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Abstract

Plants frequently exhibit tradeoffs between reproduction and growth when resources are limited,
and often change these allocation patterns in response to stress. Shorter-lived plants such as
annuals tend to allocate relatively more resources toward reproduction when stressed, while
longer-lived plants tend to invest more heavily in survival and stress defense. However, severe
stress may affect the fitness implications of allocating relatively more resources to reproduction
versus stress defense. Increased drought intensity and duration have led to widespread mortality
events in coniferous forests. In this review, we ask how potential tradeoffs between reproduction
and survival influence the likelihood of drought-induced mortality and species persistence. We
propose that trees may exhibit what we call “fight or flight” behaviors under stress. "Fight"
behaviors involve greater resource allocation toward survival (e.g., growth, drought-resistant
xylem, and pest defense). "Flight" consists of higher relative allocation of resources to
reproduction, potentially increasing both offspring production and mortality risk for the adult.
We hypothesize that flight behaviors increase as drought stress escalates the likelihood of

mortality in a given location.

Key Words: carbon allocation, ecological tradeoffs, ecophysiology, hydraulic architecture, life

history traits, xylem anatomy
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Introduction

Tradeoffs between reproduction and somatic investment have long been hypothesized
(Williams 1966), and evidence of such tradeoffs has frequently been observed. For instance,
perennial polycarpic plants often show a negative correlation between growth and reproduction
(Harper 1977). The principle of allocation (Levins 1968) suggests that the cost of one resource
sink can be quantified as the direct loss in potential allocation to a different sink. Different trait
combinations, given such tradeoffs, may be optimal under different environmental conditions.
For example, total lifetime fitness under non-stressful conditions may be positively correlated
with growth and survival that increase future reproductive success, or with current reproductive
effort at the expense of growth. Lifetime fitness is often maximized via intermediate investment
in both growth and current reproductive effort. As stress intensifies or is prolonged, however,
intermediate strategies may be less likely to maximize fitness as the overall pool of resources
that is being divided between growth and reproduction shrinks.

Tradeoffs between radial growth rate, tree hydraulic efficiency and safety are well
established in woody plants (Hacke et al. 2001, Pittermann et al. 2006b, Sperry et al. 2006), and
there is increasing evidence of tradeoffs between growth and reproduction under drought stress
(Woodward and Silsbee 1994, Climent et al. 2008, Hacket-Pain et al. 2017, Hacket-Pain et al.
2018). However, these tradeoffs are often explored independently. Our aim in this paper is to
briefly review what is known about these tradeoffs, and to present a conceptual model that
synthesizes the tradeoffs between growth and hydraulic safety, and between growth and
reproduction. Such a synthesis is necessary to move beyond simply predicting drought-induced
mortality, to better model what that drought-induced mortality means for long-term forest

dynamics including recruitment and overstory loss.
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Tradeoffs between drought defense and reproduction 3

We propose that under extreme stress, trees may face a choice between two options.
They may "fight" by allocating more carbon (C) resources to survival-enhancing features such as
growth or defense at the expense of reproduction. Because perennial plants grow and reproduce
over many seasons, greater survival is usually likely to increase lifetime reproductive output
more than higher reproduction in any one year. Thus, this is the path one would expect trees to
follow under most circumstances. Alternatively, by allocating more resources to reproduction, or
not aborting reproductive structures already in various stages of production, they may increase
the probability that offspring will successfully germinate in favorable sites locally or in a
neighboring environment, achieving "flight." However, such a strategy could increase mortality
risk if the resources diverted from growth decrease stress defenses. This strategy is commonly
observed in annual plants (Wada and Takeno 2010, Suzuki et al. 2013) in which it often results
in early death or senescence.

We propose that perennial polycarpic plants might also exhibit a similar shift in
allocation if unfavorable conditions are sustained and the probability of adult mortality passes a
critical threshold, as has been occurring during increasingly intense and frequent drought
globally in recent years (Allen et al. 2015, Hartmann et al. 2018). For a tree, favoring growth and
survival over reproduction when under stress would usually be expected to maximize lifetime
fitness, as decades of potential future reproductive success become zero if a tree dies. However,
because fitness is zero if no seed is produced, and there may be a threshold level of stress that
will kill most trees in a population, under these conditions reproduction at the expense of
increased mortality risk may maximize lifetime fitness.

While multiple types of stressors could induce these shifts in allocation, we will focus

here on drought stress because closing stomata to reduce water loss (Tardieu and Simonneau
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Tradeoffs between drought defense and reproduction 4

1998) decreases CO, uptake (Farquhar and Sharkey 1982) and availability of C for growth or
reproduction (McDowell et al. 2008). Recent work has attempted to parse mechanisms of
drought-induced mortality from both a physiological and C availability perspective (McDowell
et al. 2008, McDowell 2011, Kerhoulas and Kane 2012, Anderegg et al. 2012, Sala et al. 2012,
Anderegg and Anderegg 2013, Sevanto and Dickman 2015, Adams et al. 2017, Birami et al.
2018). However, there has been little synthesis across studies of drought-response physiology
and life history tradeoffs, and several prominent unanswered questions remain. These include:
How do climate and individual life history traits influence stress avoidance strategies?; Is there
an optimal strategy of resource use that allows for both survival and the highest chance of
successful reproduction under stressful conditions?; and what are the implications of tradeoffs
between survival and reproduction for species persistence under climate change? Answering
these questions requires a more robust scaling of mechanistic drought responses from the
individual cell to the whole tree with respect to both survival and reproduction.

In this paper, we focus on coniferous trees because they exhibit complex C dynamics,
with drought-killed trees demonstrating both altered C storage patterns and hydraulic failure. In
contrast, angiosperms primarily exhibit only hydraulic failure, with little evidence of C depletion
(Adams et al. 2017). In addition, unlike most angiosperm fruits, conifer cones can take up to
three years to mature following initiation (Mooney et al. 2011, Davi et al. 2016), potentially
making reproductive allocation more risky in highly variable and unpredictable environments.
However, though mechanisms involved may differ, similar tradeoffs are likely to occur in
angiosperm trees as well.

We first review current understanding of C allocation to growth, tradeoffs between

growth and hydraulic safety, and how drought modifies these allocation patterns. Tradeoffs
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Tradeoffs between drought defense and reproduction 5

between growth and hydraulic safety are well studied (Xu et al. 2014, Venturas et al. 2017,
Barotto et al. 2018), but often only with respect to tree growth and survival. Here we place these
tradeoffs into a fitness context by reviewing the C budget implications of growth, hydraulic
safety, and the interaction of the two for reproductive capacity. Next, we discuss how drought
influences reproductive patterns, and evidence of tradeoffs between growth and reproduction.
We then present a new conceptual framework of C allocation under stress, and discuss both
evolutionary and ecological implications of tradeoffs among growth, reproduction, and defense
by distinguishing “fight” and “flight” strategies in stressed trees. Finally, we discuss
opportunities for research and synthesis across C budget studies, climate change experiments,
and analyses of tree physiology, with the aim of creating a more integrated understanding of tree

response to stress.

Growth-survival relationships, as mediated by xylem hydraulic safety and carbon cost
Growth is often used as a proxy for drought response in forest trees, with rapid or
prolonged periods of depressed growth suggesting an increased likelihood of mortality (Wyckoff
and Clark 2002, Das et al. 2007, Cailleret et al. 2017). However, in some trees, growth plasticity

under drought (Lloret et al. 2011) or overall slow growth (Moran et al. 2017) may in fact be a
drought resistance strategy. Growing less during drought and then rapidly increasing ring width
afterward may serve to conserve resources when water availability declines. This growth
plasticity may simply be a by-product of shifts in allocation of growth resources belowground
(Brunner et al. 2015, Hasibeder et al. 2015, Phillips et al. 2016), to carbohydrate storage pools
(Chapin et al. 1990, Luxmoore et al. 1995), or to non-woody tissues or osmo-regulatory

components (Gower et al. 1995). This relationship between growth plasticity and drought
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Tradeoffs between drought defense and reproduction 6

tolerance is likely due to the complex interactions between growth and xylem anatomy during
times of C depletion.

Relationships among growth, xylem anatomy, and hydraulic safety are well established
(Sperry et al. 2003, Xu et al. 2014, Venturas et al. 2017, Barotto et al. 2018). Hydraulic failure —
breakage of the water column within xylem — can occur when air embolism blocks water flow
(Sperry et al. 1988, Cochard 2006, Barotto et al. 2018), or when water potentials within the
xylem become too negative and the xylem cell implodes (Hacke et al. 2001, Pittermann et al.
2006b). Drought increases the likelihood of either of these mechanisms of hydraulic failure by
decreasing water potentials within the soil and increasing the tension applied to the water column
along the soil-plant-atmosphere continuum (Hacke et al. 2000, Sperry et al. 2003).

Conifer resistance to hydraulic failure is a function of anatomy of xylem cells (tracheids)
and inter-tracheid pits (Hacke et al. 2001, Sperry 2003, Pittermann et al. 2006b, Sperry et al.
2006, Anderegg et al. 2015, Barotto et al. 2018). Trees with high resistance to hydraulic failure
often have thickened xylem cell walls, high wood densities, lower xylem cell diameter (D), and
lower inter-tracheid pit area than those that are less resistant (Hacke et al. 2001, Pittermann et al.
2006a, Pittermann et al. 2006b, Guet et al. 2015, Barotto et al. 2018). However, increases in wall
thickness (t) and wood density represent multiple tradeoffs. First, trees with a high ratio of cell
wall thickness to diameter (t/D) often have low hydraulic efficiency, as small xylem cells
transport less water than larger cells (Hacke et al. 2001, Pittermann et al. 2006b). Additionally,
thickened xylem cell walls have a higher C cost than thinner walls, potentially leading to
tradeoffs among hydraulic safety and other potential C sinks such as radial growth (Figure 1).

Tracheid walls are mostly composed of cellulose and hemicellulose (primary cell wall)

and lignin (secondary wall). In conifers, radial growth is often positively correlated with tracheid
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Tradeoffs between drought defense and reproduction 7

abundance and size, with larger ring widths being associated with more numerous and thinner-
walled tracheids (Xu et al. 2014, Cuny et al. 2014). Tracheid wall thickness is positively
correlated with lignin concentrations (Gindl 2001). Lignin contains, on average, 30% more
energy (in the form of C) than cellulose (White 2007, Novaes et al. 2010). High negative
correlations have been shown between total tree biomass and lignin concentrations (Novaes et al.
2010), demonstrating that decreased radial growth is often associated with increased relative
lignin (and thus increased C cost) per unit volume of wood. Lignin concentration in
gymnosperms is negatively correlated with W50 (the water potential at which 50% of
conductivity is lost, Figure 2). This is likely due to tracheid wall reinforcement, but there is also
mixed evidence of lignin deposition into the various components of inter-tracheid pit membranes
that may alter embolism resistance (Pereira et al. 2018). While the role of lignin in reducing
likelihood of cavitation must be further explored, this data demonstrates that constructing
drought-resistant xylem is lignin intensive. Thus, the tradeoffs among radial growth, xylem
hydraulic safety, hydraulic efficiency, and the C cost of all three of these components show that
growth and “type” of growth (i.e., high or low radial growth versus hydraulic safety) are only
loosely dependent, and may be independent under drought stress. For example, two trees may
grow rings of equal width, but with significantly different hydraulic safety and relative C
investment; radial growth and hydraulic safety do not necessarily constrain each other, but may
if resources are depleted.

The C costs of growth-related structures are further exacerbated by the multiple
interactive stresses often placed on trees during drought. In many coniferous forests, for
example, outbreaks of wood-boring insects and other pests coincide with drought stress due to

weakened pest defenses and ideal conditions for pest proliferation (Hicke et al. 2016). Both
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Tradeoffs between drought defense and reproduction 8

chemical and physical defenses to pests represent a significant C cost (Franceschi et al. 2005).
The quantity of resin ducts, which transport C-based defensive compounds, and the ratio of resin
ducts to xylem cells, are both positively correlated with survival of bark beetle attack in conifers
(Kane and Kolb 2010, Ferrenberg et al. 2014). Tree growth and resin duct properties (including
duct density) are also positively correlated, suggesting that conditions conducive to growth are
also conducive to increased defenses (Kane and Kolb 2010, Ferrenberg et al. 2014), likely due to
high availability of resources, including C. While resin duct formation tends to decrease under
drought stress (Slack et al. 2017), allocation of resources to resin ducts can rise when trees are
deprived of phosphorus (Ferrenberg et al. 2015), showing that different stresses can induce
different changes in resource allocation to pest defense. Thus a tradeoff exists between stress
defense (both drought and pest) and other resource sink demands, such as growth or

reproduction.

Mast seeding and carbon costs

Average construction costs of seed vary and are not always significantly different from
leaf and stem tissue, but maximum seed construction costs are often much higher than other
tissues (Poorter et al. 2006). Reproductive structures can consume 6-10% of annual net canopy
photosynthesis (Gower et al. 1995). Immature conifer cones can photosynthesize, but McDowell
et al. (2000) reported that cone photosynthesis in Pseudotsuga menziesii can only provide about
27% of the C cost of cone production. The remaining C for cone formation must come from
current photosynthetic activity or via drawing on C stores. Some data suggest potential C-
limitation of reproduction. For instance, CO, fertilization of P. faeda induces larger cones and

earlier seed production relative to tree size than under ambient conditions (Way et al. 2010).
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Tradeoffs between drought defense and reproduction 9

Similarly, P. taeda trees exposed to elevated CO, produced three times as many cones and were
twice as likely to be reproductively mature as trees of the same size grown in ambient conditions
(LaDeau and Clark 2001).

Masting, the production of large seed crops in synchrony across a population at semi-
regular intervals, is a common reproductive strategy in trees (Kelly and Sork 2002). The
advantages of this strategy are twofold. First, synchronous flowering/pollen production can
increase successful ovule fertilization (Mooney et al. 2011, Rapp et al. 2013, Koenig et al. 2015,
Bogdziewicz et al. 2017), perhaps especially in species that rely on wind to transport their pollen
rather than the more directed dispersal services of animal pollinators. Second, synchronous seed
production can satiate predators, reducing the proportion of seeds that get damaged or eaten
(Mooney et al. 2011, Koenig et al. 2015). However, these reproductive flushes represent a
significant potential resource expenditure at particular time intervals (Hacket-Pain et al. 2015,
Pearse et al. 2016). Studying trees with this reproductive pattern allows direct measurement of
plant status and resource investment before, during, and after a mast (Herrera et al. 1998).

Weather may affect particular stages of reproduction in different ways (Figure 3, Table
1). For instance, in species where the source of C for reproduction has been studied, spring
reproductive structures (flower or immature female/pollen cones) tend to be built with stored C,
while most of the C for developing fruits or cones comes from current-year assimilation (Hoch et
al. 2003). Thus, weather conditions favorable for photosynthesis (relatively moist, moderately
warm) during the seed development period are likely to be associated with larger seed crops
(Keyes and Gonzalez 2015, Guo et al. 2016b). However, the amount, synchrony, and
effectiveness of pollen dispersal, which sets the stage for fruit/cone development, is often

favored by dry, warm, or dry and warm spring conditions (Koenig et al. 2015, Pearse et al. 2016,
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Bogdziewicz et al. 2017, Gallego Zamorano et al. 2018). The pollen dispersal stage in turn
depends on the development of flower/cone primordia and the meiosis that produces the
precursors of ovules and pollen. This is often favored by warm conditions in the previous spring
and summer (Smaill et al. 2011, Bogdziewicz et al. 2017, Gallego Zamorano et al. 2018), though
that is not universal (Mooney et al. 2011), and may depend on whether the species is more
limited by cold or drought. Finally, in at least some species, the year prior to primordia formation
seems to be important for "resource priming" (Buechling et al. 2016), and the uptake of nitrogen
(N) and other nutrients incorporated at this stage is often favored by moist, cool, or moist and
cool conditions (Mooney et al. 2011, Smaill et al. 2011).

There are tradeoffs evident in resource allocation to different stages of reproduction. In
pines, which develop cones over two to three years, the cone maturation period that will result in
seed dispersal in the fall of year one overlaps with two years of cone primordia initiation and one
year of pollen production and dispersal (Figure 3). Any resources devoted to one of these stages
cannot be allocated to the others, likely resulting in masting periods that approximate a 3 year
cycle (Guo et al. 2016b). Even in trees with a shorter seed development period, years of high
seed production tend to be followed by years of low seed production, even if favorable weather
conditions persist. This may account for patterns such as warm spring weather in the year of
flowering and two years prior being positively associated with seed production, but warm spring
weather one year prior being negatively associated with seed production (Keyes and Gonzalez
2015, Pearse et al. 2016, Gallego Zamorano et al. 2018).

There is mixed evidence for tradeoffs among growth and reproduction during drought
(Table 1). Tree growth is often decreased both during mast years and one year following masts

(Hacket-Pain et al. 2017, Hacket-Pain et al. 2018). While positive correlations between growth
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and reproduction in non-masting years have been observed in Pinus halepensis (Santos et al.
2010, Ayari et al. 2012, Ayari and Khouja 2014), P. pinaster (Santos et al. 2010), P. banksiana
(Despland and Houle 1997), and Abies sachinelensis (Hisamoto and Goto 2017), none of these
studies explicitly assessed the growth-reproduction relationship in mast years versus non-mast
years. Woodward and Silsbee (1994) found that both A. lasiocarpa and Tsuga mertensiana
showed positive correlations between growth and reproduction overall, but that large cone crops
(i.e., mast years) were associated with decreased radial growth. Koenig and Knops (1998) found
negative correlations between vegetative growth and reproductive output over multiple years in
both Picea and Pinus spp., and argue that this is direct evidence of a “switch” in C allocation
between mast events. Eis et al. (1965) found that ring widths in P. menziesii over a 28-year
period were only depressed during years of large cone crop production. Finally, a recent
experimental study found that pines from which developing cones were removed grew
marginally more immediately after the treatment, and also produced 70% more cones the year
after, compared to control trees (Santos-del-Blanco et al. 2012). This suggests that resources may

be mostly or entirely allocated to reproduction but re-allocated following cone removal.

Drought impacts on reproduction

Reproductive response of conifers to drought stress varies widely (Table 1). Direct
evidence of drought-induced reproduction in conifers is mixed, and often difficult to directly
assess (Davi et al. 2016). In part, this may be because, as mentioned above, climatic conditions
can influence reproductive allocation during cone initiation, growth, and maturation differently.
Consistent with the favorable impacts of dry conditions on pollination, several studies in conifers

have found either negative correlations between initial male and female cone production and
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precipitation (Roland et al. 2014), or positive associations between water stress and initial female
cone production (Greenwood 1981, Riemenschneider 1985). On the other hand, wet years are
better for C assimilation, and have been found to be positively associated with the initiation of
cone primordia (Mooney et al. 2011) or the development of fertilized cones (Roland et al. 2014,
Keyes and Gonzalez 2015, Guo et al. 2016b).

Because cone production is usually a multi-year process, a switch in C allocation toward
greater relative investment in growth than reproduction during a low-resource year would likely
result in abortion of currently developing cones. Cone abortion in conifers does appear to be
higher in subdominant trees than dominant trees under ambient conditions (Goubitz et al. 2002).
This may be the result of decreased CO; under light limitation (Berdanier and Clark 2016),
leading to abortion of cones whose development cannot be safely supported. Thus, one potential
direct indicator of altering C allocation to reproduction or growth under drought stress would be
drought-induced increases in cone abortion rates, as trees shunt resources from cone production

back into growth, drought defense, or pest defense.

Fight or Flight
Tradeoffs between growth, defenses, and reproduction

If there are tradeoffs between growth and hydraulic safety, as well as between growth and
reproduction, the C depletion experienced by trees under drought stress may further exacerbate
the impacts of these tradeoffs. This may lead to one strategy (i.e. allocation to hydraulic safety,
allocation to rapid radial growth, allocation to storage, or allocation to reproduction) becoming
dominant. If trees exhibit significant tradeoffs between xylem construction and reproductive

patterns, they may be displaying variations on classic “fight or flight” behaviors (Cannon 1915).
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Tradeoffs between drought defense and reproduction 13

If a stressed tree invests more of an available resource into defenses (against drought, pests, or
competition) at the xylem anatomy, growth, or C storage levels, then this may be considered a
“fight” behavior. Fight behaviors include numerous actions currently categorized under such
terms as drought avoidance, drought tolerance, and drought resilience (Heschel and Riginos
2005, Lloret et al. 2011, Moran et al. 2017). Fight behaviors may increase likelihood of survival,
potentially at the expense of reproductive success in the current or next year but allowing for
later reproduction. If a tree instead invests more available resources into reproduction, either
through maintenance of investment in previously initiated cones or through new cone initiation,
this may be considered a “flight” behavior. Such a reproductive pulse could increase the risk of
tree death under low resource conditions, but may also maximize lifetime fitness if mortality risk
is already high and investment in reproduction increases the probability that offspring will reach
suitable sites for establishment.

No current conceptual models of C allocation partition growth apportionment into sub-
categories, such as hydraulic architecture versus radial growth. While radial growth produces
new xylem, the anatomy of the xylem that makes up that radial growth can vary widely from
year-to-year or tree-to-tree, affecting hydraulic safety. Few models of C allocation distinguish
“types” of radial growth, such as the C cost of high radial growth with low wood density (and
associated low hydraulic safety) versus the cost of low radial growth with high wood density.
Such partitioning is important to fully understand the fitness implications of C allocation. Low
stem radial growth is often predictive of mortality (Das et al. 2007), but lack of growth cannot be
deemed drought intolerance if the tree is re-partitioning available resources to other “fight”
behaviors that increase survival probabilities (e.g., decreased growth as a function of increased

tracheid lignification, increased defensive chemicals, or increased root growth). Tradeoffs may
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occur not only between reproduction and growth, but also between growth of different tissues
(i.e., stem, leaf, or root), and between different components of tissue growth, such as tracheid

widening versus thickening.

Physiological mechanisms of tradeoffs

The density of sapwood, the zone of active xylem transport in a tree stem, is negatively
correlated with whole plant hydraulic conductance (K; Mencuccini (2003) and xylem cell
enlargement (Cuny et al. 2014), and positively correlated with tracheid wall thickness
(Pittermann et al. 2006b). High K is also associated with high photosynthetic capacity and
general plant vigor (Mencuccini 2003), and leaf area often scales linearly with sapwood
conductive area (Luxmoore et al. 1995, Trugman et al. 2018). Thus, we can consider tracheid
diameter (which is positively correlated with K), wall thickness, and number—in terms of their
effects on whole plant hydraulics, stem sapwood growth, and C acquisition at the leaf level-—and
further parse the responses of these components to drought.

Under drought, high K does not always increase survival. In fact, high K relative to
hydraulic safety (i.e., low xylem wall thickness or inter-tracheid pit resistance to cavitation) may
increase risk of mortality (Pittermann et al. 2006b). Drought stress will likely lead to increased
investment in wall thickening in newly grown tracheids, and to decreases in K. Turgor-limited
cell expansion provides a mechanism for this shift. Cellular radial growth is constrained by the
amount of water present, which drives tracheid cell enlargement prior to wall lignification and
cell death (Woodruff et al. 2004). Cell lumen diameter is highly dependent on how long turgor
can be maintained; the longer the expansion phase, the larger the lumen diameters and the

smaller the t/D of the cell (Anfodillo et al. 2012). If a plant is drought stressed, cell turgor tends
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to be reduced, leading to drought-induced decreases in new xylem cell diameters and a relative
increase in wall thickness (Cuny et al. 2014). This would result in a decrease in K, which may
signal defoliation and thus reduced photosynthetic capacity. Further, a decrease in K via
decreased tracheid lumen diameters and increased wall thickness would result in an increase in
the relative C cost per unit volume of wood produced. Thus, the relationship between K,
photosynthetic capacity, and hydraulic safety represents a positive feedback loop; drought would
induce smaller tracheids with a higher hydraulic safety and higher relative C cost, which is
further exacerbated by decreased C uptake potential.

Unlike growth, which contains further allocation tradeoffs, reproduction represents only
one significant tradeoff to the tree - the potential net loss of resources to reproduction from all
other processes. However, as mentioned above, there may be tradeoffs in allocation between
developing fertilized cones and cone primordia that results in negative correlations of current
year seed production with reproduction in the year or two prior. Additionally, reproduction may
reduce photosynthetic capacity, as cones take up branch area that may normally be covered in
needle tissue (Luxmoore et al. 1995). However, surrounding photosynthetic tissues may
compensate for decreased leaf area, at least to some degree. Carbon assimilation dynamics are
increasingly being shown to be sink-controlled (Luxmoore et al. 1995, Sala et al. 2012, Hayat et
al. 2017). That is, as C demand at sinks increases, photosynthesis may be up-regulated. Yet, in
the context of drought, if C sink demand increases photosynthetic activity, we may expect
increased water loss due to increased stomatal conductance. This would increase the likelihood
of hydraulic failure or lead to stomatal closure to mitigate water loss, counter-acting any

potential cone-driven increases in C assimilation via photosynthesis.

610z |udy z0 uo Jasn padlaly ‘eluloye) jo Ausianiun Agq €6e£z#S/1 £0zdy/sAydaalyee0l 0L /10pAdeNISqe-a)o1e-aoueApe/sAydaal)/wod-dno-olwapede//:sdijy woly papeojumoq



351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

Tradeoffs between drought defense and reproduction 16

Conceptual model of C allocation tradeoffs

By incorporating these various components of growth—radial growth, xylem anatomy,
and the tradeoffs between hydraulic safety and hydraulic capacity—into a new conceptual model
of C allocation, we can examine the implications of multiple tradeoffs in the C allocation
pathway for masting conifer species in drought-prone environments (Figure 4). Under stressful
conditions, we would expect the uppermost tradeoff in the allocation hierarchy to be
exacerbated, if the C cost of both growth and reproduction is too high for the stressed tree. As
discussed above, we would expect conifers in most situations to exhibit “fight” responses to
stress (Figure 4A), with increased relative investment in components of growth, including
induced defenses. This will maximize their potential to survive the stress and reproduce in
subsequent years, even if current year reproduction is suppressed. However, if drought is
prolonged or reaches an intensity threshold beyond which survival is unlikely, flight may be
more beneficial.

Two potential fight responses are possible if direct tradeoffs exist between C allocation to
belowground versus aboveground growth (Figure 4A). The first possibility is investment
primarily in root growth, which could enable trees to reduce drought stress by accessing more
water. Some studies in seedlings have found increased root allocation early in drought, though
roots can die as drought intensifies or lengthens (Brunner et al. 2015). There is some evidence of
enhanced root non-structural carbohydrate (NSC) allocation during drought in many taxa
(Hagedorn et al. 2016, Kannenberg et al. 2017, Piper et al. 2017), though other studies have
found no significant change in C mobilization belowground (Kerhoulas and Kane 2012, Blessing
et al. 2015), or decreased root NSC and increased stem NSC (Birami et al. 2018, Li et al. 2018).

Changes in strategy from passive to active root C storage instead of growth may represent in-
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season switches in C allocation that serve to build up C reserves and shorten stress recovery time
(Hagedorn et al. 2016).

The second possible C allocation pathway associated with a fight response would be to
aboveground growth or chemical pest defenses. Aboveground C allocation can result in either
increased radial growth, increased hydraulic safety, or increased chemical defenses. Turgor-
limited cell expansion would be expected to lead to decreased tracheid diameter and increased
relative wall thickness. Maximizing radial growth may increase susceptibility to hydraulic
failure, but will also increase competitive ability, particularly if a tree survives the drought.
However, growing small rings in order to maintain hydraulic safety does not preclude a tree from
maintaining a large sapwood area and post-drought competitive ability. Theoretically, if a
“fighting” tree does not maximize growth increment but instead grows larger numbers of smaller
tracheids, K per unit area of wood (and associated canopy leaf area) can be maintained with little
change in hydraulic safety, but at a higher C cost than small rings or large rings with large
tracheids. Such a pattern has been demonstrated in nature; Picea crassifolia grew larger rings
when more numerous smaller tracheids were produced and smaller rings were associated with
less numerous larger tracheids (Xu et al. 2014). While this study did not directly assess C or
lignin content of measured rings, we would expect these larger, tracheid-dense rings to be more
C-expensive than the smaller rings, demonstrating fight behavior. Finally, drought stress may
induce increased production of C-rich chemical defenses against pests that attack drought-
weakened trees, such as terpenoids and phenolic compounds (Turtola et al. 2003), or resin
(Franceschi et al. 2005). The production of these chemicals may preclude other C-expensive

processes, thus representing fight behavior.
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Flight responses would be demonstrated by maintained or increased relative allocation to
reproduction (Figure 4B). Due to the relationship between growth, tracheid diameter, and
sapwood conductance (Mencuccini 2003, Pittermann et al. 2006b), if a switch in C allocation
leads to decreased growth and increased reproduction, we would expect a decrease in K and total
photosynthetic capacity in subsequent years relative to average climatic conditions, as well as
decreased C availability for pest defenses. Thus, a stress-induced mast is likely only a viable
strategy if risk of mortality is already high or if tree resource pools are sufficient. Another
potential flight response in conifers would simply be continued development during drought
years of cones that formed in prior years, but measurable decreases in survival-enhancing traits
such as resin ducts or growth of xylem with high hydraulic safety.

A switch to a flight response need not require mortality after reproduction or initiation of
reproductive structures—only a shift to greater relative investment in reproduction. The terminal
investment hypothesis, which argues that organisms may allocate resources preferentially to
reproduction immediately prior to death or senescence (Clutton-Brock 1984) may not apply
directly to long-lived perennial polycarpic trees. Koenig et al. (2017) present one of the first
direct assessments of terminal investment in polycarpic trees, and find little support for it in
Valley Oak (Quercus lobata). This conclusion is based on there being no tradeoff between
growth and reproduction, and no change in seed production at the stand scale prior to mortality.
However, this study did not examine tradeoffs between reproduction and growth in
geographically constrained populations undergoing a stress-induced mass mortality event.
Instead, only 0.7% of observed trees died “apparently of natural causes” across a large
geographic range, and the lack of observable tradeoffs may be a result of natural patterns of

senescence versus switches in resource allocation in terminally stressed trees. Thus terminal
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investment may still apply in highly stressed tree populations, but evidence is limited. More
likely, trees that increase C allocation to reproduction under drought stress may be somewhat
reducing allocation to survival traits, but not to the point of ensuring their own death.
Differential rates of continued investment of resources into reproduction that was
initiated prior to stressful conditions can be categorized as fight or flight. If a tree invests
resources into cone initiation and then resource availability drops, then we would expect an
increase in cone abortion rates as trees switch resource allocation toward survival as part of a
fight strategy (Figure 5A). A lack of increased abortion would then be indicative of continued
resource allocation to reproductive output (Figure 5B). If coupled with a decrease in investment
in fight responses, this would indicate a relative shift toward flight. If cone initiation and
development are triggered by a drought at the expense of growth, survival probability, or both

(Figure 5C), this would be a flight strategy tipping toward terminal investment.

Evolutionary Implications

From an evolutionary perspective, the effect of either of these behaviors on fitness
depends on climatic and competitive conditions. If a tree species experiences rapid climate
change, it must “migrate” via seed dispersal into newly favorable areas or adapt to new
conditions. If a tree cannot migrate or adapt, the species may experience a decrease in population
size or range (Aitken et al. 2008). This may reduce the relative fitness benefit of fight responses
when climatic stresses increase, as sexual reproduction generates new genetic combinations on
which natural selection can act locally, while dispersal enables migration to less climatically

stressful areas (Figure 6).
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Investment in seed production does not guarantee successful recruitment of new
individuals into a population, let alone a successful range expansion or shift (Case and Taper
2000, Aitken et al. 2008). Recent work has demonstrated that reproductive effort in P. ponderosa
is expected to increase under climate change, but that the same conditions that benefit
reproductive output may reduce seedling recruitment, leading to a net decrease in P. ponderosa
range (Petrie et al. 2017). Increased reproduction does, however, increase adaptive potential in
long-lived plants. Climent et al. (2008) show that early investment in reproduction may be an
ideal strategy for trees that have serotinous cones, as building an early aerial seedbank can
increase overall fitness in areas prone to stand-replacing fires. Reproductive investment at an
earlier age than most Pinus species has been observed in both P. halepensis and P. pinaster
(Climent et al. 2008, Santos-del-Blanco et al. 2012), which both live in fire-prone landscapes
with high-severity burns, demonstrating potential selection for high reproductive output in a
disturbance-prone landscape. Tree species can exhibit “adaptation lag,” whereby the rate of
genetic change is much slower than that of climate change (Aitken et al. 2008). Modeling studies
have shown that increased adult mortality could potentially reduce this adaptation lag by
allowing better-adapted seedling genotypes to regenerate more quickly in the resulting gaps
(Kuparinen et al. 2010). Further, increased allocation of C and N to seeds has been shown to
increase germination potential, demonstrating the simultaneous benefit of increased seed output
and potential recruitment in trees investing more resources in seed (Caliskan and Makineci
2015). Thus, flight strategies may increase adaptive potential in stressful environments.

One caveat of the framework presented here is the response of a tree to stress may be
affected by pre-stress growth patterns. Trees that grew vigorously when immature may be more

susceptible to stress when mature, because fast growing trees may be more likely to be attacked
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by wood-boring insects and defoliators (Ruel and Whitham 2002). A tree can thus exhibit
drought avoidance strategies in the current year and still be at risk of drought stress due to prior
growth patterns. If a tree has already grown “safe” xylem (i.e. tracheids with high t/D), then
decreased overall growth may actually be the best strategy. Such a strategy may then allow a tree
to store more C in pools for later use. If a tree has inefficient or unsafe xylem, then rapid growth
of safe xylem or root tissue may be the most beneficial strategy, depending on current leaf area.
If leaf area is high, then high K must be maintained—potentially at the expense of hydraulic
safety—in order to maintain canopy hydration (Pittermann, personal communication).
Regardless, we hypothesize that as drought intensity or length increases, the fitness benefit of a

reproductive flush is increased.

Implications for Future Research

The tradeoffs discussed above (reproduction-growth and growth-hydraulic safety) are not
new concepts. Nor is the idea of tradeoffs between various survival-enhancing tree traits under
stress (Ferrenberg et al. 2015). However, no research to date has synthesized both sets of
tradeoffs into an integrative C budget model for trees under stress. The conceptual framework
presented here identifies multiple targets for future research. If conifer populations do exhibit
stress-induced flight behaviors, this would represent a significant shift in our understanding of
the implications of drought stress on tree populations. We hypothesize that the tradeoffs inherent
in wood growth in coniferous trees are exacerbated by drought in ways that can have
counterintuitive effects on cellular physiology and reproductive output. We propose that “flight”
strategies may increase fitness in stressful environments. To test this hypothesis, we must

examine models of C allocation with the context of extreme environmental gradients. Recent and
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current studies continue to provide new insights into formation, concentration, and mobilization
of NSC storage pools (Oberhuber et al. 2011, Aaltonen et al. 2016, Guo, et al. 2016a, Birami et
al. 2018, Li et al. 2018), which will greatly increase understanding of conifer C storage
dynamics.

Seed production and seed quality are areas in need of continued research. Comprehensive
models of seed production that incorporate data from simple field methods (Clark et al. 1999,
Sanchez et al. 2011) should be employed in studies of C dynamics to scale from individual tree
physiology to patterns of seed production. Additional research is needed to quantify C
investment in cone and seed tissue, as well as what variation in investment to cones and seeds
means for germination success. Thus, future studies of forest drought response should
incorporate cone and seed collections or counts as well as adult tree physiology. The greatest
opportunity for integration of multi-scale measurements of tree responses to climate change is in
the joining of wood anatomy and tree ecology (Locosselli and Buckeridge 2017). Recent
advances in the fields of tracheid anatomy and phenology demonstrate the temporal information
that can be gathered from observing xylem production relative to climate stress in situ, including
timing of xylem formation, tracheid widening, and wall thickening (Rossi et al. 2012, Ziaco and
Biondi 2016). These kinds of observational studies can be paired with reproductive surveys, >C
pulse-labeling experiments (Heinrich et al. 2015), and further chemical partitioning of wood (i.e.,
measurement of lignin concentrations) to understand the xylem-level tradeoffs that may occur
under stress. Modern instrumentation can also be leveraged to measure everything from growth
dynamics to sap flow and NSC concentrations all on a single tree in an automated fashion.
Steppe et al. (2015) outline an idealized study system utilizing instrument clusters to pair

ecophysiological and anatomical measurement, allowing a high-resolution, real-time tracking of
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growth dynamics along with potential C allocation patterns. These kinds of studies could then be
used to further test for evidence of fight or flight behavior by incorporating simple reproductive
surveys. Finally, hierarchical modeling techniques can use the conceptual model presented here
as a foundation for building trait-based predictions of whole-forest or species-level range shifts
in response to climate change (Rehfeldt et al. 2015, Garcia-Forner et al. 2016, O’Brien et al.
2017).

Climate change-induced mortality in forests can be leveraged as a “natural experiment”
to evaluate differences between living and stress-killed trees (Gleason et al. 2017). The
widespread, drought-induced mortality of conifers in Western North America (Hicke et al. 2016,
Young et al. 2017) provides an ideal system for examining drivers of differential mortality and
survival at small scales. Such drivers may include variation in the cellular components of growth
(e.g., variation in xylem anatomy) relative to reproductive output, as well as the degree of
tradeoff between hydraulic architecture and seed production. As climate change continues to
apply novel stresses to tree populations, forest ecologists and tree physiologists must develop
methods to test not only current response to stress, but also how responses at multiple spatial
scales affect whole-forest response. Some species and individuals may fight, and invest all
available resources into survival at the risk of succumbing to long-term or permanent climatic
stress. Others may exhibit flight behavior, putting resources toward seed, which may increase
migration or adaptation potential. Our understanding of these responses can be enhanced by not
only developing conceptual and numeric models of C allocation within a tree, but also how that
allocation affects future C allocation, tradeoffs, and feedbacks among tree processes. Fine-scale
mechanistic studies of tree physiology continue to use novel approaches that should now be

combined into integrative models of tree response to changing climate.
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Table 1. Reported positive (+) or negative (-) relationships between growth and cone production
or drought and cone production in studies directly assessing reproduction in conifer species.
Spearman p and Pearson r correlation coefficients or estimated £ values from original fitted
models are reported where present or calculated from published data. Correlations between final
cone production and climatic values in the inferred year of initiation, pollination, or maturation,
if specified, are presented. Calculated values are shown in italic, and values shown are species
averages if values were from multiple plots in a single location, or averaged across all
reproductive stages (for Growth-Total R correlations). Total R = total cone production. Values in
parentheses are S.D.;n for species averages across sites or reproductive stages.

Species Growt Drought: Drought: Droug Reference
h: Drought: Pollinatio Maturati ht:
Total R Initiation n on Total
R
Abze; . + Hisamoto and Goto 2017
sachinelensis
+0.05 . .
Pinus a a a Riemenschneider 1985,
banksiana (©. 032 3 0.32 0.05 -0.16 Despland and Houle 1997
Picea .. + + Buechling et al. 2016
engelmannii
. . Gongalves and
Pinus pinea - Pommerening 2012
Pinus sylvestris ~ 0.355" - Vila-Cabrera et al. 2014
Abies alba - 0.55° -0.53 - Davi et al. 2016
Abies ) 0.05 ) Woodward and Silsbee
. +/- 0.1(0.45; e 0.1(0.45;
lasiocarpa 12)° (2.95:12) 12)° 1994
-0.075 0.075 -0.075 .
Tsuga (057512 (0.375:12)  (0.575:12 Woodward and Silsbee
mertensiana ) . ) 1994
Pseudotsuga - +  Ebell 1967, Eis et al. 1965
menziesii
Pinus edulis <-0.51¢ Redmond et al. 2012
Picea glauca -0.29° 0.47° -0.25° + Roland et al. 2014
Pinus palustris + Guo et al. 2016b
Pinus pinea -0.01° Calama et al. 2011
Pinus c » Mooney et al. 2011, Keyes
<- -

ponderosa =-0.35 0.61 and Gonzalez 2015
Pinus taeda + Greenwood 1981
Pinus -(female) *(Sp _rlng) Girard et al. 2012, Thabeet
halepensis +(male) (Summer) et al. 2009

"Spearman’s p, 8 estimate for reproduction term in fitted model (see reference for model), “Pearson’s r
Temperature stress only

610z |udy z0 uo Jasn padlaly ‘eluloye) jo Ausianiun Agq €6e£z#S/1 £0zdy/sAydaalyee0l 0L /10pAdeNISqe-a)o1e-aoueApe/sAydaal)/wod-dno-olwapede//:sdijy woly papeojumoq



909

910
911
912
913
914
915
916

917

918

919
920

921
922
923
924
925
926
927
928

Tradeoffs between drought defense and reproduction 36

Figure Legends

Figure 1. Conceptual diagram depicting potential tradeoffs in carbon (C) allocation in coniferous
trees. Solid arrows represent C uptake (photosynthesis), dotted arrows represent C loss
(respiration), and dashed arrows represent C allocation pathways. If C is allocated to seed
production, that C is no longer available for leaf production (and associated photosynthesis, A),
root production (B), or radial growth, which itself influences hydraulic conductivity and
resistance to pests (as a function of tracheid size and resin duct formation, C).

Crown )
Reproduction

Woody/xylem growth
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Figure 2. Relationship between total wood lignin concentration (%) and ¥s,, the water potential
at which 50% of conductivity is lost, in 25 gymnosperm species distributed globally. R = 0.20,
P =0.0007. Data from (Pereira et al. 2018) and (Choat et al. 2012). Lignin data from multiple
wood sources (branch or stem), and is assumed to scale linearly between sampled organs (see
Pereira et al. 2018 for sample inclusion criteria).
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Figure 3. Potential effects of two given drought events (shaded boxes A and B) on reproductive
output in masting conifers relative to a given year (T). Conifer cone production occurs over two
to three years, and the effects of drought on resource availability for masting can have both direct
effects (e.g., decreased reproduction in a year of drought) or indirect effects (e.g., increased
reproduction in subsequent years due to increased C storage) depending on the reproductive
stage. Arrows in figure represent timing of each reproductive stage. Arrows below figure
represent relative change in each reproductive stage, with the expected mechanism of this change
given in parentheses.

Year T-3 : Year T-2 : Year T-1 : YearT | VYearT+1l : Year T+2
Sp Su F W SoSUuF WiSpSuF WiSpSuF W:!: SpSuF Wi:Sp SuF W

Cone mathratlon

“priming”? ! Melosns ]en 1 : Seed 1 :
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| Meiosis :PoIen 3 I: Seed 3

' Cone mat'pratlon

u-r )

priming”?

A

@®

A) Dry summer/fall year T-1:

Direct effects: ,l,Seed 1 (C limitation) l, Seed 3 (N limitation during priming)

Indirect effects: TSeed 2 (increased C availability)

B) Dry spring year T:

Direct effects: lSeed 1 (C limitation) l, Seed 3 (poor meiosis) T Seed 2 (good pollination)
Indirect effects:TSeed 2 (low Seed 1) l Seed 3 (high Seed 2)
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Figure 4. Theoretical expectations of a “fight” response (A) or a “flight” response (B) in conifers
under drought stress. Line weight represents the relative magnitude of carbon (C) allocation to
that particular plant pool following a tradeoff induced by drought stress. Fight responses are
demonstrated by allocation of available resources to growth or drought or pest defenses at the
expense of reproductive allocation. Flight responses occur when a tree allocates C to cone and
seed production at the expense of growth and drought defense or pest defense. C = carbon pool,
R = respiration, Hyd. Safety = hydraulic safety, K = sapwood conductance.
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Figure 5. Multiple strategies for “flight” behaviors relative to prior reproductive investment. If a
drought occurs after cone initiation, cone abortion and re-allocation of resources to growth and
drought defense is an indicator of “fight” behaviors (A). On the other hand, if cones are not
aborted but maintained through their maturation under drought stress, this can be considered a
flight behavior (B). The final observable flight behavior is drought-induced reproduction (C),
which may or may not be associated with terminal investment prior to mortality.

[ Non-drought ~ = = oOnset of drought ~ [[] Drought
— T "

A Year 1 Initiation i Year 2 Growth Year 3 Maturity Cont. stem

1 growth; E
£ S |I —_— — Increased xylem o0

1 lignification; i
1 Cont. root Growth
L

B Year 1 Initiation I Year 2 Growth Year 3 Maturity
: Little root and
1 shoot growth;

ﬁ 1 No change in

1 relative
1 lignification E
i

C | Year 2 Initiation Year 3 Growth .20
i Little root and Lo
I : shoot growth;

% + - =  Nochangein
I A relative
i lignification

Figure 6. Hypothetical increase or decrease in fitness versus expected “background” fitness of
“fight” or “flight” behaviors relative to the likelihood of mortality under drought stress. As
likelihood of drought-induced mortality increases (e.g., with increased drought intensity and
duration), the relative benefit of fight behaviors may decrease as drought defenses fail and trees
die without reproducing. Flight behaviors provide little increased fitness benefit when the
probability of mortality is low, but provide significantly higher fitness increases as probability of
mortality increases. This is because flight behaviors increase potential future recruitment of new
seedlings and capacity for adaptation to a drier climate or migration to track a more optimal
climate.
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