
The Complexity of Contracts ∗

Paul Dütting† Tim Roughgarden‡ Inbal-Talgam Cohen§

Abstract

We initiate the study of computing (near-)optimal contracts
in succinctly representable principal-agent settings. Here op-
timality means maximizing the principal’s expected payoff
over all incentive-compatible contracts—known in economics
as “second-best” solutions. We also study a natural relax-
ation to approximately incentive-compatible contracts.

We focus on principal-agent settings with succinctly
described (and exponentially large) outcome spaces. We
show that the computational complexity of computing a
near-optimal contract depends fundamentally on the number
of agent actions. For settings with a constant number of
actions, we present a fully polynomial-time approximation
scheme (FPTAS) for the separation oracle of the dual of the
problem of minimizing the principal’s payment to the agent,
and use this subroutine to efficiently compute a δ-incentive-
compatible (δ-IC) contract whose expected payoff matches
or surpasses that of the optimal IC contract.

With an arbitrary number of actions, we prove that
the problem is hard to approximate within any constant c.
This inapproximability result holds even for δ-IC contracts
where δ is a sufficiently rapidly-decaying function of c. On
the positive side, we show that simple linear δ-IC contracts
with constant δ are sufficient to achieve a constant-factor
approximation of the “first-best” (full-welfare-extracting)
solution, and that such a contract can be computed in
polynomial time.

1 Introduction

Economic theory distinguishes three fundamentally dif-
ferent problems involving asymmetric information and
incentives. In the first—known as mechanism design

∗Supported by BA/Leverhulme Small Research Grant
SRG1819\191601, NSF Award CCF-1813188, ARO grant

W911NF1910294, and the Israel Science Foundation (Grant
No. 336/18). Part of the work of the first author was done while
visiting Google Research. The third author is a Taub Fellow (sup-

ported by the Taub Family Foundation). The authors thank the
anonymous referees for their helpful feedback.

†Department of Mathematics, London School of Eco-

nomics, Houghton Street, London WC2A 2AE, UK. Email:
p.d.duetting@lse.ac.uk.

‡Department of Computer Science, Columbia University,

500 West 120th Street, New York, NY 10027, USA. Email:
tr@cs.columbia.edu.

§Department of Computer Science, Technion, Israel In-

stitute of Technology, Haifa, Israel 3200003. Email:
italgam@cs.technion.ac.il.

(or screening)—the less informed party has to make a
decision. A canonical example is Myerson’s optimal auc-
tion design problem [Myerson, 1981], in which a seller
wants to maximize the revenue from selling an item,
having only incomplete information about the buyers’
willingness to pay. The second problem is known as sig-
nalling (or Bayesian persuasion). Here, as in the first
case, information is hidden, but this time the more in-
formed party is the active party. A canonical example
is Akerlof’s “market for lemons” [Akerlof, 1970]. In this
example, sellers are better informed about the quality
of the products they sell, and may benefit by sharing
(some) of their information with the buyers.

Both of these basic incentive problems have been
studied very successfully and extensively from a compu-
tational perspective, see, e.g., [Cai et al., 2012a,b, 2013;
Babaioff et al., 2014; Cai et al., 2016; Babaioff et al.,
2017; Gonczarowski, 2018; Gonczarowski and Weinberg,
2018] and [Dughmi, 2014; Dughmi et al., 2014; Cheng
et al., 2015; Dughmi and Xu, 2016].

The third basic problem, the agency problem in
contract theory, has received far less attention from the
theoretical computer science community, despite being
regarded as equally important in economic theory (see,
e.g., the scientific background on the 2016 Nobel Prize
for Hart and Holmström [Royal Swedish Academy of
Sciences, 2016]). (A notable exception is [Babaioff et al.,
2012], which we will discuss with further related work
in more detail below.)

The basic scenario of contract theory is captured
by the following hidden-action principal-agent problem
[Grossman and Hart, 1983]: There is one principal and
one agent. The agent can take one of n actions ai ∈ An.
Each action ai is associated with a distribution Fi over
m outcomes xj ∈ R≥0, and has a cost ci ∈ R≥0. The
principal designs a contract p that specifies a payment
p(xj) for each outcome xj . The agent chooses an action
ai that maximizes expected payment minus cost, i.e.,∑
j Fi,jp(xj) − ci. The principal seeks to set up the

contract so that the chosen action maximizes expected
outcome minus expected payment, i.e.,

∑
j Fi,jxj −∑

j Fi,jp(xj).
The principal-agent problem is quite different from

mechanism design and signalling, where the basic diffi-

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

culty is the information asymmetry and that part of the
information is hidden. In the principal-agent problem
the issue is one of moral hazard : in and by itself the
agent has no intrinsic interest in the expected outcome
to the principal.

It is straightforward to see that the optimal contract
can be found in time polynomial in n and m by
solving n linear programs (LPs). For each action the
corresponding LP gives the smallest expected payment
at which this action can be implemented. The action
that yields the highest expected reward minus payment
gives the optimal payoff to the principal, and the LP for
this action the optimal contract.

Succinct principal-agent problems. This linear
programming-based algorithm for computing an opti-
mal contract has several analogs in algorithmic game
theory:

1. Mechanism design. For many basic mechanism de-
sign problems, the optimal (randomized) mecha-
nism is the solution of a linear program with size
polynomial in that of the players’ joint type space.

2. Signalling. For many computational problems in
signalling, the optimal signalling scheme is the
solution to a linear program with size polynomial in
the number of receiver actions and possible states of
nature.

3. Correlated equilibria. In finite games, a correlated
equilibrium can be computed using a linear program
with size polynomial in the number of game out-
comes.

These linear-programming-based solutions are unsatis-
factory when their size is exponential in some parameter
of interest. For example, in the mechanism design and
correlated equilibria examples, the size of the LP is ex-
ponential in the number of players. A major contribu-
tion of theoretical computer science to game theory and
economics has been the articulation of natural classes of
succinctly representable settings and a thorough study
of the computational complexity of optimal design prob-
lems in such settings. Examples include work on multi-
dimensional mechanism design that has emphasized suc-
cinct type distributions [Cai et al., 2012a,b, 2013, 2016],
succinct signalling schemes with an exponential number
of states of nature [Dughmi and Xu, 2016], and the effi-
cient computation of correlated equilibria in succinctly
representable multi-player games [Papadimitriou and
Roughgarden, 2008; Jiang and Leyton-Brown, 2015].
The goal of this paper is to initiate an analogous line of
work for succinctly described agency problems in con-
tract theory.

We focus on principal-agent settings with succinctly
described (and exponentially large) outcome spaces,
along with a reward function that supports value queries

and a distribution for each action with polynomial
description. While there are many such settings one can
study, we focus on what is arguably the most natural
one from a theoretical computer science perspective,
where outcomes correspond to vertices of the hypercube,
the reward function is additive, and the distributions
are product distributions. (Cf., work on computing
revenue-maximizing multi-item auctions with product
distributions over additive valutions, e.g. [Cai et al.,
2012a,b].)

For example, outcomes could correspond to sets
of items, where items are sold separately using posted
prices. Actions could correspond to different marketing
strategies (with different costs), which lead to different
(independent) probabilities of sales of various items.
Or, imagine that a firm (principal) uses a headhunter
(agent) to hire an employee (action). Dimensions could
correspond to tasks or skills. Actions correspond to
types of employees, costs correspond to the difficulty
of recruiting an employee of a given type, and for each
employee type there is some likelihood that they will
possess each skill (or be able to complete some task).
The firm wants to motivate the headhunter to put in
enough effort to recruit an employee who is likely to
have useful skills for the firm, without actually running
extensive interviews to find out the employee’s type.

In our model, as in the classic model, there is a
principal and an agent. The agent can take one of n
actions ai ∈ An, and each action has a cost ci ∈ R≥0.
Unlike in the original model, we are given a set of
items M , with |M | = m. Outcomes correspond to
subsets of items S ∈ 2M . Each item has a reward rj ,
and the reward of a set S of items is

∑
j∈S rj . Every

action ai comes with probabilities qi,j for each item j.
If action ai is chosen, each item j is included in the
outcome independently with probability qi,j . A contract
specifies a payment pS for each outcome S ∈ 2M . The
goal is to compute a contract that maximizes (perhaps
approximately) the principal’s payoff in running time
polynomial in n and m (which is logarithmic in the
size |2M | of the outcome space). Note that if we
wish to describe the contract by its nonzero payments,
the running time requirement forces us to use only
contracts with polynomial description length, that is,
zero payments for all but polynomially-many S ∈ 2M .

A notion of approximate IC for contracts.
The classic approach in contract theory is to require
that the agent is incentivized exactly, i.e., he (weakly)
prefers the chosen action over every other action. We
refer to such contracts as incentive compatible or just
IC contracts. Motivated in part by our hardness results
for IC contracts (see the next section) and inspired
by the success of notions of approximate incentive

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

compatibility in mechanism design (see [Cai, 2013;
Weinberg, 2014; Cai et al., 2016], hereafter referred
to as the CDW framework), we introduce a notion of
approximate incentive compatibility that is suitable for
contracts.

Our notion of δ-incentive compatibility (or δ-IC) is
that the agent utility of the approximately incentivized
action ai is at least that of any other action ai′ , less δ.
(See Section 2 and full version for details and discus-
sion.) This notion is natural for several reasons. First,
it coincides with the usual notion of ε-IC in “normal-
ized” mechanism design settings (with all valuations be-
tween 0 and 1), as in [Cai, 2013; Weinberg, 2014]. A sec-
ond reason is behaviorial. There is an increasing body of
work in economics on behavioral biases in contract the-
ory [Koszegi, 2014], including strong empirical evidence
that such biases play an important role in practice—for
example, that agents “gift” effort to the principals em-
ploying them [Akerlof, 1982]. The notion of δ-IC offers
a mathematical formulation of an agent’s bias. Along
similar lines, Carroll [2013] advocates generally for ap-
proximate IC constraints in settings where the designer
can propose their “preferred action” to agents, in which
case an agent may be biased against deviating due to the
complexities involved in determining the agent-optimal
action or the psychological costs of deviating. See also
[Englmaier and Leider, 2012] for related discussion in
the context of contract theory.

1.1 Our contribution and techniques We prove
several positive and negative algorithmic results for
computing near-optimal contracts in succinctly de-
scribed principal-agent settings. Our work reveals a fun-
damental dichotomy between settings with a constant
number of actions and those with an arbitrary number
of actions.

Constant number of actions. For a constant
number of actions, we prove in Section 3 that while
it is NP -hard to compute an optimal IC contract,
there is an FPTAS that computes a δ-IC contract
with expected principal surplus at least that of the
optimal IC contract; the running time is polynomial
in m and 1/δ.

Theorem (See Theorem 3.1, Corollary 3.2). For
every constant n ≥ 1 and δ > 0, there is an algorithm
that computes a δ-IC contract with expected principal
surplus at least that of an optimal IC contract in time
polynomial in m and 1/δ.

The starting point of our algorithm is a linear pro-
gramming formulation of the problem of incentivizing a
given action with the lowest possible expected payment.
Our formulation has a polynomial number of constraints

(one per action other than the to-be-incentivized one)
but an exponential number of variables (one per out-
come). A natural idea is to then solve the dual linear
program using the ellipsiod method. The dual separa-
tion oracle is: given a weighted mixture of n−1 product
distributions (over the m items) and a reference product
distribution q∗, minimize the ratio of the probability of
outcome S in the mixture distribution and that in the
reference distribution. Unfortunately, as we show, this
is an NP -hard problem, even when there are only n = 3
actions. On the other hand, we provide an FPTAS for
the separation oracle in the case of a constant num-
ber of actions, based on a delicate multi-dimensional
bucketing approach. The standard method of translat-
ing an FPTAS for a separation oracle to an FPTAS
for the corresponding linear program relies on a scale-
invariance property that is absent in our problem. We
proceed instead via a strengthened version of our dual
linear program, to which our FPTAS separation oracle
still applies, and show how to extract from an approxi-
mately optimal dual solution a δ-IC contract with objec-
tive function value at least that of the optimal solution
to the original linear program.

Arbitrary number of actions. The restriction to
a constant number of actions is essential for the positive
results above (assuming P 6= NP). Specifically, we
prove in Section 4 that computing the IC contract that
maximizes the expected payoff to the principal is NP -
hard, even to approximate to within any constant c.
This hardness of approximation result persists even if
we relax from exact IC to δ-IC contracts, provided δ is
sufficiently small as a function of c.

Theorem (See Theorem 4.1, Corollary 4.2). For
every constant c ∈ R, c ≥ 1, it is NP -hard to find a IC
contract that approximates the optimal expected payoff
achievable by an IC contract to within a multiplicative
factor of c.

Theorem (See Theorem 4.1, Corollary 4.3). For
any constant c ∈ R, c ≥ 5 and δ ≤ (1

4c)
c, it is NP -hard

to find a δ-IC contract that guarantees > 2
cOPT, where

OPT is the optimal expected payoff achievable by an IC
contract.

We prove these hardness of approximation results
by reduction from MAX-3SAT, using the fact that it
is NP -hard to distinguish between a satisfiable MAX-
3SAT instance and one in which there is no assignment
satisfying more than a 7/8 + α fraction of the clauses,
where α is some arbitrarily small constant [H̊astad,
2001]. Our reduction utilizes the gap between “first
best” (full-welfare-extracting) and “second best” solu-
tions in contract design settings, where satisfiable in-
stances of MAX-3SAT map to instances where there

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

is no gap between first and second best and instances
of MAX-3SAT in which no more than 7/8 + α clauses
can be satisfied map to instances where there is a
constant-factor multiplicative gap between the first-best
and second-best solutions.

On the positive side, we prove that for every
constant δ there is a simple (in fact, linear1) contract
that achieves a cδ-approximation, where cδ is a constant
that depends on δ. This approximation guarantee is
with respect to the strongest possible benchmark, the
first-best solution.2

Theorem (See Theorem 5.1). For every constant
δ > 0 there exists a constant cδ and a polynomial-time
(in n and m) computable δ-IC contract that obtains a
multiplicative cδ-approximation to the optimal welfare.

Our proof of this result, in Section 5, shows that the
optimal social welfare can be upper bounded by a sum
of (constantly many in δ) expected payoffs achievable
by δ-IC contracts. The best such contract thus obtains
a constant approximation to the optimal welfare.

Black-box distributions. Product distributions
are a rich and natural class of succinctly representable
distributions to study, but one could also consider other
classes. Perhaps the strongest-imaginable positive re-
sult would be an efficient algorithm for computing a
near-optimal contract that works with no assumptions
about each action’s probability distribution over out-
comes, other than the ability to sample from them ef-
ficiently. (Positive examples of this sort in signalling
problem include Dughmi and Xu [2016] and in mech-
anism design include Hartline and Lucier [2015] and
its many follow-ups.) Interestingly, the principal-agent
problem poses unique challenges to such “black-box”
positive results. The moral reason for this is explained,
for example, in Salanié [2005]: Rewards play a dual role
in contract settings, both defining the surplus from the
joint project to be shared between the principal and
agent and providing a signal to the principal of the
agent’s action. For this reason, in optimal contracts,
the payment to the agent in a given outcome is gov-
erned both by the outcome’s reward and on its “infor-
mativeness,” and the latter is highly sensitive to the

1A linear contract is defined by a single parameter α ∈ [0, 1],

and sets the payment pS for any set S ∈ 2M to pS = α ·
∑

j∈S rj .

Linear contracts correspond to a simple percentage commission,
and are arguably among the most frequently used contracts in

practice. See [Carroll, 2015] and [Dütting et al., 2019] for recent

work in economics and computer science in support of linear
contracts.

2Note that the principal’s objective function (reward minus

payment to the agent) is a mixed-sign objective; such functions
are generally challenging for relative approximation results.

precise probabilities in the outcome distributions asso-
ciated with each action. In Section 6 we translate this
intuition into an information-theoretic impossibility re-
sult for the black-box model, showing that positive re-
sults are possible only under strong assumptions on the
distributions (e.g., that the minimum non-zero proba-
bility is bounded away from 0).

1.2 Related work The study of computational as-
pects of contract theory was pioneered by Babaioff,
Feldman and Nisan [Babaioff et al., 2012] (see also their
subsequent works, notably [Emek and Feldman, 2012]
and [Babaioff and Winter, 2014]). This line of work
studies a problem referred to as combinatorial agency,
in which combinations of agents replace the single agent
in the classic principal-agent model. The challenge in
the new model stems from the need to incentivize mul-
tiple agents, while the action structure of each agent is
kept simple (effort/no effort). The focus of this line of
work is on complex combinations of agents’ efforts in-
fluencing the outcomes, and how these determine the
subsets of agents to contract with. The resulting com-
putational problems are very different from the compu-
tational problems in our model.3

A second direction of highly related work is [Azar
and Micali, 2018]. This work considers a principal-agent
model in which the agent action space is exponentially
sized but compactly represented, and argue that in such
settings indirect (interactive) mechanisms can be bet-
ter than one-shot mechanisms. Our focus is more al-
gorithmic, and instead of a compactly represented ac-
tion space we consider a compactly represented outcome
space.

A third direction of related work considers a bandit-
style model for contract design [Ho et al., 2016]. In their
model each arm corresponds to a contract, and they
present a procedure that starts out with a discretization
of the contract space, which is adaptively refined, and
which achieves sublinear regret in the time horizon.
Again the result is quite different from our work, where
the complexity comes from the compactly represented
outcome space, and our result on the black-box model
sheds a more negative light on the learning approach.

Further related work comes from Kleinberg and
Kleinberg [2018] who consider the problem of delegat-
ing a task to an agent in a setting where (unlike in our
model) monetary compensation is not an option. Al-
though payments are not available, they show through
an elegant reduction to the prophet-inequality problem
that constant competitive solutions are possible.

3For example, several of the key computational questions in
their problem turn out to be #P -hard, while all of the problems

we consider are in NP .

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

A final related line of work was initiated by Carroll
[2015] who—working in the classic model (where com-
putational complexity is not an issue)—shows a sense
in which linear contracts are max-min optimal (see also
the recent work of [Walton and Carroll, 2019]). Dütting
et al. [2019] show an alternative such sense, and also
provide tight approximation guarantees for linear con-
tracts.

2 Preliminaries

2.1 Succinct principal-agent settings Let n and
m be parameters. A principal-agent setting is composed
of the following: n actions An among which the agent
can choose, and their costs 0 = c1 ≤ · · · ≤ cn for the
agent; outcomes which the actions can lead to, and their
rewards for the principal; and a mapping from actions
to distributions over outcomes. Crucially, the agent’s
choice of action is hidden from the principal, who ob-
serves only the action’s realized outcome. Our goal is
to study succinct principal-agent settings with descrip-
tion size polynomial in n and m; the (implicit) outcome
space can have size exponential in m. Throughout, un-
less stated otherwise, all principal-agent settings we con-
sider are succinct. We focus on arguably one of the most
natural models of succinctly-described settings, namely
those with additive rewards and product distributions.

In more detail, let M = {1, 2, ..,m}, where M is
referred to as the item set. Let the outcome space
be {0, 1}M , that is, every outcome is an item subset
S ⊆ M . For every item j ∈ M , the principal gets
an additive reward rj if the realized outcome includes
j, so the principal’s reward for outcome S is rS =∑
j∈S rj . Every action ai ∈ An is associated with

probabilities qi,1, ..., qi,m ∈ [0, 1] for the items. We
denote the corresponding product distribution by qi.
When the agent takes action ai, item j is included
in the realized outcome independently with probability
qi,j . The probability of outcome S is thus qi,S =
(
∏
j∈S qi,j)(

∏
j /∈S(1−qi,j)). By linearity of expectation,

the principal’s expected reward given action ai is Ri =∑
S qi,SrS =

∑
j qi,jrj . Action ai’s expected welfare is

Ri − ci, and we assume Ri − ci ≥ 0 for every i ∈ [n].

Example 2.1 (Succinct principal-agent set-
ting). A company (principal) hires an agent to sell its
m products. The agent may succeed in selling any sub-
set of the m items, depending on his effort level, where
the ith level leads to sale of item j with probability qi,j.
Reward rj from selling item j is the profit-margin of
product j for the company.

Representation. A succinct principal-agent set-
ting is described by an n-vector of costs c, an m-vector
of rewards r, and an n×m-matrix Q where entry (i, j)

is equal to probability qi,j (and we assume for simplic-
ity that the number of bits of precision for all values is
poly(n,m)).

Assumptions. Unless stated otherwise, we as-
sume that all principal-agent settings are normalized,
i.e., Ri ≤ 1 for every ai ∈ An (and thus also ci ≤ 1).
Normalization amounts to a simple change of “cur-
rency”, i.e., of the units in which rewards and costs are
measured. It is a standard assumption in the context
of approximate incentive compatibility—see Section 2.2
(similar assumptions appear in both the CDW frame-
work and in [Carroll, 2013]). We also assume no domi-
nated actions : every two actions ai, ai′ have distinct ex-
pected rewards Ri 6= Ri′ , and Ri′ < Ri implies ci′ < ci.
That is, we assume away any action that simultaneously
costs more for the agent and has lower expected reward
for the principal than some (dominating) alternative ac-
tion.

Contracts and incentives. A contract p is a
vector of payments from the principal to the agent.
Payments are non-negative; this is known as limited
liability of the agent.4 The contractual payments are
contingent on the outcomes and not actions, as the
actions are not directly observable by the principal. A
contract p can potentially specify a payment pS ≥ 0
for every outcome S, but by linear programming (LP)
considerations detailed below, we can focus on contracts
for which the support size of the vector p is polynomial
in n. We sometimes denote by pi the expected payment∑
S⊆M qi,SpS to the agent for choosing action ai, and

without loss of generality restrict attention to contracts
for which pi ≤ Ri for every ai ∈ An (in particular,
pi ≤ 1 by normalization).

Given contract p, the agent’s expected utility from
choosing action ai is pi − ci. The principal’s expected
payoff is then Ri − pi. The agent wishes to maximize
his expected utility over all actions and over an outside
option with utility normalized to zero (“individual ratio-
nality” or IR). Since by assumption the cost c1 of action
a1 is 0, the outside opportunity is always dominated by
action a1 and so we can omit the outside option from
consideration. Therefore, the incentive constraints for
the agent to choose action ai are: pi − ci ≥ pi′ − ci′ for
every i′ 6= i. If these constraints hold we say ai is in-
centive compatible (IC) (and as discussed, in our model
IC implies IR). The standard tie-breaking assumption
in the contract design literature is that among several
IC actions the agent tie-breaks in favor of the principal,
i.e. chooses the IC action that maximizes the princi-

4Limited liability plays a similar role in the contract literature
as risk-averseness of the agent. Both reflect the typical situation

in which the principal has “deeper pockets” than the agent and

is thus the better bearer of expenses/risks.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

pal’s expected payoff.5 We say contract p implements
or incentivizes action ai if given p the agent chooses ai
(namely ai is IC and survives tie-breaking). If there
exists such a contract for action ai we say ai is imple-
mentable, and slightly abusing notation we sometimes
refer to the implementing contract as an IC contract.

Simple contracts. In a linear contract, the pay-
ment scheme is a linear function of the rewards, i.e.,
pS = αrS for every outcome S. We refer to α ∈ [0, 1] as
the linear contract’s parameter, and it serves as a suc-
cinct representation of the contract. Linear contracts
have an alternative succinct representation by an m-
vector of item payments pj = αrj for every j ∈ M ,
which induce additive payments pS =

∑
j∈S pj . A nat-

ural generalization is separable contracts, the payments
of which can also be separated over the m items and rep-
resented by an m-vector of non-negative payments (not
necessarily linear). It is straightforward to see that the
optimal linear (resp., separable) contract can be found
in polynomial time (see full version for details). We
return to linear contracts in Section 5 and provide ad-
ditional discussion of linear and separable contracts in
the full version.

2.2 Contract design and relaxations The goal of
contract design is to maximize the principal’s expected
payoff from the action chosen by the agent subject to IC
constraints. A corresponding computational problem is
OPT-CONTRACT: The input is a succinct principal-
agent setting, and the output is the principal’s expected
payoff from the optimal IC contract. A related problem
is MIN-PAYMENT: The input is a succinct principal-
agent setting and an action ai, and the output is the
minimum expected payment p∗i with which ai can be
implemented (up to tie-breaking). OPT-CONTRACT
reduces to solving n instances of MIN-PAYMENT to
find p∗i for every action ai, and returning the maximum
expected payoff to the principal maxi∈[n]{Ri − p∗i }.
Observe that MIN-PAYMENT can be formulated as an
exponentially-sized LP with 2m variables {pS} (one for
each set S ⊆M) and n− 1 constraints:

min
∑
S⊆M

qi,SpS(2.1)

s.t.
∑
S⊆M

qi,SpS − ci ≥∑
S⊆M

qi′,SpS − ci′ ∀i′ 6= i, i′ ∈ [n],

pS ≥ 0 ∀S ⊆M.

5The idea is that one could perturb the payment schedule

slightly to make the desired action uniquely optimal for the agent.
For further discussion see [Caillaud and Hermalin, 2000, p. 8].

The dual LP has n− 1 nonnegative variables {λi′}
(one for every action i′ other than i), and exponentially-
many constraints:

max
∑
i′ 6=i

λi′(ci − ci′)(2.2)

s.t.
(∑
i′ 6=i

λi′
)
− 1 ≤

∑
i′ 6=i

λi′
qi′,S
qi,S

∀S ⊆ E, qi,S > 0,

λi′ ≥ 0 ∀i′ 6= i, i′ ∈ [n].

Standard duality considerations imply that there
always exists a succinct optimal contract with n − 1
nonzero payments. However, the ellipsoid method
cannot be applied to solve the dual LP in polynomial
time because the required separation oracle turns out
to be NP-hard except for n = 2.

Proposition 2.1. Solving the separation oracle of dual
LP (2.2) is NP-hard for n ≥ 3.

A proof of this result can be found in the full
version. We return to LP (2.1) and to its dual LP (2.2)
in Section 3.

Relaxed IC. Contract design like auction design
is ultimately an optimization problem subject to IC
constraints. The state-of-the-art in optimal auction
design requires a relaxation of IC constraints to ε-IC. In
the CDW framework, the ε loss factor is additive and
applies to normalized auction settings. The framework
enables polytime computation of an ε-IC auction with
expected revenue approximating that of the optimal
IC auction.6 Appropriate ε-IC relaxations are also
studied in multiple additional contexts—see [Carroll,
2013] and references within for voting, matching and
competitive equilibrium; and [Papadimitriou, 2006] for
Nash equilibrium. We wish to achieve similar results
in the context of optimal contracts. For completeness
we include the definition of ε-IC cast in the language of
contracts:

Definition 2.2 (δ-IC action). Consider a (normal-
ized) contract setting. For δ ≥ 0, an action ai is
δ-IC given a contract p if the agent loses no more
than additive δ in expected utility by choosing ai, i.e.:
pi − ci ≥ pi′ − ci′ − δ for every action ai′ 6= ai.

(Notation-wise, we will sometimes replace δ by ∆
and refer to ∆-IC actions.) As in the IC case, we of-
ten slightly abuse notation and refer to the contract p

6To be precise, the CDW framework focuses on Bayesian IC
(BIC) and ε-BIC auctions.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

itself as δ-IC. By this we mean a contract p with an
(implicit) action ai that is δ-IC given p (if there are
several such δ-IC actions, by our tie-breaking assump-
tion the agent chooses the one that maximizes the prin-
cipal’s expected payoff). We also say the contract δ-
implements or δ-incentivizes action ai. Finally if there
exists such a contract for ai then we say this action
is δ-implementable. Interestingly, by LP duality, any
action can be δ-implemented up to tie-breaking even
for arbitrarily small δ (see full version for details). We
denote by δ-OPT-CONTRACT and δ-MIN-PAYMENT
the above computational problems with IC replaced by
δ-IC (e.g., the input to δ-OPT-CONTRACT is a suc-
cinct principal-agent setting and a parameter δ, and the
output is the principal’s expected payoff from the opti-
mal δ-IC contract).

In the full version we study the relation between
optimal IC and δ-IC contracts in more detail. We in
particular show that for every δ-IC contract there is
an IC contract with approximately the same expected
payoff to the principal up to small—and necessary—
multiplicative and additive losses. Thus relaxing IC to
δ-IC increases the expected payoff of the principal only
to a certain extent. Similar results are known in the
context of auctions (see [Hartline et al., 2015; Dughmi
et al., 2017] for welfare maximization and [Daskalakis
and Weinberg, 2012] for revenue maximization).7

Proposition 2.3. Fix a principal-agent setting and
δ > 0. Let p be a contract that δ-incentivizes action ai.
Denote by `α=1 the linear contract with parameter α = 1
(that transfers the full reward from principal to agent).
Then the IC contract p′ defined as (1−

√
δ)p+

√
δ`α=1

achieves for the principal expected payoff of at least
(1−
√
δ)(Ri−pi)−(

√
δ−δ), where Ri−pi is the expected

payoff of contract p.

We also show that an additive loss is necessary, as
even for tiny δ there can be a multiplicative constant-
factor gap between the expected payoff of an IC contract
and a δ-IC one.

Relaxed IC with exact IR. In our model, IC
implies IR due to the existence of a zero-cost action a1,
but this is no longer the case for δ-IC. What if we are
willing to relax IC to δ-IC due to the considerations
above, but do not want to give up on IR? Suppose we
enforce IR by assuming that the agent chooses a δ-IC
action only if it has expected utility ≥ 0. The following
lemma shows that this has only a small additive effect
on the principal’s expected payoff, allowing us from now
on to focus on δ-IC contracts (IR can be later enforced
by applying the lemma):

7We thank an anonymous reviewer for pointing us to these

references.

Lemma 2.4. For every δ-IC contract p that achieves
expected payoff of Π for the principal, there exists a δ-
IC and IR contract p′ that achieves expected payoff of
≥ Π− δ.

Proof. Fix a principal-agent setting. Let ai be the
action δ-incentivized by contract p and assume ai is not
IR. Observe that the agent’s expected utility from ai
is ≥ −δ (otherwise ai would not be δ-IC with respect
to a1, which has expected utility ≥ 0 for the agent).
First, if Π > δ, then let p′ be identical to p except for
an additional δ payment for every outcome. Contract
p′ still δ-incentivizes action ai, but now the agent’s
expected utility from ai is ≥ 0, as required. Otherwise
if Π ≤ δ, let p′ be the contract with all-zero payments.
The expected payoff to the principal is zero, which is at
most an additive δ loss compared to Π.

3 Constant number of actions

In this section we begin our exploration of the
computational problems OPT-CONTRACT and MIN-
PAYMENT by considering principal-agent settings with
a constant number n of actions. For every constant
n ≥ 3 these problems are NP-hard, and this holds even
if the IC requirement is relaxed to δ-IC (see full version
for details). As our main positive result, we establish the
tractability of finding a δ-IC contract that matches the
expected payoff of the optimal IC contract. In Section 4
we show this result is too strong to hold for non-constant
values of n (under standard complexity assumptions),
and in Section 5 we provide an approximation result for
general settings.

To state our results more formally, fix a principal-
agent setting and action ai; let OPTi be the solution
to MIN-PAYMENT for ai (or ∞ if ai cannot be imple-
mented up to tie-breaking without loss to the principal);
and let OPT be the solution to OPT-CONTRACT. Ob-
serve that OPT = maxi∈[n]{Ri − OPTi}. Our main
results in this section are the following:

Theorem 3.1 (MIN-PAYMENT). There exists an
algorithm that receives as input a (succinct) principal-
agent setting with a constant number of actions and m
items, an action ai, and a parameter δ > 0, and returns
in time poly(m, 1

δ) a contract that δ-incentivizes ai with
expected payment ≤ OPTi to the agent.

Corollary 3.2 (OPT-CONTRACT). There ex-
ists an algorithm that receives as input a (succinct)
principal-agent setting with a constant number of ac-
tions and m items, and a parameter δ > 0, and returns
in time poly(m, 1

δ) a δ-IC contract with expected payoff
≥ OPT to the principal.

Proof. Apply the algorithm from Theorem 3.1 once per

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

action ai to get a contract that δ-incentivizes ai with
expected payoff at least Ri − OPTi to the principal.
Maximizing over the actions we get a δ-IC contract with
expected payoff ≥ OPT to the principal.

Corollary 3.2 shows how to achieve OPT with a δ-
IC contract rather than an IC one, in the same vein as
the CDW results for auctions. A similar result does not
hold for general n unless P=NP (Corollary 4.3). Note
that the δ-IC contract can be transformed into an IR one
with an additive δ loss by applying Lemma 2.4, and to a
fully IC one with slightly more loss by Proposition 2.3,
where δ can be an arbitrarily small inverse polynomial
in m.

In the rest of the section we prove Theorem 3.1;
omitted proofs appear in the full version.

An FPTAS for the separation oracle. We
begin by stating the separation oracle problem. LP (2.1)
formulates MIN-PAYMENT for action ai. Its dual
LP (2.2) has constraints of the form:

(3.3) (
∑
i′ 6=i

λi′)− 1 ≤
∑
i′ 6=i

λi′
qi′,S
qi,S

.

We can rewrite (3.3) as 1 − 1/(
∑
i′ 6=i λi′) ≤

1
qi,S
·∑

i′ 6=i(λi′/(
∑
i′ 6=i λi′))·qi′,S . Thus the separation oracle

problem for dual LP (2.2) is in fact the following
problem: Let n be a constant and m a parameter.
The input is n − 1 nonnegative weights {αi′} that
sum to 1; n − 1 product distributions {qi′}; and a
product distribution qi; where all product distributions
are over m items M . The goal is to minimize the

likelihood ratio
∑

i′ αi′qi′,S
qi,S

over all outcomes S ⊆ M ,

where the numerator is the likelihood given S of the
weighted combination distribution

∑
i′ αi′qi′ , and the

denominator is the likelihood given S of distribution qi.
Denote the optimal solution (i.e. the minimum

likelihood ratio) by ρ∗. Solving the separation oracle
problem is NP-hard (Proposition 2.1),8 but we show an
FPTAS (Lemma 3.3). Lemma 3.4 gives the guarantee
from applying this FPTAS as a separation oracle for
dual LP (2.2).

Lemma 3.3 (FPTAS). There is an algorithm for the
separation oracle problem that returns an outcome S
with likelihood ratio ≤ (1 + δ)ρ∗ in time polynomial in
m, 1

δ .

Lemma 3.4. If the separation oracle FPTAS with pa-
rameter δ does not find a violated constraint of dual

8In fact the problem is strongly NP-hard; but because it
involves products of the form qi,S = (

∏
j∈S qi,j)(

∏
j /∈S(1 −

qi,j)), the strong NP-hardness does not rule out an FPTAS
[Papadimitriou and Steiglitz, 1982, Theorem 17.12].

LP (2.2), then for every S the inequality in (3.3) holds
approximately up to (1 + δ):

(
∑
i′ 6=i

λi′)− 1 ≤ (1 + δ)
∑
i′ 6=i

λi′
qi′,S
qi,S

.

Proof. Assume there exists S such that (
∑
i′ 6=i λi′)−1 >

(1 + δ)
∑
i′ 6=i λi′

qi′,S
qi,S

. Then dividing by (
∑
i′ λi′) and

using the definition of ρ∗ as the minimum likelihood
ratio we get 1 − 1∑

i′ λi′
> (1 + δ)ρ∗. Combining this

with the guarantee of Lemma 3.3, the FPTAS returns
S′ with likelihood ratio < 1− 1∑

i′ λi′
, thus identifying a

violated constraint. This completes the proof.

Applying the separation oracle FPTAS: The
standard method. Given an FPTAS with parame-
ter δ for the separation oracle of a dual LP, for many
problems it is possible to find in polynomial time an
approximately-optimal, feasible solution to the primal—
see, e.g., [Karmarkar and Karp, 1982; Carr and Vem-
pala, 2002; Jain et al., 2003; Nutov et al., 2006; Fleischer
et al., 2011; Feldman et al., 2012]. We first describe a
fairly standard approach in the literature to utilizing a
separation oracle FPTAS, which we refer to as the stan-
dard method, and explain where we must deviate from
this approach. The proof of Theorem 3.1 then applies
an appropriately modified approach.

The standard method works as follows: Let OPTi
be the optimal value of the primal (minimization) LP.
For a benchmark value Γ, add to the (maximization)
dual LP a constraint that requires its objective to be at
least Γ, and attempt to solve the dual by running the
ellipsoid algorithm with the separation oracle FPTAS.

Assume first that the ellipsoid algorithm returns
a solution with value Γ. Since the separation oracle
applies the FPTAS, it may wrongly conclude that some
solution is feasible despite a slight violation of one or
more of the constraints. For example, if we were to
apply the FPTAS separation oracle from Lemma 3.3 to
solve dual LP (2.2), we could possibly get a solution for
which there exists S such that:∑

i′ 6=i

λi′
qi′,S
qi,S

< (
∑
i′ 6=i

λi′)− 1 ≤ (1 + δ)
∑
i′ 6=i

λi′
qi′,S
qi,S

where the second inequality is by Lemma 3.4. Clearly,
the value Γ of an approximately-feasible solution may
be higher than OPTi. In the standard method, the
approximately-feasible solution can be scaled by 1

1+δ

to regain feasibility while maintaining value of Γ
1+δ .

Scaling thus establishes that Γ
1+δ ≤ OPTi. Now assume

that for some (larger) value of Γ, the ellipsoid algorithm
identifies that the dual LP is infeasible. In this case we
can be certain that OPTi < Γ, and we can also find

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

in polynomial time a primal feasible solution with value
< Γ (more details in the proof of Theorem 3.1 below).

Using binary search (in our case over the range
[ci, Ri] ⊆ [0, 1] since Ri is the maximum the principal
can pay without losing money), the standard method
finds the smallest Γ∗ for which the dual is identified
to be infeasible, up to a negligible binary search error
ε. This gives a primal feasible solution that achieves
value Γ∗ + ε, and at the same time establishes that
(Γ∗)−

1+δ ≤ OPTi by the scaling argument.9 So the
standard method has found an approximately-optimal,
feasible solution to the primal.

Applying the separation oracle FPTAS: Our
method. The issue with applying the standard method
to solve MIN-PAYMENT is that the scaling argument
does not hold. To see this, consider an approximately-
feasible dual solution for which (

∑
i′ 6=i λi′) − 1 ≤ (1 +

δ)
∑
i′ 6=i λi′

qi′,S
qi,S

for every S, and notice that scaling the

values {λi′} does not achieve feasibility. We therefore
turn to an alternative method to prove Theorem 3.1.

Proof of Theorem 3.1. We apply the standard method
using the FPTAS with parameter δ (see Lemma 3.3) as
separation oracle to the following strengthened version
of dual LP (2.2),10 where the extra (1+δ) multiplicative
factor in the constraints makes them harder to satisfy:

max
∑
i′ 6=i

λi′(ci − ci′)(3.4)

s.t. (1 + δ)
(
(
∑
i′ 6=i

λi′)− 1
)
≤

∑
i′ 6=i

λi′
qi′,S
qi,S

∀S ⊆ E, qi,S > 0

λi′ ≥ 0 ∀i′ 6= i, i′ ∈ [n].

Let Γ∗ be the infimum value for which dual LP (3.4)
would be identified as infeasible. The ellipsoid algorithm
is thus able to find an approximately-feasible solution to
dual LP (3.4) with objective (Γ∗)−. The key observation
is that this solution is fully feasible with respect to the
original dual LP (2.2). This is because if the separation
oracle FPTAS does not find a violated constraint of dual
LP (3.4), then for every S it holds that (

∑
i′ 6=i λi′)−1 ≤∑

i′ 6=i λi′
qi′,S
qi,S

(by the same argument as in the proof of

Lemma 3.4). From the key observation it follows that

(3.5) (Γ∗)− ≤ OPTi−

(despite the fact that the scaling argument does not
hold).

9The notation (Γ∗)− means any number smaller than Γ∗.
10Strengthened duals appear, e.g., in [Nutov et al., 2006;

Feldman et al., 2012].

Now let Γ∗ + ε be the smallest value for which
the binary search runs the ellipsoid algorithm for
dual LP (3.4) and identifies its infeasibility. During
its run for Γ∗ + ε, the ellipsoid algorithm identifies
polynomially-many separating hyperplanes that con-
strain the objective to < Γ∗ + ε. Formulate a “small”
primal LP with variables corresponding exactly to these
hyperplanes. By duality, the small primal LP has a so-
lution with objective < Γ∗ + ε, and moreover since the
number of variables and constraints is polynomial we
can find such a solution p∗ in polynomial time. Observe
that p∗ is also a feasible solution to the primal LP cor-
responding to dual (3.4) (the only difference from the
small LP is more variables):

min (1 + δ)
∑
S⊆E

qi,SpS(3.6)

s.t. (1 + δ)
(∑
S⊆E

qi,SpS
)
− ci ≥∑

S⊆E

qi′,SpS − ci′ ∀i′ 6= i, i′ ∈ [n]

pS ≥ 0 ∀S ⊆ E.

We have thus obtained a contract p∗ that is
a feasible solution to LP (3.6) with objective (1 +
δ)
∑
S⊆E qi,SpS < Γ∗ + ε. For action ai, this contract

pays the agent an expected transfer of
∑
S⊆E qi,SpS <

Γ∗+ε
1+δ . We have the following chain of inequalities:∑
S⊆E qi,SpS ≤

(Γ∗)−+ε
1+δ ≤ OPTi+ε

1+δ ≤ OPTi, where the
second inequality is by (3.5), and the last inequality
is by taking the binary search error to be sufficiently
small.11 To complete the proof we must show that p∗

is δ-IC. This holds since the constraints of LP (3.6) en-
sure that for every action ai′ 6= ai, using the notation
pi =

∑
S⊆E qi,SpS , we have pi′ − ci′ ≤ (1 + δ)pi − ci ≤

pi − ci + δpi ≤ pi − ci + δ (the last inequality uses that
pi ≤ Ri ≤ 1 by normalization).

4 Hardness of approximation

In this section unlike the previous one, the number of
actions is no longer assumed to be constant. We show a
hardness of approximation result for optimal contracts,
based on the known hardness of approximation for
MAX-3SAT. In his landmark paper, H̊astad [2001]
shows that it is NP-hard to distinguish between a
satisfiable MAX-3SAT instance, and one in which there
is no assignment satisfying more than 7/8 + α of
the clauses, where α is an arbitrarily-small constant
(Theorems 5.6 and 8.3 in [H̊astad, 2001]). We build

11We use here that OPTi ≥ ci and that the number of bits of
precision is polynomial.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

upon this to prove our main technical contribution
stated in Theorem 4.1, which immediately leads to our
main results for this section in Corollaries 4.2-4.3.

Theorem 4.1. Let c ∈ Z, c ≥ 3 be an (arbitrarily
large) constant integer. Let ε,∆ ∈ R, ε > 0,∆ ∈
[0, 1

20c] be such that ε−2∆1/c

3 ∈ (0, 1
20] and (ε−2∆1/c

3)c

is an (arbitrarily small) constant. Then it is NP-hard
to determine whether a principal-agent setting has an
IC contract extracting full expected welfare, or whether
there is no ∆-IC contract extracting > 1

c + ε of the
expected welfare.

We present two direct implications of Theorem 4.1.
First, Corollary 4.2 applies to the OPT-CONTRACT
problem, and states hardness of approximation within
any constant of the optimal expected payoff by an IC
contract. (A similar result can be shown for MIN-
PAYMENT; see full version.)

Corollary 4.2. For any constant c ∈ R, c ≥ 1, it
is NP-hard to approximate the optimal expected payoff
achievable by an IC contract to within a multiplicative
factor c.

Corollary 4.2 suggests that in order to achieve
positive results, we may want to follow the approach
of the CDW framework and relax IC to ∆-IC. That
is, instead of trying to compute in polynomial time
an approximately-optimal IC contract, we should try
to compute in polynomial time a ∆-IC contract with
expected payoff that is guaranteed to approximately
exceed that of the optimal IC contract. The next
corollary establishes a computational limitation on this
approach: Corollary 4.3 fixes a constant approximation
factor c, and derives ∆ for which a c-approximation
by a ∆-IC contract is NP-hard to find. (It is also
possible to reverse the roles—fix ∆ and derive a constant
approximation factor for which NP-hardness holds.) We
shall complement this limitation with a positive result
in Section 5.

Corollary 4.3. For any constant c ∈ R, c ≥ 5 and
∆ ≤ (1

4c)
c, it is NP-hard to find a ∆-IC contract

that guarantees > 2
cOPT , where OPT is the optimal

expected payoff achievable by an IC contract.12

Proof. The corollary follows from Theorem 4.1 by set-
ting ε = 1

c .

It also follows from Theorem 4.1 and Corollary
4.3 that for every c,∆ as specified, it is NP-hard to
approximate the optimal expected payoff achievable by

12The relevant hardness notion is more accurately FNP-
hardness.

a ∆-IC contract to within a multiplicative factor c/2.
That is, hardness of approximation also holds for δ-
OPT-CONTRACT.

In the remainder of the section we prove Theo-
rem 4.1. After a brief overview, Section 4.2 sets up some
tools for the proof, in Section 4.3 we focus on the spe-
cial case of c = 2, and in Section 4.4 we prove the more
general statement for any constant c. Missing proofs
appear in the full version.

4.1 Proof overview It will be instructive to consider
first a version of Theorem 4.1 for the case of c = 2:

Theorem 4.4. Let ε,∆ ∈ R, ε > 0,∆ ∈ [0, 1
202] be such

that ε−2∆1/2

3 ∈ (0, 1
20] and (ε−2∆1/2

3)2 is an (arbitrarily
small) constant. Then it is NP-hard to determine
whether a principal-agent setting has an IC contract
extracting full expected welfare, or whether there is no
∆-IC contract extracting > 1

2 +ε of the expected welfare.

This theorem is already interesting as it shows that
even relaxing IC to ∆-IC where ∆� 0, approximating
the optimal expected payoff within 65% is computation-
ally hard:

Corollary 4.5. For any ∆ ≤ 1
202 , it is NP-hard to

find a ∆-IC contract that guarantees > 0.65 · OPT ,
where OPT is the optimal expected payoff achievable by
an IC contract.

Proof. The corollary follows from Theorem 4.4 by set-
ting ε = 3

20 .

To establish Theorem 4.4 we present a gap-
preserving reduction from any MAX-3SAT instance ϕ
to a principal-agent setting that we call the “product
setting” (the reduction appears in Algorithm 2 and is
analyzed in Proposition 4.15). The product setting en-
compasses a 2-action principal-agent “gap setting”, in
which any δ-IC contract for sufficiently small δ can-
not extract much more than 1

2 of the expected welfare
(Proposition 4.8).

The special case of c = 2 captures most ideas behind
the proof of the more general Theorem 4.1, but the anal-
ysis is simplified by the fact that to extract more than
roughly 1

2 of the expected welfare in the 2-action gap
setting, there is a single action that the contract could
potentially incentivize. The more general case involves
gap settings with more actions (the reduction appears
in Algorithm 3 and is analyzed in Proposition 4.17).
To extract more than ≈ 1

c of the expected welfare, the
contract could potentially incentivize almost any one of
these actions (Proposition 4.9).

Barrier to going beyond constant c. Our tech-
niques for establishing Theorem 4.1 do not generalize

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

beyond constant values of c (the approximation factor).
The reason for this is that we do not know of (c, ε, f)-
gap settings (Definition 4.6) where f(c, ε) = o(εc). As
long as f(c, ε) is of order εc, the gap in the MAX-3SAT
instance we reduce from must be between 7/8 + εc and
1, and this gap problem is known to be NP-hard only
for constant c. As H̊astad [2001] notes, significantly
stronger complexity assumptions may lead to hardness
for slightly (but not significantly) larger values of c.

4.2 Key ingredients In this section we formalize the
notions of “gap” and “SAT” principal-agent settings as
well as the notion of an “average action”, which will
be useful in proving Theorems 4.1 and 4.4. The term
“gap setting” reflects the gap between the first-best
solution (i.e., the expected welfare), and the second-
best solution (i.e., the expected payoff to the principal
from the optimal contract). It will be convenient not
to normalize gap settings (and thus also the product
settings encompassing them). This makes our negative
results only stronger, as we show next.

Unnormalized settings and a stronger δ-IC
notion. Before proceeding we must define what we
mean by a δ-IC contract in an unnormalized setting.
Moreover we show that if Theorems 4.1 or 4.4 hold for
unnormalized settings with the new δ-IC notion, then
they also hold for normalized settings with the standard
δ-IC notion.

Recall that in a normalized setting, action ai that
is δ-incentivized by the contract must satisfy δ-IC
constraints of the form pi − ci + δ ≥ pi′ − ci′ for every
i′ 6= i. In an unnormalized setting, an additive δ-
deviation from optimality is too weak of a requirement;
we require instead that ai satisfy δ-IC constraints of the
form

(4.7) (1 + δ)pi − ci ≥ pi′ − ci′ ∀i′ 6= i.

Two key observations are: (i) The constraints in (4.7)
imply the standard δ-IC constraints if pi ≤ 1, as is the
case if the setting is normalized; (ii) The constraints in
(4.7) are invariant to scaling of the setting and contract
(i.e., to a change of currency of the rewards, costs
and payments). By these observations, a δ-IC contract
according to the new notion in an unnormalized setting
becomes a standard δ-IC contract after normalization
of the setting and payments, with the same fraction
of optimal expected welfare extracted as payoff to the
principal.

Assume a negative result holds for unnormalized
settings, i.e., it is NP-hard to determine between the two
cases stated in Theorem 4.1 (or Theorem 4.4). Assume
for contradiction this does not hold for normalized
settings. Then given an unnormalized setting, we

can simply scale the expected rewards and costs to
normalize it, and then determine whether or not there
is an IC contract extracting full expected welfare. If
such a contract exists, it is also IC and full-welfare-
extracting in the unnormalized setting after scaling back
the payments. On the other hand, by the discussion
above, if there is no standard-notion ∆-IC contract
extracting a given fraction of the expected welfare
in the normalized setting, there can also be no such
contract with the new ∆-IC notion in any scaling of
the setting. We have this reached a contradiction to
NP-hardness. We conclude that proving our negative
results for unnormalized settings only strengthens these
results.

Gap settings and their construction. We now
turn to the definition of gap settings.

Definition 4.6 (Unstructured gap setting). Let
f(c, ε) ∈ R≥0 be an increasing function where c ∈ Z>0

and ε ∈ R>0. An unstructured (c, ε, f)-gap setting is
a principal-agent setting such that for every 0 ≤ δ ≤
f(c, ε), the optimal δ-IC contract can extract no more
than 1

c + ε of the expected welfare as the principal’s
expected payoff.

For convenience we focus on (structured) gap set-
tings as follows.

Definition 4.7 (Gap setting). A (c, ε, f)-gap set-
ting is a setting as in Definition 4.6 with the following
structure: there is a single item and c actions; the first
action has zero cost; the last action has probability 1
for the item and maximum expected welfare among all
actions.

To construct a gap setting, we construct a principal-
agent setting with a single item, c actions and parameter
γ ∈ R>0, γ < 1. The construction is similar to [Dütting
et al., 2019], but requires a different analysis. For every
i ∈ [c], set the probability of action ai for the item to
γc−i, and set ai’s cost to ci = (1/γi−1) − i + (i − 1)γ.
Set the reward for the item to be 1/γc−1. Observe
that the expected welfare of action ai is i − (i − 1)γ,
so the last action has the maximum expected welfare
c−(c−1)γ. This establishes the structural requirements
from a gap setting (Definition 4.7). Propositions 4.8 and
4.9 establish the gap requirements from a gap setting
(Definition 4.6) for c = 2 and c ≥ 3, respectively—
the separation between these cases is for clarity of
presentation. We use the former in Section 4.3, in which
we show hardness for the c = 2 case; the latter is a
generalization to arbitrary-large constant c.

Proposition 4.8 (2-action gap settings). For ev-
ery ε ∈ (0, 1

4], there exists a (2, ε, ε2)-gap setting.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Proposition 4.9 (c-action gap settings). For ev-
ery c ≥ 3 and ε ∈ (0, 1

4], there exists a (c, ε, εc)-gap
setting.

Average actions and SAT settings. The moti-
vation for the next definition is that given a contract,
for an action to be IC or δ-IC it must yield higher ex-
pected utility for the agent in comparison to the “aver-
age action”. Average actions are thus a useful tool for
analyzing contracts.

Definition 4.10 (Average action). Given a
principal-agent setting and a subset of actions, by the
average action we refer to a hypothetical action with
the average of the subset’s distributions, and average
cost. (If a particular subset is not specified, the average
is taken over all actions in the setting.)

Definition 4.11 (SAT setting). A SAT principal-
agent setting corresponds to a MAX-3SAT instance ϕ.
If ϕ has n clauses and m variables then the SAT setting
has n actions and m items. Two conditions hold: (1)
ϕ is satisfiable if and only if there is an item set in
the SAT setting that the average action leads to with
zero probability; (2) If every assignment to ϕ satisfies
at most 7/8 + α of the clauses, then for every item set
S the average action leads to S with probability at least
1−8α
2m .

Proposition 4.12. For every ϕ the reduction in Algo-
rithm 1 runs in polynomial time on input ϕ and returns
a SAT setting corresponding to ϕ.

ALGORITHM 1: SAT setting construction in polytime

Input : A MAX-3SAT instance ϕ with n clauses and m
variables.

Output : A principal-agent SAT setting (Definition 4.11)
corresponding to ϕ.

begin
Given ϕ, construct a principal-agent setting in which
every clause corresponds to an action with a product
distribution, and for every variable there is a
corresponding item. If variable j appears in clause i
of ϕ as a positive literal, then let item j’s probability
in the ith product distribution be 0, and if it appears
as a negative literal then let item j’s probability be 1.
Set all other probabilities to be 1

2
. We set the costs of

all actions and the rewards for all items to be 0.
end

4.3 The c = 2 case: Proof of Theorem 4.4 In
this section we present a polynomial-time reduction
from MAX-3SAT to a product setting, which combines
gap and SAT settings. The reduction appears in

Algorithm 2. We then analyze the guarantees of the
reduction and use them to prove Theorem 4.4. Most of
the analysis appears in Proposition 4.15, which shows
that the reduction in Algorithm 2 is gap-preserving.
Some of the results are formulated in general terms so
they can be reused in the next section (Section 4.4).

Before turning to Proposition 4.15, we begin with
two simple observations about the product setting re-
sulting from the reduction.

ALGORITHM 2: Polytime reduction from MAX-3SAT to

principal-agent

Input : A MAX-3SAT instance ϕ with n clauses and m
variables; a parameter ε ∈ R≥0.

Output : A principal-agent product setting combining a
SAT setting and a gap setting.

begin
Combine the SAT setting corresponding to ϕ
(attainable in polytime by Proposition 4.12) with a
poly-sized (2, ε, ε2)-gap setting (exists by Proposition
4.8) to get the product setting, as follows:
• The product setting has n+ 1 actions and m+ 1

items: m “SAT items” correspond to the SAT set-
ting items, and the last “gap item” corresponds to
the gap setting item.

• The upper-left block of the product setting’s
(n+ 1)× (m+ 1) matrix of probabilities is the SAT
setting’s n×m matrix of probabilities. The entire
lower-left 1×m block is set to 1

2
. The entire

upper-right n× 1 block is set to the probability
that action a1 in the gap setting results in the item.
The remaining lower-right 1× 1 block is set to the
probability that the last action in the gap setting
results in the item.

• In the product setting, the rewards for the m SAT
items are set to 0, and the reward for the gap item
is set as in the gap setting.

• The costs of the first n actions in the product set-
ting are the cost of action a1 in the gap setting; the
cost of the last action in the product setting is the
cost of the last action in the gap setting.

end

Observation 4.13. Partition all actions of the product
setting but the last one into blocks of n actions each.13

Every action in the ith block has the same expected
reward for the principal as action ai in the gap setting,
and the last action in the product setting has the same
expected reward as the last action in the gap setting.

Corollary 4.14. The optimal expected welfares of
the product and gap settings are the same, and are
determined by their respective last actions.

13If the number of actions in the gap setting is 2, there is a
single such block.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Proposition 4.15 (Gap preservation by Algo-
rithm 2). Let ϕ be a MAX-3SAT instance for which
either there is a satisfying assignment, or every as-
signment satisfies at most 7/8 + α of the clauses for
α ≤ (0.05)2. Let ∆ ≤ (0.05)2. Consider the product
setting resulting from the reduction in Algorithm 2 run
on input ϕ, ε = 3α1/2 + 2∆1/2 ≤ 1

4 . Then:

1. If ϕ has a satisfying assignment, the product set-
ting has an IC contract that extracts full expected
welfare;

2. If every assignment to ϕ satisfies at most 7/8+α of
the clauses, the optimal ∆-IC contract can extract
no more than 1

2 + ε of the expected welfare.

Proof. First, if ϕ has a satisfying assignment, then there
is a subset of SAT items that has zero probability
according to every one of the first n actions. Consider
the outcome S∗ combining this subset together with
the gap item. We construct a full-welfare extracting
contract: the contract’s payment for S∗ is the cost of
the last action in the product setting multiplied by 2m

(since the probability of S∗ according to the last action
is 1/2m), and all other payments are set to zero. It is
not hard to see that the resulting contract makes the
agent indifferent among all actions, so by tie-breaking
in favor of the principal, the principal receives the full
expected welfare as her payoff.

Now consider the case that every assignment to ϕ
satisfies at most 7/8 + α of the clauses, and assume for
contradiction that there is a ∆-IC contract p for the
product setting that extracts more than 1

2 + ε of the
expected welfare. We derive from p a δ-IC contract
p′ for the (2, ε, ε2)-gap setting where δ ≤ ε2, which
extracts more than 1

2 + ε of the expected welfare. This
is a contradiction to the properties of the gap setting
(Definition 4.6).

It remains to specify and analyze contract p′ : For
brevity we denote the singleton containing the gap item
by M ′, and define

p′(S′) = 1−8α
2m

∑
S⊆[m] p(S ∪ S′) ∀S′ ⊆M ′,(4.8)

where S′ is either the singleton containing the gap
item or the empty set. The starting point of the
analysis is the observation that to extract > 1

2 + ε of
the expected welfare in the product setting, contract
p must ∆-incentivize the last action (this follows since
the expected rewards and costs of the actions are as in
the gap setting by Observation 4.13, and so the same
argument as in the proof of Proposition 4.8 holds).

Claim 4.16 below establishes that if contract p ∆-
incentivizes the last action in the product setting, then
contract p′ δ-incentivizes the last action in the gap

setting for δ = 8α+∆
1−8α . So indeed

δ =
8α

1− 8α
+

∆

1− 8α

≤ 9α+ 4∆

= (3α1/2)2 + (2∆1/2)2

≤ (3α1/2 + 2∆1/2)2 = ε2,

using that α,∆ ≤ (0.05)2 for the first inequality.
Now observe that the expected payoff to the princi-

pal from contract p′ δ-incentivizing the last gap setting
action is at least that of contract p ∆-incentivizing the
last product setting action: the payments of p′ as de-
fined in (4.8) are the average payments of p lowered by
a factor of (1−8ε), and the expected rewards in the two
settings are the same (Observation 4.13). The expected
welfares in the two settings are also equal (Corollary
4.14). We conclude that like contract p in the product
setting, contract p′ guarantees extraction of > 1

2 + ε of
the expected welfare in the gap setting. This leads to
a contradiction and completes the proof of Proposition
4.15 (up to Claim 4.16 proved below).

The next claim is formulated in general terms so
that it can also be used in Section 4.4. It references the
contract p′ defined in (4.8).

Claim 4.16. Assume every assignment to the MAX-
3SAT instance ϕ satisfies at most 7/8 +α of its clauses
where α < 1

8 , and consider the product and gap set-
tings returned by the reduction in Algorithm 2 (resp.,
Algorithm 3). If in the product setting the last action is
∆-incentivized by contract p, then in the gap setting the
last action is δ-incentivized by contract p′ for δ = 8α+∆

1−8α .

Proof. Let gi denote the distribution of action ai in the
gap setting and let c be the number of actions in this
setting. In the product setting, by construction its last

action assigns probability gc(S′)
2m to every set S∪S′ such

that S contains SAT items and S′ ⊆ M ′. Thus the
expected payment for the last action given contract p is∑

S⊆[m]

∑
S′⊆M ′

gc(S
′)

2m
p(S ∪ S′)(4.9)

=
1

1− 8α

∑
S′⊆M ′

gc(S
′)p′(S′),

where the equality follows from the definition of p′ in
(4.8). Note that the resulting expression in (4.9) is
precisely the expected payment for the last action in
the gap setting given contract p′, multiplied by factor
1/(1− 8α).

Similarly, for every i ∈ c consider the average
action over the ith block of n actions in the product

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

setting.14 Again by construction, the probability this

ith average action assigns to S ∪ S′ is ≥ gi(S
′)(1−8α)
2m ,

where we use that the average action of the SAT setting
has probability ≥ 1−8α

2m for S (Definition 4.11). Thus
the expected payment for the ith average action given
contract p is at least∑

S⊆[m]

∑
S′⊆M ′

gi(S
′)(1− 8α)

2m
p(S ∪ S′)(4.10)

=
∑

S′⊆M ′
gi(S

′)p′(S′) ∀i ∈ [c],

where again the equality follows from (4.8). Note
that the resulting expression in (4.10) is precisely the
expected payment for action ai in the gap setting given
contract p′.

We now use the assumption that in the product
setting, contract p ∆-incentivizes the last action. This
means the agent ∆-prefers the last action to the ith
average action, which has cost zero. Combining (4.9)
and (4.10) we get

1 + ∆

1− 8α

∑
S′⊆M ′

gc(S
′)p′(S′)− C(4.11)

≥
∑

S′⊆M ′
gi(S

′)p′(S′) ∀i ∈ [c],

where C denotes the cost of the last action in the product
and gap settings. By definition of δ-IC, Inequality (4.11)
immediately implies that in the gap setting, the last
action is δ-IC given contract p′ where δ = 8α+∆

1−8α , thus
completing the proof of Claim 4.16.

We can now use Proposition 4.15 to prove Theo-
rem 4.4.

Proof of Theorem 4.4. Recall that (ε−2∆1/2)2

9 is a con-
stant ≤ (0.05)2. Assume a polynomial-time algorithm
for determining whether a principal-agent setting has a
(fully-IC) contract that extracts the full expected wel-
fare, or whether no ∆-IC contract can extract more than
1
2 + ε. Then given a MAX-3SAT instance ϕ for which
either there is a satisfying assignment or every assign-

ment satisfies at most 7
8 + (ε−2∆1/2)2

9 of the clauses,
by Proposition 4.15 the product setting (constructed
in polynomial time) either has a full-welfare extract-
ing contract or has no ∆-IC contract that can extract
more than 1

2 + ε. Since the algorithm can determine
among these two cases, it can solve the MAX-3SAT in-

stance ϕ. But by H̊astad [2001] and since (ε−2∆1/2)2

9 is
a constant, we know that there is no polynomial-time

14If c = 2 there is a single such block.

algorithm for solving such MAX-3SAT instances unless
P = NP . This completes the proof of Theorem 4.4.

4.4 The general case: Proof of Theorem 4.1 In
this section we formulate and analyze the guarantees of
the reduction in Algorithm 3.

ALGORITHM 3: Generalized polytime reduction from

MAX-3SAT to principal-agent

Input : A MAX-3SAT instance ϕ with n clauses and m
variables; parameters ε ∈ R≥0 and c ∈ Z>0

where c ≥ 3.
Output : A principal-agent product setting combining

copies of a SAT setting and a gap setting.
begin

Combine multiple copies of the SAT setting
corresponding to ϕ (attainable in polytime by
Proposition 4.12) with a poly-sized (c, ε, εc)-gap setting
(exists by Proposition 4.9) to get the product setting,
as follows:
• The product setting has cn+ 1 actions and m+ 1

items: m “SAT items” correspond to the SAT set-
ting items, and the last “gap item” corresponds to
the gap setting item.

• For every i ∈ [c], consider the ith block of n rows of
the product setting’s (cn+ 1)× (m+ 1) matrix of
probabilities. The ith block consists of row
(i− 1) · n+ 1 to row i · n and forms a submatrix of
size n× (m+ 1). The first m columns of the sub-
matrix are set to a copy of the SAT setting’s n×m
matrix of probabilities, and the entire last column
is set to the probability that action ai in the gap
setting results in the item. Finally, the first m en-
tries of the last row of the product setting’s matrix
(i.e., row cn+ 1) are set to 1

2
, and the last entry

(the lower-right corner of the matrix) is set to the
probability that the last action in the gap setting
results in the item.

• In the product setting, the rewards for the m SAT
items are set to 0, and the reward for the gap item
is set as in the gap setting.

• For every i ∈ [c], the costs of the n actions in block
i are the cost of action ai in the gap setting; the
cost of the last action in the product setting is the
cost of the last action in the gap setting.

end

Proposition 4.17 (Gap preservation by Algo-
rithm 3). Let c ∈ Z, c ≥ 3. Let ϕ be a MAX-3SAT
instance for which either there is a satisfying assign-
ment, or every assignment satisfies at most 7/8 + α of
the clauses for α ≤ (0.05)c. Let ∆ ≤ (0.05)c. Consider
the product setting resulting from the reduction in Al-
gorithm 3 run on input ϕ, c, ε = 3α1/c + 2∆1/c ≤ 1

4 .
Then:

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

1. If ϕ has a satisfying assignment, the product set-
ting has an IC contract that extracts full expected
welfare;

2. If every assignment to ϕ satisfies at most 7/8+α of
the clauses, the optimal ∆-IC contract can extract
no more than 1

c + ε of the expected welfare.

Proof. First, if ϕ has a satisfying assignment, then there
is a subset of SAT items that has zero probability ac-
cording to every one of the actions in the product set-
ting except for the last action, and so we can construct a
full-welfare extracting contract as in the proof of Propo-
sition 4.15. From now on consider the case that every
assignment to ϕ satisfies at most 7/8 +α of the clauses,
and assume for contradiction there is a ∆-IC contract p
for the product setting that extracts more than 1

c + ε of
the expected welfare.

Consider the case that p ∆-incentivizes the last
action in the product setting. Then we can derive from
it a δ-IC contract p′ for the (c, ε, εc)-gap setting where
δ ≤ εc, which extracts more than 1

c + ε of the expected
welfare. This is a contradiction to the properties of
the gap setting (Definition 4.6). The construction of p′

and its analysis are as in the proof of Proposition 4.15
(where Equation (4.8) defines p′), and so are omitted
here except for the following verification: we must verify
that indeed δ ≤ εc. We know from Claim 4.16 that
δ = 8α+∆

1−8α . As in the proof of Proposition 4.15 this is
≤ 9α+ 4∆, and it is not hard to see that

9α+4∆ ≤ (3α1/c)c+(2∆1/c)c ≤ (3α1/c+2∆1/c)c = εc,

where the first inequality uses that c ≥ 3.
In the remaining case, p ∆-incentivizes an action

ai∗k in the product setting which is the kth action in
block i∗ ∈ [c] (recall each block has n actions). We
derive from p a contract p′k (depending on k) for the
gap setting that ∆-incentivizes ai∗ at the same expected
payment. As in the proof of Proposition 4.17, this
means that p′k extracts > 1

c + ε of the expected welfare

in the gap setting. Since ∆ ≤ δ = 8α+∆
1−8α it follows

from the argument above that ∆ ≤ εc, and so we have
reached a contradiction to the properties of the gap
setting (Definition 4.6).

We define p′k as follows: Let sk denote the distribu-
tion of action ak in the SAT setting. For every subset
S′ ⊆M ′ of gap items,

p′k(S′) =
∑
S⊆[m]

p(S ∪ S′)sk(S) ∀S′ ⊆M ′,(4.12)

where S′ is either the singleton containing the gap item
or the empty set.

For the analysis, let gi denote the distribution of
action ai in the gap setting. In the product setting, for

every i ∈ [c], k ≤ n the expected payment for action aik
by contract p is

(4.13)
∑
S∈[m]

∑
S′⊆M ′

sk(S)gi(S
′)p(S ∪ S′).

In the gap setting, the expected payment for ai by
contract p′k is

∑
S′⊆M ′ gi(S

′)p′(S′), and by definition of
p′k in (4.12) this coincides with the expected payment
in (4.13). We know that contract p ∆-incentivizes ai∗k
in the product setting, in particular against any action
aik where i ∈ [c] \ {i∗} (i.e., against actions in the same
position k but in different blocks). This implies that
contract p′k ∆-incentivizes ai∗ in the gap setting against
any action ai, completing the proof.

We can now use Proposition 4.17 to prove Theorem
4.1. The proof is identical to that of Theorem 4.4 and
so is omitted here.

5 Approximation guarantees

In this section we show that for any constant δ there
is a simple, namely linear, δ-IC contract that extracts
as expected payoff for the principal a cδ-fraction of the
optimal welfare, where cδ is a constant that depends
only on δ. Recall that a linear contract is defined by a
parameter α ∈ [0, 1], and pays the agent pS = α

∑
j∈S rj

for every outcome S ⊆M .

Theorem 5.1. Consider a principal-agent setting with
n actions. For every γ ∈ (0, 1) and every δ > 0 there is
a δ-IC linear contract with expected payoff ALG where

ALG ≥

(
(1− γ)

1

dlog1+δ(
1
γ)e+ 1

)
max
i∈[n]
{Ri − ci}.

An immediate corollary of Theorem 5.1 is that we
can compute a δ-IC linear contract that achieves the
claimed constant-factor approximation in polynomial
time. By Corollary 4.2 we cannot achieve a similar
result for IC (rather than δ-IC) contracts unless P =
NP . In fact, an even stronger lower bound holds
for the class of exactly IC linear (or, more generally,
separable) contracts. These contracts cannot achieve an
approximation ratio better than n (see [Dütting et al.,
2019] and full version for details).

Geometric understanding of linear contracts.
To prove Theorem 5.1 we will rely on the following
geometric understanding of linear contracts developed
in [Dütting et al., 2019]. Fix a principal-agent setting.
For a linear contract with parameter α ∈ [0, 1] and
an action ai, the expected reward Ri =

∑
S qi,SrS is

split between the principal and the agent, leaving the
principal with (1−α)Ri in expected utility and the agent

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

with αRi− ci (the sum of the players’ expected utilities
is action ai’s expected welfare). The agent’s expected
utility for choosing action ai as a function of α is thus a
line from −ci (for α = 0) to Ri−ci (for α = 1). Drawing
these lines for each of the n actions, we trace the agent’s
utility for his best action as α goes from 0 to 1. This
gives us the upper envelope diagram for linear contracts
in the given principal-agent setting.

We now analyze some properties of the actions
along the upper envelope diagram (i.e., as the linear
contract gives an increasingly higher fraction of the
rewards to the agent). Let IN be the subset of N ≤ n
actions implementable by some linear contract. We
subdivide the interval [0, 1] into N ≤ n intervals T1 =
[`1, r1), T2 = [`2, r2), . . . , TN = [`N , rN], with `1 = 0,
`i = ri−1 for 2 ≤ i ≤ N , and rN = 1. The subdivision
is such that there is a bijection τ between the indices
of actions ai ∈ IN and between those of intervals Tτ(i),
with the following properties:

1. For every i ∈ [N] and α in the ith interval Ti, the
linear contract with parameter α incentivizes action
aτ−1(i). It follows that every action ai ∈ IN appears
on the upper envelope once, and the smallest α
that incentivizes it is the left endpoint `τ(i) of this
action’s interval.

2. For every i ∈ [N] it holds that cτ−1(i) ≤ cτ−1(i+1),
Rτ−1(i) ≤ Rτ−1(i+1), and Rτ−1(i) − cτ−1(i) ≤
Rτ−1(i+1) − cτ−1(i+1).

Notation. Our proof of Theorem 5.1 uses the
following notation:

• We renumber the actions as they appear on the
upper envelope from left to right. By the second
property above, we get actions sorted by increasing
cost, increasing expected reward and increasing
expected welfare. In particular, the final action
(action aN after renaming) must be the action in
An with the highest expected welfare.15

• For every linearly-implementable action ai ∈ IN , we
denote by αi the smallest parameter α of a linear
contract that incentivizes ai (i.e., the left endpoint
of ai’s corresponding interval).

Approximation guarantee proof. With these
definitions at hand, we are now ready to prove the
theorem.

Proof of Theorem 5.1. Given γ ∈ (0, 1) and δ > 0,
set κ = dlog1+δ(

1
γ)e. Subdivide the range [0, 1] of α-

15This is easy to see for α = 1, for which the full reward is

transferred to the agent who also bears the cost, and so picks the
welfare-maximizing action.

parameters into κ+ 1 intervals:

[0, γ(1 + δ)0), [γ(1 + δ)0, γ(1 + δ)1),

[γ(1 + δ)1, γ(1 + δ)2), . . . , [γ(1 + δ)κ−1, 1].

For each interval k ∈ [κ + 1], denote by ah(k) the
action ai with the highest expected reward for which αi
falls into this interval (for simplicity of presentation we
assume without loss of generality that such an action
exists for each interval).

Note that h(k) < h(k + 1) due to renaming and
because actions appear on the upper envelope in non-
decreasing order of expected reward. We require the
following definition: For k ≥ 2, define

αh(k−1),h(k) =
ch(k) − ch(k−1)

Rh(k) −Rh(k−1)
,

i.e., αh(k−1),h(k) is the α that makes the agent indifferent
between actions h(k − 1) and h(k). For k = 1 define
αh(k−1),h(k) = 0.

The proof now proceeds by two claims. The first
claim derives an upper bound on maxi∈[n](Ri − ci) =
RN − cN . The proof appears in the full version.

Claim 5.2. maxi∈[n](Ri − ci) = RN − cN ≤
∑κ+1
k=1(1−

αh(k−1),h(k))Rh(k).

The second crucial observation is that while
αh(k−1),h(k) is generally smaller than αh(k) and thus
does not incentivize action h(k), it still δ-incentivizes
it.

Claim 5.3. For k = 2, . . . , κ + 1, the linear contract
with α = αh(k−1),h(k) ensures that αRh(k) − ch(k) + δ ≥
αRi − ci for every i ∈ [n].

Proof of Claim 5.3. The lines Rh(k) − ch(k) and
Rh(k−1) − ch(k−1) intersect at αh(k−1),h(k). By con-
struction, their intersection must fall between, on the
one hand, the left endpoint γ(1 + δ)k−2 of the interval
in which αh(k) falls, and αh(k) on the other hand. This

shows that (1 + δ)αh(k−1),h(k) ≥ (1 + δ)γ(1 + δ)k−2 =

γ(1− δ)k−1 ≥ αh(k). Combining this with the fact that
ah(k) is incentivized exactly at αh(k), we obtain that
αh(k−1),h(k)Rh(k)−ch(k) +δ ≥ (1+δ)αh(k−1),h(k)Rh(k)−
ch(k) ≥ αh(k)Rh(k) − ch(k) ≥ αh(k)Ri − ci for all i ∈ [n],
where the first inequality holds since Rh(k) ≤ 1 by
normalization. This completes the proof of Claim
5.3. 4

Using Claims 5.2 and 5.3, the theorem follows from
the fact that to obtain a δ-IC linear contract we can
either incentivize ah(1) at α = αh(1) or δ-incentivize one

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

of the actions ah(2), . . . , ah(κ+1) at α = αh(k−1),h(k) with
2 ≤ k ≤ κ+ 1. Namely,

ALG ≥ max{(1− αh(1))Rh(1), (1− αh(1),h(2))Rh(2), . . . ,

(1− αh(κ),h(κ+1))Rh(κ+1)}
≥ (1− γ) max{(1− αh(0),h(1))Rh(1),

(1− αh(1),h(2))Rh(2), . . . ,

(1− αh(κ),h(κ+1))Rh(κ+1)}

≥ (1− γ)
1

κ+ 1

κ+1∑
i=1

(1− αh(k−1),h(k))Rh(k)

≥ (1− γ)
1

κ+ 1
OPT,

where for the first inequality applied to ALG we use
Claim 5.3, for the second inequality we use αh(1) ≤ γ
and αh(0),h(1) ≥ 0, for the third inequality we lower
bound the maximum by the average, and for the final
inequality we use Claim 5.2.

6 Black-box model

We conclude by considering a black-box model which
concerns non-necessarily succinct principal-agent set-
tings. In this model, the principal knows the set of
actions An, the cost ci of each action ai ∈ An, the set
of items M and the rewards rj for each item j ∈ M ,
but does not know the probabilities qi,S that action ai
assigns to outcome S ⊆ M . Instead, the principal has
query access to the distributions {qi}. Upon querying
distribution qi of action ai, a (random) set is returned
where S is selected with probability qi,S . Our goal is to
study how well a δ-IC contract in this model can approx-
imate the optimal IC contract if limited to a polynomial
number of queries (where the guarantees should hold
with high probability over the random samples). Black-
box models have been studied in other algorithmic game
theory contexts such as signaling—see [Dughmi and Xu,
2016] for a successful example.

Let η = min{qi,S | i ∈ [n], S ⊆ M, qi,S 6= 0} be
the minimum non-zero probability of any set of items
under any of the actions. Note that then either qi,S = 0
or qi,S ≥ η for every S. In Section 6.1 we address the
case in which η is inverse super-polynomial and obtain a
negative result; in Section 6.2 we show a positive result
for the case of inverse polynomial η.

6.1 Inverse super-polynomial probabilities We
show a negative result for the case where the minimum
probability η is inverse super-polynomial, by showing
that poly(1/

√
η) samples are required to obtain a con-

stant factor multiplicative approximation better than
≈ 1.15. The negative result holds even for succinct set-
tings, in which the unknown distributions are product

distributions.

Theorem 6.1. Assume η ≤ η0 = 1/625 and δ ≤
δ0 = 1/100. Even with n = 2 actions and m = 2
items, achieving a multiplicative ≤ 1.15 approximation
to the optimal IC contract through a δ-IC contract,
where the approximation guarantee is required to hold
with probability at least 1 − γ, may require at least
s ≥ − log(γ)/(9

√
η) queries.

Proof. We consider a scenario with two settings, both
of which have n = 2 actions and m = 2 items, and
which differ only in the probabilities of the items given
the second action. Let τ be some constant > 2 (to be

fixed later), and let µ =
√
η

τ . Let β = (1 + 1
τ2)−1 and

note that β < 1.

Setting I:

r1 = β
τ2µ r2 = β

τ2µ

a1 : τµ τµ c1 = 0

a2 : τ2µ µ c2 = τ−1
τ3

1
1−µβ

Setting II:

r1 = β
τ2µ r2 = β

τ2µ

a1 : τµ τµ c1 = 0

a2 : µ τ2µ c2 = τ−1
τ3

1
1−µβ

Note further that the minimum probability of any
set of items in both settings is q2,{1,2} = τ2µ2 = η, as
required by definition of η.

The expected reward achieved by the two actions
in the two settings is R1 = 2β/τ < 1 and R2 =
(1 + 1/τ2)β = 1. Moreover, the cost of action 2 is
c2 ≤ β/τ2. So the welfare achieved by the two actions
is R1 − c1 < β and R2 − c2 ≥ β.

In both settings the optimal IC contract incentivizes
action 2, by paying only for the set of items that
maximizes the likelihood ratio. In Setting 1 this is
{1}, in Setting 2 it is {2}. The payment for this
set in both cases is c2/(τ

2µ(1 − µ) − τµ(1 − τµ)) =
c2/(τ

2µ − τµ). This leads to an expected payment of
τ2µ(1−µ) · c2/(τ2µ− τµ) = β/τ2. The resulting payoff
(and our benchmark) is therefore R2 − β/τ2 = β.

We now argue that if we cannot distinguish between
the two settings, then we can only achieve a ≈ 1.1568
approximation. Of course, we can always pay nothing
and incentivize action 1, but this only yields a payoff of
2β/τ . We can also try to δ-incentivize action 2 in both
settings, by paying for outcome {1} and {2}. But (as we
show below) the payoff that we can achieve this way is
(for δ → 0 and µ→ 0) at most (1+1/τ2−(τ2 +1)/((τ−
1)τ3)β. Now max{2/τ, 1+1/τ2−(τ2 +1)/((τ−1)τ3} is

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

minimized at τ = 1+
√

2 where it is 2/(1+
√

2) ≈ 0.8284.
The upper bound on the payoff from action 2 for this
choice of τ is actually increasing in both µ and δ and
≈ 0.8644·β at the upper bounds µ0 =

√
η0/(2

2) = 1/100
and δ0 = 1/100, implying that the best we can achieve
without knowing the setting is a ≈ 1/0.8644 ≈ 1.1568
approximation.

So if we want to achieve at least a ≤ 1.15 approxi-
mation with probability at least 1− γ, then we need to
be able to distinguish between the two settings with at
least this probability. A necessary condition for being
able to distinguish between the two settings is that we
see at least some item in one of our queries to action 2.
So,

1− γ ≤ 1− (1− τ2µ)2s,

which implies that s ≥ log(γ)/(2 log(1 − τ2µ) ≥
− log(γ)/(2 · µ · τ2) ≥ − log(γ)/(18µ). Plugging in µ

we get s ≥ − log(γ)/(18
√
µ

τ) > − log(γ)/(9
√
µ).

We still need to prove our claims regarding the
payoff that we can achieve if we want to δ-incentivize
action 2 in both settings. To this end consider the IC
constraints for δ-incentivizing action 2 over action 1 in
Setting I and Setting II, respectively:

τ2µ(1− µ)p{1} + (1− τ2µ)µp{2} − c2 ≥
τµ(1− τµ)p{1} + (1− τµ)τµp{2} − δ

(1− τ2µ)µp{1} + τ2µ(1− µ)p{2} − c2 ≥
τµ(1− τµ)p{1} + (1− τµ)τµp{2} − δ

Adding up these constraints yields

(τ2µ(1− µ) + (1− τ2µ)µ− 2τµ(1− τµ)) · (p{1} + p{2})

≥ 2c2 − 2δ

We maximize the minimum performance across the two
settings by choosing p{1} = p{2}. Letting p = p{1} =
p{2} we thus obtain

(τ2µ(1− µ) + (1− τ2µ)µ− 2τµ(1− τµ))p ≥ c2 − δ.

It follows that

p ≥ c2 − δ
τ2µ+ µ− 2τµ

The performance of the optimal contract that δ-
incentivizes action 2 in both settings thus achieves an
expected payoff of

R2 − (τ2µ(1− µ) + (1− τ2µ)µ)
c2 − δ

τ2µ+ µ− 2τµ
=

R2 −
τ2(1− 2µ) + 1

(τ − 1)2
(c2 − δ)

Plugging in R2 and c2 and letting δ → 0 and µ →
0 we obtain the aforementioned 1 + 1/τ2 − (τ2 +
1)/((τ−1)τ3)β. Finally, to see that the expected payoff
evaluated at τ = 1+

√
2 > 2 is increasing in both δ and µ

observe that the derivative in δ is simply the probability
term (τ2(1−2µ)+1)/(τ−1)2 which is positive and that
both this probability term and the cost c2 are decreasing
in µ implying that as µ increases we subtract less.

6.2 Inverse polynomial probabilities We show
a positive result for the case where the minimum
probability η is inverse polynomial. Namely, let OPT
denote the expected payoff of the optimal IC contract;
then with poly(n,m, 1

η ,
1
ε ,

1
γ) queries it is possible to find

with probability at least (1 − γ) a 4ε-IC contract with
payoff at least OPT − 5ε. Formally:

Theorem 6.2. Fix ε > 0, and assume ε ≤ 1/2. Fix
distributions Q such that qi,S ≥ η for all i ∈ [n] and
S ⊆ M . Denote the expected payoff of the optimal IC
contract for distributions Q by OPT . Then there is an
algorithm that with s = (3 log(2n

ηγ))/(ηε2) queries to each
action and probability at least 1−γ, computes a contract
p̃ which (i) is 4ε-IC on the actual distributions Q; and
(ii) has expected payoff Π on the actual distributions
satisfying Π ≥ OPT − 5ε.

To prove Theorem 6.2, we first prove a series of
lemmas (Lemmas 6.3 to 6.7). Proofs appear in the full
version.

Lemma 6.3. Consider the algorithm that issues s
queries to each action i ∈ N , and sets q̃i,S to be the
empirical probability of set S under action i. With
s = (3 log(2n

ηγ))/(ηε2) queries to each action, with prob-

ability at least 1− γ, for all i ∈ [n] and S ⊆M ,

(1− ε)qi,S ≤ q̃i,S ≤ (1 + ε)qi,S .

Lemma 6.4. Suppose that (1−ε)qi,S ≤ q̃i,S ≤ (1+ε)qi,S
for all i ∈ [n] and S ⊆ M . Consider contract p. If ai
is the action that is incentivized by this contract under
the actual probabilities Q, then the payoff of ai under
the empirical distributions Q̃ is at least as high as that
of any other action up to an additive term of 2ε.

Lemma 6.5. Suppose that (1−ε)qi,S ≤ q̃i,S ≤ (1+ε)qi,S
for all i ∈ [n] and S ⊆M . Consider contract p̃. If ai is
the action that is δ-incentivized by this contract under
the empricial probabilities Q̃, then the payoff of ai under
the actual distributions is at least as high as that of any
other action up to an additive term of δ + 2ε.

Lemma 6.6. Suppose that (1−ε)qi,S ≤ q̃i,S ≤ (1+ε)qi,S
for all i ∈ [n] and S ⊆ M . If action ai achieves payoff

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Π̃ under contract p̃ when evaluated on the empirical
distributions Q̃, then it achieves payoff Π ≥ Π̃−2ε when
evaluated on the actual distributions Q.

Lemma 6.7. Assume ε ≤ 1/2. Suppose that (1 −
ε)qi,S ≤ q̃i,S ≤ (1 + ε)qi,S for all i ∈ [n] and S ⊆ M .
If action ai achieves payoff P under contract p when
evaluated on the actual distributions Q, then it achieves
payoff P̃ ≥ P − 3ε when evaluated on the empirical
distributions Q.

We are now ready to prove the theorem.

Proof of Theorem 6.2. Compute empirical probabilities
Q̃ by querying each action s times. By Lemma 6.3, with
probability at least 1 − γ, the empirical probabilities
obtained in this way will satisfy (1 − ε)qi,S ≤ q̃i,S ≤
(1 + ε)qi,S for all i ∈ [n] and S ⊆M .

Suppose we compute the optimal 2ε-IC contract p̃
on the empirical distributions Q̃. Denote the expected
payoff achieved by this contract on Q̃ by Π̃, and the ex-
pected payoff it achieves on Q by Π. Likewise, consider
the optimal IC contract p on the actual distributions
Q. Denote the expected payoff OPT achieved by this
contract on the actual distributions Q by P , and the
expected payoff it achieves on Q̃ by P̃ .

Note that by Lemma 6.5, contract p̃ which is 2ε-
IC on Q̃ is 4ε-IC on Q. Furthermore, by Lemma 6.4,
contract p which is IC on Q is 2ε-IC on Q̃. This implies
that Π̃ ≥ P̃ . Together with Lemma 6.6 and Lemma 6.7
we obtain

Π ≥ Π̃− 2ε ≥ P̃ − 2ε ≥ P − 5ε,

which proves the theorem.

References

G. A. Akerlof. The market for “lemons”: Quality un-
certainty and the market mechanism. The Quarterly
Journal of Economics, 84(3):488–500, 1970.

G. A. Akerlof. Labor contracts as partial gift-exchange.
The Quarterly Journal of Economics, 97:543–569,
1982.

P. D. Azar and S. Micali. Computational principal-
agent problems. Theoretical Economics, 13:553–578,
2018.

M. Babaioff and E. Winter. Contract complexity. In
EC’14, page 911, 2014.

M. Babaioff, M. Feldman, N. Nisan, and E. Winter.
Combinatorial agency. Journal of Economic Theory,
147(3):999–1034, 2012.

M. Babaioff, N. Immorlica, B. Lucier, and S. M. Wein-
berg. A simple and approximately optimal mecha-
nism for an additive buyer. In FOCS’14, pages 21–30,
2014.

M. Babaioff, Y. A. Gonczarowski, and N. Nisan. The
menu-size complexity of revenue approximation. In
STOC’17, pages 869–877, 2017.

Y. Cai. Mechanism design: A new algorithmic frame-
work. PhD thesis, Massachusetts Institute of Tech-
nology (MIT), 2013.

Y. Cai, C. Daskalakis, and S. M. Weinberg. An algo-
rithmic characterization of multi-dimensional mecha-
nisms. In STOC’12, pages 459–478, 2012a.

Y. Cai, C. Daskalakis, and S. M. Weinberg. Optimal
multi-dimensional mechanism design: Reducing rev-
enue to welfare maximization. In FOCS’12, pages
130–139, 2012b.

Y. Cai, C. Daskalakis, and S. M. Weinberg. Understand-
ing incentives: Mechanism design becomes algorithm
design. In FOCS’13, pages 618–627, 2013.

Y. Cai, N. R. Devanur, and S. M. Weinberg. A du-
ality based unified approach to bayesian mechanism
design. In STOC’16, pages 926–939, 2016.

B. Caillaud and B. E. Hermalin. Hidden-
information agency. Lecture notes available from
http://faculty.haas.berkeley.edu/hermalin/

mechread.pdf, 2000.

R. D. Carr and S. Vempala. Randomized metarounding.
Random Structures and Algorithms, 20(3):343–352,
2002.

G. Carroll. A quantitative approach to incentives:
Application to voting rules. Working paper, 2013.

G. Carroll. Robustness and linear contracts. American
Economic Review, 105(2):536–563, 2015.

Y. Cheng, H. Y. Cheung, S. Dughmi, E. Emamjomeh-
Zadeh, L. Han, and S. Teng. Mixture selection,
mechanism design, and signaling. In FOCS’15, pages
1426–1445, 2015.

C. Daskalakis and S. M. Weinberg. Symmetries and
optimal multi-dimensional mechanism design. In
EC’12, pages 370–387, 2012.

S. Dughmi. On the hardness of signaling. In FOCS’14,
pages 354–363, 2014.

S. Dughmi and H. Xu. Algorithmic Bayesian persuasion.
In STOC’16, pages 412–425, 2016.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

http://faculty.haas.berkeley.edu/hermalin/mechread.pdf
http://faculty.haas.berkeley.edu/hermalin/mechread.pdf

S. Dughmi, N. Immorlica, and A. Roth. Constrained
signaling in auction design. In SODA’14, pages 1341–
1357, 2014.

S. Dughmi, J. D. Hartline, R. Kleinberg, and R. Ni-
azadeh. Bernoulli factories and black-box reductions
in mechanism design. In STOC’17, pages 158–169,
2017.

P. Dütting, T. Roughgarden, and I. Talgam-Cohen.
Simple versus optimal contracts. In EC’19, pages
369–387, 2019.

Y. Emek and M. Feldman. Computing optimal con-
tracts in combinatorial agencies. Theoretical Com-
puter Science, 452:56–74, 2012.

F. Englmaier and S. Leider. Contractual and orga-
nizational structure with reciprocal agents. Amer-
ican Economic Journal: Microeconomics, 4(2):146–
183, 2012.

M. Feldman, G. Kortsarz, and Z. Nutov. Improved
approximation algorithms for directed Steiner forest.
Journal of Computer and System Sciences, 78(1):279–
292, 2012.

L. Fleischer, M. X. Goemans, V. S. Mirrokni, and
M. Sviridenko. Tight approximation algorithms for
maximum separable assignment problems. Mathe-
matics of Operations Research, 36(3):416–431, 2011.

Y. A. Gonczarowski. Bounding the menu-size of ap-
proximately optimal auctions via optimal-transport
duality. In STOC’18, pages 123–131, 2018.

Y. A. Gonczarowski and S. M. Weinberg. The sam-
ple complexity of up-to-ε multi-dimensional revenue
maximization. In FOCS’18, pages 416–426, 2018.

S. J. Grossman and O. D. Hart. An analysis of the
principal-agent problem. Econometrica, 51(1):7–45,
1983.

J. D. Hartline and B. Lucier. Non-optimal mechanism
design. American Economic Review, 105(20):3102–
3124, 2015.

J. D. Hartline, R. Kleinberg, and A. Malekian. Bayesian
incentive compatibility via matchings. Games and
Economic Behavior, 92:401–429, 2015.

J. H̊astad. Some optimal inapproximability results.
Journal of the ACM, 48(4):798–859, 2001.

C. Ho, A. Slivkins, and J. W. Vaughan. Adaptive con-
tract design for crowdsourcing markets: Bandit algo-
rithms for repeated principal-agent problems. Journal
of Artificial Intelligence Research, 55:317–359, 2016.

K. Jain, M. Mahdian, and M. R. Salavatipour. Packing
Steiner trees. In SODA’03, pages 266–274, 2003.

A. X. Jiang and K. Leyton-Brown. Polynomial-time
computation of exact correlated equilibrium in com-
pact games. Games and Economic Behavior, 91:347–
359, 2015.

N. Karmarkar and R. M. Karp. An efficient approx-
imation scheme for the one-dimensional bin-packing
problem. In FOCS’82, pages 312–320, 1982.

J. M. Kleinberg and R. Kleinberg. Delegated search
approximates efficient search. In EC’18, pages 287–
302, 2018.

B. Koszegi. Behavioral contract theory. Journal of
Economic Literature, 52(4):1075–1118, 2014.

R. B. Myerson. Optimal auction design. Mathematics
of Operations Research, 6(1):58–73, 1981.

Z. Nutov, I. Beniaminy, and R. Yuster. A (1-1/e)-
approximation algorithm for the generalized assign-
ment problem. Operations Research Letters, 34(3):
283–288, 2006.

C. H. Papadimitriou. The complexity of finding Nash
equilibria. In N. Nisan, T. Roughgarden, E. Tardos,
and V. V. Vazirani, editors, Algorithmic Game The-
ory, chapter 2, pages 29–51. Cambridge University
Press, 2006.

C. H. Papadimitriou and T. Roughgarden. Computing
correlated equilibria in multi-player games. Journal
of the ACM, 55(3):14:1–14:29, 2008.

C. H. Papadimitriou and K. Steiglitz. Combinatorial
optimization: Algorithms and complexity. Prentice-
Hall, 1982.

Royal Swedish Academy of Sciences. Scientific back-
ground on the 2016 Nobel Prize in Economic Sciences,
2016.

B. Salanié. The Economics of Contracts: A Primer.
MIT Press, 2005.

D. Walton and G. Carroll. When are robust contracts
linear? Working paper, 2019.

S. M. Weinberg. Algorithms for strategic agents. PhD
thesis, Massachusetts Institute of Technology (MIT),
2014.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our contribution and techniques
	Related work

	Preliminaries
	Succinct principal-agent settings
	Contract design and relaxations

	Constant number of actions
	Hardness of approximation
	Proof overview
	Key ingredients
	The c=2 case: Proof of Theorem 4.4
	The general case: Proof of Theorem 4.1

	Approximation guarantees
	Black-box model
	Inverse super-polynomial probabilities
	Inverse polynomial probabilities

