approximation helps us identify relevant parameters that govern the difficulty of welfare
maximization. Milgrom (2017) points to the distance of F from a matroid (see, e.g., Oxley (1992))
as one such parameter. Back in knapsack settings, item sizes are a crucial parameter: if the size of
every item is at most α% of the knapsack capacity (say 5% or 10%), then the greedy-based approach
guarantees welfare within (100 − α)% of optimal, even in the worst case (see, e.g., Dütting et al.
(2017)). These examples illustrate how stronger worst-case guarantees are often possible under
stronger assumptions about the instances of interest.

6.5 Approximation in Multi-Parameter Settings

As we have seen, in single-parameter settings there is a successful paradigm for designing compu-
tationally efficient mechanisms with good approximation guarantees: (i) Characterize the design
space of implementable algorithms (i.e., monotone allocation rules); (ii) Optimize over this design
space (i.e., find the best computationally efficient monotone algorithm), or use a simple algorithm
from the design space (like a greedy algorithm). This paradigm has had limited success in multi-
parameter settings. The reason is that the characterization of implementable multi-parameter
allocation rules (the “cyclic monotonicity” condition of Rochet (1987)) is quite inconvenient to
work with.

An alternative idea focuses on the VCG mechanism, which can be seen as an ingenious way to
transform a welfare-maximizing algorithm into a DSIC mechanism. Can this method be extended to
approximately welfare-maximizing algorithms? Unfortunately, plugging an arbitrary approximation
algorithm into the VCG mechanism does not generally preserve incentive-compatibility (Nisan and

18The guarantee of 50% is tight in the worst case. Let ε > 0 be arbitrarily small. If there are 3 players with sizes
W
2

+ ε, W
2
, W

2
and valuations W

2
+ 2ε, W

2
, W

2
, then the greedy-based mechanism chooses player 1 and achieves welfare

W
2

+ 2ε, while the optimal solution (players 2 and 3) has welfare W .
19The problem instances considered by Newman et al. (2017) were kept small enough that the exponential-time

computation of the benchmark (the optimal welfare) could be carried out in a reasonable amount of time.
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Ronen, 2007). A more specific approach is to first commit to a restricted range of outcomes (prior
to receiving players’ bids), and then, given players’ bids, to run the VCG mechanism with respect
to the restricted range. The hope is to define a range small or well-structured enough to enable
computationally-efficient welfare maximization over it, yet large enough to contain a near-optimal
outcome for every valuation profile. The resulting DSIC mechanisms are called maximum-in-range
(MIR) mechanisms.

For example, consider a multi-unit auction setting with n bidders and m homogeneous items
(called units). We do not assume that bidders have decreasing marginal values. Assume that m
is much bigger than n (m = 2n, say), and that the goal is to compute an approximately welfare-
maximizing allocation in time polynomial in n and log2m.20 Such a computation cannot even take
the time to examine a bidder’s valuation for each of the m possible allocations to it.

One simple maximal-in-range solution is to commit to selling units only in multiples of m/n2—
equivalently, to bundle the units into n2 blocks of equal size—and then implement the VCG mech-
anism for this restricted range using dynamic programming. The resulting mechanism uses compu-
tation polynomial in n and log2m, and is guaranteed to produce an allocation with near-optimal
welfare.

Theorem 6.2 (Dobzinski and Nisan (2010)) The maximum-in-range multi-unit auction above
runs in time polynomial in n and logm and, assuming truthful bids, achieves at least 50% of the
optimal welfare.

Can we do better? Not with maximum-in-range mechanisms: Dobzinski and Nisan (2010) prove
that no such mechanism can guarantee more than 50% of the optimal welfare. What about with a
more general class of mechanisms?

A randomized mechanism outputs a distribution over allocations and payments. It is truthful
(in expectation) if for any valuation reports of the other players, the expected utility of a player
is maximized by reporting truthfully, where the expectation is over the randomization internal to
the mechanism. The maximum-in-range approach can be immediately generalized to randomized
mechanisms: A maximum-in-distributional-range (MIDR) mechanism pre-decides on a range of
distributions over allocations; based on the reported valuations, it chooses the distribution from
the range that induces the maximum expected welfare. MIDR mechanims are sufficiently powerful
to obtain almost optimal welfare in multi-unit auctions:

Theorem 6.3 (Dobzinski and Dughmi (2013)) There exists a maximum-in-distributional-range
mechanism for homogeneous items that runs in time polynomial in n and logm and achieves in
expectation at least 99% of the optimal welfare.

The maximum-in-distributional-range approach is useful also in multi-item auctions with non-
identical items. Circling back to FCC spectrum auctions, a reasonable model for how potential
spectrum buyers value sets of channels is the class of coverage valuations, which assign value to
every channel set according to the population it covers. There is a computationally efficient MIDR
mechanism based on convex programming that achieves roughly 63% of the optimal welfare for
bidders with coverage valuations (Dughmi et al., 2016).

20Exact welfare-maximization is provably impossible under this time constraint, even ignoring incentive-
compatibility. If the running time need only be polynomial in m rather than log2m, then the VCG mechanism
can be implemented efficiently using an algorithmic technique called dynamic programming.

17



7 Discussion and Alternatives to Approximation

7.1 A Second Look at Approximation

Fundamentally, the goal of the approximately optimal mechanism design framework is to make
comparisons between competing mechanisms for a problem and identify a “best-in-class” mecha-
nism. Even with a given objective function, it is not always obvious how to compare two different
mechanisms: the first will generally perform better in some cases (e.g., for some valuation profiles,
or some prior distributions) and the second in other cases. This issue does not come up in classical
welfare-maximization settings: because the VCG mechanism maximizes the social welfare ex post,
it is better than every competing mechanism (with respect to the social welfare objective) irre-
spective of the valuation profile. It also does not arise in the traditional optimal auction setting:
once the prior distribution is fixed, competing auctions can be unequivocally ranked according to
expected revenue.

In many of the canonical applications of approximately optimal mechanism design, including the
ones described in this survey, the theoretically optimal mechanism serves only as a benchmark. The
performance of a mechanism of interest (like a “simple” mechanism) is assessed through a relative
comparison to this benchmark. A given mechanism generally approximates the benchmark better
in some cases than others, and two different mechanisms generally have incomparable performance,
which each one superior to the other in some cases. In approximately optimal mechanism design,
the performance of a mechanism is usually summarized with a single number, by taking the worst-
case (i.e., minimum) performance guarantee achieved in a setting of interest. For example, the
50% guarantee in Theorem 4.1 holds in the worst case over all single-item auction settings with
regular valuation distributions, the 50% guarantee in Theorem 5.2 holds in the worst case over
all subadditive valuation distributions, and the 50% guarantee in Theorem 6.1 holds in the worst
case over all valuation profiles.21 With this single number attached to every mechanism, there is
an obvious way to compare them, according to their worst-case approximation guarantees. This
approach seems to enable results that would be hard or impossible to establish by other means,
such as the quantification of simplicity-optimality trade-offs in Theorem 4.2 and the optimality of
simultaneous first-price auctions among low-dimensional mechanisms (Theorems 5.2 and 5.4).22

Instead of taking the worst case over all settings of interest, why not take a Bayesian approach
and impose a prior distribution over these settings? For example, in the single-item context of
Theorem 4.1, we could assume that the seller has a “higher-order belief” in the form of a dis-
tribution over valuation distributions. But as pointed out by Segal (2003), “the dependence on
the seller’s prior is simply pushed to a higher level.” Complexity and detail-dependence—the very
disadvantages we were trying to avoid—creep back in, rendering this approach ineffective for our
purposes.

In the remainder of this section, we discuss other approaches from the literature that aim to
reveal useful mechanism design techniques or understand simplicity-optimality tradeoffs. Each of
these approaches has both merits and downsides, and each is an important tool in the market

21All three results are also tight in a worst-case sense, meaning there exists a setting of interest in which the
mechanism’s approximation guarantee achieves the worst-case bound.

22Making the right modeling choices can be key to obtaining meaningful qualitative insights. One choice is the
settings of interest—for example, the restriction to regular distributions in Theorem 4.1 or subadditive valuations in
Theorem 5.2. The choice of the benchmark can also be important. For example, should the performance of a simple
DSIC mechanism be compared to that of the best arbitrarily complex DSIC mechanism, or the best BIC mechanism?
Of course, the more permissive the benchmark, the harder it is to approximate it.
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designer’s toolbox.

7.2 Alternative I: Robust Max-Min Optimality

Robust mechanism design is a rising paradigm in economics, surveyed in this issue by Carroll (2018).
It has roots in operations research and robust optimization, where uncertainty about parameters
is represented by deterministic “uncertainty sets,” and optimization is in the max-min sense over
these sets.23 In recent years, robust mechanism design has offered justifications for the ubiquity
of several popular auction and contract formats, often capturing the common wisdom about what
makes them so widely embraced in practice.

Robust mechanism design shares some of the “worst-case” or “max-min” flavor of approxi-
mately optimal mechanism design, but it strives for max-min optimality rather than the optimal
approximation of a benchmark. For concreteness, consider robustness against detailed knowledge
of an exponential-sized joint distribution, representing the distribution of values for bundles of
goods. Following Carroll (2017), assume instead knowledge only of the marginal distributions of
values of individual goods. The paradigm of robust mechanism design replaces the original model,
in which every market instance corresponds to a joint distribution, with a new model, in which
every market instance corresponds to a set of marginals. The objective of maximizing the expected
revenue for each instance is then replaced with a max-min objective: we measure a mechanism’s
performance on a “partial” instance (i.e., marginals) by its performance on the worst-case “full”
instance (i.e., joint distribution) that is compatible with the partial instance. The result is a new
problem formulation with new instances (partial) and objective (max-min) to maximize. In this
new model, the optimal mechanism is well defined—it is the mechanism that maximizes the max-
min objective for every partial instance. A successful outcome of this modeling approach could be
the novel justification of a widely-used mechanism format as the robustly optimal solution, or the
identification of a new and potentially useful robustly optimal mechanism.

Robust mechanism design makes weaker informational assumptions than its classical coun-
terpart, thus tackling head-on the problem of excessive detail-dependence. When the primary
criticism of the optimal mechanism stems from sources like communication or computational com-
plexity rather than detail-dependence, however, it is not immediately obvious how to apply to
robust mechanism design perspective. In this case, simple mechanisms are desirable due to their
practical implementability, not their robustness to details of the environment per se.

7.3 Alternative II: Asymptotic Optimality (Large Market) Results

In asymptotic analysis, the performance of a simple mechanism is measured as the size of the
market (number of players) goes to infinity. The hope is to establish that the mechanism becomes
optimal in the limit, despite its simplicity. Such a result would imply that as long as the market
is sufficiently “large,” we can combine the best of both worlds (simplicity and almost-optimality).
When successful, the asymptotic approach gives a new sense in which simple mechanisms can be
very close to optimal.

The intuition behind “large market results” is as follows: As more players participate in a
resource-allocation mechanism, the actions of a single player have an increasingly negligible effect
on the prices and outcome of the mechanism (under certain conditions).24 This makes the players

23See the work of Bandi and Bertsimas (2014) for an application of robust optimization to auctions.
24See Roberts and Postlewaite (1976) for an early example of quantifying this intuition.
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more homogeneous from the mechanism’s perspective, and their behavior easier to incentivize; it
then becomes possible even for simple mechanisms to optimize economic objectives such as revenue
and welfare. Put differently, worst-case bounds on inefficiency can be overly pessimistic when
determined by pathological “small market” examples, and this issue goes away in larger markets.

A central example of the asymptotic optimality approach is the work of Swinkels (2001), who
studies simple auctions for asymmetric players competing over a single good (with multiple units).
Whereas in small markets such auctions can have very inefficient equilibria, Swinkels (2001) shows
that under certain conditions of “noisy” demand or supply, the equilibria become arbitrarily close
to welfare-maximizing as the markets grow large. Roughly, the role of the noisy demand/supply
assumption is to provide enough randomness to rule out pathological examples with inefficient
equilibria that persist even in large markets. Feldman et al. (2016) extend these results to multiple
different goods, as well as to additional simple auction formats. They also combine the large
market approach with the approximation paradigm; in one of the settings they study, equilibrium
inefficiency decreases but does not vanish in the limit. Segal (2003) establishes a large market
result for revenue rather than welfare, showing how the revenue performance of detail-free auctions
can converge quickly to that of optimal detail-dependent ones; see also Baliga and Vohra (2003),
Goldberg et al. (2006), and Neeman (2003) for related results. Other large market results exist in
the context of resource allocation without money, some showing that simple mechanisms increase
in efficiency as the market grows large (e.g., Che and Kojima (2010)), others that they gain good
properties like truthfulness or stability (e.g., Che et al. (2018)).

There are two main downsides to the asymptotic large market approach: (i) no guarantees
for small- to medium-sized markets, which are common in many modern applications (e.g., many
keyword advertising auctions); and (ii) in some cases, reliance on sufficient randomness in the
market.

7.4 Alternative III: Resource Augmentation

Bulow and Klemperer (1996) first introduced the approach of resource augmentation as an alterna-
tive to complex optimal mechanisms. In their seminal auctions vs. negotiations result, they show
that in a symmetric single-item auction setting with a common regular valuation distribution, run-
ning a standard Vickrey auction with one extra (i.i.d.) bidder earns at least as much expected
revenue as a (distribution-dependent) optimal auction without the extra bidder. We can view the
players as “resources,” in the sense that their competition is what drives up prices and generates
high revenue. Adding a player can be viewed as an “augmentation” of these resources.25 While the
intuition of more competition leading to more revenue is clear, it is not a priori apparent by how
much the competition needs to be increased for a simple mechanism to outperform the optimal one
(and whether this is at all possible for a particular simple mechanism).

Roughgarden et al. (2017b) generalize the result of Bulow and Klemperer (1996) to multi-
item auctions, and also make two connections to approximation: first, by combining resource
augmentation with approximation to limit the required amount of extra resources; and second, by
establishing a framework for transforming a resource augmentation guarantee into an approximation
one. Related approximation guarantees were established by Devanur et al. (2011). The work of
Eden et al. (2017) further generalizes the approach of augmenting competition by applying it to

25The phrase “resource augmentation” was originally coined by Kalyanasundaram and Pruhs (2000) in the context
of algorithm analysis, inspired in part by Sleator and Tarjan (1985).
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more restrictive benchmarks and challenging revenue maximization settings. Feldman et al. (2017)
combine resource augmentation with an approximation guarantee of 99%, and Liu and Psomas
(2018) apply this approach to dynamic mechanisms.

One downside of resource augmentation is that comparing the augmented mechanism to the
optimal one with no augmentation is in some sense “unfair,” like comparing apples to oranges. On
the other hand, this approach enables a direct comparison between the cost of resource augmen-
tation and the cost of mechanism complexity, which is important for making an informed choice
between a simple mechanism and its complex counterpart. Another limitation of the competition
enhancement approach is that it typically assumes that players are i.i.d. and regular; for possible
solutions to this issue, see Hartline and Roughgarden (2009) and Sivan and Syrgkanis (2013). Fi-
nally, resource augmentation has been applied so far mainly to revenue-maximization problems,
although it has recently been adopted for other domains as well (Akbarpour et al., 2018).

8 Conclusion

The main message of this survey is that approximation is useful for achieving qualitative insights
on mechanism design in complex settings. Section 8.1 summarizes briefly our supporting evidence
for this statement, and the takeaways from our three case studies. Complexity is quickly becoming
the norm, and even the defining feature, in many important economic settings (Nisan, 2017).
Many modern transactions take place within complex market environments—ridesharing platforms,
crowdsourcing marketplaces, and so on. This suggests that, like other techniques for dealing with
complexity, the approximation paradigm will only increase in utility in the coming years.

At present, however, approximation is possibly the most polarizing topic in debate among
computer scientists and economists working on mechanism design. Economic theorists have largely
ignored this paradigm, passing on the opportunity to add to their arsenal a well-developed and deep
mathematical toolbox.26 For their part, computer scientists have arguably been guilty of devoting
disproportional effort to small improvements in approximation factors, often at the expense of useful
qualitative insights. They have also been accused of viewing every problem as a nail to which the
approximation hammer should be applied.

We postulate that many if not all of these issues are caused by an overly literal interpretation
of approximation factors, as detailed in Section 3. In this sense, the debate on approximation has
greatly advanced the research community’s understanding of the meaning behind approximation
guarantees in mechanism design. It goes without saying that a guarantee of (say) 50% does not in
itself justify the use of a mechanism; but in the context of a challenging area of mechanism design,
in which there is no useful characterization of the optimal mechanism and no explanation as to
why certain mechanisms are observed in practice, the same guarantee of a 50%-approximation can
become meaningful and enlightening.

As Carroll (2018) notes, the culture of economic theory is becoming gradually more pluralistic;
we believe this is an excellent time for economists to take another look at approximation—at the
very least, as a useful complement to the widely-accepted approaches in Section 7. In the best-
case scenario, approximation could become a leading example of the kind of gains that stem from
interdisciplinary research.

26See Arnosti et al. (2016) for a recent exception.
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8.1 Summary of Case Studies

We briefly summarize the benefits of applying the approximation paradigm to address the following
three complexity barriers in mechanism design: (1) opaque and detail-dependent mechanisms; (2)
unreasonable communication requirements from participants; and (3) prohibitive computational
complexity.

Section 4 considered barrier (1). In single-parameter environments, the pursuit of approximation
guarantees guided us to a parameterized family of mechanisms that runs the gamut from complex
optimal mechanisms to simple mechanisms with constant-factor approximation guarantees. In
multi-parameter environments, the approximation approach led to a relatively simple mechanism—
selling items separately or as a single bundle, whichever is better—that provably extracts a constant
fraction of the optimal expected revenue in certain multi-item auction settings.

Section 5 focused on barrier (2). Here, the approximation perspective confirms that the simple
common method of selling items separately has excellent welfare-performance guarantees, as long
as bidders’ preferences do not include strong complementarities between items. This mirrors the
conventional wisdom among both theoreticians and practitioners in multi-item auction design.

Section 6 addressed barrier (3), and showed that a natural greedy approach to sharing a limited-
capacity resource is near-optimal in theory, and significantly exceeds expectations in practice.
Meanwhile, in certain multi-item auctions, generalizations of the VCG mechanism achieve near-
optimal welfare.

In all three applications, traditional economic tools targeted at characterizing exact and optimal
solutions appear inadequate to achieve similar results.

8.2 Directions for Future Research

We highlight three directions for further research on approximation and mechanism design: new
applications for the approximation paradigm; improved understanding of the relationships between
different notions of complexity (and the corresponding approximation guarantees); and narrowing
the gaps between worst-case analysis and the “typical cases” relevant to practice. We believe that
more research in these directions is necessary to expand the reach of the theory and improve its
coherence and applicability. Many additional questions arise in relation to existing application
areas of the approximation paradigm, like those in our case studies.

1. New frontiers for approximation. Cutting-edge economic theory and new applications
can inspire new ways for the approximation paradigm to contribute. One source of new
frontiers is market design in practice. For example, as part of the design of the FCC Incentive
Auction, Milgrom and Segal (2017) developed a reverse greedy heuristic and analyzed its
strong incentive properties. The approximation paradigm can be used to study formally its
welfare guarantees (Dütting et al., 2017; Gkatzelis et al., 2017).

Another source for new opportunities is classical areas of economics in which complexity
matters, and perhaps has been studied using one the approaches in Section 7, but to which
the approximation paradigm has not yet been applied. For example, contract design is a
major success story of robust mechanism design (Carroll, 2015), and only very recently has
the approximation lens been applied to it (Dütting et al., 2018). Similarly, the large market
approach (Section 7.3) has been successful in achieving fair allocations in conjunction with
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efficiency and strategyproofness (Che and Kojima, 2010). To relax the large market require-
ment, researchers are beginning to explore different notions of approximate fairness (Budish,
2011; Caragiannis et al., 2018).

Ideas can also flow in the opposite direction. For example, we used the approximation
paradigm in Section 4 to formalize simplicity-optimality trade-offs. Could such trade-offs
also be formulated using one of the alternative approaches in Section 7? For example, are
there settings where the robustly optimal mechanism (in the sense of Section 7.2) becomes
gradually more complex as more details of the environment are revealed?

2. Relations among different complexity measures. We have demonstrated how the ap-
proximation paradigm helps tackle different types of complexity. These have largely been
studied in isolation, but researchers are now aspiring to a more holistic and comprehensive
understanding of mechanism design complexity. For example, in Section 4 we discussed rev-
enue approximation guarantees for classes of mechanisms with low information requirements.
Do any of our conclusions change dramatically if we also enforce computational tractability?
See Gonczarowski and Nisan (2017) for a recent example of work in this direction.

Similarly, Section 5 discussed equilibrium welfare guarantees for auctions with low communi-
cation requirements. What if we relax the assumption of convergence to equilibrium, perhaps
assuming instead some form of natural dynamics that requires less computation? See Rough-
garden et al. (2017a) for a more detailed discussion of this point.

A final example is the recent work of Dobzinski (2016), who proved a formal relationship
between different measures of mechanism complexity—some measures related to the mecha-
nism’s format (when viewed as a menu of prices, e.g., the number of such prices), and some to
its required resources (communication or computation). Extending such results to additional
complexity measures would contribute to a more unified theory of mechanism complexity,
and thus also of approximately optimal mechanisms.

3. Realistic (rather than pessimistic) models of complexity. In Section 6.4.3 we saw an
example of the gap between worst-case approximation guarantees for greedy-based mecha-
nisms and their (much better) performance in practice. The “beyond worst-case analysis”
research agenda in computer science advocates sharper analysis of algorithms to capture their
true behavior, usually by focusing attention on a subset of the “most relevant” inputs. The
same agenda is relevant for the analysis of mechanisms—we wish to develop models that
explain when and why the empirical performance of simple mechanisms significantly exceeds
their worst-case approximation guarantees. See Psomas et al. (2018) for a recent effort in this
direction.

Echenique et al. (2011) and Barman et al. (2014) approached this issue from the perspective
of revealed preference and showed that, in certain settings, every rationalizable set of choice
data is in fact consistent with an easy optimization problem. It would be interesting to extend
this approach to other settings, such as quasi-linear markets.
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