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Abstract

We develop a theory of THH and TC of Waldhausen categories and prove
the analogues of Waldhausen’s theorems for K-theory. We resolve the longstanding
confusion about localization sequences in THH and T'C, and establish a special-
ized dévissage theorem. As applications, we prove conjectures of Hesselholt and
Ausoni-Rognes about localization cofiber sequences surrounding TH H (ku), and
more generally establish a framework for advancing the Rognes program for study-
ing Waldhausen’s chromatic filtration on A(x).
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Introduction

Algebraic K-theory provides a high-level invariant of the homotopy theory of
categories with a notion of extension and equivalence. The component group, Ky,
is universal for Euler characteristics, and higher algebraic K-theory captures subtle
information intricately tied to number theory and geometry. For the algebraic
K-theory of rings, trace methods using topological Hochschild homology (T'HH)
and topological cyclic homology (7'C') have proved remarkably successful at making
K-theory computations tractable via the methods of equivariant stable homotopy
theory.

Historically, K-theory and THH appear to take very different inputs and ap-
pear to have very different formal properties. For algebraic K-theory, the input
is a Waldhausen category: a category with subcategories of cofibrations and weak
equivalences. For T H H, the basic input is a spectral category: a category enriched
in spectra. While TH H shares K-theory’s additivity properties, TH H seemed to
lack K-theory’s approximation and localization properties [15]. A specific exam-
ple of this failure was studied at great length by Hesselholt and Madsen in the
paper [22]. From the perspective of the algebraic K-theory of rings and connec-
tive ring spectra, where THH is the stabilization of K-theory, this discrepancy
is in some ways surprising, as one might expect T HH to inherit the fundamental
properties of K-theory.

In this paper, we construct T'HH for a general class of Waldhausen categories,
and show that much of the apparent mismatch of formal properties is a consequence
of the former mismatch of input data. We obtain an analogue of Waldhausen’s
Approximation Theorem [47, 1.6.7] for THH. On the other hand, we observe that
THH has two different analogues of the localization sequence in Waldhausen K-
theory (the “Fibration Theorem” [47, 1.6.4]). One of the localization sequences for
THH was developed in our companion paper on localization in T HH of spectral
categories [9, 7.1] (see Theorem 1.34 below); when applied to schemes, this sequence
produces an analogue of the localization sequence of Thomason-Trobaugh [44].
The other localization sequence generalizes the localization sequence of Hesselholt-
Madsen [22]. One of the principal contributions of this paper is to provide a
conceptual explanation of the two localization sequences of TH H in relation to the
localization sequence of K-theory.

As we explain in Sections 2.2 and 5.2, a Waldhausen category that admits fac-
torizations (q.v. 2.4) has two spectral categories associated to it, a connective and a
non-connective variant. The non-connective theory is “correct” from the perspec-
tive of abstract homotopy theory and satisfies localization for cofiber sequences
of spectral categories [9, 7.1], but the connective theory is more closely related
to K-theory. We show that the two theories agree under connectivity hypotheses
that we make explicit in Section 3.4; in particular, for rings and connective ring
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2 INTRODUCTION

spectra both spectral categories produce the expected THH. For exact categories,
the connective version agrees with the TH H of exact categories defined by Dundas-
McCarthy [16]. For categories of complexes, the non-connective version agrees with
the THH of the spectral derived category studied in [9]. Working with the non-
connective theory gives the Thomason-Trobaugh style localization sequences, and
working with the connective theory gives the Hesselholt-Madsen style localization
sequences.

As a main application of this theory, we prove the localization sequence as-
sociated to the transfer map from HZ to ku that was conjectured by Hesselholt
and Ausoni [3,4]. Specifically, we construct naturally out of the category of ku-
modules a simplicial spectral category W' (ku|KU) and cofiber sequences in the
stable category

THH(Z) — THH (ku) — THH (ku|KU) — YTHH(Z)
and
TC(Z) — TC(ku) — TC(ku|KU) — XTC(Z),

compatible via a trace map with the localization cofiber sequence in K-theory estab-
lished in [7]. Corresponding results hold for the Adams summand in the p-local and
p-complete cases; see Theorem 4.5 below for details. These localization sequences
were conjectured by Hesselholt and Ausoni-Rognes to explain the relationship of the
computations of K (¢) and K (ku); they support the perspective that £ — ku should
be an example of a “tamely ramified” extension of ring spectra. Furthermore, using
these localization sequences, one can dramatically simplify Ausoni’s computation
of K (ku) [4, 8.4] by mimicking the de Rham-Witt arguments in Hesselholt-Madsen
[22]. These localization sequences provide the chromatic level 1 analogues of the
chromatic level 0 sequence of Hesselholt and Madsen [22]. Another application of
these localization sequences is to compute K (KU). One would like to use Ausoni’s
computations of K(ku) along with the localization cofiber sequence

K(Z) — K(ku) — K(KU) — YK(Z)

to evaluate K (KU). The transfer map in this sequence is controlled by the behavior
of the transfer map in the associated sequences in THH and T'C, where it is easier
to understand. Following Hesselholt, Ausoni [4, 8.3] observes that in light of his
calculations, the existence of the localization cofiber sequence in TH H along with
an algebraic fact would permit the complete identification of V(1)K (KU).

One of the interesting aspects of the construction of the localization sequences
is the construction of the relative terms such as THH (ku|KU) and TC(ku|KU):
these relative terms “mix” the weak equivalences in the category of ku-modules
with the weak equivalences in the category of KU-modules, in a way which does not
arise in algebraic K-theory. This mixing is the reason why there are two different
localization sequences. In order to explain these sorts of relative terms, Rognes [36]
has developed a theory of log ring spectra motivated by the appearance of log rings
in the work of Hesselholt and Madsen [22]. Further work along these lines with
Sagave and Schlichtkrull has appeared in [34,37], where they construct analogous
localization sequences where the relative term is described by “log THH”. They
use this theory to carry out the THH side of the calculations in the Hesselholt-
Ausoni program above. We expect that our relative terms agree with the log THH
and T'C studied by these authors. Establishing such a correspondence would be
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very useful, because although log T H H is comparatively computable, that theory
does not come with a trace map from algebraic K-theory.

These sequences provide a key tool in the program introduced by Rognes to
provide a conceptual understanding of the algebraic K-theory of the sphere spec-
trum through the study of its higher chromatic localizations. As a starting point,
he asked about K-theory localization sequences of the form

K(BP(n—1)}) — K(BP(n)}) — K(E(n)}) — SK(BP(n —1)7).

The idea is then that a conjectural Galois descent spectral sequence could be used
to recover information about K(Lg(,)S) from E(n), which is closely related to
the spectrum FE,; the map Lg(,)S — E, is a Galois extension in the sense of
Rognes [35] with Galois group a semidrect product of the n-th Morava stabilizer
group and a cyclic group. The algebraic K-theory of the spectra Ly (,)S can then
conjecturally be related to the monochromatic layers in Waldhausen’s chromatic
filtration on K(S). (A direct approach to calculating the homotopy groups of
K (S), giving a conceptual interpretation of its homotopy type in terms of a kind of
spectral arithmetic duality, is studied in [10,12,13]. Nonetheless, it would still be
very interesting to understand a chromatic decomposition in algebraic K-theory.)

The sequences Rognes asked about are attractive because they relate the alge-
braic K-theory of the nonconnective ring spectrum E(n), to which trace methods
do not apply directly, to the algebraic K-theory of the connective ring spectrum
BP({n), to which trace methods do apply. The corresponding conjectural localiza-
tion sequences for TH H and T'C' would then optimistically provide tools for orga-
nizing the trace method computations. However, recent work of Antieau-Barthel-
Gepner [2] shows that these sequences do not exist (in either algebraic K-theory
or TC) for n > 1.

In place of these sequences, we propose the following variants. Our methods
both in [7] and in this paper do establish the existence of the variant localization
sequences

K(WFpn[uq,...,un-1]) — K(BP,) — K(E,) — X---
and
TC(WFpn[us,...,up—1]) — TC(BP,) — TC(BP,|E,) — X - --

for all n, where W denotes the p-typical Witt ring and BP,, is the connective cover
of the Lubin-Tate spectrum E,. (We discuss this in Section 4.2.) This gives a new
approach to the continuation of the Rognes program, using current technology, with
attention focused on the computation of TC(BPF,) and evaluation of the transfer
map. This new approach also has the appealing features that K(F,) appears
directly and that the spectra BP,, and E,, are F, ring spectra.

Because our primary interest is the construction and explanation of the lo-
calization sequences above, we have taken a technical shortcut that drastically
simplifies the theory. In Section 2.1, we introduce the concept of a simplicially en-
riched Waldhausen category in which the Waldhausen structure and the simplicial
mapping spaces satisfy strong consistency hypotheses. The motivating example
of such a category is a subcategory of the cofibrant objects in a simplicial model
category with all objects fibrant; the model structure on the module categories
of [19] satisfy this condition. For the majority of the paper we work only with
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simplicially enriched Waldhausen categories. In Section 5.2, we argue that simpli-
cially enriched Waldhausen categories are not unduly restrictive by showing that a
closed Waldhausen subcategory of a Waldhausen category that admits factorization
is equivalent to a simplicially enriched Waldhausen category (in fact, a simplicial
model category where every object is fibrant). This equivalence is functorial up to
a zigzag of natural weak equivalences.

We have chosen to take point-set Waldhausen categories for the basic input
to THH in this paper. Our results show that the connective and non-connective
versions of TH H descend to oco-functors from a certain oo-category of Waldhausen
categories and are additive and localizing invariants, respectively, in the sense of [5,
6]. One could conceivably take suitable Waldhausen co-categories as the basic input
(as is done for algebraic K-theory in [5]). However, the technical difficulties inherent
in working with spectrally enriched oco-categories remain a serious impediment to
the development of a full theory of TH H in that setting; although our approach was
chosen for historical reasons, as this project began when the modern development
of co-categories was in its infancy, it remains justifiable on technical grounds.

In this paper, whenever we work with topological spaces, the reader should
understand that we are working in the category of compactly generated weak Haus-
dorff spaces. We use the words “topological” or “topological space” to highlight
when we are using topological spaces rather than simplicial sets; these words should
not be construed to imply the use of general topological spaces rather than com-
pactly generated weak Hausdorff spaces.



CHAPTER 1

Review of THH, TR, and TC

In this chapter we review the construction and basic properties of THH, TR,
and T'C of spectral categories. We begin in Section 1.1 by reviewing the definition
of spectral categories (in symmetric spectra) and setting some conventions for the
rest of the paper. In Section 1.2, we review the construction of THH of spectral
categories along the lines first described by Bokstedt [14] and the construction
of TR and T'C' from THH. In Sections 1.3-1.4, we review the fundamental in-
variance properties of the T HH of spectral categories, including invariance under
DK-equivalences, thick closure, and Morita equivalence.

None of the material in this chapter is new; it has previously appeared in
substantially similar form in the authors’ previous paper on THH, TR, and TC
of spectral categories [9] and is reviewed here for easy reference. Specifically, Sec-
tion 1.1 streamlines and rewrites [9, §2] for symmetric spectra of topological spaces.
Section 1.2 is based on and closely follows [9, §3], while Sections 1.3-1.4 review the
main results of [9, §5-7] with most proofs omitted.

1.1. Review of spectral categories

This section reviews the definition of and sets conventions for spectral categories
that we use throughout the remainder of the paper. Although our most common
constructions naturally live in the context of symmetric spectra of simplicial sets,
we occasionally need symmetric spectra of topological spaces.

DEFINITION 1.1. A spectral category is a category enriched over symmetric
spectra (of topological spaces). Specifically, a spectral category C consists of:

(i) A collection of objects obC (which need not be a small set),
(ii) A symmetric spectrum C(a, b) for each pair of objects a,b € obC,
(iii) A unit map S — C(a,a) for each object a € obC, and
(iv) A composition map C(b,c) A C(a,b) — C(a,c) for each triple of objects
a,b,c € ob(,
satisfying the usual associativity and unit properties. We say that a spectral cate-
gory is small when the objects obC form a set.

The previous definition makes perfect sense also in the context of symmetric
spectra of simplicial sets (indeed that was the convention in [9]); the geometric
realization/singular simplicial set adjunction that converts back and forth between
symmetric spectra of simplicial sets and symmetric spectra of topological spaces
is a symmetric monoidal functor and so converts back and forth between spectral
categories in the simplicial and topological context by application to the mapping
spectra.

The definition of spectral functor between spectral categories is the usual defi-
nition of an enriched functor:
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DEFINITION 1.2. Let C and D be spectral categories. A spectral functor F': C —
D is an enriched functor. Specifically, a spectral functor consists of:
(i) A function on objects F': obC — obD, and
(ii) A map of symmetric spectra F,: C(a,b) — D(Fa, Fb) for each pair of
objects a,b € ob(C,
which is compatible with the units and the compositions in the obvious sense.

We then have the following elementary notion of weak equivalence of spectral
categories. (The more useful definition of DK-equivalence of spectral categories is
Definition 1.22 below.)

DEFINITION 1.3. A weak equivalence of spectral categories is a spectral func-
tor that is a bijection on objects and a weak equivalence (stable equivalence of
symmetric spectra) on all mapping spectra.

Small spectral categories generalize ring symmetric spectra and can be viewed
as rings with many objects. From that perspective, we have the following evident
concepts of modules and bimodules over spectral categories:

DEFINITION 1.4. Let C and D be spectral categories. A left C-module is a
spectral functor from C to symmetric spectra. A right D-module is a spectral
functor from D°P to symmetric spectra. A (D,C)-bimodule is a spectral functor
from D°P A C to symmetric spectra; a C-bimodule is a (C,C)-bimodule.

Here D°P denotes the spectral category with the same objects and mapping
spectra as D but the opposite composition map. The spectral category D°P AC has
as its objects the cartesian product of the objects,

ob(DP AC) = obD? x obC = obD x obC_,
and as its mapping spectra the smash product of the mapping spectra
(D® AC)((d, ), (d', ")) =D?(d,d") ACle, ),

with unit maps the smash product of the unit maps and composition maps the
smash product of the composition maps for D°P and C. Explicitly, a (D, C)-bimodule
M consists of a choice of symmetric spectrum M (d, ¢) for each d in obD and ¢ in
ob C, together with maps

Cle,d)ANM(d,c) ND(d',d) — M(d', )

for each d’ in ob D and ¢’ in ob C, making the obvious unit and associativity diagrams
commute. In particular, for any spectral category C, the mapping spectra C(—, —)
define a C-bimodule. (This example motivates the convention of listing the right
module structure first.)

The work of [40] provides the category of (D, C)-bimodules with a closed model
structure.

PRrROPOSITION 1.5. ([40, 6.1]) The category of (D, C)-bimodules forms a closed
model category where the fibrations are the objectwise fibrations and the weak equiv-
alences are the objectwise weak equivalences in the stable model structure on sym-
metric spectra.

The remainder of this section records some technical observations. Because
we are working with spaces rather than simplicial sets, we often need to assume
that base points are non-degenerate (include as Hurewicz cofibrations) to avoid
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pathologies. For spectral categories, modules, and bimodules, we use the following
terminology.

DEFINITION 1.6. A spectral category C is non-degenerately based if each space
C(a,b)(n) is non-degenerately based (for all objects a, b, and all n) and each unit
map S° — C(a,a)(0) is a Hurewicz cofibration (for all objects a); otherwise, we say
that C is degenerately based. A C-module or (D, C)-bimodule M is non-degenerately
based if each space M(c)(n) or M(d, ¢)(n) is non-degenerately based (for all objects
¢,d and all n); otherwise, we say that M is degenerately based.

The geometric realization of a spectral category or module in the simplicial
context is always non-degenerately based. For an arbitrary spectral category, we
can find a weakly equivalent non-degenerately based spectral category by taking the
geometric realization of the singular simplicial set functor applied to its mapping
spectra,

| Sing C|(a, b) := | Sing C(a, b)|.
When M is a C-bimodule, | Sing M| is a | Sing C|-bimodule. More generally, for an
arbitrary bimodule over a non-degenerately based spectral category, we can find
a weakly equivalent non-degenerately based replacement by applying the cofibrant
replacement functor of Proposition 1.5.

Another technical point arises when considering the homotopy groups of sym-
metric spectra. In general the object in the stable category represented by a sym-
metric spectrum may not agree with the object represented by its underlying pre-
spectrum. This happens for example for the desuspension spectrum F;S°. In such
circumstances, the only sensible convention is to regard the underlying prespectrum
as being incorrect. Thus, throughout this paper, we use the following convention.

CONVENTION 1.7. The homotopy groups of a symmetric spectrum X always
means the homotopy groups of X as an object of the stable category, i.e., the abelian
groups of maps in the stable category from S? to X (for ¢ € Z), and we denote these
as g X. A weak equivalence of symmetric spectra always means a weak equivalence
in the stable model structure. A weak equivalence is then precisely a map that
induces an isomorphism on homotopy groups.

In practice, in many cases the underlying prespectrum does represent the cor-
rect object in the stable category. We use the following terminology for this.

DEFINITION 1.8. A symmetric spectrum is semistable when fibrant approxima-
tion in the stable model structure is a weak equivalence of underlying prespectra.

When needed, we can replace an arbitrary small spectral category with a weakly
equivalent spectral category that has the same objects but has mapping spectra
that are Q-spectra. For example, we can do this using [40, §6] which constructs
a cofibrantly generated Quillen model category structure on the category of small
enriched categories with a fixed set of objects: The maps in this category are the
spectral functors that are the identity on object sets, the fibrations are the maps
C — D that restrict to fibrations of symmetric spectra C(z,y) — D(x,y) for all
x,y, and the weak equivalences are the maps that restrict to weak equivalences
C(x,y) — D(zx,y) for all z,y. Following the terminology of [40, §6]:

DEFINITION 1.9. A small spectral category C is pointwise fibrant if C(z,y) is a
fibrant symmetric spectrum (in the stable model structure) for every pair of objects
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x,y. Likewise, C is said to be pointwise cofibrant if C(x,y) is a cofibrant symmetric
spectrum for every pair of objects x,y. For a spectral functor of small spectral
categories F': C — D that is the identity on the object sets, we say that F is a
pointwise weak equivalence or pointwise level equivalence if for every pair of objects
x,y, the map F: C(z,y) — D(x,y) is a weak equivalence or level equivalence,
respectively, of symmetric spectra.

The fibrant replacement functors of [40, §6], though constructed in the context
of a fixed object set, still behave well with respect to spectral functors that are not
the identity on object sets. We then get the following proposition.

PROPOSITION 1.10. ([40, 6.3]) Given a small spectral category C, there exists
a small spectral category C and a spectral functor R: C — C? such that:

(i) C% has the same objects as C and R is the identity map on objects,
(i) C% is pointwise fibrant, and
(ili) R is a pointwise weak equivalence.
Moreover, (—) and R may be constructed as an endofunctor and natural transfor-
mation on the category of small spectral categories.

Applying cofibrant replacement in the model structure of [40, §6], we obtain
the following complementary proposition.

PROPOSITION 1.11. ([40, 6.3]) Given a small spectral category C, there exists
a small spectral category CC° and a spectral functor Q: CC" — C such that:

(i) %! has the same objects as C and Q is the identity map on objects,
(ii) CC*W(z,y) is pointwise cofibrant, and
(iii) @ is a pointwise level equivalence.
Moreover, (=)' and Q may be constructed as an endofunctor and natural trans-
ormation on the category of small spectral categories.
ti the cat Il tral cat ;

The analogous proposition in the setting of bimodules is also helpful.

PROPOSITION 1.12. Assume that C and D are pointwise cofibrant small spectral
categories. If M is a cofibrant (D, C)-bimodule, then M is objectwise cofibrant, i.e.,
M(d, c) is a cofibrant symmetric spectrum for every (d,c) in D°P AC.

1.2. Review of the construction of THH, TR, and TC

In this section, we review the definition of THH, TR, and T'C' of small spectral
categories. We begin with a review of the variant of the cyclic bar construction
for small spectral categories defined by Bokstedt [14] and Dundas-McCarthy [16]
necessary for the construction of TC'. We finish with a brief review of the definition
of cyclotomic spectra and the construction of TR and T'C.

Let Z be the category with objects the finite sets n = {1,...,n} (including
0 = {}), and with morphisms the injective maps. For a symmetric spectrum A,
we typically write A(n) for its n-th space, but in some formulas we write A,, for
typographical reasons. The association n — Q" A, extends to a functor from Z
to spaces. More generally, given symmetric spectra A°,..., A% and a space X, we
obtain a functor from Z9t! to spaces that sends & = (n,...,n,) to

Qn0+...+nq(Aglq Ao A A?w A X),



1.2. REVIEW OF THE CONSTRUCTION OF THH, TR, AND TC 9

which is also natural in X. Plugging in spheres for X, this gives a model of smash
product of A4; [42, 4.2.3]. This explains the following definition, Dundas-McCarthy’s
Hochschild-Mitchell version of Bokstedt’s variant of the cyclic bar construction.

DEFINITION 1.13. Given a small spectral category C, a C-bimodule M, and
a space X, let G(C; M; X)5 be the functor from Z97! to spaces defined on @i =

(nog,...,ng) by

GC;M; X)g = Qrot T (\/ Cleq—1,Cq)ny N+ ANC(co,C1)n, N M(cq,co)ny N X),

where the wedge is over the (¢ + 1)-tuples (co, ..., ¢q) of objects of C. Let
THH,(C; M)(X) = hocolimgeza+1 G(C; M; X )z.

This assembles into a simplicial space, functorially in X, as follows. The degeneracy
maps are induced by the unit maps S° — C(c;, ¢;)o and the functor

(ng,...,ng) — (ng,...,0,...,1ng)

from 9% to 972, The face maps are induced by the two action maps on M (for
dp and d;) and the composition maps in C (for dy, ..., dy—1) together with a functor
Z9t1 — 79 induced by the appropriate disjoint union isomorphism (n;,n; 1) — n
or (ng,ng) — n for n = n; +n;y1 or n = ng + ng. We write THH(C; M)(X) for
the geometric realization.

THH(C; M)(X) is a continuous functor in the variable X, and so by restriction
to the spheres S™ specifies a symmetric spectrum which we denote TH H (C; M) or
THH(C) for M = C. The fact that the symmetric spectrum T H H is the restriction
of a continuous functor implies that it is semistable [27, 8.7] and so the object that
it represents in the stable category agrees with its underlying prespectrum. With
additional hypotheses of “convergence” and “connectivity”, T HH is often an -
spectrum; see, for example, Proposition 2.4 of [21].

For most homotopical statements about TH H, we need to assume that C and
M are non-degenerately based. When the unit maps S° — C(c,¢)(0) are cofi-
brations, the simplicial spaces THH,(C; M)(X) are “proper”, meaning that the
degeneracy maps are cofibrations, which is a sufficient for geometric realization
to preserve level weak equivalences. The following proposition is then clear since
smash products of non-degenerately based spaces preserve weak equivalences. It
allows us to convert statements in [9] (which works with spectral categories of sym-
metric spectra in the context of simplicial sets) to the current context of topological
spaces.

PROPOSITION 1.14. IfC is a small non-degenerately based spectral category and
M is a non-degenerately based C-bimodule, then the canonical map

THH(|SingC|, | Sing M|)(X) — THH(C; M)(X)
is a weak equivalence for all X .
As immediate corollaries, we obtain the following the basic properties of TH H.

ProproOSITION 1.15. ([9, 3.6]) Let F': C — C' be a weak equivalence of small
spectral categories, M’ a C'-bimodule, F* M’ the C-bimodule obtained by restriction
of scalars, and M — F*M' a weak equivalence of C-bimodules. Then the induced
map THH(C; M) — THH(C'; M) is a weak equivalence.
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PROPOSITION 1.16. ([9, 3.7]) Let C be a small non-degenerately based spectral
category.

(i) A weak equivalence of non-degenerately based C-bimodules M — M’ in-
duces a weak equivalence THH(C; M) — THH(C; M’).
(ii) A cofiber sequence of non-degenerately based C-bimodules M — M’ —
M" — XM induces a homotopy cofiber sequence on THH.
(iii) A fiber sequence of non-degenerately based C-bimodules QM" — M —
M — M" induces a homotopy fiber sequence on THH.

Additionally, we observe the following two results that are useful in arguments
and applications in later chapters.

ProroOSITION 1.17. Let Cy — C1 — --- be a sequence of spectrally enriched
functors of non-degenerately based spectral categories and assume that either the
functors are closed inclusions on mapping spectra or are induced by geometric real-
ization from spectral functors of spectral categories enriched in symmetric spectra of
simplicial sets. Let C = colimC,, and let M be a non-degenerately based C bifunctor.
Then the induced map

hocolimTHH (C,; M) — THH(C; M)
is a weak equivalence.

PROOF. The map hocolim G(Cp; M; X)7m — G(C; M; X)) is a weak equiva-
lence for every X, m. O

PRrROPOSITION 1.18. Let Co be a simplicial object in non-degenerately based spec-
tral categories in which all the faces and degeneracies are the identity on objects and
the degeneracies are Hurewicz cofibrations on each space of each mapping spectrum.
Then the canonical map |THH (Co)| — THH(|Cs|) is a weak equivalence.

ProOF. For each 77 and spectral category C, consider the symmetric spectrum
g(C)ﬂ = Qnottng (\/C(Cq_l7 Cq)nq VANCERWAN C(Co, C1)n1 A\ C(Cq, CO)no N S),

the symmetric spectrum obtained from assembling the spaces G(C,C, S™) of Defi-
nition 1.13. Then

THH(C) = | hocolimzs G(C)g|-
For any proper simplicial non-degenerately based space X,, the canonical map
|Q"(Xe AS)| — Q" Xe A S|

is a weak equivalence, indeed a level equivalence after level n [28, 12.3], and it
follows that |[THH (C,)| — THH(|C,|) is a weak equivalence. O

We now give a minimal review of the definition of TR and T'C; we refer the
reader interested in more details to the excellent discussions of TR and TC in
[21,22]; for a more modern construction, see [1]. For an Sl-space X, the space
THH(C)(X) has two Sl-actions, one coming from X and the other coming from
the cyclic structure. Using the diagonal action and restricting to representation
spheres SV makes TH H(C)(—) into an equivariant orthogonal spectrum [27, §I1.2];
however, TH H(C) has even more structure, that of a cyclotomic spectrum [22, §1.1],
[21, Def. 2.2]. We refer the reader to [9, §4] or [11, §4] for a precise definition of
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the category of cyclotomic spectra, but in brief the structure on T'H H derives from
the fundamental fixed point map

(THH(C)(X)? — THH(C)(XH)

for S'-spaces X and finite subgroups H of S'. This induces maps in the equivariant
stable category

ri: ph® I THH(C) — THH(C)

that are non-equivariant weak equivalences. Here ® denotes the (derived) geomet-
ric fixed point spectrum, and when H is the subgroup with n elements, py is the
n-th root isomorphism S = S'/H; pﬁ converts the S*/H-spectrum ®*THH(C)
back to an S'-spectrum via the isomorphism p. Essentially, a cyclotomic spectrum
consists of an S'-equivariant spectrum indexed on a complete universe together
with weak equivalences ry of the form above, called cyclotomic structure maps,
satisfying certain coherence properties [21, Def. 2.2], [22, §1.1]. By [9, 4.9] (and
the obvious equivariant refinement of Proposition 1.14), THH defines a functor
from small non-degenerately based spectral categories to the point-set category of
cyclotomic spectra.

For a fixed prime p and each n, let Cpn C S' denote the cyclic subgroup of
order p™. We then have maps in the (non-equivariant) stable category

F,R: THH(C)®»" — THH(C)%»m~

where F' is the inclusion of the fixed points and R is the map induced by the compos-
ite of the map from the fixed point spectrum to the geometric fixed point spectrum
THH(C)“ — @ THH(C) and the cyclotomic structure map r¢, : ®“»THH (C)—
THH(C); see [22, §1.1], [21, §2.2], or [9, §4]. We need functorial point-set versions
of these maps to construct TC' as a functor on small spectral categories. In [22],
the connectivity and convergence hypotheses used there imply that THH(C) is an
equivariant Q-spectrum relative to the family of finite subsets of S'; the point-set
maps F, R in [22] are then constructed using the point-set fixed point spectra as
models for the derived fixed point spectra. In our context, we need to use an {2-
spectrum replacement functor in the category of cyclotomic spectra: For such a
functor ), we get appropriate point-set maps

F,R: Q(T)%" — Q(T) %
which are functorial in the cyclotomic spectrum 7.

DEFINITION 1.19. Let @ be an Q-spectrum replacement functor in the category
of cyclotomic spectra and write T(C) for Q(THH(C)). Then TR*(C) is the pro-
spectrum {7(C)“»" } under the maps R, and TR(C) is the homotopy limit. TC(C)
and T'C*(C) are the spectrum and pro-spectrum obtained from TR(C) and TR*(C)
as the homotopy equalizer of the maps F' and R.

Note that a map in the S'-equivariant stable category induces a (non-
equivariant) weak equivalence on fixed point spectra for all finite subgroups of
St if and only if it induces a (non-equivariant) weak equivalence on geometric fixed
point spectra for all finite subgroups [29, XVI.6.4]. It follows that a cyclotomic
map of cyclotomic spectra induces a weak equivalence of fixed point spectra for all
finite subgroups of S! if and only if it is a non-equivariant weak equivalence. In
particular, we obtain the following proposition.
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PrROPOSITION 1.20. A spectral functor of small non-degenerately based spec-
tral categories C — D that induces a weak equivalence on THH induces a weak
equivalence on TR and TC.

Likewise, using the same principle on the cofiber of a map of cyclotomic spectra,
we obtain the following proposition. Applying this proposition in examples when
THH(C) is contractible, localization cofiber sequences on TR and T'C follow from
ones on THH.

PROPOSITION 1.21. For a strictly commuting square of small non-degenerately
based spectral categories

A——B

Iy

C——1D,

if the induced square on THH is homotopy cocartesian, then so are the induced
squares on TR and TC'.

1.3. Review of the invariance properties of THH

In this section, we review the invariance properties of THH. This includes
invariance under Dwyer-Kan equivalence, cofinal embeddings, and thick closure.
We review the Localization Theorem of [9, 7.1] and the closely related theorem
[9, 7.2] on triangulated quotients formed from “localization pairs”. We review only
definitions and statements in this section and defer to [9] for proofs.

DEFINITION 1.22. Let F': C — D be a spectral functor. We say that F is
a Dwyer-Kan embedding or DK-embedding when for every a,b € ob(C, the map
C(a,b) — D(Fa, Fb) is a weak equivalence.

We say that F' is a Dwyer-Kan equivalence or DK-equivalence when F' is a DK-
embedding and for every d € obD, there exists a ¢ € obC such that D(—,d) and
D(—, Fc¢) represent naturally isomorphic enriched functors from D°P to the stable
category.

We can rephrase this definition in terms of homotopy categories.

DEFINITION 1.23. For a spectral category C, the homotopy category moC is the
Ab-category with the same objects, with morphism abelian groups moC(a,b), and
with units and composition induced by the unit and composition maps of C. The
graded homotopy category is the Ab,-category with objects obC and morphisms
mC(a,b).

The following proposition gives an equivalent formulation of DK-equivalence in
terms of homotopy categories.

PROPOSITION 1.24. A spectral functor C — D is a Dwyer-Kan equivalence if
and only if it induces an equivalence of graded homotopy categories m,.C — m,D.

We then have the following invariance property for DK-equivalences.

THEOREM 1.25. ([9, 5.9]) A DK-equivalence of small non-degenerately based
spectral categories C — D induces a weak equivalence THH(C) — THH(D).
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We also have the following more general theorem for bimodule coefficients. In
the statement, the C-bimodule F*A is the bimodule obtained by restriction of
scalars; it is the spectral functor from C°P A C to symmetric spectra defined by first
applying F to each variable and then applying N.

THEOREM 1.26. ([9, 5.10]) Let F': C — D be a DK-equivalence of small non-
degenerately based spectral categories, M a C-bimodule and N a D-bimodule. A
weak equivalence M — F*N induces a weak equivalence THH(C; M) —
THH(D;N).

The next theorem generalizes from DK-equivalences to cofinal DK-embeddings.
For objects a and ¢ of D, say that ¢ is a homotopy factor of a if it is a factor in
the graded homotopy category m,D, i.e., if there exists an object b in D and a
natural isomorphism 7, D(—,c) & 7, D(—,a) x m.D(—,b) of contravariant functors
from 7, D to the category of graded abelian groups. We say that a spectral functor
F: C — D is homotopy cofinal if it induces weak equivalences on mapping spaces
and each object of D is a homotopy factor of the image of some object in C. The
following is the most basic Morita invariance result for THH.

THEOREM 1.27. ([9, 5.11]) A homotopy cofinal spectral functor C — D of small

non-degenerately based spectral categories induces a weak equivalence THH(C) —
THH(D).

The previous theorem generalizes further to the “thick closure”. This is easiest
to state and to explain in the context of pretriangulated spectral categories, which
We NOw review.

DEFINITION 1.28. ([9, 5.4]) A spectral category C is pretriangulated means:

(i) There is an object 0 in C such that the right C-module C(—,0) is homo-
topically trivial (weakly equivalent to the constant functor with value the
one-point symmetric spectrum ).

(ii) Whenever a right C-module M has the property that XM is weakly
equivalent to a representable C-module C(—, ¢) (for some object ¢ in C),
then M is weakly equivalent to a representable C-module C(—, d) for some
object d in C.

(iii) Whenever the right C-modules M and A are weakly equivalent to repre-
sentable C-modules C(—, a) and C(—,b) respectively, then the homotopy
cofiber of any map of right C-modules M — N is weakly equivalent to a
representable C-module.

The first condition ensures the existence of a zero object in the homotopy
category moC: the usual argument shows that the left module C(0, —) is also homo-
topically trivial (in moC, the identity map of 0 is the same as the zero map). The
second condition gives a desuspension functor on 7moC and the third condition in par-
ticular produces a suspension functor on 7oC: We choose ¥~ 'a and Ya representing
Y71C(—,a) and XC(—,a), respectively, in the derived category of right C-modules.
Then ¥~'a and a in particular represent the functors 71C(—,a) and 7_1C(—, a),
respectively, from mC to sets, and so are unique up to unique isomorphism in 7(C.
See [9, 5.4ff] for more discussion.

The terminology “pretriangulated” derives from the fact that the homotopy
category is triangulated. The third condition above indicates how to form triangles.
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DEFINITION 1.29. In a pretriangulated spectral category C, we say that a se-
quence
a—b—c— Xa

in moC is a four term Puppe sequence if there exists right C-modules M and N and
a map of right C-modules f: M — A such that the four term Puppe sequence of f

M—N —Cf —IM

in the category of right C-modules is isomorphic in the derived category of right
C-modules to the sequence

C(—,a) — C(—,b) — C(—,¢c) — C(—, Za)

such that the isomorphism ¥ M — C(—,Xa) = XC(—,a) is the suspension of the
isomorphism M — C(—,a).

THEOREM 1.30. ([9, 5.6]) If the spectral category C is pretriangulated, then its
homotopy category is triangulated with distinguished triangles the four term Puppe
sequences. A spectral functor between pretriangulated spectral categories induces a
triangulated functor on homotopy categories.

COROLLARY 1.31. (]9, 5.7]) A spectral functor C — D between pretriangulated
spectral categories is a Dwyer-Kan equivalence if and only if it induces an equiva-
lence of homotopy categories moC — moD.

The following theorem indicates that there is no loss of generality in considering
spectral subcategories of pretriangulated spectral categories.

THEOREM 1.32. (]9, 5.5]) Any small spectral category C DK-embeds in a small
pretriangulated spectral category C.

Given a set C of objects in a pretriangulated spectral category D, the thick
closure of C' is the set of objects in the thick subcategory of myD generated by C.
In terms of the spectral category D, the thick closure of C' is the smallest set C' of
objects of D containing C' and satisfying:

(i) If a is a homotopy factor of an object of C, then a is in C.
(ii) If the right D-module ¥D(—,a) is weakly equivalent to D(—, ¢) for some
cin C, then a is in C.
(iii) If the right D-module D(—,a) is weakly equivalent to the cofiber of a
map of right D-modules M — M’ with M, M’ weakly equivalent to
D(—,c), D(—,¢) for ¢,c in C, then a is in C.

A set is thick if it is its own thick closure.

THEOREM 1.33. ([9, 5.12]) Let D be a pretriangulated spectral category. Let C
be a set of objects of D, C' its thick closure, and C' a set containing C and contained
in C. Let C and C' be the full spectral subcategories of D on the objects in C and
C' respectively. If C and C' are non-degenerately based, then the inclusion C — C’
induces a weak equivalence THH (C) — THH(C").

The next theorem is the Localization Theorem of [9, 7.1].

THEOREM 1.34 (Localization Theorem [9, 7.1]). Let F': B — C be a spectral
functor between small pretriangulated spectral categories, and let A be the full spec-
tral subcategory of B consisting of the objects a such that F(a) is isomorphic to
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zero in the homotopy category moC. If the induced map from the triangulated quo-
tient moBB/moA to moC is homotopy cofinal, then THH (C) is weakly equivalent the
homotopy cofiber of THH(A) — THH(B).

There is also a version for triangulated quotients. A localization pair (B,.A)
consists of a pretriangulated spectral category B and a full spectral subcategory A
such that my.A is thick in mgB; we say that the localization pair is small when the
spectral category B is small and non-degenerately based when B is non-degenerately
based. (The requirement that A be thick is for convenience rather than necessity
by Theorem 1.33.) The following theorem says that the homotopy cofiber of TH H
is an invariant of a localization pair; here we denote the homotopy cofiber of a map
X—>YasC(X—=Y).

THEOREM 1.35. ([9, 7.2]) Let F: (By, A1) = (Ba, As) be a map of small non-
degenerately based localization pairs. If the induced map of triangulated quotients

7T081/7T0.A1 — 7T082/7T0./42
is homotopy cofinal, then the induced map
C(THH(A,) - THH(B,)) — C(THH(Ay;) —» THH(By))

is a weak equivalence.

1.4. The Dennis-Waldhausen Morita Argument

The main tool in the proof of TH H invariance results is a trick due to Dennis
and Waldhausen [46, p. 391] that we review in this section. We need it in the
proof of the Sphere Theorem in Section 3.5. The argument is based on an explicit
bisimplicial construction, which uses the Hochschild-Mitchell complex in place of
THH.

DEFINITION 1.36. For a small spectral category C and C-bimodule M, let
N¥(C; M) =\/ Cleg-1,¢9) A+ ACleo, 1) A M(cq, co),

where the sum is over the (¢ + 1)-tuples (co,. .., cq) of objects of C. This becomes
a simplicial object in symmetric spectra using the usual cyclic bar construction
face and degeneracy maps: The unit maps of C induce the degeneracy maps, and
the two action maps on M (for dy and d,) and the composition maps in C (for
dy,...,dg—1) induce the face maps. We denote the geometric realization symmetric
spectrum as N (C; M) and write N9 (C) for N%(C;C).

The following proposition, which is essentially the “many objects” version of
[42, 4.2.8-9], follows from Proposition 1.14 and the theory developed in [42] as
corrected in [33]. It allows us to sometimes substitute the Hochschild-Mitchell
complex for THH.

PROPOSITION 1.37. ([9, 3.5]) There is a natural map in the stable category from
THH(C; M) to N¥(C; M) that is an isomorphism when C is pointwise cofibrant.

In addition to the Hochschild-Mitchell complex, we also need the two-sided bar
construction.
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DEFINITION 1.38. Let C be a small spectral category, M a right C-module, and
N a left C-module. The two-sided bar construction B(M;C;N) is the geometric
realization of the simplicial symmetric spectrum Be(M;C; ), where

By(M;C;N) = \/ M(cg) ACleq-r,¢q) A+ AC(co, 1) AN (co),

where the sum is over the (¢ + 1)-tuples (co, ..., c,) of objects of C. We make this
a simplicial object with the usual two-sided bar construction face and degeneracy
maps: the zeroth face map is induced by the action of C on N, the last face map is
induced by the action of C on M, and the remaining face maps are induced by the
composition in C. The degeneracy maps are induced by the unit maps S — C(c;, ¢;).

The following proposition is the Dennis- Waldhausen Morita Argument. In the
statement (and elsewhere when necessary for clarity), we write

BM(z);z,y € C;N(y))  and  N%(z,y € C;P(x,y))

for B(M;C; N) and N (C; P), especially when M, A, and/or P depend on other
variables.

PROPOSITION 1.39 (Dennis-Waldhausen Morita Argument [9, 6.2]). Let C and
D be small spectral categories. Let P be a (D,C)-bimodule and Q a (C, D)-bimodule.
Then there is a natural isomorphism of symmetric spectra

N¥(C,B(P,D,Q)) = N¥(D; B(Q,C,P)),
that is,

N (z,y € C; B(P(w,y);w, z € D; Q(x, 2)))
> NY(w,z € D; B(Q(z, 2);x,y € C; P(w, y))).
As the proof is easy, we repeat it here.
PROOF. We can identify both symmetric spectra
N%(C; B(P;D; Q)) and N (D; B(Q;C;P))
as the diagonal of the bisimplicial spectrum with (g, r)-simplices as pictured.
Cleg—1,2) A---NC(y,c1)
N A
Q(, 2) P(w,y)
A A
D(z,di) A+ AND(dp—1,w)

These two constructions are therefore canonically isomorphic in the point-set cat-
egory of symmetric spectra. (|

The following lemma complements Proposition 1.39 in the applications. Its
proof is the usual simplicial contraction (see for example [28, 9.8]) and requires no
cofibrancy or non-degenerate base point hypotheses.

LEMMA 1.40 (Two-Sided Bar Lemma). Let C be a small spectral category, let
M be a right C-module, and let N be a left C-module. For any object ¢ in C, the
composition maps

Be(M;C;C(c,—)) — M(c) and  Be(C(—,¢);C;N) — N (c)

are simplicial homotopy equivalences.
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The applications we need are the following.

THEOREM 1.41. Let F': C — D be a spectral functor between pointwise cofibrant
spectral categories and let L be the D-bimodule

L(a,b) = B(D(F(-),b),C,D(a, F(-))).
Then THH(D; L) is weakly equivalent to THH(C; F*D).
PROOF. The proof is essentially the same as the proof of [9, 7.6]. It suffices

to produce a weak equivalence between N (D; L) and N (C; F*D). For this we
apply Proposition 1.39 with P = C, and Q = C to obtain a natural isomorphism

N (D; Ei) = NY(D; B(D;C; D)) 2 N¥(C; F*B(D; D; D)).
The natural map
THH(C; F*B(D;D;D)) — THH(C; F*D)
is a weak equivalence by the Two-Sided Bar Lemma 1.40. ]

THEOREM 1.42. ([9, 6.4]) Let C and D be small spectral categories and let
F:C — D be a spectral functor. Let M be a C-bimodule, N a D-bimodule and
M — F*N a weak equivalence. Assume that C and D are pointwise cofibrant and
that M and N are non-degenerately based. If the map of symmetric spectra

B(D(F—, 2);C; N (w, F—)) — B(D(~, 2); D; N (w, )
s a weak equivalence for each fized w,z in D. Then the map
THH(C; M) — THH(D; N)
is a weak equivalence.

As the proof is identical to the proof of [9, 6.4], we omit it here.






CHAPTER 2

THH and TC of simplicially enriched Waldhausen
categories

A Waldhausen category consists of a category C together with a (chosen) zero
object *, a subcategory of cofibrations coC, and a subcategory of weak equivalences
wC that satisfy the following properties [47, §1.1-1.2]:

(i) (Cof 1, Weq 1) coC and wC contain all the isomorphisms.

(ii) (Cof 2) For every object a, the map * — a is a cofibration.

(iii) (Cof 3) Cofibrations admit cobase change: If a — b is a cofibration, and
a — ¢ is any map, then the pushout b U, ¢ exists and ¢ — b U, c is a
cofibration.

(iv) (Weq 2) Gluing Aziom. Given a commutative diagram

b«—=a—c
SN

Ve<ad —¢

where the leftward arrows are cofibrations and the vertical arrows are
weak equivalences, the induced map

bUg c — b Uy ¢

is a weak equivalence.

Waldhausen [47, §1.3] constructs the algebraic K-theory spectrum associated to
a Waldhausen category using the S, construction (which we review in Section 2.3
below). The purpose of this chapter is to construct THH and T'C for Waldhausen
categories that have an additional compatible simplicial enrichment. (We extend
this definition to Waldhausen categories much more broadly in Chapter 5.)

The contents of the chapter are as follows. Section 2.1 defines simplicially en-
riched, enhanced simplicially enriched, and simplicially tensored Waldhausen cate-
gories, giving some examples. Section 2.2 constructs spectral categories from sim-
plicially enriched Waldhausen categories. Section 2.3 reviews the S, construction
and introduces the Moore nerve construction, which is a version of the nerve con-
struction that behaves better homotopically on enriched categories. Section 2.4
introduces the Moore S, construction and iterated S,, which generalizes the iter-
ated S, construction and is needed for the construction of the cyclotomic trace.
Section 2.5 constructs THH, TR, and T'C for simplicially enriched Waldhausen
categories and the cyclotomic trace from K-theory to T'C.

19
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2.1. Simplicially enriched Waldhausen categories

In this section, we introduce the structure of a simplicially enriched Waldhausen
category. This structure compatibly combines a simplicial enrichment with a Wald-
hausen structure in a way that we make precise in Definition 2.1. Although this
structure suffices for us to define an associated spectral category in the next section,
more conditions are necessary to ensure that the homotopy theory of the enrich-
ment matches up with the intrinsic homotopy theory of the Waldhausen category;
we make these conditions precise in the definition of DK-compatible enrichment
in Definition 2.2. In practice, without much loss of generality (as we explain in
Section 5.2), we typically have the stronger structures that we describe in Defini-
tions 2.6 and 2.8. We begin with the most basic structure in the following definition.

DEFINITION 2.1. A simplicially enriched Waldhausen category consists of a
category C = C, enriched in simplicial sets together with a Waldhausen category
structure on Cy such that:

(i) The zero object * in Cy is a zero object for C,
(ii) Pushouts over cofibrations in Cy are pushouts in C,
(iii) Cofibrations z — y induce Kan fibrations C(y, z) — C(z, z) for all objects
z, and
(iv) A map ¢ — y is a weak equivalence if and only if C(y,z) — C(z,2) is
a weak equivalence for all objects z if and only if C(z,z) — C(z,y) is a
weak equivalence for all objects z.

An enriched exact functor between such categories is a simplicial functor ¢: C — D
that restricts to an exact functor of Waldhausen categories Co — Dy.

Since the initial map * — z is always a cofibration in a Waldhausen category,
Definition 2.1 implies that all the mapping spaces C(z,y) are Kan complexes. The
fact that weak equivalences are detected on the simplicial mapping spaces implies
that weak equivalences in Cy are closed under retracts and satisfy the two out of
three property.

As explained by Dwyer and Kan, any category with a subcategory of weak
equivalences has an intrinsic homotopy theory in terms of a functorial simplicially
enriched category called the Dwyer-Kan simplicial localization [18]. Technically, we
use exclusively the variant called the hammock localization [17], which we denote
by L. Then for a simplicial Waldhausen category C, the Dwyer-Kan simplicial lo-
calization of the underlying category with weak equivalences, denoted LCy, provides
a second simplicially enriched category expanding Cy. In general, we see no reason
why these two simplicial enrichments should be equivalent; we therefore introduce
the following terminology.

DEFINITION 2.2. Let C be a simplicially enriched Waldhausen category. We
say that C is DK-compatible if for all objects z,y in C, the maps

C(l’,y) — dlag LC.(:L’,y) — LCO(xay)

are weak equivalences of simplicial sets. Here we regard C,, as a category with weak
equivalences by declaring a map in C,, to be a weak equivalence if and only if some
(or, equivalently, every) iterated face map takes it to a weak equivalence in Cy. The
lefthand map consists of the localization maps C,, — LC,, and the righthand map
is the inclusion of LCy.
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As in Definition 1.22, for categories enriched in simplicial sets, spaces, or spec-
tra, an enriched functor ¢: C — D is called a DK-embedding when it induces a
weak equivalence C(x,y) — D(¢(x), ¢(y)) for all objects z, y. A DK-embedding
is a DK-equivalence when it induces an equivalence myC — myD on categories of
components. On the other hand, for discrete categories Cy and Dy with subcate-
gories of weak equivalences, a functor Cy — Dy that preserves weak equivalences is
called a DK-embedding or DK-equivalence when it induces one on the Dwyer-Kan
simplicial localizations. The main purpose of the previous definition is the following
easy observation.

PROPOSITION 2.3. Let C and D be simplicially enriched Waldhausen categories
and ¢: C — D a simplicial functor (not necessarily exact). Then:

(1) ¢o: Co — Dg preserves weak equivalences.

(ii) Assume furthermore that C and D are both DK-compatible. Then ¢ is
a DK-embedding or DK-equivalence of simplicially enriched categories if
and only if ¢o is a DK-embedding or DK-equivalence (respectively) of
categories with weak equivalences.

The following is an easy but important class of examples of DK-compatible
simplicially enriched Waldhausen categories.

EXAMPLE 2.4. An exact category, or more generally, a Waldhausen category
whose weak equivalences are the isomorphisms, becomes a DK-compatible sim-
plicially enriched Waldhausen category by regarding its mapping sets as discrete
simplicial sets. In this case, parts (i) and (ii) of 2.1 hold since C, = Cy for all n,
and (iv) holds by the Yoneda Lemma. Condition (iii) is vacuous since any map of
discrete simplicial sets is a Kan fibration. The structure is DK-compatible because
the inclusion of Co(z,y) in LCy(z,y) is a homotopy equivalence when the weak
equivalences are all isomorphisms [17, 5.3].

We also have the following less trivial examples.

ExaMPLE 2.5. Let C be a Waldhausen subcategory of cofibrant objects in
a simplicial closed model category M in which all objects are fibrant. Then C
is a simplicially enriched Waldhausen category with its natural simplicial mapping
spaces and Waldhausen structure inherited from M. Indeed, conditions (i)—(iii) are
all special cases of axioms of a simplicial closed model category, with (iii) a special
case of Quillen’s Axiom SM7. Condition (iv) follows from K. Brown’s Lemma [23,
1.1.12] applied to the functors C(—, z) and C(z,—). Moreover, Theorem 2.9 below
shows that when C is closed under tensors with finite simplicial sets, then C is
DK-compatible. Examples of this type include:

(i) Finite cell R-modules for an EKMM S-algebra R, or (for R connective
with 7y noetherian) cell R-modules that have finite stage finitely gener-
ated Postnikov towers as in [7].

(ii) The category of finite cell modules over a simplicial ring A, or the category
of A-modules finitely built out of finitely generated projective A-modules.

(iii) The category of simplicial objects on an abelian category with the “split-
exact” model structure (where the cofibrations are the levelwise split
monomorphisms and the weak equivalences are the simplicial homotopy
equivalences).
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(iv) The category of levelwise projectives in the category of simplicial objects
on an abelian category with enough projectives (with the standard pro-
jective model structure). Likewise, the opposite category of the levelwise
injectives in the category of cosimplicial objects on an abelian category
with enough injectives (with the standard injective model structure).

In addition to being DK-compatible, the previous class of examples has an ad-
ditional structure that we employ to construct non-connective spectral enrichments
in the next section. We abstract this structure in the following definition.

DEFINITION 2.6. A simplicially tensored Waldhausen category is a simplicially
enriched Waldhausen category in which tensors with finite simplicial sets exist and
satisfy the pushout-product axiom. A tensored exact functor between simplicially
tensored Waldhausen categories is an enriched exact functor that preserves tensors
with finite simplicial sets.

In the previous definition, the pushout-product axiom [41, 2.1] asserts that
given a cofibration x — y in Cy and a cofibration A — B of finite simplicial sets,
the map

(r®B) Upga (y® A) — y®@ B
is a cofibration in Cy. This axiom implies that the usual mapping cylinder con-
struction endows Cy with a cylinder functor satisfying the cylinder axiom (in the
sense of [47, §1.6]). The Kan condition on the mapping spaces combined with the
tensor adjunction implies the following proposition.

PROPOSITION 2.7. Let C be a simplicially tensored Waldhausen category.

(i) For any object x in C, the tensor x @ (—) preserves weak equivalences in
simplicial sets.
(ii) For any finite simplicial set X, the tensor (—) @ X preserves weak equiv-
alences in C.
(iii) For objects x and y in C, the simplicial set C(x,y) is canonically isomor-
phic to Co(z @ A[],y).

Definition 2.6 provides the strongest background structure that we use; in Sec-
tion 5.2, we see that Waldhausen categories quite generally admit equivalent models
of this type. In our study of the THH localization sequence in Chapter 4, how-
ever, we require slightly more flexibility. Using a simplicially tensored Waldhausen
category as an ambient category, we sometimes need to restrict to a subcategory.

DEFINITION 2.8. An enhanced simplicially enriched Waldhausen category is a
pair A C C where C is a simplicially tensored Waldhausen category and A is a full
subcategory such that Ay is a closed Waldhausen subcategory of Cy. For A C C and
B C D enhanced simplicially enriched Waldhausen categories, an enhanced exact
functor A — B is a tensored exact functor of simplicially tensored Waldhausen
categories C — D that restricts to a functor 4 — B.

As in [47, §1.2], a Waldhausen subcategory A is a full subcategory of a Wald-
hausen category C that itself becomes a Waldhausen category by taking a weak
equivalence to be a weak equivalence in C between objects of A and a cofibration
to be a cofibration in C between objects of A for which the cofiber is in A (up
to isomorphism). A closed Waldhausen subcategory is a Waldhausen subcategory
A C C that contains every object of C that is weakly equivalent to an object of
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A. An enhanced simplicially enriched Waldhausen category inherits tensors with
homotopically trivial finite simplicial sets (but not necessarily arbitrary finite sim-
plicial sets) as well as properties (i) and (iii) of Proposition 2.7. We also have the
following compatibility result.

THEOREM 2.9. An enhanced simplicially enriched Waldhausen category A C C
is DK-compatible.

PrOOF. Fix objects a,b. Regarding A, (a,b) as Ao(a ® A[n],b), each category
A, admits a homotopy calculus of left fractions [17, 6.1] (see, for example, the
argument for [8, 5.5]) and so we can replace LA, (a, b) with the nerve of the category
of words of the form W~1C, which we temporarily denote as Ly (a,b). An object
of this category consists of a zigzag

a—>x<+—Db

of maps in A,,, where the map x < b is a weak equivalence; a map in this category
is a map in A, of = that is under a and b. We check that both maps
Lo(a,b) — diag Le(a, b) «— A(a,b)

are weak equivalences (i.e., induce weak equivalences on nerves).

For the map Lo(a,b) — diag Le(a,b), we show that each iterated degeneracy
sy : Lo(a,b) = Ly(a,b) is a weak equivalence. Iterating the zeroth face map gives a
functor 9y : Ly (a,b) — Lg(a,b) such that the composite is the identity on Lg(a,b).
We need to check that that the composite sjof on Ly (a,b) is a weak equivalence.
Since both inclusions of a in a ® A[1] and both inclusions of b in b ® A[1] are weak
equivalences, they induce weak equivalences

I, I: Lp(a® A[l],b® A[1]) — Ly(a,b).
The contracting homotopy c: A[n] x A[l] — A[n] from the identity map to the
inclusion of the last vertex induces a functor C: A, — A, sending z to z ® A[l]
as follows: For a map f: z — y in A,,, viewed as a map f: z ® A[n] — y in A,
C(f) is represented by the map
(z @ A[l]) @ Aln] 2z ® (An] x A[l]) — y @ A[l]
in Ag induced by f , ¢, and the diagonal map on A[1]. We then get a functor
C: Ly(a,b) — L,(a® A[l],b® A[1]).
The composite functor
IyoC: Ly(a,b) — Ly(a,b)

is identity functor, and so induces a homotopy equivalence on nerves. It follows
that C is a weak equivalence. The composite functor

IyoC: Ly(a,b) — Ly(a,b)

is therefore also a weak equivalence. Since the functor I; o C' is sgdf, this then
shows that s{0f is a weak equivalence.

It remains to see that the map A(a,b) — diag Le(a,b) is a weak equivalence.
We can identify diag Le(a,b) as the diagonal of the bisimplicial set whose simplicial
set of g-simplices is

IT Ala,20) x wA(b, 20) x wA(zo, 21) X -+ X wA(2g-1,4),

TQyeeeyTg
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where w.A denotes the components with (any, or equivalently, all) vertices in w.Ag,
the subcategory of weak equivalences of the Waldhausen category Ay. The map
A(a,b) — diag Le(a, b) factors through a bisimplicial map from the bisimplicial set
Xee whose simplicial set of g-simplices X, is

H A(a,b) x wA(b, zg) X wA(xg, 1) X - X WA(Tg—1, Tq)-

Z0,---yTq

The inclusion A(a,b) — diag Xee is clearly a simplicial homotopy equivalence, and
the bisimplicial map Xee — Le(a,b) is a degreewise weak equivalence. |

2.2. Spectral categories associated to simplicially
enriched Waldhausen categories

In this section we produce for a simplicially enriched Waldhausen an associated
spectral category, which is natural in enriched exact functors. The mapping spectra
in this category are prolongations of I'-spaces, and as such, are always connective.
For an enhanced simplicially enriched Waldhausen category, we associate another
spectral category, typically non-connective, using the suspensions in the ambient
simplicially tensored Waldhausen category; it is natural in enhanced exact func-
tors. We also explore the basic properties of these categories. We begin with the
construction.

DEFINITION 2.10. Let C be a simplicially enriched Waldhausen category. Define
C", the I'-category associated to C, to have objects the objects of C and mapping
I'-spaces
CF (a,y) = C(a, V).
q

By abuse, we also write C'' for the enrichment in symmetric spectra obtained by
prolongation. We refer to C'' as the connective spectral enrichment of C or the
connective spectral category associated to C.

Here the composition
r r r
C'r (ya Z) A Cq (J?, y) — qu(l', Z)
comes from the ¥, X, -equivariant map

Cly.V2) — Hc<y,yz> = C(Vy.V2)

rq

and composition
CVy,Vz)AC(z,Vy) — C(z,V 2).
q rq q rq
This composition of I'-spaces then induces the composition on the associated sym-
metric spectra. The following proposition is immediate from the construction.

PROPOSITION 2.11. For simplicially enriched Waldhausen categories C and D,
an enriched exact functor ¢: C — D induces a spectral functor ¢': C*' — D'. IfC
and D are DK-compatible and ¢ is a DK-embedding or DK-equivalence, then so is
o'

In general, we can not expect the I'-spaces C'(x,%) to be special or very spe-
cial. On the other hand, as a prolongation of a I'-space, the associated symmetric
spectrum is semistable (Definition 1.8), meaning that it represents the same object
in the stable category as its underlying spectrum.
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PROPOSITION 2.12. The mapping symmetric spectra in C' are semistable.

EXAMPLE 2.13. For € be an exact category, simplicially enriched as in Exam-

ple 2.4,
q q
QEF:cy x,@y %HQE Y-
Prolonging to symmetric spectra, we get
¢"(z,y)(n) = &(z,y) ® Z[S"],

where Z[X] = Z[X]/Z[+]. This is precisely the spectral category associated to an
exact category studied by Dundas-McCarthy [16] and Hesselholt-Madsen [22].

When C is a simplicially tensored Waldhausen category, we can construct an-
other enrichment in symmetric spectra using suspensions: for an object x in C, let
>z be the cofiber of the map

x® OA[l] — z ® A[1].
Suspension defines a tensored exact functor from C to itself. Commuting colimits

and tensors, and applying the associativity isomorphism for tensors, we can describe
the iterated suspension X"z as the cofiber of the map

r® (A1) — z @ A[1]",

where A[1]™ = A[1] x - - - x A[1]. The n-th suspension inherits from A[1]™ an action
of the symmetric group %,,.

DEFINITION 2.14. Let A C C be an enhanced simplicially enriched Waldhausen
category. Define A® to be the spectral category with objects the objects of A and
mapping symmetric spectra

A (2, y)(n) = C(z, Z"y).

We refer to this as the non-connective spectral enrichment of A or the non-connective
spectral category associated to A.

In the previous definition, we obtain the composition on A°,
AS(y, 2) N A5 (z,y) — AS(z, 2)
from the X, x X,,-equivariant maps
Cly,X™2) AC(x, B"y) — C(X"y, 2" " 2) AC(z, E"y) — C(x, X 172).

Note that for an enhanced simplicially enriched Waldhausen category A C C, the
suspension of an object of A is an object of C but need not be an object in A. As a
consequence, the non-connective enrichment A% depends strongly on the ambient
simplicially tensored Waldhausen category C. Recall that an enhanced exact functor
has as part of its structure a tensored exact functor on the ambient simplicially
tensored Waldhausen categories; the following functoriality is immediate from the
construction.

PROPOSITION 2.15. An enhanced exact functor ¢: A — B between enhanced
simplicially enriched Waldhausen categories induces a spectral functor ¢°: A% —
BS. If ¢ is a DK-equivalence and a DK-embedding on the ambient simplicially
tensored categories, then ¢° is a DK-equivalence.
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Using Proposition 2.7.(i) and the Kan condition, we see that the action of any
even permutation on A°(x,y)(n) = C(x,X"y) is homotopic to the identity. Then
[39, 3.2] gives us the following proposition.

PROPOSITION 2.16. The mapping symmetric spectra in AS are semistable.

EXAMPLE 2.17. Let 2 be an abelian category with enough projectives (e.g.,
the opposite category of an abelian category with enough injectives), and let € C 2
be an exact category (with exact sequences the sequences in € that are exact in
2A). Let C be the simplicially tensored Waldhausen category of levelwise projectives
in the category of simplicial objects of 2, as in Example 2.5.(iv). Let A C C be
the full subcategory of C consisting of those objects x such that mgz is in & and
mpx = 0 for n > 0. Then A C C is an enhanced simplicially enriched Waldhausen
category and g gives an enriched exact functor A — &. This functor induces a DK-
equivalence of the connective spectral enrichments A" — &', which are just models
for the Eilenberg-Mac Lane spectra of the abelian groups of homomorphisms. On
the other hand, A has a non-connective spectral enrichment A°, where

0 n>0
Exty " (moz, moy) n <0,

T A% (2,y) = {

essentially by the projective resolution definition of Ext and the Dold-Kan theorem.

ExXAMPLE 2.18. As an example to demonstrate the significance of the ambient
simplicially tensored Waldhausen category, let C be the Waldhausen category of
countable cell EKMM S-modules and let C’ the Waldhausen category of countable
cell EKMM HZ-modules (for some countable cell S-algebra model of HZ). Let
A and A’ be the Waldhausen subcategories of Eilenberg-Mac Lane spectra with
homotopy groups concentrated in degree zero in C and C’ respectively. The forgetful
functor C' — C is exact and sends A’ into A, inducing a DK-equivalence, with both
A'(z,y) and A(z,y) homotopy discrete and homotopy equivalent to Hom(mgz, moy)
for all z, in A’. It follows that the functor A" — A is a DK-equivalence. But
the functor A"® — A% is not a DK-equivalence; for example, when z is a model for
HZ/p,

7 A (z,x) = Ext}(Z/p, Z/p)

whereas 7_,A%(z, x) is isomorphic to the mod p Steenrod algebra.
The next two propositions explore the relationship between A" and A*.

PROPOSITION 2.19. There is a canonical spectral functor A¥ — A°, natural in
enhanced simplicially enriched Waldhausen categories A C C.

PROOF. The maps of simplicial sets
Az, y) @ A[l]" — Az, y @ A[1]") — Az, X"y)

induce equivariant maps of based simplicial sets X" A(x,y) — Az, X"y), which
assemble into the spectral functor AT — A%, a

In Example 2.18, and in fact in the examples of Example 2.5, the canonical
map A" — A9 of the previous proposition makes A" a connective cover of A,
i.e., induces an isomorphism on the non-negative homotopy groups. The following
proposition gives a sufficient general condition for this to hold.
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PrOPOSITION 2.20. Let A C C be an enhanced simplicially enriched Wald-
hausen category, and assume that for every a,b € A the suspension map C(a,b) —
C(Xa,¥b) is a weak equivalence. Then A" (a,b) — A%(a,b) is a connective cover.

PrROOF. Fix a,b and consider the functor F(—) = C(a, (b® —)/(b® %)) as a
functor from based finite simplicial sets to based simplicial sets; we then get A" (a, b)
by viewing F' as I-space and A°(a, b) by viewing {F(S™)} as a symmetric spectrum.
By the hypothesis of the proposition, the canonical map F(—) — QF(X—) is a weak
equivalence. The argument of [27, 17.9] shows that F' is “linear” meaning that it
takes homotopy pushouts to homotopy pullbacks, and in particular, as a I'-space F’
is very special [27, 18.6]. The homotopy groups of A% (a,b) are then the homotopy
groups of F(S%) = A(a,b). Likewise, { F(S™)} is an Q-spectrum, so its non-negative
homotopy are also the homotopy groups of F(S°). O

In the absence of the stability hypothesis of the previous proposition, A% tends
to better capture the stable homotopy theory of A C C, as indicated for example
in the following proposition.

PRrROPOSITION 2.21. Let A C C be an enhanced simplicially enriched Wald-
hausen category.
(i) For any x,y in A, the map A°(z,y) — A% (Xx, Xy) is a weak equivalence.
(ii) For a cofibration f: a — b, Cf the homotopy cofiber, and any object z,
the sequences

QA% (a,2) = A%(Za,z) — AS(Cf,2) — A5 (b, 2) — A5(a, 2)

A% (z,a) — A%(z,b) — A%(2,Cf) — A%(2,%a) ~ TA%(z,q)

form a fiber sequence and a cofiber sequence in the stable category, re-
spectively.

PROOF. Part (i) and the statement about the first sequence in part (ii) are
clear. The statement about the second sequence follows from part (i) and the
argument in [24, §I11.2.1] or [27, 7.4.vi]. d

The proposition indicates that for a simplicially tensored Waldhausen category
C, the spectral category C° is nearly pretriangulated (Definition 1.28). In fact, we
have the following easy corollary:

COROLLARY 2.22. Let C be a simplicially tensored Waldhausen category in
which every object is weakly equivalent to a suspension. Then the category C° is
pretriangulated, and in particular, the category of components moC° has the struc-
ture of a triangulated category with triangles coming from the Puppe sequences and
translation from the suspension.

REMARK 2.23. As the preceding results indicate, the construction of the map-
ping spectra described above provides a version of stabilization of the simplicial
Waldhausen category C, when we regard the objects of C as being compact. In
particular, the zeroth space of (a fibrant replacement of) the mapping spectrum
C%(z,y) is given by

colim,, Q"C(z, X"y) = colim,, C(X"z, X"y).

It is possible to explicitly compare C° to a model of the formal stabilization in
terms of symmetric spectrum objects in C. We give an example below, but general
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theorems of this sort are encumbered with technical hypotheses, and since we do
not need such results we leave them to the interested reader.

EXAMPLE 2.24 (Spectral categories and stabilization in Waldhausen’s algebraic
K-theory of spaces). Let G be a group-like topological monoid, let W be a CW-
complex on which G acts, and let R(W, G) denote the category of G-spaces which
have W as a retract. When restricting to objects satisfying some kind of finiteness
condition, R(W,G) provides Waldhausen’s motivating example for a Waldhausen
category and one of the models underlying the algebraic K-theory of spaces. We
can give R(W, Q) the model structure in which the weak equivalences are the equi-
variant maps that induce underlying equivalences of spaces. Although the category
R(W,G) is in no sense stable (for example, when G and W are trivial, R(W, G) is
the category of based spaces), the spectral category R(W,G)® is equivalent to the
evident subcategory of the category of free ¥.5°G-spectra, as expected.

2.3. The S, and Moore nerve constructions

As part of the construction of THH and T'C of simplicially enriched Wald-
hausen categories and the construction of the cyclotomic trace in the Section 2.5,
we need to extend Waldhausen’s S, construction and the nerve category construc-
tion to the context of simplicially enriched Waldhausen categories. We begin with
the S, construction, where no difficulties arise.

Let Ar[n] denote the lexicographically ordered set of ordered pairs of integers
1,j where 0 < i < j < n. Recall that for a Waldhausen category Cp, S,,Co is the
full subcategory of the category of functors A =a_ _: Ar[n] — Cp such that:

(i) aii ==,
(i) ai; — a; is a cofibration, and
(iii) @i Ua, ; @ik — ajx is an isomorphism
for all i < j < k. A map in S,Cp is simply a natural transformation of functors
Ar[n] — Cy. This becomes a Waldhausen category with weak equivalences defined
objectwise and cofibrations defined to be the objectwise cofibrations A — B such
that each map a; ; Uq, ; bi j — b; x is a cofibration.

DEFINITION 2.25. For a simplicially enriched Waldhausen category C, let S,,C
be the simplicially enriched category with objects the same as S,,Cy and with the
simplicial set of maps S,C(A, B) the simplicial set of natural transformations of
functors Ar[n] — C from A to B.

Condition (iii) in the definition of S, implies that a map A — B is completely
determined by the maps ag ; — bo ;. Since the maps ag ; — ao,j+1 are cofibrations,
we can identify the simplicial set of maps S,,C(A, B) as a pullback over fibrations

(226) SnC(A, B) = C(a071, b071) Xc(a0,17b0,2) Xooe Xc(ao,n—l,bo,n) C(aom, bO,n)-

That is, the simplicial set of maps computes a homotopy limit. Using this for-
mulation of the maps, the following becomes an easy check of the definitions and
standard properties of pullbacks of fibrations of Kan complexes.

PROPOSITION 2.27. Let C be a simplicially enriched Waldhausen category.
Then:

(i) S,C is a simplicially enriched Waldhausen category.
(ii) If C is simplicially tensored or enhanced, then so is S,C.
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(iii) The face and degeneracy maps S;,,C — S,C are enriched exact.
(iv) If C is simplicially tensored or enhanced then the face and degeneracy
maps SmC — S,C are tensored exact or enhanced exact.

Moreover, S, preserves enriched exact, tensored exact, and enhanced exact functors.

Applying the spectral category constructions of the previous section, we get a
simplicial spectral category S,C', natural in enriched exact functors of C. When
C is simplicially tensored or enhanced, we get a simplicial spectral category S,C*,
natural in tensored exact or enhanced exact functors of C. The formula (2.26) for
the mapping spaces then implies the following results for spectral categories.

PROPOSITION 2.28. Let ¢: C — D be an enriched exact functor between sim-
plicially enriched Waldhausen categories that are DK-compatible. If ¢ is a DK-
embedding, then Sp¢" : S,C" — S, D' is a DK-embedding.

PROPOSITION 2.29. Let ¢: (A C C) — (B C D) be an enhanced exact functor
between enhanced simplicially enriched Waldhausen categories. If ¢: C — D is a
DK-embedding, then

S,¢%: S, A% — S,B°
is a DK-embedding.

In Proposition 2.28, we do not necessarily get a DK-equivalence S,,C* — S, D"
from a DK-equivalence C — D. Applying the results of [8], we can do slightly
better in Proposition 2.29.

PrOPOSITION 2.30. Under the hypotheses of Proposition 2.29, if ¢: A — B
and ¢: C — D are DK-equivalences, then

Spg': Sy AT — S, BY  and  S,¢°: S,A% — S,B°
are also DK-equivalences.

PRrROOF. It suffices to show that for any sequence of cofibrations by — -+ - — b,
in B, there exists a sequence of cofibrations a; — - - - — a,, in A and a commutative
diagram

plar) — ¢(az) — -+ — d(an—1) — ¢(an)
b1 b2 et bn—l bn
with the vertical maps weak equivalences. We argue by induction on n, the base

case of n = 1 following from the fact that ¢ is a DK-equivalence and all weak
equivalences have homotopy inverses. Having constructed the diagram

¢(ar) — plaz) — -+ — dlan—1)

1 |

bl b2 e bnfl bn

by induction, we know from [8, 1.4] that the homotopy category of objects in C
under a,,_1 is equivalent to the homotopy category of objects in D under ¢(a,—_1).
We then get an object @', a map a,_1 — o’ in C, and a zigzag of weak equivalences
under ¢(a,_1) in D from ¢(a’) to b,. Since b, is in B, by the embedding hypotheses,
we see that ¢ is in A. Using an appropriate generalized interval J, we let a,, =
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(an—1®J)U,,_, a’. The inclusion of a,,_1 in a,, is a cofibration in C, and we get a
weak equivalence under ¢(a,_1) from ¢(a,) to b,. To complete the argument we
need to see that a,,_1 — a, is a cofibration in A, i.e., that its cofiber is in A. This
follows since ¢(an/an—1) is weakly equivalent to by, /b,_1, which is in B since by
hypothesis b,,_1 — b, is a cofibration in B. (I

Waldhausen constructed the K-theory spectrum KCy as a symmetric spectrum
with n-th space KCy(n) = diag w.SEn)CO, where SSH) is the iterated So-construction
and w, is the nerve of the subcategory of weak equivalences. The previous propo-
sition extends the iterated S, construction to simplicially enriched categories. We
could likewise consider the simplicially enriched categories w,C with objects the
sequences of weak equivalences

ap s s a,

and simplicial sets of maps the natural transformations. Then for objects A and
B, the simplicial set w,,C(A, B) becomes

C(ao,b0) Xc(ag,br) " XC(an_1,bn) Clan,bp).

While this works formally, it does not work well homotopically because the pull-
backs are not over fibrations and so the mapping spaces are not homotopy limits.

We can sometimes resolve this problem by working with the simplicially en-
riched categories w,,C, where the objects are the sequences of maps which are weak
equivalences and cofibrations; we use this construction in Section 3.3. However,
this is often inconvenient and does not always produce the correct result, and so
instead we describe a general technique for fixing the problem by putting choices
of homotopies in the mapping spaces. As a first case, consider the following con-
struction.

CONSTRUCTION 2.31. Let C be a simplicially enriched category and let vCy be a
subcategory of Cy. We construct a topologically enriched category vi/C as follows.
An object consists of a map ag: ag — a1 in vCy. The space of maps v1C(A, B)
consists of elements fo, f1 of the geometric realizations |C(ag,bo)l|, |C(a1,b1)| (re-
spectively), a non-negative real number r, and a homotopy fo1 of length r in
|C(ag, b1)| from By o fo to f1 o ag; we topologize this as a subspace of

‘C(ao,boﬂ X \C(al,b1)| x R x |C(a0,b1)\j.
Composition is induced by composition of maps and homotopies.

In the notation “M” stands for Moore, as this employs the Moore trick for
making homotopy composition associative. In this construction, the mapping space
vMC(A, B) is homotopy equivalent to the homotopy pullback

C(a0,b0)| X|c(ag,b1)) 1C(@0, 1) X |c(ag,br)) 1C (a1, b1)].

The Moore trick generalizes from paths to maps out of higher simplices [32, §2].
We understand the n-simplex of length r > 0 to be the subspace Aln], of points
(to,t1,...,tn) of R* ! with t; > 0 and Y. ¢; = r. Then given r, s > 0, the maps
o=t Ali], x An —i]s — Aln],4 s defined by

T8

Ui”’;l_i; (t(), R >ti)7 (Uo, .. ,’U,n,i) — (to, oot Fug,ug, .. ,un,i)
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decompose A[n],+s as a union of prisms
n
vt Alnleys = | Al x Aln — i,
=0

(See Proof of Theorem 2.4 in [32, p. 162].) This decomposition clearly commutes
with the simplicial face and degeneracy operations, and it is associative in that the
following diagram commutes.

o5 xid

Alilq x Alj]r x Alk]s s Ali + jlg+r X AlK]s

. ik itk
id x o,,.,sl j{o(ﬁms

Alilg X Alj + klris — Ali + 5+ Kl grrs

q,m+s

CONSTRUCTION 2.32 (Moore Nerve). For C a simplicially enriched category
and vCy a subcategory of Cy, define the topologically enriched category v} (C as
follows. The objects consist of the sequences of n composable maps in vCy

v v
ag — 0 — Qy.

For convenience in what follows, we denote the structure map a; — a; as «; j, for
i < j (and B, ;, vi,; similarly for objects B,C'). An element of the space of maps
from A to B consists of the following data:

(i) A non-negative real number r
(ii) For each 0 <m < n and each 0 <ip < -+ < iy, <n a map
fiorovii : Almly — |Caig, bs,, )|
for r > 0, or an element of |C(a;,,b;,, )| for r = 0.

such that for any subset ¢;,,...,%;, of i1,...,%m, the map
Bisyrim © fijg iz, © Qigizy  Alllr — [Claiy, by, )|

is the restriction to the face of f;, . ;. spanned by ij,,...,%;,. We topologize
this as a subset of the evident product. Composition is induced by the prismatic
decomposition above: for F': A — B of length » > 0 and G: B — C of length
s > 0, the composition H: A — C of length r + s is defined by taking h to
be the map

1050 yim

(Gijooosin (W05 - - s Umn—) © Qi i) © (Vij iy © fin,.oiy (B0, E5))

on the A[j], x Alm — j] prism in the 9", decomposition of A[m],,s. For r =0 or
s = 0, composition is induced by composition in C.

A straightforward check of the formulas verifies that this defines a topological
category. Moreover, v}/ C assembles into a simplicial topological category with the
following naturality property. (It applies in particular to the important special case
C = D with ’UCO ; UD().)

PROPOSITION 2.33. Given simplicially enriched categories C and D, a simpli-
cially enriched functor ¢: C — D that takes vCy into vDy induces a topologically
enriched simplicial functor vMC — vMD.
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For objects A and B, vM (A, B) is homotopy equivalent to the homotopy end
of C(ai, b;) for n > 0, while v}/C(a,b) = |C(a,b)| x [0,00). In particular C includes
in v)!C (after geometric realization) as the subcategory of maps of length zero.
More generally, the nerve categories v,C include (after geometric realization) as
the subcategories of the Moore nerve categories v22C of the maps of length zero.
Restricting to simplicially enriched Waldhausen categories, we get the following
proposition.

PROPOSITION 2.34. Let C be a simplicially enriched Waldhausen category and
vCy a subcategory of Cy.
(i) If vCy C wCy, then the inclusion of C in vMC is a DK-equivalence.
(i) If vCy C coCy, then the inclusion of v,C in vMC is a DK-equivalence.

Finally, we use the following notation.

DEeFINITION 2.35. Let C be a simplicial enriched Waldhausen category, and let
vCy be a subcategory of Cy. Define v}Cl' to be the simplicial spectral category
obtained from the simplicial I'-category with

o) CH(X,Y) =0} C(X,VY).
q

For A C C an enhanced simplicially enriched Waldhausen category, define v 4%
to be the simplicial spectral category with

o) AS(X,Y)(q) = v} C(X,2Y).

In the formula, \/ denotes the entry-wise coproduct; although this is not the
coproduct in v} C, we can identify

u'e(VY, Z) c [[en'e(v, 2)
a q
as the subspace of ¢-tuples of maps, all having the same length. We then obtain T'-
category composition as in Section 2.2. Likewise, in the enhanced context, although
¥"Y is not a based tensor in v} C, we nevertheless have a continuous functor

wMe(y, Z) — oM (2"Y, 5" 7)

and we obtain the spectral category composition as in Section 2.2.

2.4. The Moore S, construction

Although the S, construction translates naturally to the enriched context, it
is often useful to be able to weaken the cocartesian condition in the construction
and instead work with an equivalent construction defined in terms of homotopy
cocartesian squares called the S, construction. This flexibility plays a key role in
the proof of the dévissage theorem for the localization theorem for THH (ku) in
Section 4.3. Such a definition also provides models of K-theory and T'HH which
are functorial in functors “exact up to homotopy” as explained in Section 5.1. In
this section we introduce an appropriately enriched version of the S, construction,
using the Moore ideas from the previous section to construct the homotopically
correct enrichment.

We begin by reviewing the S, construction. For this, recall from [8, §2] that a
weak cofibration is a map that is weakly equivalent (by a zigzag) to a cofibration in
the category ArCy of arrows in Cy, and a homotopy cocartesian square is a square
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diagram that is weakly equivalent (by a zigzag) to a pushout square where one of
the parallel sets of arrows consists of cofibrations.

CONSTRUCTION 2.36. Let Cp be a Waldhausen category. Define S/ Cy to be the
full subcategory of functors A: Ar[n] — Cy such that:

e The initial map * — a;; is a weak equivalence for all %,
e The map a; ; — a1 is a weak cofibration for all ¢+ < j < k, and
e The diagram

Q5 — Q4 k

Lol

ajj = Ajk
is a homotopy cocartesian square for all i < 57 < k.

We define a map A — B to be a weak equivalence when each a; ; — b; ; is a
weak equivalence. Clearly S, assembles into a simplicial category with the usual
face and degeneracy functors.

In order to use S,Cp to construct K-theory, we need a mild hypothesis on Cy.
We say that a Waldhausen category Cy admits factorization when any map f: a — b
in Cy factors as a cofibration followed by a weak equivalence

~

a&Tfﬁb,

We say that Cy admits functorial factorization if this factorization may be chosen
functorially in f in the category ArCy of arrows in Cy. More generally, we say that
Co admits factorization of weak cofibrations (FWC) or functorial factorization of
weak cofibrations (FFWC) when the weak cofibrations can be factored as above.
Enhanced simplicially enriched Waldhausen categories always admit FFWC using
the standard mapping cylinder construction.

ProrosITION 2.37. If A is an enhanced simplicially enriched Waldhausen cat-
egory, then A admits FFWC.

The significance of the hypothesis of FFWC is the following comparison result
7, 2.9].

PRrROPOSITION 2.38. Let Cy be a Waldhausen category admitting FFWC. Then
for each n, the inclusion wS,Co — wS},Cy induces a weak equivalence on nerves.

The previous proposition implies that weS,Co models the K-theory space of
Co. Using an iterated S, construction SLEQ.CO as a full subcategory of functors
Ar[e] x --- x Ar[e] to Cy (see [8, A.5.4]) gives a model w.Si(:l.?,-Co for the K-theory
spectrum.

For a simplicially enriched Waldhausen category C, we need a version of S,C (or
more generally w.S:(fl.C ) with the correct mapping spaces. As in the construction
of the Moore nerve in 2.32, we do this using the Moore trick, this time with the
full generality of the McClure-Smith construction of the Moore Tot [32, §2] of a
cosimplicial object.

CONSTRUCTION 2.39. Let C be a category enriched in simplicial sets, let D be
a small category, and let DCy be the category of D-diagrams in Cy. For A = (aq)
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and B = (by) in DCy, let DMC(A, B) be the McClure-Smith Moore Tot (denoted
Tot” in [32, §2]) of the cosimplicial object

pMcA,B) =[] IC(a4, ba,)l
do—r--—dy

(the cosimplicial object for the homotopy end of |C(A, B)|). We let DMC be the
topologically enriched category with objects the objects of DCy, maps the spaces
DMC(C(A, B) above, and composition induced by the “cup-pairing” [32, 2.1]

II lca,.ca)lx I IClaa.ba)l— ]  IC(aa,., car)l.

dp—---—do dj]a-uadg] dptq——do
Here the map is induced on the dpyqy — -+ — do coordinate of the target by
composition

C(bd,,vcdo) X C(aderq,bdp) — C(aderq,Cdo)
of the maps on the d, — -+ — dp and dpyqy — -+ — d, (where d; = dyy;)
coordinates of the source.

As in the previous section, we obtain a connective spectral enrichment using
the objectwise coproduct and (when defined) a non-connective spectral enrichment
using the objectwise suspension.

We use analogous notation for the enriched categories associated to full sub-
categories of diagram categories, obtaining for example SMC and S/MC as full
subcategories of the functors Ar[n] — C. Because the Moore Tot always has the
homotopy type of the homotopy end (containing it as a deformation retract), we
obtain the following result as an immediate consequence.

PRrROPOSITION 2.40. For a simplicially enriched Waldhausen category C, the
inclusion of the topologically enriched category |S,C| in SMC as the length zero
part is a DK-equivalence.

Considering more complicated diagrams, this also applies to pr(g?,),.,’an.

Thinking of these categories as subcategories of pr;(lrf,)__,an , the more restricted

homotopies in w)’ S(S?,),,_,qnc make its mapping spaces subspaces of (pr;(f},),,7q" Mc,
and we get the following result.

PROPOSITION 2.41. For a simplicially enriched Waldhausen category C, the
inclusion of wi,”Séﬁ)m,an in (pré(ﬁ)“,qn)MC is a DK-embedding. If Cy admits
FFEWC, then it is a DK-equivalence.

We write (pr;(ff,)__,qn)MCF and when appropriate (pr;(ﬁ)__,qn)MCs for the as-
sociated spectrally enriched categories.

2.5. THH, TC, and the cyclotomic trace

In this section, we apply the constructions of THH and T'C of spectral cate-
gories in the context of the spectral enrichments associated to a simplicially enriched
Waldhausen category C. For the connective enrichments, we require Waldhausen’s
Se construction in order to properly handle extension sequences in the Waldhausen
structure for reasons first observed by McCarthy [31, 3.3.5] and Dundas-McCarthy
[16, 2.3.4]; for the non-connective enrichment, the S, construction turns out to be
superfluous.
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DEFINITION 2.42. For a simplicially enriched Waldhausen category C, we define
WTHH"C = QITHH(S.C)|
WTR'C = Q|TR(S.C)|
WTCTC = Q|TC(S.C")|.

If C is a simplicially tensored Waldhausen category and A C C is an enhanced
simplicially enriched Waldhausen category, then we define

WTHHA = QTHH(S, A
WTRA = Q|TR(S.A%)|
WTCA = Q|TC/(S,A%)].

In other words, we apply THH, TR, or TC first to get simplicial (or mul-
tisimplicial) cyclotomic spectra or pro-spectra. Then we take the geometric real-
ization in the simplicial directions, followed by loops. In the case when C is an
exact category, WTHH" (C) is precisely THH of the exact category as defined by
Dundas-McCarthy [16], and denoted there as THH(C).

We have the following naturality properties.

PROPOSITION 2.43. An enriched exact functor induces maps on WTHH?",
WTRY, and WTCT. A tensored exact or enhanced exact functor induces maps
on WI'HH, WTR, and WTC'. Naturally weakly equivalent functors induce the
same map in the stable category.

PROOF. The only part not immediate from the construction is the last state-
ment. We use Construction 2.31 with vDy the subcategory of weak equivalences
wDy. We have a pair of simplicial spectrally enriched functors wM S¢DV — S DV
each split by the inclusion S,D' — w{” S.D. Since the inclusion induces a DK-
equivalence SoD' — w{” S.D', both maps w{VIS.'DF — S.D' induce the same map
in the stable category on THH, TR, and TC. Now, given enriched exact functors
@0, ¢1: C — D and h a natural weak equivalence between them, we get a simplicial
spectrally enriched functor S,CY — w}M S,DY (factoring through the length zero
part w1 SeD'). The two composites

St — wM S, D" — 5, D"

are the maps induced by ¢y and ¢;. For tensored exact or enhanced exact functors
¢o and ¢ and a natural weak equivalence between them, the same argument applies
to show that the maps on WTHH, WTR, and WTC induced by ¢y and ¢; coincide
in the stable category. O

Applying Proposition 2.28 and 2.30 we obtain the following homotopy invari-
ance properties.

PROPOSITION 2.44. Let ¢: C — D be an enriched exact functor between sim-
plicially enriched Waldhausen categories that are DK-compatible. Assume that ¢
is a DK-embedding and that every object of S, D is weakly equivalent to an object
in the image of Sp¢ (for all n). Then ¢ induces weak equivalences on WTHHT,
WTRY, and WTCT.

PrROPOSITION 2.45. Let ¢: A — B be an enhanced exact functor between en-
hanced simplicially enriched Waldhausen categories. If ¢ is a DK-equivalence of
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the ambient simplicially tensored categories and a DK-equivalence A — B, then ¢
induces a weak equivalence on WTHH, WTR, and WTC'.

Implicitly in the previous propositions we passed from a level weak equiva-
lence of simplicial spectra X, — Y, to a weak equivalence on geometric realization
| Xe| = |Ye|. Using the standard geometric realization, we need hypotheses on X,
and Y, for this to work (cf. 1.14). One sufficient hypothesis is that X, and Y, are
spacewise proper: we say that a simplicial symmetric spectrum of topological spaces
X, is space-wise proper when the simplicial space X,4(n) is proper for every n, i.e.,
for each k, each degeneracy map X;(n) = Xy11(n) is a Hurewicz cofibration (sat-
isfies the homotopy extension property). The following proposition applies to verify
this property for the constructions in the previous propositions and the many other
constructions in this paper. Its proof requires the details of the T HH construc-
tion in Definition 1.13 but is then straightforward given the standard properties of
Hurewicz cofibrations.

PROPOSITION 2.46. Let Co be a simplicial object in the category of spectral
categories (in topological symmetric spectra). Assume that for all k the category Cy,
is non-degenerately based and that for all objects x,y of Cy, and for each space of
the mapping spectrum each degeneracy map s*: Cr(z,y)(n) — Cry1(s'z, s'y)(n) is a
Hurewicz cofibration. Then the simplicial spectrum THH (Co) is spacewise proper.

Waldhausen’s approximation property provides a convenient formulation for
the conditions in Propositions 2.44 and 2.45 that often holds in practice. We say
that exact functor ¢: C — D has the approximation property when:

(i) Amap f: a — bis a weak equivalence in C only if the map ¢(f) in D is
a weak equivalence.

(ii) For every map f: ¢(a) — x in D, there exists a map g: a — b in C and
a weak equivalence h: ¢(b) — x in D such that g = ho ¢(g).

We then have the following TH H analogue of Waldhausen’s Approximation Theo-
rem. The proof is that under factorization hypotheses, the approximation property
implies that ¢ is a DK-equivalence; see [8, 1.4-1.5].

THEOREM 2.47. Let ¢: (A C C) — (B C D) be an enhanced exact functor
between enhanced simplicially enriched Waldhausen categories, and suppose that
odo: Co — Dy satisfies the approzimation property. If every object of B is weakly
equivalent to the image of an object of A, then ¢ induces weak equivalences on
WTHH", WTRY, WI'C" and on WTHH, WT'R, WTC.

In many situations, the underlying Waldhausen category Cy of a simplicially
enriched Waldhausen category C admits a second subcategory of weak equivalences
vCy. Boustfield localization gives examples in many contexts; in our examples of
interest, categories of modules over connective S-algebra R, we often consider a
second category of weak equivalences obtained from inverting an element of m, R
(see Section 4.2). In general, we do not need to assume the second subcategory
of weak equivalences is related to the simplicial structure, or even satisfies the two
out of three property. When vCy contains all the isomorphisms and satisfies the
Gluing Aziom (stated as (iv) in the introduction to this chapter), each Waldhausen
category S,,Cp inherits a subcategory vS,,Cy also satisfying these properties. In this
context, we have additional variants of THH, TR, and TC.
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DEFINITION 2.48. Let C be a simplicially enriched Waldhausen category, and
let vCy be a subcategory of Cy containing all the isomorphisms and satisfying the
Gluing Axiom. Then we define the connective relative THH, TC, and TR of (C|v)
as indicated below (on the left). When C is simplicially tensored and A C C is an
enhanced simplicially enriched Waldhausen category, we define the non-connective
THH,TC, and TR of (AJv) as indicated below (on the right).

WTHH" (Clv) = QITHH((vMS,CT)| WTHH(Av) = QTHH (v} S, A%
WTRF (Clv) = QTR(vMS,Ch)| WTR(A|v) = QTR(vM S, A%)|
WTCr (Clv) = QTC(vMS,ch)) WTC(Alv) = Q|TC(vMS,A%)|

In the special case when vCqy is the category of weak equivalences wCy, the
inclusion of each S,CT into wéanCF and (when defined) S,,A° into wé”SnAS isa
DK-equivalence. This implies the following proposition.

PROPOSITION 2.49. For C a simplicially enriched Waldhausen category and A
an enhanced simplicially enriched Waldhausen category, the maps

WTHH'C — WTHH" (C|w) WTHHA — WTHH(A|w)
WTR"C — WTR" (C|w) WTRA — WTR(Aw)
WTC'C — WTCY (Clw) WTCA — WTC(Aw)

are weak equivalences

Using the model of THH in the previous proposition, we have the following
sharper version of Proposition 2.43.

PRrROPOSITION 2.50. Let ¢, p1: C — D be exact functors between simplicially
enriched Waldhausen categories. A natural weak equivalence from ¢g to ¢y induces
a simplicial homotopy of the induced functors

WTHH" (Clw) — WTHH" (D|w)
WTRF (Clw) — WTR"(D|w)
WTC (Clw) — WTC" (Dw)
and similarly for the non-connective enrichments when appropriate.
PROOF. The proof is the usual one, using the n + 2 functors
wf\f X — w,%ly

obtained by inserting the natural transformation in each position (giving it length
0 in the Moore construction). O

To construct the cyclotomic trace, we need a final variant of these constructions
where we iterate the S, construction.

DEFINITION 2.51. Let
WTHH C(n) = |THH(w S
The simplicial maps of spectral categories
srmmwd Sl — wh simer
induce maps
SMWTHH' C(m) — WTHH' C(n)
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(as in [47, §1.3]). These maps assemble WTHH"C into a symmetric spectrum in
the category of cyclotomic spectra. We define WTR and WTC to be the TR and
TC pro-spectra constructed from WT HH.

As a consequence of the Additivity Theorem 3.1, we prove the following lemma
in Section 3.1.

LEMMA 2.52. The map E”*mW/T\H/HFC(m) — W/T\I?HFC(n) in Def-
inition 2.51 is a weak equivalence for all n > m > 0.

We have analogous constructions and results in the relative case (using v}
in place of w)) and non-connective case (using A° for A" when A is enhanced).
The identity WTHH'C = QWTHH ‘e (1) then immediately implies the following
result.

THEOREM 2.53. We have natural isomorphisms in the stable category

WTHH'C ~WTHH'C ~ WTR'C~WTR'C  WTR'C~WTC"C
and likewise for the relative and non-connective variants when these are defined.

We can now define the cyclotomic trace.

DEFINITION 2.54. For a simplicially enriched Waldhausen category C, the cy-
clotomic trace

K(Co) — WTC'¢c — WTHH'C
is the map induced by the inclusion of objects
KCo = Ob(weSMCy) = Ob(wM STy — WTHH'C.
For vCy a subcategory of Cy containing the isomorphisms and satisfying the Gluing
Axiom, the relative cyclotomic trace is the map
K (Colv) — WTC" (Clv) — WTHH" (Clv)
induced by the inclusion of objects
K(Colv) = Ob(1a5Cy) = Ob(vM STy — WTHH" (Clv).

Finally, to compare the definitions of this section with the theories used in [9]
and Chapter 1, we state the following two theorems. The first is a consequence of
the Additivity Theorem 3.3 and proved in Section 3.1.

THEOREM 2.55. Let A be an enhanced simplicially enriched Waldhausen cat-
egory. The inclusion of THH(AS) in WTHH(A) is a weak equivalence of cyclo-
tomic spectra.

The second is a special case of the Sphere Theorem from Section 3.4; see Corol-
laries 3.16 and 3.24.

THEOREM 2.56. Let R be a ring, a simplicial ring, or a connective ring spec-
trum, and let A be the simplicially tensored Waldhausen category of finite cell mod-
ules (built out of free or finitely generated projective modules) in Example 2.5.(i)
or (ii) (as appropriate). Then the natural map WTHH"(A) — WTHH(A) is a
weak equivalence of cyclotomic spectra.
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Thus, for a ring, simplicial ring, or connective ring spectrum, we have weak
equivalences of cyclotomic spectra

WTHH"(A) = WTHH(A) <~ THH(A) <~ THH(R),

where the last weak equivalence is a special case of Theorem 1.33.






CHAPTER 3

K-theory theorems in THH and TC

The purpose of this chapter is to take the standard theorems of K-theory as
proved in [47] and describe versions of these for TH H. Because weak equivalences
in THH and cofiber sequences in T'HH automatically produce weak equivalences
and cofiber sequences for TC (q.v. Propositions 1.20-1.21), we typically make
statements just for THH.

Section 3.1 reviews the Additivity Theorem (q.v. [47, 1.3.2]) for THH, based
on work of McCarthy [30]. Section 3.2 proves a TH H version of [47, 1.5.5], which
constructs a cofiber sequence of THH spectra associated to a map. Section 3.3
proves a THH version of Waldhausen’s Fibration Theorem [47, 1.6.4]. Section 3.4
states the Sphere Theorem (cf. [47, §1.7]), which in certain cases identifies the
THH of simplicially tensored Waldhausen category as the THH of a subcategory
of generators. Section 3.5 proves the Sphere Theorem.

3.1. The Additivity Theorem

The modern viewpoint, implicit in [47] but first written explicitly by Staffeldt
[43], holds the Additivity Theorem as the fundamental property of K-theory. In-
deed, we now know that this property essentially characterizes K-theory in a very
precise sense, cf. [5,6]. In this section, we discuss the Additivity Theorem for the
T HH of Waldhausen categories and two of its variants in this section; we use these
to deduce the remaining K-theoretic properties of TH H in the next three sections.

To state the Additivity Theorem, we use the following notation. For C a sim-
plicially enriched Waldhausen category, let £(C) = S2C be the simplicially enriched
Waldhausen category with objects the cofiber sequences x — y — 2z (in Cp), i.e.,
x — y is a cofibration and y — z is a model for the quotient map y — y/x. We
have enriched exact functors «, 3,7 from £(C) to C defined by

alz >y — z) =z, Blx =y —2) =y, Y=y —z) =2z

THEOREM 3.1 (Additivity Theorem). For a simplicially enriched Waldhausen
category C, the enriched exact functors a and v induce a weak equivalence of cyclo-
tomic spectra

WTHH"(£(C)) — WTHH"(C) x WTHH" (C) ~ WTHH"(C) v WTHH"(C).

McCarthy’s proof of the Additivity Theorem for K-theory [30] provides a very
general argument for showing that the map (a,7): Se£(C) = SeC x S¢C induces
a homotopy equivalence in various contexts. The elaboration in [31, §3.4-3.5] to
prove the Additivity Theorem for cyclic homology of k-linear categories carries
over essentially word for word to prove the Additivity Theorem above, just replacing
“CN” with “TTHH” and “k-linear” with “spectral”. (The only property of THH or

41
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C'N needed is that it takes simplicial homotopy equivalences of simplicial (spectrally
or k-linearly) enriched categories to weak equivalences of spectra or simplicial sets.)

The following result is both a generalization and a corollary of the Additivity
Theorem above. Recall that a sequence of natural transformations of exact functors
f — g — h from Cy to Dy forms a cofiber sequence of exact functors, when (taken
together) they define an exact functor C to £(D).

COROLLARY 3.2. Let C and D be simplicially enriched Waldhausen categories,
and let f — g — h be a sequence of enriched exact functors C — D that forms a
cofiber sequence of exact functors. Then the maps

WTHH"(g)  and  WTHH"(f)vWTHH"(h).

from WTHHY(C) to WT'HHY (D) agree in the homotopy category of cyclotomic
spectra.

PRrROOF. The functor D x D — &(D) sending (a,b) to @ - aVb — b is an
enriched exact functor, and the composite map

WTHH" (D)vWTHH" (D) — WTHH"(D x D) — WTHH" (£(D))

splits the zigzag of weak equivalences in the Additivity Theorem and is therefore a
weak equivalence of cyclotomic spectra. It follows that 8 and aVy induce the same
map £(D) — D in the homotopy category of cyclotomic spectra. Precomposing
with the map C — £(D) defined by f — g — h proves the corollary. O

This corollary provides the key tool for even more general additivity statements.
For example, the map 5,C — CxS,,_1C defined by sending X = (x; ;) to (zo,1,doX)
induces a weak equivalence on WT HH?". To see this, consider the map Cx S,,_1C —
S,C sending (x,Y) to Z = (z; ;) with

TV Yo,ji—1 1 =0
Zig = .
Yi-1,j-1 >0,

The composite map on C x S, _1C is the identity, and the composite map on S,,C
is f V h for exact functors f and h that fit in a cofiber sequence of exact functors
f — g — h with g the identity. We will use this argument many times in what
follows.

When A is an enhanced simplicially enriched Waldhausen category, so is £(A)
and the functors a, 3,~ are enhanced exact. We have precise analogues of the
previous results (with the same proof). In fact, we have the following stronger
version of the Additivity Theorem for the non-connective enrichment (cf. [9, 10.8]).

THEOREM 3.3. Let A be an enhanced simplicially enriched Waldhausen cate-
gory. The enhanced exact functors a and vy induce a weak equivalence of cyclotomic
spectra

THH(ES(A)) — THH(A®) x THH(A®) ~ THH(AS) v THH(A®).

PROOF. By Theorems 1.32 and 1.33, it suffices to consider the case when A is
pretriangulated. Then the functor a + (a — a — %) embeds A” as a triangulated
subcategory of £9(A) and the functor a +— (* — a — a) induces an equivalence of
7o A® with the triangulated quotient mo€(A)/m0.A°. The statement now follows
from Theorem 1.34. O
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As a consequence of the Additivity Theorems 3.1 and 3.3, we can now prove
Lemma 2.52 and Theorem 2.55.

PROOF OF LEMMA 2.52 AND THEOREM 2.55. We will treat Lemma 2.52 in
detail; Theorem 2.55 follows from the same argument using A in place of S,C
and Theorem 3.3 in place of Theorem 3.1. To prove Lemma 2.52, it suffices to show
that the map SWTHHY(C) — WTHH?Y (S.C) is a weak equivalence. This map is
induced by a simplicial map

\VWTHH" (C) — WTHH"(S,C),

which is a levelwise weak equivalence by the Additivity Theorem and the argument
following Corollary 3.2. ]

3.2. The Cofiber Theorem

This section is the first of three that apply the Additivity Theorem to prove
standard K-theory theorems in THH and T'C'. This section provides a general
cofiber sequence for THH (and T'C) associated to a map of Waldhausen categories
by identifying the cofiber term as a version of THH (cf. [47, §1.5]). We call this
theorem the “Cofiber Theorem”.

We begin with the construction of the cofiber term. For f: C — D an enriched
exact functor, we define a simplicially enriched Waldhausen category S, f as follows.
An object consists of an object Y = (y; ;) of S,,C together with an object X = (x; ;)
of S,,41D such that dgX = f(Y), that is, z;41,;41 = f(yi,;), with the structure
maps for this subdiagram in X identical with f(Y). For objects (X,Y), (X', Y"),
the simplicial set of maps consists of the simplicial set of natural transformations.
We make this a Waldhausen category by declaring a map (X,Y) — (X', Y”) to be
a cofibration (resp., weak equivalence) when the restrictions X — X’ (in S,,+1D)
and Y — Y’ (in S,C) are both cofibrations (resp., weak equivalences). This as-
sembles into a simplicial object in the category of simplicially enriched Waldhausen
categories using the usual face and degeneracy maps on 5,,C and the last n+ 1 face
and degeneracy maps on S, 1D.

DEFINITION 3.4. For f: C — D an enriched exact functor, define
WTHH"(f) = |[WTHH"(S.f)|.

We note that when f: A — B is an enhanced exact functor between enhanced
simplicially enriched Waldhausen categories, then S, f is also an enhanced simpli-
cially enriched Waldhausen category and S, f is a simplicial object in enhanced sim-
plicially enriched Waldhausen categories. We write WT'HH (f) = |WTHH (S, f)|.

To put this construction in perspective, we have an alternative description of
Se f as a pullback. For any simplicial object Z,, we can form the “path” object PZ,
by precomposing with the shift operation [n] — [n 4 1] in the category of standard
simplices (or finite ordered sets). In this notation, we have a pullback square

Sef —~» PS,D

v |

SeC —f> SeD
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in the category of simplicial simplicially enriched categories. The usual extra de-
generacy argument produces a simplicial null homotopy on PSeC, and applying
WTHH" and (when appropriate) WTHH, we get commutative squares of cyclo-
tomic spectra

WTHHY (f) — |WTHHT (PS,D)| WTHH(f) — [WTHH(PS,B)|
\WTHHT(S,C)| — |WTHHY(S,D)|  |[WTHH(S,A)| — |WTHH(S.B)|

where the top right entry comes with a canonical null homotopy through cyclotomic
maps. We therefore get a map of cyclotomic spectra from WTHHY (f) to the ho-
motopy fiber of the map |WTHH?' (S,C)| — |WTHH?"(S,D)|, which is equivalent
to the homotopy cofiber of the map WTHHY (C) — WTHH" (D). Likewise in the
enhanced exact context, we get a map of cyclotomic spectra from WTHH (f) to the
homotopy cofiber of the map WIT'HH(A) — WTHH(B). The Cofiber Theorem
asserts that these maps are weak equivalences.

THEOREM 3.5 (Cofiber Theorem). For f: C — D an enriched exact functor,
we have a cofiber sequence of cyclotomic spectra
WTHH"(C) — WTHH" (D) — WTHH"(f) — [WTHH"(5.C)|.
For f: A — B an enhanced exact functor, we have a cofiber sequence of cyclotomic
spectra
WTHH(A) — WTHH(B) — WTHH(f) — |[WTHH(S,A)|.
PrOOF. (cf. [47, 1.5.5]) The argument for the connective and non-connective

enrichments are identical; we treat the connective case in detail. Consider the map

WTHH"(D)v\ WTHH"(C) — WTHH"(D x S,C) — WTHH"(S,f)

induced by sending b, a1, ...,a, to (b,Y) and then (X,Y) with ¥ = (y, ;) for
yi,j = Q41 \/”'\/(lj
and X = (z; ;) for

fWic15-1) >0
with the canonical maps induced by inclusions and quotients of summands. Apply-
ing the argument following Corollary 3.2, we see that this map is a weak equivalence.
Letting n vary, these assemble into a simplicial map where we regard the domain
as the simplicial cyclotomic spectrum

WTHH" (D) Uyrpur ey (WTHH"(C) A A[L]).

_ {b\/f(yo,jl) i=0
l‘@j =

On geometric realization, this induces a map from the homotopy cofiber
C =WTHH" (D) Uwrgurcy WTHH" (C) A1)
to WTHHY(f) that we see is a weak equivalence. The composite map
C — WTHH"(f) — WTHH"(S,C)

factors as the connecting map C — SWTHH?' (C) composed with the weak equiv-
alence SWTHHY (C) — [WTHHY (S.C)|. O
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Using the alternate models T/I//}E‘ and W/T\H/H of Definition 2.51, we get con-

structions WTC’F(f) and WTHHF(f) that admit a cyclotomic trace from K-
theory. Because on objects, the map constructed in the proof of Theorem 3.5
agrees with the corresponding map in the cofiber sequence on K-theory, we get the
following theorem as an immediate consequence.

THEOREM 3.6. For f: C — D an enriched exact functor, the following diagram
commutes.

K(Cy) —— K(Dy) K(f) K(S.Co)
trcl trcl trcl tch/

WTC" (C) — WTC" (D) —— WTC" (f) —— WTC (S.€)

| l ! !

WTHH" (C) — WTHH" (D) — WTHH" (f) — WTHH" (5.C)

Returning to Theorem 3.5, we have the following corollary that allows us to
study the cofibers of exact functors in “I"H H-theoretic” terms.

COROLLARY 3.7. Let f: A — B and g: C — D be enriched exact functors.
Then the commutative square of cyclotomic spectra on the left is homotopy
(co)cartesian.

WTHH" (B) — WTHH"(f) WTHH(B) — WTHH(f)

| | | |

WTHHT(C) — WTHH (go f) WTHH(C) — WTHH(go f)

If f and g are enhanced exact then the commutative square of cyclotomic spectra
on the right is homotopy cartesian.

In the special case when C is a simplicially enriched Waldhausen subcategory
of D and f is the inclusion, Se f admits an equivalent but smaller variant where we
omit the choices of subquotients.

DEFINITION 3.8. We say that C C D is a simplicially enriched Waldhausen
subcategory when C C D is full as a simplicially enriched category and Cgy is a
Waldhausen subcategory of Dy. In this case we define Fo(D,C) to be the simpli-
cially enriched Waldhausen subcategory of the nerve of the cofibrations in D whose
quotients lie in C.

Concretely, F,,(D,C) has as objects the composable sequences of n cofibrations
To > Ty > > T,

such that x;11/x; is an object of C for all 4, with maps the simplicial sets of natural
transformations. We have a forgetful functor from S¢(C — D) to Fo(D,C) that
throws away the subquotients, i.e., sending (X,Y) in S, 11D x S,,C to

Zo,1 — 0,2 —r s — Zo,n+1

in F,,(D,C), where X = (z; ;). At each simplicial level this map is an equivalence
of simplicial Waldhausen categories, and in particular induces a DK-equivalence

SmSn(C = D) — S Fn (D, C).
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We therefore obtain the following observation, useful in combination with Theo-
rem 3.5.

PROPOSITION 3.9. For C C D a simplicially enriched Waldhausen subcategory,
the forgetful functor from Se¢(C — D) to Fo(D,C) induces a weak equivalence of
cyclotomic spectra

WTHHY(C — D) — |WTHH"(F,(D,C))|.

We have the notion of a closed simplicially enriched Waldhausen subcategory,
which is a simplicially enriched Waldhausen subcategory A C B where A is a
closed Waldhausen subcategory of By (i.e., every object of B weakly equivalent to
an object of A is in A). When B is an enhanced simplicially enriched Waldhausen
category and A C B is a closed simplicially enriched Waldhausen subcategory, then
A is also enhanced simplicially enriched. The discussion above then generalizes to
show that

SmSn(C = D) — Sy Fn (D, C).
induces an equivalence (and in particular a DK-equivalence) on non-connective
enrichments. It follows that

WTHH(A — B) — |WTHH(F,(B,A))|

is also a weak equivalence of cyclotomic spectra.

3.3. The Localization Theorem

The Localization Theorem, called by Waldhausen the “Fibration Theorem”,
provides the most important instance of the Cofiber Theorem. Roughly speaking,
this theorem states that algebraic K-theory takes quotient sequences of triangulated
categories to cofiber sequences of spectra. In this section, we prove versions of
this theorem for THH and T'C. In the case of the non-connective enrichment,
we obtain a localization sequence equivalent to the one in [9]; in the case of the
connective enrichment, we obtain a localization sequence generalizing the one in
[22] (q.v. Chapter 4).

For the setup for the Localization Theorem, we take an enhanced simplicially
enriched Waldhausen category A together with an additional subcategory of weak
equivalences v.Ag that contains its usual weak equivalences w.Ag. We assume that
v Ay satisfies the two-out-of-three property, meaning that for composable maps f
and g, if any two of f, g, and go f are in v.Ag, then so is the third. We also assume
that vAy satisfies the Extension Aziom [47, §1.2], meaning that given a map of
cofiber sequences

xr—y—y/x
Lol b
=y —y /7
with the outer maps © — 2z’ and z/y — z'/y’ in v.Ap, then the inner map y — ¢/
is in vAp. Finally, recalling that as an enhanced simplicially enriched Waldhausen
category, A admits tensors with contractible simplicial sets, we say that v.Ag is
compatible with cylinders when for any map x — x’ in v Ay, the map
r— 7' U, (@ A[l])

is a cofibration in Ay, i.e., its quotient is in .A. The category of v-acyclics Af consists
of the full subcategory of objects v-equivalent to the trivial object *. Under these
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hypotheses, Aj forms a closed Waldhausen subcategory of A. Moreover, Aj is
closed under extensions and cofibers in Ag, meaning that for a cofiber sequence in

Ay

Ty —y/T,

if z and either of y or y/x is in A}, then so is the other. Letting A" be the full
simplicially enriched subcategory of A consisting of the objects in Af, then AY
forms an enhanced simplicially enriched Waldhausen category with the inclusion
functor A¥ — A enhanced exact. We can now state the Localization Theorem.

THEOREM 3.10 (Localization Theorem). With hypotheses and notation as in
the previous paragraph, the following commutative squares of cyclotomic spectra are
homotopy (co)cartesian.

WTHH(AY) —— WTHH" (A"|v) WTHH(A”) —— WTHH(A"|v)
WTHH"(A) —— WTHH" (Alv) WTHH(A) —— WTHH(A|v)

Moreover, in each square, the upper right entry is null homotopic through cyclotomic
maps. Thus, we have cofiber sequences of cyclotomic spectra,

WTHH"(A") — WTHH"(A) — WTHH" (Alv) — SWTHH"(A")
WTHH(AY) — WTHH(A) — WTHH(Ajv) — SWTHH(A).

Although formally similar in statement and proof, the two localization se-
quences above are very different in practice. In the case when A is pretriangulated
(which by Corollary 2.22 just means in this context that every object is weakly
equivalent to a suspension), the Localization Theorem of [9] (Theorem 1.34 above)
identifies the relative term WT H H(A|v) in the second sequence above as the TH H
of the triangulated quotient m.A° /mo(A?)® (for any spectrally enriched model of
this quotient).

In the special case when A is the category of finite cell EKMM R-modules
for the S-algebra R = HA for a discrete valuation ring A or R = ku is connec-
tive K-theory, we take the v-equivalences v.Ag to be the R[3~!]-equivalences, the
maps that induce isomorphisms on homotopy groups after inverting (3, where (8
is a uniformizer for A (when R = HA) or is the Bott-clement (when R = ku).
Then Theorem 2.56 (proved in Section 3.4) combined with Theorem 2.55 identify
both WI'HHY (A) and WTHH(A) as THH(R). In the non-connective case, we
then have that WTHH (Alv) is equivalent to THH(R[37]). Calculations show
WTHH(A") cannot be equivalent to THH(R/3). On the other hand, we will
prove a dévissage theorem in Part 4 that identifies WTHH" (AY) as THH(R/j3)
and calculations show that WTHHT (A|v) cannot be equivalent to TH H(R[31]).

Returning to Theorem 3.10, it follows that the analogous squares in the “tilde”

models WIHH" and WTC" are homotopy (co)cartesian as well, and we get cofiber
sequences on WTHH "and wTC". By naturality, the maps in the squares and in

the cofiber sequences commute with the cyclotomic trace. For convenient reference,
we state this explicitly in the following theorem.



48 3. K-THEORY THEOREMS IN THH AND TC

THEOREM 3.11. Under the hypotheses of Theorem 3.10, the following diagram
of cofiber sequences commuites.
K(Af) —— K(Ag) —— K(Ao|v) ———— ZK (A7)
trc\L trci trci trci
WTC" (AY) —— WTC" (A) —— WTC" (Ajv) —— SWTC" (A4Y)

WTHH" (A") — WTHH" (A) — WTHH" (Alv) — SWTHH" (A?)

We begin the proof of Theorem 3.10 by noting that the category of v-acyclics
completely characterizes the v-equivalences v.Ag.

PrROPOSITION 3.12. Under the hypotheses of Theorem 3.10, a map f: 2z — y
is in vAg if and only if the homotopy cofiber

Cf=yU; (x®A[l]) Uy *
is in Af.
PrOOF. Let M f =y U, (x ® A[l]) so that Cf = M f/x. The map M f — y is
a weak equivalence (and so in particular a v-equivalence) and the composite map
x — Mf — yis f and so the inclusion of x in M f is in v.Ag if and only if f is.
Consider the commutative diagram of cofiber sequences

T—> T — %

S

zr— Mf— Cf.

By the Gluing Axiom, C'f is in Aj when x — M f is in v.Ay. By the Extension
Axiom z — M f is in vAg when Cf is in Aj. a

Let 949 = vAg Nco Ay denote the subcategory of Agy consisting of the maps
that are both cofibrations and v-equivalences. The previous proposition implies
that ©.Ay consists of those cofibrations whose quotients are v-acyclic. It follows
that Fe(A, A”) = 7.4, and applying Corollary 3.7 and Proposition 3.9, we get
homotopy (co)cartesian squares

WTHH"(A") — |WTHH" (v, A")]  WTHH(A") — |WTHH (v,A")|

| | | |

WTHHY(A) — WTHHT (v, A)| WTHH(A) — [WTHH (v, A)|.
We now have what we need to prove Theorem 3.10.

PROOF OF THEOREM 3.10. To obtain the homotopy (co)cartesian squares, we
just need to see that the maps

WTHH" (0, A) — WTHH" (v A) and WTHH (v, A) — WTHH (v} A)

are weak equivalences. The inclusion of |5,Sg.A| in [0} S Al is a DK-embedding
and an easy mapping cylinder argument shows that it is a DK-equivalence.

It follows that WTHH" (A%|v) and WTHH?Y (A¥|v) are weakly equivalent as
cyclotomic spectra to the trivial spectrum, and to produce a null homotopy through
cyclotomic maps is not much more work. The simplicial object v} A? has an extra
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degeneracy which on objects inserts the trivial map at the start of the chain of
maps. On maps, we use the unique (constant trivial) homotopy on any subsimplex
that has the new trivial object as one of its vertices. ([

3.4. The Sphere Theorem

In this section, we state versions of Waldhausen’s “Sphere Theorem” for the
THH of Waldhausen categories, which we prove in the next section. These the-
orems allow us to deduce the important consistency result that all the different
models for the TH H of the finite-cell modules over an EKMM S-algebra or a sim-
plicial ring agree (Theorem 2.56 above). Before stating a precise theorem, we need
two definitions.

DEFINITION 3.13. Let C be a simplicially tensored Waldhausen category. We
say that C is stable when:
(i) Every object of C is weakly equivalent to a suspension, and
(ii) for all objects x and y in C, the suspension map C(z,y) — C(Xz, Xy) is
a weak equivalence.
We say that C is almost stable when it satisfies just condition (ii).

As observed in Corollary 2.22, the first condition implies that the non-
connective spectral category C° is pretriangulated, and its homotopy category moC*
is triangulated. The second condition implies that the homotopy category moC*® co-
incides with the homotopy category moC and also that the connective spectral en-
richment C*(x, %) is the connective cover of the non-connective spectral enrichment
C%(z,y) (Proposition 2.20). Combined with the fact that the mapping simplicial
sets C(x,y) are Kan complexes (and that weak equivalences in C are homotopy
equivalences in the obvious sense), this puts all the basic tools and techniques of
homotopy theory and stable homotopy theory at our disposal.

In the stable case the hypotheses we need for the Sphere Theorem greatly sim-
plify and so we will explore that case first. In addition to the stability assumptions
above, we need to assume that C is generated by connective objects in the following
sense.

DEFINITION 3.14. Let C be an almost stable simplicially tensored Waldhausen
category. A connective class @ in C is a set of objects of C such that for any a,b
in @, C%(a,b) is connective. If C is stable, then we say that Q is generating if the
smallest triangulated subcategory of the triangulated category moC® that contains
Q is all of moC”.

See Definition 3.21 for the definition of generating when C is almost stable.
In this terminology, we prove the following theorem, the TTH H analogue of Wald-
hausen’s Sphere Theorem for the stable case.

THEOREM 3.15 (Sphere Theorem, Stable Version). Let C be a stable simplicially
tensored Waldhausen category and assume that C has a generating connective class
Q. Then the canonical cyclotomic maps are weak equivalences

WTHH"(C) = WTHH(C) <~ THH(C®) <~ THH(Q?).
Here Q° denotes the full spectral subcategory of C° on the objects of Q.

We state the following corollary for ease of reference and citation; it is one case
of Theorem 2.56.
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COROLLARY 3.16. Let R be a connective EKMM S-algebra and Cg the category
of finite cell R-modules. Then the canonical cyclotomic maps

WTHH"(Cr) = WTHH(Cr) <~ THH(CS) <= THH(R)

are weak equivalences. Here THH(R) denotes the usual Bokstedt model of THH
of a particular symmetric ring spectrum (or FSP) equivalent to R.

The corollary follows by taking the connective class @) to be the singleton set
containing the one object Sg, the “cell zero sphere R-module” [19, III1.2]. Then
THH(Q®) coincides with THH of the symmetric ring spectrum

F =Q%(Sr,Sr) = CR(Sk, Sr).
Concretely, this has n-th space
F(n) =Cr(Sr,Sr N S"),

and multiplication induced by composition. We can identify this as the symmet-
ric ring spectrum (or “FSP defined on spheres”) obtained from the FSP F(—) =
Cr(SRr,Sr A —) by restricting to spheres F(n) = F(S™).

Another symmetric ring spectrum derives from the general theory of [38]; writ-
ing Mg for the category of S-modules, this has spaces ®(n) = Mg((Sg")™, R)
and multiplication induced by smash product together with the multiplication on
R. Experts know how to compare these symmetric ring spectra and therefore their
THH, TR, and TC spectra: Briefly, noting that Sp = RASg, we construct a third
symmetric ring spectrum @’ that lies between them. ®’ has spaces

®'(n) = Cr(Sr As (Sg* A SH™, Sp A S™)
=~ Mg((Sgt ASY)™ Fr(Sg, Sk AS™))
and multiplication induced both by smash product (on the (Sg' A S')(™ factors)

and composition (on the Fr(Sg,Sr A S™) factors). We have a weak equivalence of
symmetric ring spectra from F to &’ given by

F(n) = Cr(Sg, Sr A S™) — Cr(Sr As (Sg' A SH™ S AS™) = d'(n)

induced by the collapse map Sg' A S' — S; the induced map F(n) — &(n) is
a weak equivalence of simplicial sets for all n. We have a weak equivalence of
symmetric ring spectra from ® to ®' given by

®(n) = Ms((Sg")"™,R) — Ms((Sg")'"™, Fr(Sk, Sr))
— Ms((Sgt A SYH)™ Fr(Sk, Sk AS™)) = @' (n)

induced by the unit map R — Fr(Sg, Sr) (which arises from the extra R action
on Sg = R A Ss); again, this is a weak equivalence of simplicial sets for all n. For
convenience, we state these remarks as a proposition.

PROPOSITION 3.17. The symmetric ring spectrum in Corollary 3.16 is weakly
equivalent to the symmetric ring spectrum obtained from the EKMM S-algebra R
by [38].

For the other half of Theorem 2.56, we need to treat the almost stable case.
This requires introducing the following subcategories of C associated to a connective
class Q.
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NoTAaTION 3.18. Let C be an almost stable simplicially tensored Waldhausen
category and let ) be a connective class. Write 2 for the smallest closed Wald-
hausen category of C containing Q). For n > 0, let X2 denote the full subcategory
of C containing all objects weakly equivalent to X"« for x in 2. Let ¥~ "2 denote
the full subcategory of C containing all x such that X"z is in 2.

We note that the subcategories ¥"2 are themselves connective classes and
closed Waldhausen subcategories.

PRrROPOSITION 3.19. Let C be an almost stable simplicially tensored Waldhausen
category and let Q) be a connective class. Then X2 is a connective class and closed
Waldhausen subcategory for all n € Z.

PRrROOF. We begin by showing that 2 is a connective class; stability hypothe-
sis (ii) then shows that ¥™2 is a connective class for all n. Let Qg be the collection
of objects of C weakly equivalent to finite coproducts of objects in @, and induc-
tively let @,, be the collection of objects of C that are weakly equivalent to finite
coproducts of homotopy pushouts y U, (z ® A[1]) U, z where x,y,z € Q,—1 and
y Uy (2 @ A1) Up % € Qn—1. If we regard |J @, as the full subcategory of C of
objects in @, for some n, it is then clear that 2 = |J @, is the smallest closed
Waldhausen subcategory of C containing ). To show that 2 is a connective class,
it suffices to show that for z,y in Q,, C%(x,y) is connective, which we do by in-
duction. We know that = is weakly equivalent to a finite coproduct of homotopy
pushouts of objects in @,_; along maps whose homotopy cofiber is also in Q,_1.
Looking at the long exact sequence of homotopy groups from the fiber sequence in
Proposition 2.21, we then see that C(z, z) is connective for all z in @,—;. Using
the same fact about y and the long exact sequence of homotopy groups from the
cofiber sequence in Proposition 2.21, we see that C(x,y) is connective.

By definition ¥°2 = 2 is a closed Waldhausen subcategory and it follows
that ¥"2 is a closed Waldhausen subcategory for n < 0 since suspension preserves
homotopy pushouts. Let n > 0 and suppose f: x — y is a cofibration in C such
that z, y, and y/z ~ Cf are all in 2. Then we can find 2’ and 3’ in 2 and weak
equivalences "2’ — x and X"y’ — y. By stability hypothesis (ii) and the fact
that the mapping spaces in C are Kan complexes, we can find a map f/: 2’ — ¢/
such that the diagram

EnI/ = Zny/

1

Ty

commutes up to homotopy. Choosing a homotopy, we get a weak equivalence
CY"f" — Cf. Then y/z is weakly equivalent to X"Cf and it follows (again
applying stability hypothesis (ii)) that C'f is in 2. For any map « — z with z in
X" 2, we can choose a compatible map ' — 2’ (for some z’ with £"2’ ~ z) such
that the pushout w = 2z U, y is weakly equivalent to X" of the homotopy pushout
w' =2 Uy (¢ @ A[l]) Uy 3. Since 2 is a closed Waldhausen subcategory of C,
w' is in 2, and it follows that w is in ¥".2. This shows that "2 is a closed
Waldhausen subcategory of C. O
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We use the subcategories X" 2 to define what it means for a connective class
to be generating in the almost stable case. For this, we need the following technical
definitions.

DEeFINITION 3.20. Given a class A of objects of a Waldhausen category C, we
say that an object x of C is finitely cellularly built from A if we can find a sequence

of objects xg, z1,...,x, of C that fit into pushout squares
a; — bj
Tjr— Tjt1
where z,, is weakly equivalent to x, zp = *, and for each j, a; is in A, b; is

contractible (weakly equivalent to ), and a; — b; is a cofibration.

The concept of “finitely cellularly built from” above differs from other notions
of “built from” in other contexts. Note in particular that an object of A is not
necessarily finitely cellularly built from A. However, suspensions of objects of A
are finitely cellularly built from A, for example.

DEFINITION 3.21. Let C be an almost stable simplicially tensored Waldhausen

category and @ a connective class. We say that @ is generating if every object of
C is finitely cellularly built from | JX"2.

The following proposition clarifies the relationship between the notions of gen-
erating given in Definitions 3.14 and 3.21.

PROPOSITION 3.22. Let C be a stable simplicially tensored Waldhausen category
and Q a connective class. Then @Q is generating in the sense of Definition 3.14 if
and only if it is generating in the sense of Definition 3.21.

PROOF. Since the triangulated subcategory generated by @ contains |JX"2
(cf. the proof of Proposition 3.19), one direction is clear. We must show that if @
is generating in the sense of Definition 3.14, then it is generating in the sense of
Definition 3.21. Let Cy = |J X" 2, and inductively let C,, be the collection of objects
of C that are weakly equivalent to the homotopy cofiber of a map between objects
of C,,_1. We note that the C), are closed under suspension and desuspension and
that the objects of Cy are finitely cellularly built from Cy (since each is equivalent
to the suspension of an object of Cy). Generating in the sense of Definition 3.14
implies that C = |J C,,, so it suffices to show by induction that all objects of C,, are
finitely cellularly built from Cy. Given f: x — y with x,y in C,,_1, we need to show
that 2 = Cf = y U, (x ® A[l]) U, * is finitely cellularly built from Cy. Replacing
z with a weakly equivalent object, we can assume without loss of generality that
x and y are isomorphic rather than just weakly equivalent to an iterated pushout.
Then we build z by first building y and then gluing Cb; = (b; ® A[1]) Uy, * along
a’y = bj U, (aj ® A[l]) Uy, * where a; — b; build 2. Since Cb; is contractible and

!

aj; is weakly equivalent to ¥a;, this shows that z is finitely cellularly built from

Co. |
The following theorem now generalizes Theorem 3.15 to the almost stable case.

THEOREM 3.23 (Sphere Theorem). Let C be an almost stable simplicially ten-
sored Waldhausen category and assume that C has a generating connective class Q.
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Then the canonical cyclotomic maps are weak equivalences
WTHH"(C) = WTHH(C) <~ THH(C®) <~ THH(Q").
where Q° denotes the full spectral subcategory of C° on the objects of Q.
We now have the other half of Theorem 2.56 as a corollary.

COROLLARY 3.24. Let A be a simplicial ring, let C4 be the category of finite cell
A-modules and let Py be the category of finite cell A-modules built out of finitely
generated projective A-modules. Then the canonical cyclotomic maps

WTHHY(Ca) ——— WTHH(Ca) +—— THH(C3) +—— THH(A)

WTHHY (Pa) ——— WTHH(Pa) +—— THH(P3)

are weak equivalences.

The vertical arrows are weak equivalences by Theorem 1.27 since every object
of Pa or S,Pa is a direct summand of an object of C4 or S,Ca. We get the
top row from Theorem 3.23 taking the connective class @ to be the singleton set
containing the object A, which is clearly generating. The symmetric spectrum
Q%(A, A) = C%(A, A) is just the usual symmetric ring spectrum constructed from
A.

We have one last version of the Sphere Theorem, which is closer in spirit to
Waldhausen’s Sphere Theorem for K-theory. It also has the technical advantage of
being stated purely in terms of the connective enrichments.

THEOREM 3.25 (Sphere Theorem, Alternate Version). Let C be an almost stable
simplicially tensored Waldhausen category, let QQ be a generating connective class,
and let 2 be the smallest closed Waldhausen subcategory of C containing Q. The
inclusion of 2 into C induces a weak equivalence WI'HH"(2) — WTHH" (C).

The previous theorem is equivalent to Theorem 3.23, but to see this, we need
more information about the categories So2 implicit in the statement. The following
proposition has everything we need for the comparison, plus what we need for the
proofs in the next section.

PROPOSITION 3.26. Let C be an almost stable simplicially tensored Waldhausen
category and let Q be a connective class. Then S,C is an almost stable simplicially
tensored Waldhausen category, and S, 2 is a closed Waldhausen subcategory and
a connective class; moreover, S,X™2 = ¥™S, 2. If Q is generating, then so is

Sn2.

PROOF. We saw in Proposition 2.27 that S,,C is simplicially tensored; the fact
that the tensor on S,,C is objectwise on the diagram and the formula (2.26) for the
mapping spaces of S,,C prove that S,,C is almost stable. Since 2 is a closed Wald-
hausen subcategory of C, 5,2 is a closed Waldhausen subcategory of S,,C. Again,
the formula (2.26) shows that the mapping spectra S,,2%(A, B) are connective. It
is clear that S,X"2 = ¥™§S,2 since both categories are the functor categories
whose objects are the sequences starting with % of n composable cofibrations in C
between objects in ¥™.2 together with choices of quotients which also must be in
XM,
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Now assume that @) is generating; it remains to show that 5,2 is generating.
For n = 2, a typical object of SoC is of the form Z = [z~ y —» z | for objects
x,y,z in C. Replacing Z with a weakly equivalent object, we can assume without
loss of generality that  and y are isomorphic rather than just weakly equivalent
to an iterated pushout in Definition 3.20. Clearly the objects

[z =1 —»x] and [« —y=1y]

can be finitely cellularly built using pushouts of objects of the same form. We can
then build

Z' =2 yUs (2@ A[l]) = y Uy (2@ A[L]) Uy * ]

by first building [ # = 2 ITy —» y | and then using pushouts over maps of the form

[ * —r bj Uaj (CLj & A[l]) Uaj bj = bj Uaj (aj ® A[l]) Uaj bj ]
— [*>—=b; @ All] =1b; ® A[1] ]
where a; — b; are the cells building . Similar observations apply for n > 2. |

Now Theorems 3.23 and 3.25 are easily seen to be equivalent by looking at the
following diagram.

QTHH(S,2")| —— QITHH(S,CY)|

g |

QITHH(Se25)| —— QITHH(S.CS)| «=— THH(CS) +~— THH(Q).

The lefthand vertical map is a weak equivalence since each map S, 2" — S, 2° is
a weak equivalence (and in particular a DK-equivalence) of spectral categories by
Propositions 3.19 and 3.26, while the bottom horizontal maps are weak equivalences
by Theorem 1.33 (for the first and third maps) and Theorem 2.55 (for the middle
map). Theorem 3.23 then amounts to the assertion that the righthand vertical map
is a weak equivalence while Theorem 3.25 is the assertion that the top horizontal
map is a weak equivalence.

3.5. Proof of the Sphere Theorem

This section contains the proof of Theorem 3.25. We fix the almost stable
simplicially tensored Waldhausen category C and the generating connective class
Q, letting 2 and 3”2 be as in Notation 3.18. Just as in Waldhausen’s argument
[47, §1.7] we need to introduce a Waldhausen category of CW complexes built out
of cells based on Q.

DEFINITION 3.27. A @Q-CW complex is a filtered object X in C
“ee —)zn —>xn+1 —>...

indexed on the integers, where the arrows x,, — x, 1 are cofibrations for all n and
such that the following conditions hold for some N > 0:
(i) z, =« for n < —N,
(ii) @y, = xpy1 for n > N, and
(iii) For all n, the quotient ,,1/z, is an object in L"+1.2.
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We call zy the underlying object of X in C. Let CWqC denote the category whose
objects are the Q-CW complexes and whose maps are the maps of the underlying
objects in C. We say that a Q-CW complex X is connective if z,, = * for n < 0, and
denote the full subcategory of connective Q-CW complexes by CWqCg o). More
generally, for I an interval in Z, write CWgCy for the full subcategory of Q-CW
complexes X with x,, = x whenever n is less than the elements of I and x,, = 1
whenever n + 1 is greater than the elements of I.

We define the mapping spectra in CWoC! and CWqC* as the mapping spectra
of the underlying objects in C* and C¥, respectively. For the Waldhausen category
structure, we use the following definition.

DEFINITION 3.28. A cellular map of Q-CW complexes X — Y consists of
compatible maps x,, — y, for all n. A cellular map is a cellular cofibration when
each map x, Uy, |, Yn—1 — Yn is a cofibration in C and the induced map x,,/x,—1 —
Yn/Yn—1 is a cofibration in X" 2.

An easy check of the definitions then proves the following proposition.

PROPOSITION 3.29. The category of Q-CW complexes and cellular maps forms
a Waldhausen category with cofibrations the cellular cofibrations of Definition 3.28
and weak equivalences the weak equivalences of the underlying objects in C. For I
an interval in Z, the subcategory CWqCr forms a Waldhausen subcategory (though
not a closed one).

Since 5,2 is a connective class, we also have the category of S, 2-CW com-
plexes in S,C. When we restrict to the subcategories of cellular maps, both
S (CWgC) and CWg, 25,C are subcategories of the category of functors Ar[n] x
Z — C (where the category Z is the ordered set of integers). An easy check of
the definitions then shows that these categories coincide. More generally, for I an
interval in Z, the cellular maps in S, (CWgCr) and (CWs, 2S5,C) are the same
subcategory of functors Ar[n] x I — C. Expanding to all maps in S, (CWgC) and
CWs, 25,C, and looking at the cofibrations and weak equivalences, we get the
following proposition.

PROPOSITION 3.30. The Waldhausen categories S, (CWgC) and CWg, 2S,C
are canonically isomorphic. For any interval I in Z, the Waldhausen categories
Sp(CWqaCr) and (CWsg, 25,C)1 are canonically isomorphic.

Because we need to restrict to cellular maps to obtain a Waldhausen category,
the category CWgC does not fit into our usual framework of simplicially enriched
Waldhausen categories (as the familiar example of CW complexes in spaces demon-
strates). Instead, thinking of @Q-CW complexes as objects of C with extra structure,
we assign mapping spectra by looking at the underlying objects. We use the fol-
lowing notation.

NOTATION 3.31. Let S,,(CWgC)' denote the spectral category whose objects
are the objects of S,,(CW¢C) and whose mapping spectra are the mapping spectra
of the underlying objects in S,C'. For I an interval in Z, we define S,(CWqCr)"
analogously.

As an alternate take on this notation, we note that under the canonical iso-
morphism of Proposition 3.30, we get the identification of spectral categories

Sn(CWQCI)F = (CWSHQSnCI)F
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As a first reduction of Theorem 3.25, we have the following observation. In it, the
“forgetful functor” is the functor that takes a S, 2-CW complex to its underlying
object of S,,C.

PROPOSITION 3.32. For any n, the forgetful functor S,,(CWqC)t — S,C' is a
DK-equivalence.

PrOOF. Using the identification of S, (CWgoC) as CWg, 2S5,C, it suffices to
show that for the arbitrary almost stable simplicially tensored Waldhausen category
C and generating connective class Q the forgetful functor CWqoCl — C'' is a DK-
equivalence. By definition of the mapping spectra, it is a DK-embedding, and so
we just need to show that every object of C is weakly equivalent to the underlying
object of a Q-CW complex. Since @) is generating, and * is the underlying object of
a -CW complex, it suffices to show that if y is the underlying object of a Q-CW
complex Y, then z = yU, b is weakly equivalent to the underlying object of a Q-CW
complex whenever a is in ¥"2, b is contractible, and a — b is a cofibration. Using
the cofiber sequence of Proposition 2.21 and stability hypothesis (ii), we see that
we have homotopy fiber sequences

Cla,ym) — C(a,Ymt1) — C(@ Ymi1/Ym)

for all m. Since Y1 1/Ym is in X2, for m > n we have that moC(a, Ym11/Ym) =
0 and every map from a to y,,+1 lifts up to homotopy to a map a — y,,. Thus, the
map a — y lifts up to homotopy to a map a — y,. Let X be the Q-CW complex

X:("'—>yn71 _>ynUab_>yn+1Uab_>"'),
Then the underlying object of X is weakly equivalent to x. ]

It follows from Proposition 3.32 that the map
THH(S,(CWgC)") — THH(S,C")

is a weak equivalence. The next step is to compare the subcategory of connective
objects. The cone and suspension functors on C extend to cone and suspension
functors of @Q-CW complexes in the usual way: for a Q-CW complex X, let CX
be the Q-CW complex with n-th object x,, U, _, Cx,—1. The inclusion of X in
CX is a cellular cofibration and XX is its quotient. The Additivity Theorem and
Corollary 3.2 generalize to the context of THH(S,(CWgC)'') to show that the
self-map of [THH (S.(CWqC)')| induced by C' coincides (in the stable category)
with the sum of the identity and the map induced by . Since C' induces the trivial
map, it follows that 3 induces the map — id, and in particular is a weak equivalence.
The analogous observations apply to Cjp,«), showing that suspension induces a weak
equivalence on [THH (Ss(CWqC)")| and on |[THH (Se(CWgCo,00))")|- Taking the
homotopy colimit of the maps induced by suspension, we see that the inclusions

|THH (Se(CWgqC)")| — hocolimy, [THH (S.(CWoC)")|
|THH (Se(CWqCo,00))" )| — hocolimy: [T HH (Se(CWqClo,00)) ")
are weak equivalences. We use this observation in the proof of the following propo-
sition.
PRrROPOSITION 3.33. The inclusion
THH(S4(CWaClo,))| — [THH(S4(CWaC)")

is a weak equivalence.
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PROOF. By the preceding observations, it suffices to prove that the map
hocolimy, THH (S, (CWqCo,00))") — hocolimy, THH (S,(CWqC)")

is a weak equivalence for each n. Again using the fact that C and @ are arbitrary, it
suffices to consider the case n = 1. Let C’VVSCF be the spectrally enriched category
where an object is an ordered pair (X, m) where X is a Q-CW complex and m is
a non-negative integer; for mapping spectra, we let

ngcf((x,m),(xn)):k colim CF(ZFmX, ©F"Y).

>max(m,n)

(Composition is induced levelwise in the colimit system after taking & large enough.)
Let CWSC[OW) be the full subcategory of C’WSCF consisting of the objects (X, m)
with X connective. By Proposition 1.17, the canonical maps

hocolimy THH(CWqC") — THH(CWCT)
hocolims, THH(CWqCly o)) — THH(CWHClg )

are weak equivalences. The inclusion of C WSC[% ) inC WSC I'is a DK-equivalence,
and so also induces a weak equivalence on T HH . O

The previous two propositions show that the map
(THH(S4(CWaClo,oe)")| — [THH(S.CV)
is a weak equivalence, reducing the proof of Theorem 3.25 to showing that the map
ITHH(Se2")| — |[THH(S+(CWqClo,00))")]
is a weak equivalence. This is an easy consequence of the following lemma.

LEMMA 3.34. For every n > 1, the inclusion of CWqC n—1] in CWqCig n
induces a weak equivalence

[THH (Ss(CWqClo,n—1)")| — [THH(Se(CWqClom)")I-

PrROOF OF THEOREM 3.25 FROM LEMMA 3.34. The lemma implies that the
maps in the homotopy colimit system

hocolim,, [T HH (Se(CWqCio,n) )|

are all weak equivalences. By Proposition 1.17, we see that the canonical map from
the homotopy colimit to |[THH (Se(CWCjo,o0))")| is a weak equivalence. It follows
that the map

[THH(S,2")| = [THH(Se(CWqClo0)")| — [THH(S+(CWoC)")|
is a weak equivalence. Composing with the weak equivalence
|THH(S.(CWgC)")| — |THH(S.C")]
above and applying €2, we see that the map WTHH' (2) — WTHH?" (C) is a weak

equivalence. O

The remainder of the section is devoted to the proof of Lemma 3.34. The argu-
ment is somewhat roundabout, requiring the introduction of the spectral categories
Sk(C’WQC[O)n})S, defined analogously to Sk(C’WQC[O,n])F in Notation 3.31 but us-
ing the non-connective enrichment. The proof of Proposition 3.32 equally well
shows that the forgetful functor Sx(CWoC)® — SxC? is a DK-equivalence. These
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non-connective enrichments are easier to understand because Proposition 2.21 im-
plies that when we DK-embed S;,C° in a pretriangulated spectral category, the
DK-embedding takes cofiber sequences to distinguished triangles in the derived
category. As a consequence, Theorem 1.33 tells us that the maps

THH(SkQS) — THH(S}C(CWQC[O’”,U)S) — THH(Sk(CWQC[O’n])S)
are weak equivalences. Looking at the diagram

|THH(S.(CWQC[077L,1])F)| —_— |THH(S. (CWQC[OW])F”

| |

[THH (Se(CWqClo,n-1)°)| —— [THH(S+(CWqClo,n)®):

we assume by induction on n that the lefthand map is a weak equivalence, the base
case being the already known case of SeCWqCpg) = Se2. We then prove that
the top map is a weak equivalence by showing that the righthand map is a weak
equivalence.

To save space and eliminate unnecessary symbols, we will now write C}} for
Sk(CWqCo,n)) or equivalently, CWs, 2SkCio,5, and CI'} and CS}} for the connec-
tive and non-connective spectral enrichments, respectively. Let EI'} denote the
simplicial spectral category where the objects of EI'} are the objects of C}} and for
objects X and Y, the mapping spectrum is the fiber product

SPZ(Xv Y) = Skcr(xnfl,ynfl) XSR,CF(zn,l,yn) Skcr(xnvyn)

(which is a homotopy pullback because z,_1 — @, is a cofibration). We have a
canonical simplicial spectral functor EI'y — CI'} sending X in I} to X viewed
as an object of CI'} and using projection on the mapping spectra. We also have
canonical simplicial spectral functors

ET? — 2t and TP — S, 220

sending X to its (n—1)-skeleton X,,_; and to ,, /x,,—1, respectively, and performing
the corresponding maps on mapping spectra. Using these maps, we can identify
ETY as the spectral category of extension sequences [ X,,—1 ¥— X —» &, /x,—1 | in
C2. Although the categories CI'? and ET'™ do not exactly fit into the framework of
Section 3.1, McCarthy’s argument for the Additivity Theorem works quite generally
and formally essentially using little more than the fact that the mapping spectra
are functorial in the maps in S,; the Additivity Theorem generalizes to the current
context, and the argument following Corollary 3.2 shows that the maps described
above induce a weak equivalence

ITHH(ETY)| = |THH(CT?™Y)| x [THH(S.X"2)).

We have an analogous simplicial spectral category £57 with the analogous weak
equivalence. The induction hypothesis and the weak equivalences above then imply
the following proposition.

PROPOSITION 3.35. The functor ET'} — E£ST induces a weak equivalence

\THH(ET?)| =5 [THH(ESY)).
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Let (C7)™ denote the objects of C; that are weakly equivalent to the zero
object %, and write (CI'})™, (CS})™, (ET})™, (ES;)™ for the various spectral en-
richments on this category, the full spectral subcategories of CI';, CS}!, EI', £SE,
respectively. The mapping spectrain (CI'})" and (CS})™ are all weakly contractible
so THH is also weakly contractible,

THH((CTY)Y) ~THH((CSE)™) ~ *.
For the £ categories, we have the following proposition.

PROPOSITION 3.36. The canonical spectral functor (ET7)" — (ES;)" is a DK-
equivalence.

PROOF. Since the categories have the same object set, it suffices to show that
the map is a DK-embedding, and for this it suffices to show that the mapping spec-
tra in (£S7)" are connective. We note that for X in (C7)™, stability hypothesis (ii)
implies that z,,_; is an object of S, X" 1.2 since x,, is contractible and x,, /x,_; is
an object of S;X"2. Now given X and Y in (C}})", the projection map

ESR(X,Y) = SkC¥(Tn—1,Yn—1) X505
is a weak equivalence. In particular, £S}'(X,Y") is connective. O
We denote by CTHH (CI'}, w) the homotopy cofiber of the inclusion
THH((CT,)Y) — THH(CT?Y),

and analogously for CTHH(CS},w), CTHH (T}, w), and CTHH(ES],w). In
this notation, the two previous propositions then imply the following proposition.

PROPOSITION 3.37. The map |[CTHH(ETY,w)| — |CTHH(ESY,w)| is a weak
equivalence.

) Skcs(xna yn) — Skcs(xn—la yn—l)

Tn—1,Yn

Since the inclusions
THH(CT}) — CTHH(CT}, w)
THH(CS;) — CTHH(CSE,w)

are weak equivalences, the following lemma when combined with the previous
proposition then completes the proof of Lemma 3.34.

LEMMA 3.38. For all k, the maps
CTHH (T}, w) — CTHH(CT}, w)
CTHH(ESE,w) — CTHH(CS},w)
are weak equivalences.

We prove the case for the connective enrichment in detail, the case for the
non-connective enrichment being similar (but slightly easier). The statement is
analogous to the Localization Theorem 7.2 of [9] (reviewed in Chapter 1 as Theo-
rem 1.35) using the Dennis-Waldhausen Morita Argument (Section 1.4) except for
the fact that the subcategories above are not pretriangulated. The following proof
goes roughly along the same lines as well.

For this argument k is fixed, and so replacing CI't° and £T'g° by weakly equiv-
alent spectral categories if necessary, we can assume without loss of generality that
they are pointwise cofibrant and their subcategories CI'}, ET'E, (CT7)™, (€)™ are
pointwise cofibrant.



60 3. K-THEORY THEOREMS IN THH AND TC

Define the £I'}-bimodule L¢ and CI'}-bimodule L¢ by
where B denotes the two-sided bar construction (Definition 1.38). We then have
maps of £I'}- and CI';-bimodules

Eg — 5FZ and ﬁc — CFZ;

we let Mg and M be the homotopy cofibers. Then the Dennis-Waldhausen Morita
Argument and specifically Theorem 1.41 give us weak equivalences

THH(ET}; Le) ~THH((ETY)™Y) THH(ET}; Mg) ~ CTHH (ET}, w)

THH(CTy; Le) ~THH((CTY)™) THH(CTy; Me) ~ CTHH(CT}, w),
and we can identify the map in Lemma 3.38 as the map
(3.39) THH(ET}; Mg) — THH(CT}E; Me).

As the mapping spectra in (CI'})" are weakly contractible, the spectra L¢(X,Y)
are weakly contractible for all X,Y’, and it follows that the map of CI'}-bimodules
CI'y — M is a weak equivalence. We next move towards understanding the £I'}-

bimodules L¢. We write u for the canonical functor £I'} — CI' and also its restric-
tion (ET})" — (CT')™. We then have a commutative diagram of ET'}-bimodules

L ——uLe

L]

ETY —— u*CI'y,
Letting F be the homotopy pullback of the deleted diagram
ETY — w*CTE «— u*Le,
we get a map of EI'}-bimodules Lg — F.
PROPOSITION 3.40. The map of EL'}-bimodules L& — F is a weak equivalence.

PrOOF. Fix X and Y objects in ET'}; we need to show that the map L¢(X,Y) —
F(X,Y) is a weak equivalence. Consider the cofiber sequence

Yn—1 —> Yn — yn/yn—l — XYn—1

obtained using a homotopy inverse weak equivalence to the collapse weak equiva-
lence yp, Uy, , CYn—1 — Yn/Yn—1. By definition, y,, /yn—1 is in SpX"2, and since
n > 1, there exists an object p in S;X" 12 such that Xp is weakly equivalent to
Yn/Yn—1. Then applying stability hypothesis (ii), we obtain from the cofiber se-
quence above a (homotopy class of) map p — y,—1 and a null homotopy Cp — vy,
such that the induced map ¥p — y,,/yn—1 is homotopic to the chosen weak equiv-
alence. Regarding Cp as an object of £, it is an object of (/)" and we have
constructed a cellular map Cp — Y. Consider the following commutative square.

Le(X,Y)+—— Le(X,Cp)

| |

F(X,Y) —— F(X,Cp)

We complete the proof by arguing that the maps a, b, and ¢ are weak equivalences.
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To analyze the map a, consider an object Z in (ET'})". Since z, is weakly equiv-
alent to x in C, ET}(Z,Y) is weakly equivalent to the homotopy fiber of the map
SiCY (2n—1,Yn—1) to SkC (2n_1,yn). We can use the cofiber sequence of Proposi-
tion 2.21 to understand this homotopy fiber: We have that SiC' (2,_1,Yn/Yn_1) is
connected since z,_ is an object of S, X" 1.2 and y,, /y,_1 is an object of S, X".2.
It follows that ET7(Z,Y) is weakly equivalent to QSxC" (211, Yn/Yn—1). The same
observations apply to C'p. Since by construction the map Yp = Cp/p — yn/yn—1 is
a weak equivalence, we see by naturality that the map ET}(Z,Cp) — ETR(Z,Y) is
a weak equivalence. Since this holds for any Z in (£T})", unwinding the definition
of L¢, we see that a is a weak equivalence.

For the map b, we note that F(X,Y’) being the homotopy fiber of the map
ETH(X,Y) to CT(X,Y) = SkC' (2, yn), it is naturally weakly equivalent to the
homotopy fiber of the map SkC (2,1, yn_1) to SkC' (z1,_1,Yn). As in the previous
case, we can identify this up to weak equivalence as .5,C" (Tn—1,Yn/Yn—1) since
S1CY (%1, Yn/Yn—1) is connected (which can be proved by induction up the skeletal
filtration of X using Proposition 2.21). Again, since the map Yp = Cp/p —
Yn/Yn—1 is a weak equivalence, we see that b is a weak equivalence.

For the map ¢, since Cp is in (ET'})"™, the Two-Sided Bar Lemma 1.40 implies
that the natural map L¢(X,Cp) — ET}(X, Cp) is a weak equivalence. Since Cp is
weakly equivalent to * in C, CT'(X, Cp) is weakly contractible, and we see that ¢ is
a weak equivalence. O

We use the previous proposition to deduce more information about Mg.

PROPOSITION 3.41. The map of ET'}-bimodules Mg — u*Me is a weak equiv-
alence.

PROOF. Since homotopy fiber squares in spectra are homotopy cocartesian, the
canonical map from the homotopy cofiber of 7 — £I'} to the homotopy cofiber of
u*Le — uw*CI'} is a weak equivalence. O

We now return to the map (3.39); recall that we observed that the map of CT'}-
bimodules CI'} — M¢ is a weak equivalence. We see from the previous proposition
that we are in the situation where Theorem 1.42 applies. Thus, to see that the map

THH(ET}Y; Mg) — THH(CT; Me)
is a weak equivalence, we just need to check that the map
B(CT}(=,Y); €T} Me(X, =) — B(CTR(=,Y); CT}s Me (X, —)) = CTR(X,Y)

is a weak equivalence for all X, Y in CI'}, or equivalently in this case, for all X, Y
in £I'}. Since the Two-Sided Bar Lemma 1.40 shows that the map

B(CTy (=, Y); ETy; ETR (X, —)) — CTE(X,Y)

is a weak equivalence and M¢(X,—) ~ Mg(X,—) is the homotopy cofiber of
Le(X,—) — ETR(X, —), it suffices to show that

G(X,Y) = B(CIy (=Y ); €Ty Le(X, —))
is weakly contractible. But we have
G(X,Y) = B(CI'g (=, Y ); €Ty B(ETE (=, —): (E1%) " T (X, )
(CFZ(_> Y)a (SFZ)w7 gFZ(X> _))

12
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Since CT'}(Z,Y) is weakly contractible for any Z in (£T7)™, it follows that G(X,Y’)
is weakly contractible. This completes the proof that (3.39) is a weak equiva-
lence and hence the proof of Lemma 3.38, which in turn completes the proof of
Lemma 3.34.



CHAPTER 4

Localization sequences for THH and T'C

In [22], Hesselholt and Madsen introduced a localization sequence for THH

and T'C in the context of discrete valuation rings, producing cofiber sequences
THH(k) — THH(R) — THH(R|F) — XTHH(k)
TC(k) — TC(R) — TC(R|F) — XTC(k),

where R denotes a discrete valuation ring, k its residue field, and F' its field of
fractions. Here THH(R|F') and TC(R|F') denote the THH and TC of a relative
theory they construct. Although their constructions are slightly different than ours,
we prove in Section 4.1 that this sequence arises as the Localization Theorem 3.10
for the connective spectral enrichment

WTHH"(A") — WTHH"(A) — WTHH" (Ajv) — SWTHH"(A")

where A denotes either the category of perfect simplicial modules over the ring
R or the category of finite cell EKMM H R-modules (for the Eilenberg-Mac Lane
spectrum H R) and v.A denotes the subcategory of maps that induce an isomorphism
on homotopy groups after inverting the action of the uniformizer (or, equivalently,
tensoring over R with F'). This is in contrast to the localization sequence obtained
from the non-connective spectral enrichment

WTHH(AY) — WTHH(A) — WTHH(Alv) — SWTHH(A")
which leads to the localization sequences

THH(Ronk) — THH(R) — THH(F) — XTHH(Ronk)
TC(Ronk) — TC(R) — TC(F) — STC(Ronk)
where THH (R on k) and TC(R on k) are as in Theorem 1.1 of [9].
Hesselholt and Ausoni [3,4] conjectured that the above localization sequences

generalize from the “chromatic level 0” case to “chromatic level 1”7 and specifically
that there should be analogous cofiber sequences

THH(Z) — THH (ku) — THH (ku|KU) — STHH(Z)
TC(Z) — TC(ku) — TC(ku|KU) — XTC(Z)
(as well as p-local and p-complete variants; see Theorem 4.5 below). Here ku
denotes complex connective (topological) K-theory, KU denotes complex periodic

K-theory. In Sections 4.2 and 4.3, we prove these sequences arise again from the
Localization Theorem for the connective enrichment

WTHH"(C") — WTHH"(C) — WTHH"(C|v) — SWTHH"(C")

where C is the category of finite cell EKMM ku-modules and vC the maps that
induce isomorphisms on homotopy groups after inverting the action of the Bott

63
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element. Our argument is general enough to also produce the localization sequences
THH(WFp»[u1,...,uy—1]) — THH(BP,) — THH(BP,|E,) — X---
TC(WFpn[us,...,up—1]) — TC(BP,) — TC(BP,|E,) — X - --

(for all n) discussed in the introduction of this paper. These sequences relate
the THH and T'C of the Eilenberg-Mac Lane spectra on the Witt rings to the
THH and T'C of the connective cover BP,, of the Lubin-Tate spectrum E, and the
corresponding relative construction.

The chapter is organized as follows. Section 4.1 compares our construction
WTHH" to the analogous construction of Hesselholt-Madsen [22]. Section 4.2
states the main theorem on localization sequences for T'H H (ku) and reduces the
proof to a dévissage theorem, Theorem 4.7; Section 4.3 then proves Theorem 4.7.

4.1. The localization sequence for THH of a discrete valuation ring

In this section, we compare the construction of THH we use here with the
construction used by Hesselholt-Madsen in [22] to prove the localization sequences
in THH and TC for discrete valuation rings. The main theorem of this section is
then the following.

THEOREM 4.1. Let R be a discrete valuation ring, k its quotient field, and F its
field of fractions. Let A denote the category of perfect simplicial R-algebras and let
vA denote the subcategory of those maps which induce isomorphisms on homotopy
groups after inverting a uniformizer (i.e., after tensoring with F'). Then the cofiber
sequence

WTHH"(A") — WTHH"(A) — WTHH" (Alv) — SWTHH"(A")

of Theorem 3.10 on THH induces on TC' a cofiber sequence naturally weakly equiv-
alent to the cofiber sequence of 22, 1.5.7], compatibly with the cyclotomic trace.

Assuming Theorem 5.1 from Chapter 5, we also sketch a proof of the following
theorem for the EKMM S-module models.

THEOREM 4.2. Let R be a discrete valuation ring, k its quotient field, and F
its field of fractions. Let A denote the category of finite cell EKMM H R-modules
and let vA denote the subcategory of those maps which induce isomorphisms on
homotopy groups after inverting a uniformizer (i.e., after tensoring over R with
F). Then the cofiber sequence

WTHH"(A") — WTHH"(A) — WTHH" (Ajv) — SWTHH"(A")

of Theorem 3.10 on THH induces on TC a cofiber sequence naturally weakly equiv-
alent to the cofiber sequence of [22, 1.5.7], compatibly with the cyclotomic trace.

We begin with a quick review of the construction used by Hesselholt-
Madsen [22]. Let Cy denote the category of perfect complexes R-modules, i.e., the
category of bounded chain complexes of finitely generated projective R-modules
and let vCy denote the subcategory of maps that induce isomorphisms on homology
after inverting a uniformizer (or equivalently, tensoring over R with F'). Regarding
Co and C as exact categories, we get connective spectral enrichments C5 and (CY)T'.
Hesselholt-Madsen [22, p. 27] then produce weak equivalences

THH(weSeCy) ~ THH(R),  THH (weSs(CY)")~THH k)
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and a homotopy cartesian square

THH (weSe(CY)T) — THH (veSe(CY)F)

| |

THH (wsSsC) —— THH (v S4CF)

with the upper left hand entry (canonically) contractible. Their THH cofiber
sequence is then

THH(weSe(CYY) —THH (weSeCh ) — THH (v4SeCh ) — ST H H (we Se (CY)T).
Since the simplicial categories S,,Co and S,C§ are discrete, the canonical inclusions
Wi SnCY — wM S,CY
Wy SnCo — wM S,Co
UmSnCo — v} $nCo

are isomorphisms, and so we can identify the TH H cofiber sequence of [22] as the
cofiber sequence

WTHH"(CY) — WTHH" (Cy) — WTHH" (Colv) — SWTHHT(CY).

The proof of Theorem 4.1 then consists of essentially two parts: First reconciling
the use of the category of complexes of R-modules (Cp) with the use of the category
of simplicial R-modules (Ap), and second constructing the connective enrichment,
reconciling the use of mapping spaces (A" (z,)) and mapping sets (A} (x,7)).

To treat the case of eS¢y, WeSeCp, and v4.S5.Cy on equal footing, we will work
in the following context. Let 20 be an abelian category, let By be a full subcategory
of the category of bounded below (in the homological grading) complexes of -
modules, and let vBj be a subcategory of By containing all the quasi-isomorphisms,
satisfying the Gluing Axiom for the degreewise split monomorphisms, and satis-
fying the two-out-of-three property. We also assume that By contains 0, is closed
under suspension, and is closed under quotients and extensions by degreewise split
monomorphisms, i.e., in a short exact sequence

0—a—>b—c—0

of chain complexes in 2 with a — b degreewise split, if a is By and either b or ¢
is in By, then so is the other. Let 4y be the subcategory of strictly connective
complexes in By. Then the Dold-Kan correspondence allows us to view A as a full
subcategory of the category of simplicial objects in 2, extending it to a simplicially
enriched category A. We regard By as a Waldhausen category with cofibrations
the degreewise split cofibrations and weak equivalences the quasi-isomorphisms;
then Ap is a Waldhausen subcategory (though not closed) and A is a simplicially
tensored Waldhausen category. We prove the following lemmas.

LEMMA 4.3. Under the hypotheses of the preceding paragraph, the inclusion of
THH(U.S..AE) mn THH(U.S.BE) is a weak equivalence.

LEMMA 4.4. Under the hypotheses of the preceding paragraph, the inclusion of
THH (veSs.AL) in THH(AJv) is a weak equivalence.

These two lemmas then immediately imply Theorem 4.1.
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ProoOF OF LEMMA 4.3. Writing X for suspension and C for cone, we have a
cofiber sequence of enriched exact functors

Id—C-—3%

on each v,, By, and so it follows from Corollary 3.2 that
IdVE,C: WTHH" (v,By) — WTHH" (vJBo)

induce the same map in the stable category. On the other hand, using a simplicial
contraction, it is easy to see that C induces the trivial map. Thus,

Y: THH(veSeBy) — THH (veSeBo)
is a weak equivalence. Similarly,
Y: THH(veSeAg) — THH(veSeAp)
is a weak equivalence. Since the canonical map
colimy; Ay — colimy; By
is an isomorphism, the lemma now follows from Proposition 1.17. (Il

ProOOF OF LEMMA 4.4. Let 9.4y denote the subcategory of v.4g consisting of
those maps that are also degreewise split monomorphisms. Then by [22, 1.3.9] and
Proposition 2.34, it suffices to show that the inclusion

THH (eS¢ AL) — THH(7,S,.A")

is a weak equivalence. Since S,,By and vS, By satisfy the same hypotheses as By,
without loss of generality, it suffices to show that the inclusion

THH (5, Al) — THH (7,.A")

is a weak equivalence. By Proposition 1.18, it suffices to show that each degeneracy
map
THH (s Ay) — THH (0,.AL)

is a weak equivalence, which we do using an argument similar to the proof of
Theorem 2.9.

Let s: Ag — A, denote the iterated degeneracy and let d: A, — Ay denote
the iterated zeroth face map. The composite functor d o s is the identity and so
induces the identity map

THH (v, Ap) — THH (0,.A%).

We show that the composite s o d is homotopic to the identity map. We have a
map of simplicial sets

c: Aln] x A[l] — A[n]
that is a null homotopy from the identity map to the inclusion of the last vertex.
We can use this to construct an exact functor c: A,, — A, as follows. Regarding
an element of f € A,(z,y) as a map f: 2 ® A[n] — y in Ay, we let c(f) €
An(x ® All],y ® A[1]) be the element represented by the map

(z @ A[l]) ® An] 2 2 ® (An] x A[l]) — y @ A[1]
in Ao induced by f, ¢, and the diagonal map on AJl]. This then extends to a

simplicial spectral functor
Ce: 'DQAE — ’D.Az.
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We construct two simplicial homotopies Hy, H; of simplicial spectral functors using
the two inclusions dy, &1 of A[0] in A[1]: On objects,

Tl —> " — Ty
in Obw,A is sent to
Tl x s  © AL] — - — 2 ® A[L]

in Ob v, A where the map z; — x; ® A[1] is g for Hy and 9, for Hy. On morphisms,
Hj sends

Ty —> o — Ty

hl P

Y —=> " ——7Yn
to

fll le C(fz‘)l C(fn)l

yr—r =Y — Y Al — - — Y, @ A[l]
and H; sends it to

x1—>~~~—>xiﬁ>xi®A[1]—>~~—>xn®A[1]
s | sadn| e e(fn)]
Yy — - — Y — Y QA — - — Yy, @ AL

Then Hj is a simplicial homotopy of spectral functors from the identity to ce and
H, is a simplicial homotopy of spectral functors from s o d to c,. O

We now move on to the proof of Theorem 4.2. Let A denote the category of
perfect simplicial R-modules and now let C denote the category of finite cell EKMM
H R-modules. Having proved Theorem 4.1, for the proof of Theorem 4.2, we just
need to produce compatible zigzags of weak equivalences

WTHH"(A") ~ WTHH"(C")
WTHH"(A) ~WTHH"(C)
WTHH" (Alv) ~ WTHH" (Clv).
Let M denote the full subcategory of EKMM H R-modules that are compact in the
derived category and whose underlying spectra satisfy a cardinality bound (for any

limit cardinal large enough that C C M). The inclusion of C in M then induces
compatible weak equivalences

WTHH"(C') = WTHH"(M")
WTHH"(C) = WTHH"(M)
WTHH" (Clv) = WTHH" (M|v),

We will in fact compare T'H H of the A categories with TH H of the M categories.
We use the functor denoted M in [26, §1.7] to construct a simplicially enriched
functor A — M as follows.
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Implicitly we are working with the standard model of HR as a commutative
EKMM S-algebra, constructed as follows. The usual Eilenberg-Mac Lane spectrum
HR has as its n-th space

R®Z[S"]
as in Example 2.13; this spectrum is canonically a commutative ring orthogonal
spectrum and the canonical commutative EKMM S-algebra HR is M of this (i.e.,
S Az (—) applied to its Lewis-May spectrification). As M is a lax monoidal functor,
for any (discrete) R-module M, the standard EKMM S-module HM is M of the
spectrum

M ®Z[S"]
and is canonically an H A-module. For a simplicial R-module M, geometric real-
ization commutes with M, and we obtain a simplicial functor M from simplicial
A-modules to EKMM H A-modules.

Because the construction (—) ® Z[S(7)] does not preserve coproducts or
pushouts, M: A — M is not an exact functor. But it does preserve coproducts up
to weak equivalence and homotopy pushouts, so it is a weakly exact functor. It is
also based in that it sends 0 to * (after perhaps modifying it by an isomorphism).
Theorem 5.1 and the work of Section 5.1 below then produce compatible zigzags of
maps of cyclotomic spectra

WTHH"(A”) — WTHH" (M")
WTHH"(A) — WTHH" (M)
WTHH" (Ajv) — WTHH" (M|v).
Since M induces DK-equivalences
Sp AV — SI MY
Sp A — SI M
oM S, A — oM S M,
the zigzags above consist of weak equivalences. This completes the sketch proof of
Theorem 4.2.
4.2. The localization sequence for TH H (ku) and related ring spectra

The main result of this chapter is the following theorem conjectured by Hessel-
holt and Ausoni-Rognes.

THEOREM 4.5. The transfer maps and the canonical maps fit into cofiber se-
quences of cyclotomic spectra

THH(Z)) — THH(t)) — WTHH" (¢)|L)) — STHH(Z})
THH(Z,)) — THH({) — WTHH" (¢|L) — STHH(Z,))
THH(Z) — THH (ku) — WTHH" (ku|KU) — STHH(Z)
inducing cofiber sequences
TC(Z)) — TC(L)) — WTCY (¢3|L}) — STC(Z)
TC(Zy)) — TC(£) — WTC ({|L) — STC(Zy))
TC(Z) — TC(ku) — WTCY (ku|KU) — STC(Z)
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which are compatible via the cyclotomic trace with the corresponding cofiber se-
quences in algebraic K-theory constructed in [7].

Here WTHH" (ku|KU) denotes the connective THH of the category of finite
cell ku-modules with the spectral enrichment induced by the canonical mapping
spaces in ku but weak equivalences the KU-equivalences. That is,

WTHH" (ku|KU) = WTHH" (Cyu|v) = QITHH (v SeCE)|,

where C,, is the category of finite cell EKMM ku-modules (as in Example 2.5.(i))
and vCpg,, is the collection of maps M — N such that M Ap, KU — N Ay, KU is an
equivalence, or equivalently, those maps that induce an isomorphism on homotopy
groups after inverting the action of the Bott element.

Indeed these are three cases of a more general theorem:

THEOREM 4.6. Let R be a connective S-algebra with m,R commutative and
moR a regular noetherian ring. Let 5 be a regular element in . R in some non-zero
degree, and assume that m,R/f is concentrated in degree 0. Then the transfer map
and the canonical map fit into a cofiber sequence of cyclotomic spectra

THH(moR) — THH(R) — WTHHY (R|R[3~']) — STHH (moR)
inducing a cofiber sequence
TC(mR) — TC(R) — WTCY(R|R[F™!]) — STC(moR)

which is compatible via the cyclotomic trace with the corresponding cofiber sequence
in algebraic K-theory constructed in [7].

As above, we let the v-equivalences on the category of finite cell R-modules
be the maps that become isomorphisms on homotopy groups after inverting (; in
the statement, WTHH" (R|R[3~]) denotes the connective THH of the category
of finite cell R-modules with the usual spectral enrichment but weak equivalences
the v-equivalences,

WTHH"(R|R[™')) = WTHH" (Cg|v).

This more general theorem applies to the Lubin-Tate theories R = BP,, discussed
in the introduction. Even more general theorems hold, where the key criterion is
that the category of acyclics for the localization is homotopy cofinal (in sense of
Section 1.3) in the category Pgr described below (and in [7, §1]).

The proof of this theorem follows the same general outline as the proof of the
corresponding result in algebraic K-theory [7]. In particular, the localization theo-
rem follows from a “dévissage” theorem for finitely generated finite stage Postnikov
towers. We now give the definitions necessary to state this theorem. Throughout,
we work with EKMM S-algebras and S-modules.

For an S-algebra R, let Pr denote the full subcategory of left R-modules that
are of the homotopy type of cell R-modules and have only finitely many non-
zero homotopy groups, all of which are finitely generated over moR. We give Pgr
the structure of a simplicially tensored Waldhausen category as follows. For the
simplicial structure, we use the usual simplicial enrichment obtained by regarding
the category of R-modules as a simplicial model category. For the Waldhausen
category structure, we take the weak equivalences to be the usual weak equivalences
and the cofibrations to be the Hurewicz cofibrations, i.e., the maps satisfying the
homotopy extension property in the category of R-modules. As we described in
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[7, §1], this gives Pgr the structure of a Waldhausen category, and the pushout-
product axiom on the tensors follows from [19, X.2.3]. (Techniques to make a
version of Pg that is a small category are discussed in [7, 1.7].)

Restricting to the subcategory of the category of S-algebras with morphisms
the maps R — R’ for which moR’ is finitely generated as a left mgR-module, we
can regard WTHH" (P(~)) as a contravariant functor to the homotopy category of
cyclotomic spectra. We can now state the Dévissage Theorem.

THEOREM 4.7 (Dévissage Theorem). Let R be a connective S-algebra with moR
left Noetherian. Then there is a natural isomorphism in the homotopy category of
cyclotomic spectra THH(ET{(‘?R) — WTHHY(PR), where Eij denotes the exact
category of finitely generated left mgR-modules. Moreover, this isomorphism and
the induced isomorphism (in the stable category) on TC are compatible via the cy-
clotomic trace with the analogous isomorphism (in the stable category) on algebraic

K-theory K'(moR) — K'(R) in the Dévissage Theorem of [7].

We prove Theorem 4.7 in the next section and use the rest of this section
to prove Theorem 4.6 from Theorem 4.7. Let R and 8 be as in the statement
and for convenience, let Z denote mgR. As above we write C4 for the simplicially
tensored Waldhausen category of finite cell A-modules (where A = HZ, R, or
R[B71]). On Cg we have the additional weak equivalences vCg, the maps that
induce an isomorphism on homotopy groups after inverting the chosen element
B. Since vCr contains the usual weak equivalences wCpg, the hypothesis of the
Localization Theorem (Theorem 3.10) applies and we get a cofiber sequence of
cyclotomic spectra

WTHH"(C%) — WTHH" (Cr) — WTHH" (Crlv) — SWTHH"(CY),

compatible with the analogous sequence in K-theory via the cyclotomic trace.
Corollary 3.16 identifies WTHH"' (Cg) with THH(R), compatibly with the cy-
clotomic trace. We prove in the following lemma that the cyclotomic spectra
WTHH"(CY%) and WT'HH" (Pg) are weakly equivalent. Thus, Theorem 4.7 iden-
tifies C}, as THH(Z), compatibly with the identification of K (C%) with K(HZ).

LEMMA 4.8. Every object in Cf, is an object in Pr, and the tensored ezact func-
tor that includes Cg in Pr induces a weak equivalence on WTHH" and WTHH?.

PROOF. Let X be a finite cell R-module; then the cofiber Y of the map X —
R[B7Y] Ar X is finitely built from the cofiber of R — R[371]. It follows that when
R[B7Y AR X ~ *, Y ~ £ X has homotopy groups bounded above. Since any finite
cell R-module has homotopy groups bounded below, it follows that objects of C%
only have homotopy groups in a finite range.

The hypothesis that § is regular and 7.R/f is concentrated in degree zero
shows that HZ is modeled by a 2-cell R-module (for Z = mgR). Since Z is regular
noetherian, it has finite global dimension and so every object in the homotopy
category of Pgr can by built in finitely many stages from retracts of finite wedges of
(de)suspensions of copies of HZ. Since HZ is modeled by an object of C%, we see
that P is the thick closure of C% in the derived category of R-modules; since C, is a
triangulated subcategory, it follows that every object of Pg is a homotopy summand
of an object of C%. This property is inherited on S, for all n. Theorem 1.27 then
shows that the inclusion of Cg in Pgr induces a weak equivalence on W1 HH r 0
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This completes most of the proof of Theorem 4.5; it just remains to identify
the map

THH(Z)~WTHH"(C%) — WTHH" (Cr) ~ THH(R)

in terms of the transfer map THH(HZ) — THH(R). First, we review this trans-
fer map. In our current context with R and f satisfying the hypotheses of The-
orem 4.6, the Eilenberg-Mac Lane R-module HZ is weakly equivalent to a finite
cell R-module. If we choose a model for HZ such that the map R — HZ is a cofi-
bration of associative S-algebras, then finite cell HZ-modules are cell R-modules
and homotopy equivalent to finite cell R-modules. Let M$, be the simplicially ten-
sored Waldhausen category whose objects are the R-modules that are homotopy
equivalent to finite cell R-modules with the usual simplicial sets of maps, with the
usual weak equivalences, and with cofibrations the Hurewicz cofibrations (using
the technique of [7, 1.7] to make a version that is a small category). Then Pg is
a closed Waldhausen subcategory of M%; moreover, the inclusion of Cr in M is
tensored exact and a DK-equivalence, and so induces an equivalence on all versions
of THH. We also have the analogous category M$,; , for HZ, which coincides with
Prz. The forgetful functor from HZ-modules to R-modules is a tensored exact
functor M$;, — M$. The transfer map THH(HZ) — THH(R) is by definition
the map

THy THH(HZ) — THH(MS$) <~ THH(R),

where the map on the right is induced by the inclusion of Sy in M$% and the map
of endomorphism spectra

C27(Suz,Suz) = (M%) (Sez,Sa2) — (M%) (SHZ, SHZ).-

(We understand TH H of the EKMM S-algebra HZ as THH of the symmetric ring
spectrum CfIZ (SHz,SHz); cf. Corollary 3.16 and the remarks that follow it.)
Since the transfer map coincides with the map

THH(HZ) = THH(M$ ) — THH(M%) +— THH(R),
applying Corollary 3.16 and naturality, we can also identify it as the map
THH(HZ) ~WTHH"(MS,) — WTHH" (M%) ~ THH(R).

Using the naturality of the isomorphism in Theorem 4.7, we obtain the following
commutative diagram of maps in the homotopy category of cyclotomic spectra.

THH(Z) —— WTHH" (Pyz) —— WTHH"(MS, ) «~— THH(HZ)

I

THH(Z) —— WTHH"(Pr) —— WTHH" (M%) «—— THH(R)

WTHH"(CY) ——— WTHH"(Cg)

It will be obvious from the proof of Theorem 4.7 in the next section that the
isomorphism THH(Z) ~ THH(HZ) in the top row of the diagram is the standard
one, and this identifies the map THH(Z) — THH(R) as the transfer map. This
completes the proof of Theorem 4.5.
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4.3. Proof of the Dévissage Theorem

This section is devoted to the proof of the Dévissage Theorem, Theorem 4.7.
The argument parallels the analogous dévissage theorem in [7], which we review
along the way.

We fix the connective S-algebra R, writing P for Pr . Let P, denote the full
subcategory of P consisting of those R-modules whose homotopy groups 7, are
zero for ¢ > n or ¢ < m. In this notation, we permit m = —co and/or n = 0o, so
P = P=,. The categories P, are closed Waldhausen subcategories of Pr. The
following theorem proved below parallels [7, 1.2].

THEOREM 4.9. The inclusion P — P induces a weak equivalence
WTHH"(P)) — WTHH"(P).

The point of the previous theorem is that my provides an exact functor from
P§ to the exact category of finitely generated left moR-modules £ }f%g . Theorem 1.3
of [7] proves that this functor induces a weak equivalence of K-theory. Since the
simplicial mapping sets for £ };g are discrete, mg is also a simplicially enriched functor
Py — 5};9 . It is in fact a DK-equivalence and induces a DK-equivalence S, Py —
Sn€ };g for all n. This proves the following theorem, which parallels [7, 1.3].

THEOREM 4.10. The functor mo: P§ — 5};9 induces a weak equivalence
WTHH"(PY)) — WTHH"(EL7).

We recall that in the case of an exact category such as 5};9, our WTHHF(E}QQ) is
isomorphic to the cyclotomic spectrum denoted THH(E }f%g ) by Dundas-
McCarthy [16].

Theorem 4.7 is an immediate consequence of the previous two theorems, with
the natural isomorphism coming from the natural zigzag of weak equivalences of
cyclotomic spectra

WTHH"(EY) «— WTHH" (PY)) — WTHH" (P).

Thus, it remains to prove Theorem 4.9.
The proof of Theorem 4.9 follows the same outline as the parallel theorem
[7, 1.2]. As in the argument there, we have the following two easy observations.

PROPOSITION 4.11. The inclusion P§° — P induces an equivalence
WTHH" (P§°) — WTHH" (P).

PROPOSITION 4.12. The cyclotomic spectrum WTHHY (Pg°) is weakly equiv-

alent to the telescope of the sequence of maps
WTHH"(P)) — --- — WTHH" (Py) — WTHH" (P — ---.

As in [7], the proof of Theorem 4.9 will then be completed by showing that the

maps
WTHH" (Py) — WTHH" (PyH)

are weak equivalences for all n > 0. Applying Proposition 3.9 and Theorem 3.5,
this is equivalent to proving the following lemma.

LEMMA 4.13. WTHHY (P} — P ~ QITHH (S Fo (PR, P)T)| is weakly
contractible.
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In [7] the proof of the parallel (unnumbered) lemma consisted of several steps,
each of which compared (multi)simplicial sets; the following diagram outlines the
comparisons as stated there.

w'S Fe 73(7)l+1 PO U.S Pn+1 B — u.S/ P"+1 ................. sue My Z
wouosopo n+l U.Ff lanJrl .......... ’U,.Ff 7);1111

We review these constructions as needed below. Here the solid arrows are simplicial
maps of diagonal simplicial sets and the dotted arrows are maps that are simplicial
only in one of the simplicial directions. We correct a minor error in [7] below.
There we claimed that the dotted arrow in the top row was a map of bisimplicial
sets; it is not. The diagram for the corrected argument looks like this; it commutes
up to simplicial homotopy.

weSeFo(Py L PE)  uaSe Py —— ueSIPET — u.SfM.Z<—7u.M.Z
Wette Se P! usFl- 17D"+1 ................................... U.F.f_l'p:;i‘ll

In the current context of THH, the line of reasoning and the diagram simplifies
slightly; we use the following diagram of spectrally enriched functors, which com-
mutes up to natural isomorphism.

(SpFy (Pn+1 Pyt ((uqsl )MPWH) (uquMpZ)F % (qupZ)F
((uquf_l)Mng)F o ((uq )Mp:llj_rll)

All of the spectral categories fit into simplicial spectral categories (in the ¢ direc-
tion) and the ones on the top row fit into bisimplicial spectral categories (in p, q).
The solid arrows are the spectrally enriched functors that respect the bisimplicial
structure; the dotted arrows respect the simplicial structure in the ¢ direction. The
arrows marked “~” are DK-equivalences, as shown in Propositions 4.16, 4.17, 4.21,
and 4.24. The goal is to show that the composite functor (S,F,(Py+, Pg))t —
(ug ST M,Z)' induces a weak equivalence

ITHH((SeFo(PyH, P — |THH ((ue ST Mo 2)")| = [THH((ue M. Z)"))|
and then prove Lemma 4.13 by showing that |THH ((ueMeZ)')| is contractible
(Proposition 4.20).

We now begin to review the categories and maps in diagram (4.14). We use
the following notation.

DEFINITION 4.15. Let uP denote the subcategory of P consisting of those maps
that induce an isomorphism on 7,41 and an injection on m,. Let fP denote the
subcategory of P consisting of those maps that induce an epimorphism on 7.

We write usP for the nerve categories: An object of u,P is a sequence of ¢
composable maps in «P and a map in u,P is a commuting diagram (of maps in P).
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For consistency with [7, 3.7], we let FZ{c P denote the nerve category f,P: An object
is a sequence of p composable maps in fP and a map is a commuting diagram
(of maps in P). We extend the definition of ue in the obvious way to functor
categories: In diagram (4.14), the category uqu’Pg+1 has as objects the sequences
of g-composable maps
Ag 25 A 22 24,

between objects A; in S,P;! where each o is (objectwise) in uPg™; a map from
{a;} to {a}} consists of a map ¢;: A; — A} in SI’)’P{}+1 for each ¢, making the
diagram

o o2 Qq

Ap Aq Aq
¢0J ¢1J{ J%-
A6 !’ A/l !’ T ’ A:]
al QQ Ocq

in S/Py*" commute. We define the categories uqFJ_lng and uq}*}f_lpn+1 anal-

n+1
ogously in terms of composable maps and diagrams in Fg_ﬂ?{f"’l and Fg_lpgj_'ll.

We obtain the spectrally enriched categories ((uqS;)MPgH)F, ((uqFJ_l)MPSH)F,
and ((uszf_l)M’P:le)F using the Moore Tot mapping spaces (Construction 2.39)
and the connective spectral enrichment. The usual face and degeneracy maps in
the nerve construction makes ((ueS5)M Py into a bisimplicial spectral cate-
gory and make ((u.FJ_l)MP{fH)F and ((u.FJ_l)M’P:le)F into simplicial spectral
categories for each p > 0.

Next we review the canonical inclusion

E,(Pytt, Py — u Pyt

We recall that an object of Fi,(Pj H,Pé‘) consists of a sequence of ¢ composable
cofibrations in Pg
Ty r—> X1 > > Ig

such that each quotient z;41/z; is in PJ. We note that for a cofibration j: a — b
in P between objects of PSLH, the quotient b/a is in Pg“ if and only if j induces
an isomorphism on 7,1 and an injection on m,, that is, if and only if j is in uP.
It follows that F,(Py*", Pg) is the full subcategory of u, Py consisting of those
objects whose structure maps are cofibrations. We then obtain the functors

SpFy(Py ™ Pg) — uqu/ng)lH
as the corresponding inclusions of full subcategories. When we look at mapping
spaces and use the Moore enrichment, we obtain a DK-embedding
Squ(PSLJrl, Py) — (uqS;I:)MPSLJrl-
This map is a DK-equivalence since the usual cylinder argument replacing a map
with a cofibration converts any diagram in uqSI’J’Pg+1 to a weakly equivalent dia-

gram in S, F,(Py!, Py). Passing to the connective spectral enrichments, we obtain
the following proposition.

PROPOSITION 4.16. The spectrally enriched functor
Squ(Pg"'l, PSL)F — ((uqS;)MPg—i_l)F

is a DK-equivalence.
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Next we review the functor S, Pt Ff Pyt of [7, 3.8]. First note that
for an object A = {a;;} in S;PS‘H, the map a;, — a;, is the homotopy cofiber
of the map a; ; — a;, and so we have a long exact sequence of homotopy groups

0 — mpy1a5; —> - — Mo j — Tolip — Toajp, — 0.
In particular, the map a; , — a; , is surjective on 7o, that is, is a map in fPg o We
therefore obtain a functor S’P"H — Fgfﬂ%‘ﬂ by sending each object of S}, PnH
to the object of F P"H defined by the sequence

agp —> Q1p —> "+ —> Ap—1,p-
In fact we have the following proposition.
PROPOSITION 4.17. The spectrally enriched functor
(ugSp)M Py — ((ug B )M Pg*h)"
is a DK-equivalence.

PRrROOF. Although S’ P"H is defined in terms of homotopy cocartesian squares,
it could equally well be deﬁned in terms of homotopy cartesian squares since for
EKMM R-modules a square is homotopy cartesian if and only if it is homotopy
cocartesian. The description of the mapping space of S,P in (2.26) has an analogue
in this context: The canonical map from SI’)M P to the iterated homotopy pullback

h h
P(ao,p;b0,p) XPag,pbr,) " XPap_apbpi1.p) P (Op=1p>bp—1,p)-

is a weak equivalence. This extends to (uqSZ’,)M P and from this it is easy to deduce
that we have a DK-embedding. It is a DK-equivalence because every object of

FJ_{P&” is weakly equivalent to the image of an object in u,S,, P"H filling out
the diagram by taking homotopy fibers. O

The inclusion of 73"+ as a subcategory of P”‘H induces a spectrally enriched

functor ((ug )MP:ill) — ((u ng_l)MPgH) , which assembles to a simplicial
spectrally enrlched functor in the ¢ direction. Although not a DK-equivalence at
any level, the simplicial spectrally enriched functor does induce a weak equivalence
on THH.

PROPOSITION 4.18. The inclusion ((u.FJ_l)MP,’ZI%)F — ((ue )MP"'H)
induces a weak equivalence
[THH(((wa FJ_ )M PRI — [THH(((ue F_ )M P51,

ProoF. Consider the bisimplicial spectral category V.F. defined as follows: in
bidegree r,s, V! is the full spectral subcategory of ((ur+s+1pr_ YMPITIT with
objects the sequences of sequences of the form

ag—> - —>ap —r by —> - —> by
such that the objects a; are in FI{ 177"];11 Dropping the objects {a;} and the

n
objects {b;} respectively induce bisimplicial spectrally enriched functors

(ur F_ )M PR 4= V5 — ()M P,
where we regard the targets as constant bisirnpll(;lal objects in the appropriate

direction. Since the (connective) spectrum of maps from an object x of ng_'ll to an

object y of ’P”H is homotopy discrete with 79 = Homg (7412, Trt1y), We see that
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the map V', — ((uSszfl)MPgH)F is a DK-embedding. Furthermore, it is clear
that this functor is essentially surjective (choosing an n-connected cover of by), and
so is a DK-equivalence.

The usual arguments show that the map V,', — ((urFZ{fl)M Priil is a simpli-
cial homotopy equivalence in the s-direction, using the homotopy inverse induced
by

(ag — -+ —> a,) — (ag— - —a,=a, =+ =a,).
Using this homotopy inverse, the composite map on (diagonal) simplicial spectral
categories
\M INT r M INT

(wr B )MPIEDT — Vi — (e )M Pg )
is induced by

(ag — - —a) =  (epr=a = =a),
and is easily seen to be simplicially homotopic to the inclusion map. O

For the categories uqM,Z, we copy the following definition from [7, 3.9].

DEFINITION 4.19. Let Z = moR. Let M,Z be the category whose objects are
sequences of p — 1 composable maps of finitely generated left Z-modules zo —
-+ — 2p—1 and whose morphisms are commutative diagrams. Let uM,Z be the
subcategory of M,Z consisting of all objects but only those maps x — y that are
isomorphisms xz; — y; forall 0 <: <p—1.

We understand MyZ to be the trivial category consisting of a single object
(the empty sequence of maps) with only the identity map. As above, we let u,M,Z
denote the nerve category, which has as its objects the composable sequences of g
maps in uM,Z (i.e., isomorphisms in M,Z) and maps the commutative diagrams
of maps in M, Z. We regard u,M,Z as simplicially enriched with discrete mapping
spaces and we obtain a connective spectral enrichment (u,M,Z)" using objectwise
direct sum of finitely generated left Z-modules.

As above, (ueM,Z)l' assembles into a simplicial spectral category using the
usual face and degeneracy maps for the nerve. We make (ueM,Z)! into a bisim-
plicial spectral category as follows: For 0 < ¢ <p—1, on zg — -+ = xp_1, the
face map 0;: ugM,Z — ugM,_1Z is defined by dropping z; (and composing) and
the degeneracy map s;: ugM,_1Z — uysM,Z is defined by repeating x; (with the
identity map). The face map 9,: uaM,Z — ugMp_1Z sends g — -+ — Tp—1 tO
ko — -+ — kp_2, where k; C x; is the kernel of the composite map z; = x,1.
The last degeneracy s,—1: ugMp—1Z — ugM,Z puts 0 in as the last object in the
sequence. The fundamental property of (ueM,Z)' that we need is the following.

PROPOSITION 4.20. For each q, |THH ((ugMeZ)")| is contractible.

PROOF. The argument at the end of Section 3 of [7] constructs a simplicial
contraction on the simplicial spectral category (uqMeZ )F'. This simplicial contrac-
tion induces a simplicial contraction on the simplicial spectrum THH ((ugMoZ)")

and geometric realization converts this to a contraction of |[THH ((u,MeZ)V)|. O
Applying 7,41, we get a functor qu_l’PgH'l — uM,p,_1 and spectrally enriched
functors

((uqF;—l)MPSZJFI)F — (qupZ)r and ((uqF;—l)MP:;-tll)F — (qupZ)F'
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Looking at the mapping spaces and mapping spectra, the following proposition is
clear.

PROPOSITION 4.21. The spectrally enriched functor

((Ung—l)MP::ill)F — (qupZ)F

is a DK-equivalence.

In [7, §3], we claimed that the functors uSz’,’PgH — uM,Z respected the
simplicial structure in the p direction, which is untrue. To fix this, we introduce
the category uS’M,Z.

DEFINITION 4.22. Let S¥M,Z be the category whose objects are functors A =
a_,_ from Ar[p| to the category of finitely generated left Z-modules such that:
(i) a;; =0, and
(ii) @i; = a; % is an isomorphism onto the kernel of the map a; 1 — a;
for all i < j < k. A map in S'M,Z is a commutative diagram. The subcategory
quMpZ consists of those maps in SfMp that are isomorphisms.

We make uSTM,Z a simplicial category using the usual face and degeneracy
operations on Ar[e]. Basically, S M, Z is the fibration version of the S, construction
for the co-Waldhausen category (category with fibrations and weak equivalences)
structure we get on the category of finitely generated left Z-modules by taking the
fibrations to be all maps and the weak equivalences to be the isomorphisms. We
have a forgetful functor uS/ M,Z — uM,Z which takes A = {a; ;} to the sequence

Gop —> - T Ap-1p-

This functor is an equivalence of categories, with the inverse functor uM,Z —

uST M,Z filling out the Ar[p] diagram from the sequence with the kernels of the

maps. These functors then assemble into a simplicial functor uMeZ — uS M, Z.
Now 7,41 defines a simplicial functor uSi’P{f+1 — uSTM,Z. The following

theorem fixes the argument in [7] by replacing Theorem 3.10.

THEOREM 4.23. The simplicial functors uSiP&”rl = uSTM,Z — uMJZ in-
duce weak equivalences on nerves.

Proor. Fix p. Since uM,Z — quMpZ is an equivalence of categories, it
induces a weak equivalence on nerves. The proof of Theorem 3.10 in [7, §4] correctly
proves that the functor uSé?DgLH — ubM,Z induces a weak equivalence on nerves,
and the composite functor

uSyPyTt — uM,Z — uST M, Z

is naturally isomorphic to the functor uS’Z',PSLH — uSYM,Z in the statement, so
that functor also induces a weak equivalence on nerves. O

We regard the categories uqu M, as simplicially enriched with discrete map-
ping spaces and we obtain a connective spectral enrichment (uqS f Mp)F using ob-
jectwise direct sum. Since the functor u,M,Z — uy,S?M,Z is an equivalence of
categories, we get a DK-equivalence on the connective spectral enrichments.

PROPOSITION 4.24. The spectral functor (u,M,Z)" — (uySfM,Z)" is a DK-
equivalence.
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Finally, we have everything in place to prove Lemma 4.13.

Proor oF LEMMA 4.13. Propositions 4.16, 4.17, 4.18, 4.21, and 4.24 imply
that the bisimplicial map

THH(S,F (P3P — THH((u,S’ M, Z)")

is a weak equivalence for each fixed p,q. Propositions 4.20 and 4.24 then imply
that

|[THH(S.Fo(Py, PO ~ |THH ((ue ST My Z)")| ~ |THH ((uMoZ)"))|

is contractible. O



CHAPTER 5

Generalization to Waldhausen categories
with factorization

In previous chapters, we imposed stringent hypotheses on our categories and
functors. In this chapter, we relax these hypotheses and extend the theory. We
begin in the first section by generalizing the maps we consider. Often, a functor
between Waldhausen categories preserves the structure only “up to homotopy”; in
previous work [7], we developed a theory of “weakly exact” functors to describe the
associated functoriality of algebraic K-theory. In the first section (Section 5.1), we
study the functoriality of WT H H in weakly exact functors and show that a weakly
exact functor of simplicial Waldhausen categories induces a zig-zag of spectra. We
use this additional generality in the following sections to establish that our hypothe-
ses introduced previously are generic, in the following sense. In Section 5.2, we show
that any reasonable Waldhausen category (an “HCLF Waldhausen category”; see
Definition 5.11) is connected by a weakly exact DK-equivalence to an enhanced
simplicially enriched Waldhausen category. In the last section (Section 5.3), we
show that if we start with a suitable spectral category C, the two evident construc-
tions of THH (namely, THH applied to the category viewed as a ring spectrum
with many objects and WT HH applied to the Waldhausen category of finite-cell
modules) are connected by a natural zig-zag of weak equivalences.

The combination of Sections 5.1 and 5.2 allows us to regard THH and TC' as
functors from the homotopy category of HCLF Waldhausen categories (and weakly
exact functors) to the homotopy categories of cyclotomic spectra and spectra, re-
spectively; see Theorem 5.12.(i). In fact, our constructions directly present TH H
and T'C as oco-functors from the oco-category of HCLF Waldhausen categories to
spectra. In Section 5.1, we show a weakly exact simplicially enriched functor of
Waldhausen categories yields a zigzag of spectra. A composable sequence of such
functors yields a subdivided simplex of maps, a multi-dimensional zigzag. Zachery
Lindsey in his Indiana University PhD thesis [25] has shown how to interpret this
as an oco-functor between oco-categories.

The work in Section 5.2, on the other hand, also has a relatively straightfor-
ward interpretation as an oo-functor in the context of quasi-categories (using the
homotopy coherent nerve). The functor C — C from HCLF Waldhausen categories
to simplicially enriched Waldhausen categories is easily seen to be the composite of
a lax pseudofunctor with an op-lax pseudofunctor, where we regard both categories
of Waldhausen categories as strict 2-categories with 2-morphisms the natural weak
equivalences. A (strictly unital) lax or op-lax pseudo-functor of strict 2-categories
then induces a map on homotopy coherent nerves of the topologically enriched cat-
egories obtained by geometric realization of the nerve of the morphism categories.

79
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After strictifying the units, we get a zigzag of co-functors. We leave the details to
a future paper.

5.1. Weakly exact functors

In this section, we still consider functors that preserve the simplicial enrichment,
but now we drop the hypothesis that the functor is exact, and substitute the up
to weak equivalence version of this hypothesis that the functor is “weakly exact”
[8, §2]. For Waldhausen categories that admit functorial factorization of weak
cofibrations (FFWC), a weakly exact functor is the minimum structure necessary
to induce a map on K-theory. The purpose of this section is to explain the proof
of the following theorem, which provides the corresponding result in our setting.

THEOREM 5.1. Let C and D be simplicially enriched Waldhausen categories and
assume that the underlying Waldhausen category of D admits FFWC. Let ¢: C — D
be a simplicially enriched functor that restricts to a based weakly exact functor on
the underlying Waldhausen categories, then it induces a map

WTHH"(C) — WTHH" (D)

in the homotopy category of cyclotomic spectra. This map is compatible with the
cyclotomic trace in that the following diagram commutes in the stable category.

KC "3 WTCT () —— WTHHT(C)

| ] |

KD —— WTC"D —— WTHH" (D)

In the case of enhanced simplicially enriched Waldhausen categories, we have
the following version of the previous theorem.

THEOREM 5.2. Let A and B be enhanced simplicially enriched Waldhausen
categories with ambient simplicially tensored Waldhausen categories C and D re-
spectively. If ¢: C — D is a simplicially enriched functor that sends A into B and
restricts to a based weakly exact functor on the underlying Waldhausen categories,
then it induces a map in the homotopy category of cyclotomic spectra

WTHH(A) — WTHH(B)

making the following diagram commute in the homotopy category of cyclotomic
spectra.

WTHH"(A) —— WTHH (B)

| |

WTHH(A) —— WTHH (B)

We also have the following theorem for natural weak equivalences between
enriched weakly exact functors.

THEOREM 5.3. Let ¢ and ¢’ be as in Theorem 5.1 or Theorem 5.2 above.
If there is a natural weak equivalence from ¢ to ¢, then the induced maps from
WTHHY(C) to WTHHY (D) agree in the homotopy category of cyclotomic spectra
and (for Theorem 5.2) the induced maps from WTHH(A) to WT' HH (B) agree in
the homotopy category of cyclotomic spectra.
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The proof of these theorems requires the S, construction from Section 2.4; a
weakly exact functor is precisely a functor that is compatible with that construction.
We begin with the definition of weakly exact functor.

DEFINITION 5.4 ([8, 2.1]). Let Cp and Dy be Waldhausen categories. A functor
¢: Co — Dy is weakly exact if the initial map * — ¢(*) in Dy is a weak equivalence
and ¢ preserves weak equivalences, weak cofibrations, and homotopy cocartesian
squares. We say that a weakly exact functor ¢ is based if the initial map * — ¢(x)
is the identity.

It follows that a functor that preserves weak equivalences will preserve weak
cofibrations and homotopy cocartesian squares if and only if it takes cofibrations to
weak cofibrations and takes pushouts along cofibrations to homotopy cocartesian
squares.

Let

W'THH"C = QITHH(S,Mc")|
W THH C(n) = |THH((weSL™.0)M Y.
If A in an enhanced simplicially enriched Waldhausen category, let
W'THHA = QITHH (S, A%)|
Proposition 2.41 now implies the following theorem.

THEOREM 5.5. Let C be a simplicially enriched Waldhausen category that ad-
mits FEFWC. The maps of cyclotomic spectra

WTHH(C) — W'THH"(C) and WTHH'(C) — WTHH" (C)

are weak equivalences. If A is an enhanced simplicially enriched Waldhausen cate-
gory, then the maps of cyclotomic spectra

WTHH(A) — WTHH(A) and WTHH(A) — WTHH(A)
are weak equivalences.

Functoriality of THH in weakly exact functors requires one more twist. Be-
cause an exact functor Cy — Dy preserves coproducts, an enriched exact functor
induces a functor on spectral enrichments. For a weakly exact functor ¢, the map

Oy Pler) V-V p(en) — @lcr V- V)

is generally not an isomorphism, though it is always a weak equivalence. To fix this
problem, we use a zigzag with the following construction.

CONSTRUCTION 5.6. For simplicially enriched Waldhausen categories C and D
and a functor ¢: C — D that is simplicially enriched and based weakly exact, let
#*(S,MC)T be the (simplicial) topological I'-category whose objects are the objects
of S, and whose I'-space of maps ¢..(S,MC)} (a,b) (for each fixed  =0,1,2,...)
consists of maps

fO S SLNIC(CL’ \/ b)a fl € SLMD(Q/)(U‘)’ \/ d)(b)),

q q



82 5. GENERALIZATION TO WALDHAUSEN CATEGORIES WITH FACTORIZATION

anon-negative real number s, and a homotopy fo,1 of length s from ¢(fo) to o (g0 f1,
which we topologize as a subset of

SMC(a,Vb) x SPMD(6(a), V 6(b)) x R x SMD(d(a), 6(V 1))

q q

as in Construction 2.31. Composition works as follows: Given (fo, f1,s, fo1): a = b
in level ¢ and (go, g1,t, go,1): b — ¢ in level r, the composition is (go © fo, g1 0 f1,5+
t,ho.1) where go o fo and gy o f1 are the compositions in (S,MC)Y and (S,MD)T,
and hg ; is the homotopy that does

?(V 90) © fo1
q

on [0,s] C [0, s+ ¢] (composing as in Definition 2.35) and does
o) ©(Vgo1)ofr

q
on the length t part [s, s +¢] of [0, s + ¢]. We define d)*(w.Si(ﬁ?,J.wC)F similarly.
We have canonical (simplicial) spectral functors
p(SMO)F — SMeT and 6. (SMCO)T — SV DY
induced by projecting on to the relevant factors in the product

$+(8MC)g (a,b) € SMCq (a,b) x SMDE (6(a), 6(b)) x R x SMD(d(a), 6(V D))"

q

Because the Moore construction for ¢.(S,*C)} (a,b) is homotopy equivalent to the
homotopy pullback and the maps o(,) above are weak equivalences, the projection

M T M T
$+(SC)4 (a,b) — M€, (a,b)
is always a weak homotopy equivalence. We now have the following theorem.

THEOREM 5.7. Let C and D be simplicially enriched Waldhausen categories
and let ¢: C — D be a functor that is simplicially enriched and based weakly exact.
Then we have zigzags of (simplicial or multisimplicial) spectrally enriched functors,
with the leftward arrow a DK-equivalence.

SMCT = . (SMC) e — SMDT
we ST 2 g, (wa 5L VOV — w, S A DT

Returning to TH H, we define
W'THH" (¢.C) = QTHH (¢.(S.MC)"|
WTHH' (6.C)(n) = [THH(6.(5 2 0)T).

The fact that ¢ is based gives simplicial suspension maps, imparting the structure
of a symmetric spectrum (in the category of cyclotomic spectra). The symmetric
spectrum structure is compatible with the functors in the previous theorem, as
summarized in the next result.
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THEOREM 5.8. Let ¢: C — D be a simplicially enriched functor that restricts
to a based weakly exact functor Cy — Dy. Then we have the following maps of
cyclotomic spectra

WTHH(C) WTHH"(C)
| l
W'THHT(C) W' THH" (C)
1 ~t
W'THH (¢,C) W THH" (4.C)

!
W’THlHF (D) W THH" (D)
T T
WTHH" (D) WTHH" (D)

and the upward maps marked “~7 are weak equivalences. If Dy admits FFWC,
then all upward maps are weak equivalences.

For Theorem 5.1, we have the cyclotomic trace induced by the inclusion of
objects, producing the commutative diagram

K(C) ——— WTC" (C) ——— WTHH" (C)

N !

W'TC" (€) ——— W'THH' (C)

-1 ~1
WTC" (¢.C) —— WTHH" (.C)
{ {
K'(D) —— WTC (D) ——— WTHH" (D)
1 -1 -1

—_~—

K(D) ——— WTC" (D) ——— WTHH" (D)

where here K’'(D) denotes K-theory constructed from the S, construction. This
completes the proof the Theorem 5.1.
Theorem 5.2 is entirely similar, using the map

Tn: XP(c) — d(X"¢)

in place of o(,) above. We can see that 7 is a weak equivalence by writing the
suspension as a homotopy pushout, and 7, is a weak equivalence since 7,, = 71 o
---oTy. Given enhanced simplicially enriched Waldhausen categories A and B with
ambient simplicially tensored Waldhausen categories C and D, respectively, and
¢: C — D a functor that is simplicially enriched, based weakly exact, and restricts
to a functor A — B, we then define ¢,.A° as the spectrally enriched category whose
set of objects is the same as A and whose spectrum of maps ¢,.A°(a,b) is defined
by letting

¢ A% (a,b)(n) C A% (a,b)(n)| x [B5(4(a), 9(b))(n)] x R x |B(é(a), 6(X"0))|"
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be the subspace of elements (fo, f1, s, fo,1) where fp 1 is a length s > 0 homotopy
from ¢(fy) to 7, o f1. For a diagram D, we define ¢. (D™ A)° likewise. This gives
us the non-connective analogue of Theorem 5.7.

THEOREM 5.9. Let A and B be enhanced simplicially enriched Waldhausen
categories with ambient simplicially tensored Waldhausen categories C and D, re-
spectively, and let ¢: C — D be a functor that is simplicially enriched, based weakly
exact, and restricts to a functor A — B. Then we have a zigzag of spectrally
enriched functors, with the leftward arrow a DK-equivalence.

A% p, A% — B
Writing
W'THH (¢, A) = QTHH (4,5.M A%)]|
WITHH (. A)(n) = [THH(.(wSy") o) A%)
we obtain a non-connective analogue of Theorem 5.8.

THEOREM 5.10. Let A and B be enhanced simplicially enriched Waldhausen
categories with ambient simplicially tensored Waldhausen categories C and D, re-
spectively, and let ¢: C — D be a functor that is simplicially enriched, based weakly
exact, and restricts to a functor A — B. Then we have the following maps of
cyclotomic spectra

WTHH(A) WTHH(A)
l _t

W'THH(A) W'THH(A)
] 1

W/THH(é,A) W/THH (¢,.A)

1

W’TéH(B) W'THH (B)
l il

WTHH(B) WTHH(B)

and the upward maps are weak equivalences.

Finally, for Theorem 5.3, choosing a natural weak equivalence from ¢ to ¢,
we obtain a simplicially enriched and weakly exact functor ® from C to w;D. We
obtain the zigzag

THH(S,MC") <~ THH(®.(5,"C)") — THH(((S,u)MD)") <~ THH(S,MD"),

and a similar zigzag in the non-connective case (when it applies).

5.2. Embedding in simplicially tensored Waldhausen categories

In previous sections we worked under stringent compatibility hypotheses in our
definition of a simplicially enriched Waldhausen category. In this section, we show
how to produce a DK-compatible simplicially enriched Waldhausen category from
a Waldhausen category satisfying a certain technical hypothesis.

DEFINITION 5.11. An HCLF Waldhausen category is a Waldhausen category
that admits a homotopy calculus of left fractions (HCLF) as defined in [17, 6.1.(ii)].
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We prove the following theorem.

THEOREM 5.12. Let C be an HCLF Waldhausen category. Then there exists
a DK-compatible simplicially enriched Waldhausen category C and a based weakly
exact functori: C — C that is a DK-equivalence (on simplicial localizations). More-
over:

(i) WTHHY(C) is a functor from the category of HCLF Waldhausen cat-
egories and weakly exact maps to the homotopy category of cyclotomic
spectra.

(i) As a map in the stable category, the isomorphism K (C) — K (C) is natural
in weakly exact functors of C.

(iii) As a map in the stable category, the cyclotomic trace K (C) — WTHHT (C)
is natural in weakly exact functors of C.
(iv) C admits FFWC.

(v) IfC is a DK-compatible simplicially enriched Waldhausen category then i
18 naturally weakly equivalent to a simplicially enriched functor 7', which
s also based weakly exact.

(vi) IfC can be given the structure of an enhanced simplicially enriched Wald-
hausen category, then v induces DK-equivalence Sp,C — S;ZMC~ for alln
and so induces a weak equivalence on WTHHT .

In the context of part (v), Theorem 5.7 gives a zigzag of spectrally enriched
functors relating C' and CNF, all of which are DK-equivalences in this case.

As we showed in [8, §5, App. A], a Waldhausen category that admits factor-
ization (every map factors as a cofibration followed by a weak equivalence) and any
closed Waldhausen subcategory of such a category in particular admits a homotopy
calculus of left fractions. In this context, we can also produce an enhanced exact
Waldhausen category.

THEOREM 5.13. Let C be a Waldhausen category that admits factorization and
let A be a closed Waldhausen subcategory. Let A be the full subcategory ofg of
objects weakly equivalent to objects from A. Then Cis a simplicially tensored
Waldhausen category, A is a closed Waldhausen subcategory, and the induced based
weakly exact functor i: A — A is a DK-equivalence. Moreover:

v

(i) WTHH(A) is a functor from the category of pairs (Waldhausen category,
closed Waldhausen subcategory) and weakly exact maps to the homotopy
category of cyclotomic spectra. _

(ii) There is a based weakly exact functor j: A — A such that Jjot is naturally
weakly equivalent to 7. (In particular, 7 is a DK-equivalence.)

(iii) The map of cyclotomic spectra WTHHT (A) — WTHHY (A) induced by
7 is a weak equivalence and natural in the homotopy category of cyclotomic
spectra.

In the context of the previous theorem, when C is a simplicially tensored Wald-
hausen category, A is an enhanced simplicially enriched Waldhausen category, and
part (v) of Theorem 5.12 gives us a based weakly exact simplicially enriched functor
7+ A — A, weakly equivalent to 7; namely, 7 is the restriction to A of 7: C — C.
Theorem 5.9 then produces a zigzag of spectrally enriched functors between A
and A5 , all of which are DK-equivalences in this case.
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The proofs of the previous theorems work by embedding C in a simplicial model
category in which all objects are fibrant. We do this using a variant of a presheaf
construction in Toén and Vezzosi [45] to define the K-theory of a simplicial cat-
egory. In the following discussion, let LC denote the simplicial category obtained
as the Dwyer-Kan hammock simplicial localization of C with respect to the weak
equivalences in the given Waldhausen structure.

DEFINITION 5.14. Let SF(LC) denote the category of simplicial functors from
LC to based simplicial sets taking values in a fixed but sufficiently large cardinal
depending on C. We regard SF(LC) as a simplicial model category using the
injective model structure [20], where cofibrations and weak equivalences are defined
objectwise and fibrations are defined by the right-lifting property with respect to
the acyclic cofibrations; in this model structure, all objects are cofibrant. The
opposite category (SF(LC))°P then has the opposite simplicial model structure
and all objects are fibrant.

Since the cofibrations in SF(LC) are the injections, it is clear that SF(LC) sat-
isfies the pushout-product axiom, which is one of the equivalent forms of Quillen’s
SMT7; in other words, SF(LC) is a simplicial model category. It follows that
(SF(LC))°P is likewise a simplicial model category. Heller [20, §4] shows that
the injective model structure has functorial factorizations, and in particular, we
have a fibrant replacement functor in SF(LC). In (SF(LC))°P, this gives functo-
rial factorization and a cofibrant approximation functor. It will be useful for us to
have these as simplicial functors and to preserve the zero object x. We prove the
following lemma at the end of the section.

LEMMA 5.15. The category SF(LC) admits simplicial endo-functors P¢ and 17
such that P€ is a cofibrant approximation functor for the projective model structure,

I/ is a fibrant approzimation functor for the injective model structure, and P¢(x) =
=17 ().

The full subcategory of cofibrant objects in (SF(LC))°P inherits the structure
of a Waldhausen category.

DEFINITION 5.16. Let C be the full subcategory of (SF(LC))°P consisting of
cofibrant objects weakly equivalent to the opposite of a corepresentable in the image
of C, i.e., weakly equivalent to a functor of the form LC(x, —), where x is an object of
C. When A is a closed Waldhausen subcategory of C, let A be the full subcategory
of (SF(LC))°P cousisting of cofibrant objects weakly equivalent to the opposite of
a corepresentable of an object A.

As observed in Example 2.5, C becomes a DK-compatible simplicially enriched
Waldhausen category when given the Waldhausen structure induced by the model
structure. The Yoneda embedding

Ye:x— LC(x,—)
gives us a functor Ye from C to (SF(LC))°P that we can compose with I/ to
obtain a functor C — C. We showed in [8, 6.2] that under the hypothesis of ho-
motopy calculus of left fractions, the simplicial localization mapping spaces take
homotopy cocartesian squares to homotopy cartesian squares, and hence to homo-
topy cocartesian squares in (SF(LC))°P. Tt follows that I/Y; is a weakly exact
functor C to C and a DK-equivalence. It is not, however, a based weakly exact
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functor as the zero object of C is generally not a zero object in LC. On the other
hand, LC(*,—) — LC(z,—) is an objectwise injection (as it is split by the map
LC(x,—) — LC(x,—)), and so the based functor

Yoz~ LC(z,—)/LC(x,—)

is weakly equivalent to Yz and hence is a based weakly exact functor and DK-
equivalence. This proves the following proposition.

PROPOSITION 5.17. Let C be a Waldhausen category that admits a homotopy
calculus of left fractions. Then the functor i = IfYC’: C — C is a based weakly exact
functor and a DK-equivalence.

When C, is a simplicially enriched Waldhausen category, 7 canonically extends
to a simplicial functor LCy — Co but generally does not extend to a simplicial
functor Cq — Cy. We can regard the functor

x +— diag LCe(x, —)/LCe(x, —)

as a simplicial functor from C, to (SF(LCp))°P. Composing with I/, we get a
simplicial functor 7’: Co — C~0. The inclusion of LCy in LC, induces a natural trans-
formation 7 — 7/, which is a natural weak equivalence when C, is DK-compatible
(by definition). This proves the following proposition.

PrOPOSITION 5.18. If C is a DK-compatible simplicially enriched Waldhausen
category, then 7 is weakly equivalent to a simplicial functor, which is also a based
weakly exact DK-equivalence.

When C is a DK-compatible simplicially enriched Waldhausen category, just as
in Proposition 2.28, looking at the formula for mapping spectra in S,,C and S/ 5,
we see that 7’ induces a DK-embedding S,,C — S!M C. If we assume the hypothesis
of part (vi), then C admits tensors with A[1], and for weak cofibration z — y, the
map xVy — (z ® A[l]) Uzgqy ¥ is a cofibration, i.e., C has functorial mapping
cylinders for weak cofibrations in the terminology of [8, 2.6]. Since in any simpli-
cially enriched Waldhausen category, weak equivalences are closed under retracts,
we can apply [8, 6.1] to characterize the weak cofibrations in C as precisely those
maps whose images in C are weak cofibrations. Moreover, tensors with generalized
intervals exist in C, and arguing as in the proof of Proposition 2.30, we see that
every object of 5’7’15 is weakly equivalent to the image of an object of S/.C, i.e., that
the DK-embedding is a DK-equivalence. The induced map (from Theorem 5.1)

WTHH"(C) — WTHH" (C)

is then a weak equivalence.

Now drop the assumption that C is simplicially enriched, and assume instead
that C admits factorization. Then Waldhausen [47, p. 357] shows that we can form
homotopy colimits in C over diagrams in finite partially ordered sets as iterated
pushouts over cofibrations. Since any finite simplicial set is weakly equivalent to
the nerve of a finite partially ordered set, it follows that for any weakly corepre-
sentable C and any finite simplicial set X, the simplicial functor C¥ is also weakly
corepresentable. This proves the following proposition.

PrOPOSITION 5.19. If C admits factorization then Cisa simplicially tensored
Waldhausen category.
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We also have the corresponding proposition for closed Waldhausen subcate-
gories.

ProrosITION 5.20. If A is a closed Waldhausen subcategory of C, then AccC
is an enhanced simplicial Waldhausen category and i: A — A is a based weakly
exact functor and a DK-equivalence on simplicial localizations.

We obtain the functor j: A — A as the restriction to A of the functor I, Fo R
where RZ' denotes the functor (SF(LC))°P — (SF(L.A))° obtained by restrlctmg

an LC diagram to LA and I 7 denotes the endo-functor I7 in A. Writing Y} and
Y; for the modified Yoneda embeddlngs as above, then

joi=TI4RAILY:  and 1= I,Y}.
Under the hypothesis of homotopy calculus of left fractions, the natural map Y —

RZY} in SF(LA) is a weak equivalence; combining this with the canonical weak

equivalence Id — Ig in SF(LC) and reversing arrows to work in (SF(L.A))°P gives
natural weak equivalences

Joi= I\ RAILY: — ILRAY: — IV, =i
in A.
The previous observations, propositions, and definitions cover all of the state-

ments in Theorems 5.12 and 5.13 except for the naturality statements. The next
result begins the study of naturality.

THEOREM 5.21. Let C and C' be Waldhausen categories that admit homotopy
caleuli of left fractions, and let ¢: C — C' be a weakly exact functor. Then there
exists a simplicial functor (b C — C that restricts to a based weakly exact functor
of the underlying Waldhausen categories and makes the diagram of functors

cC——C

Rt

¢ ——C
commute up to a zigzag of natural weak equivalences.
If A and A" are closed Waldhausen subcategories of C and C' (respectively) and
¢ restricts to a functor from A to A, then the functor ¢ restricts to a functor
¢: A — A making the diagram of functors

A—— A

q{ L“s
A —— A
commute up to a zigzag of natural weak equivalences.

We prove this theorem below, but first state the following corollary.

COROLLARY 5.22. Let C and C' be Waldhausen categories that admit homotopy
caleuli of left fractions, and let ¢: C — C' be a weakly exact functor. If ¢ induces
a DK-equivalence on passage to simplicial localizations, then the functor ¢: C—C

is a DK-equivalence. Moreover, ¢ and (when appropriate) ¢ induce an equivalence
of cyclotomic spectra on WTHHF and WTHH, respectively.
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The proof of Theorem 5.21 combines the simplicially enriched cofibrant and
fibrant approximation functors with left Kan extension. Fix the functor ¢: C — C'.
Left Kan extension gives rise to a functor Lang: SF(LC) — SF(LC') and we let

(;NS: C — C be the composite functor
SF(LC) —F SP(LC) 2% sF(re’y s SF(LC).

By construction 5 preserves weak equivalences and is equipped with a zig-zag of
natural weak equivalences connecting 7 o ;5 to ¢ o 7. This completes the proof of
Theorem 5.21 . _

Most of Corollary 5.22 follows immediately from Theorem 5.21. To see that ¢
induces a weak equivalence on WI'HH ' we need to see that the induced functor
S.C — S!M(C" is a DK-equivalence. The argument for Proposition 2.30 adapts to
the current context to complete the proof.

The proof of the naturality statements in Theorems 5.12 and 5.13 now follow
from an easy check that functors 5 compose as expected up to a zigzag of natural
weak equivalences. Somewhat more work shows that this construction actually
preserves composition up to coherent homotopy; we defer this to a future paper.

Finally, we need to prove Lemma 5.15. The specifics of the simplicial category
LC play no role: the lemma holds for the category of simplicial functors from any
small simplicial category D to based simplicial sets, and we argue in this context.
We prove the following lemma, of which Lemma 5.15 is a special case.

LEMMA 5.23. Let D be a small simplicial category and let &P denote the cat-
egory of simplicial functors from D to based simplicial sets. Then the projective
and injective model structures both admit factorization functors that are simplicial
functors and that send the identity on * to the factorization * = x = *.

The most basic case is when D is the trivial category and &P is the cat-
egory of based simplicial sets. Let C denote the set of generating cofibrations
(0A[n] — An], n = 0,1,2,...) and let A denote the set of generating acyclic
cofibrations (A;[n] — A[n], n = 0,1,2,...). Then the usual construction of the
factorization functors uses the small objects argument as follows. Given f: z — vy,
the factorization of f as an acyclic cofibration x — ' followed by a fibration ' — y
is constructed as &’ = colimz,, where x(, = = and inductively ], is constructed
as the pushout

x;erl = :L'/n U]_[a (H b)
where the coproduct is over commutative diagrams

a—b

!

Ty, — Y

with i: @ — b ranging over the elements of A. The version we need for Lemma 5.23
instead uses the based simplicial set of maps in place of the set of maps above: We
construct z/, inductively as the pushout

x;wrl =, UlTenD; (H b A D;)
where the coproduct is over the elements i: ¢ — b in A and
D; = &.(a,x),) X6, (a,y) S«(,y)
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is the based simplicial set of commutative diagrams of the form

a—b

!

The induced map z;, — zj,,; and the colimit map x — 2’ is an injection and
weak equivalence and the map z’ — y is a fibration. Moreover, this functor is
clearly a simplicial functor into the appropriate diagram category. The analogous
construction using C' instead of A constructs the other factorization. When applied
to the identity map on the trivial based simplicial set %, each D; is the trivial based
simplicial set *, and so we get that each map * = x,, — 2], ; and x4 = y = *isan
isomorphism. Thus, (replacing the factorization functors with naturally isomorphic
functors if necessary), we have that the factorization of * = x is * = x = %,

A slight modification of the factorization functors in Heller [20] constructs
the factorizations in the general case. Let GOPP denote the simplicial category
[Ioy, p 6+, and (following the notation in [20]), let J* denote the forgetful functor
from &P to GPPP that remembers just the objects in the diagram (values of the
functor) and forgets the maps. Let Jp be its left adjoint; since we are working in
based simplicial sets, JpX is the simplicial functor

JpX = \/ X(c)AD(c,—);.
ceObD

Likewise, let J! be the right adjoint of J*,

Jx= [ X",
ceObD

where X (c)D(*"”) denotes the based simplicial set of unbased simplicial maps from
D(—,c) to X(c). We note that for any X, JpX is cofibrant in the projective
model structure and more generally, Jp sends (objectwise) cofibrations and acyclic
cofibrations in &P P to cofibrations and acyclic cofibrations in the projective model
structure on &P, Likewise J sends (objectwise) fibrations and acyclic fibrations
to fibrations and acyclic fibrations in the injective model structure on &P,

The factorization functors for the projective model structure are constructed
as follows. For f: X — Y let Zy = X and construct Z,; inductively as follows.
First factor J*Z,, — J*Y objectwise

JZ, — W, — JY

using the simplicial factorization functor (for the appropriate factorization) on
based simplicial sets constructed above, and let Z,, ;1 be the pushout

L1 = ZnUjpgez, JpWh,

with the factorization Z, 1 — Y induced by the map JpW,, — Y. Letting Z =
colim Z,,, we get a factorization X — Z — Y, with the map X — Z a cofibration
or acyclic cofibration (as appropriate) in the projective model structure. We note
that the underlying map in &P from J*Z, to J*Z,,1 factors through W,,. It
follows that we can identify J*Z as colim W,, and the underlying map J*Z — J*Y
in GOPP as the colimit of the maps W,, — J*Y. Since by construction, these maps
are objectwise acyclic fibrations or fibrations of simplicial sets, the map j*Z — J*Y
is an objectwise acyclic fibration or fibration as required. We note that when
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X =+ =Y, by construction each W,, is * and JpW,, is isomorphic to *, and so we
end up with both factorizations of * = % as * = x = x.

The factorization functors on the injective model structure are precisely dual.
We start with Zy = Y, and inductively construct Z,;1 as follows. Using the
appropriate objectwise factorization functor, we factor J*X — J*Z, in GOPP as

JX — W, — JZ,,
and we define Z,, 1 as the pullback
Zn+1 =Zn XJlj*z, JIWn

We let Z = lim Z,, and get a factorization X — Z — Y with Z — Y by construction
a fibration or acyclic fibration (as appropriate) in the injective model structure.
Again looking at the underlying map in G9P P, we see that the map X — Z is an
objectwise acyclic cofibration or cofibration as appropriate. Again, the factorization
of * = * becomes * = x = *. This completes the proof of Lemma 5.23.

5.3. Spectral categories and Waldhausen categories

The work of the previous section showed how to associate a spectral category
to any well-behaved Waldhausen category. On the other hand, given a spectral
category C, we can produce a simplicially tensored Waldhausen category by passage
to the Waldhausen category Feop of “finite cell right C-modules” described below.
In this section we show that when C is pretriangulated (Definition 1.28), the spectral
category associated to Feop in Definition 5.16 recovers the original spectral category
C up to DK-equivalence.

As a general principal, it does not matter which modern category of spec-
tra we use as a model when discussing small spectral categories. The monoidal
Quillen equivalences relating the various categories of diagram spectra and EKMM
S-modules [26,27,38] allow us to convert a spectral category on any of these models
to one on any other. In particular, the following theorem is an easy consequence of
the work of [40] (extended by the techniques of [19] for dealing with non-cofibrant
units that arise there).

THEOREM 5.24. Fix a set of objects O. For S a modern category of spectra
from [27] or [19], let SO-Cat denote the category of S-enriched categories with
object set O and functors that are the identity on the object set O. Then:

(i) The category SO-Cat forms a closed model category where the weak equiv-
alences and fibrations are the functors that induce a weak equivalence or
positive fibration, respectively, on mapping spectra.

(ii) The monoidal Quillen equivalences from [26,27,38] induce Quillen equiv-
alences between the categories SO-Cat for the various S.

Because of this theorem, without loss of generality, we can assume that our
spectral category C comes enriched in EKMM S-modules, which have the techni-
cal advantage that every object is fibrant. On the other hand, since our goal is to
compare with the non-connective enrichment of a simplicially tensored Waldhausen
category, our comparison must be between spectral categories enriched in symmet-
ric spectra. Again, we use the previous theorem. Spectral categories enriched
in EKMM S-modules are always fibrant in the model structure of the previous
theorem, so the associated spectral category enriched in symmetric spectra has
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(the same object set and) mapping spectra ®C(x,y), where ® is the lax symmet-
ric monoidal right adjoint functor from EKMM S-modules to symmetric spectra
defined in [38]. Specifically, for an EKMM S-module X,

®X(n) = Ms((SsH)™, X).
Here Mg denotes the mapping spaces (in simplicial sets) for the category of EKMM
S-modules and Sg* denotes the canonical cell (—1)-sphere S-module [19, TIL.2]; ®X
is always a positive 2-spectrum and when X is a mapping spectrum, ® X often turns
out to be an Q-spectrum (for example, this happens for X = Feor(x,y) where Feop

is the spectral category defined below). The lax monoidal natural transformation
is induced by

OX (m) A Y (n) = Ms((S51)"™, X) A Ms((S51)™.Y)
— Ms((SghH™™ X AY) = ®(X AY)(m +n)

and the map S — @S is induced by the map S° — Mg(S, S) sending the non-base
point to the identity element.

NoTATION 5.25. For C a spectral category in EKMM S-modules, write ®C for
the associated spectral category in symmetric spectra described above.

Now given C a spectral category in EKMM S-modules we associate a Wald-
hausen category to C as follows. Let Mcop denote the category of (right) C-modules,
the category of enriched functors from C°P to the category of EKMM S-modules.
We make Mcop into a model category with the projective model structure: The
weak equivalences and fibrations are the objectwise weak equivalences and fibra-
tions. The cofibrations in this model structure are the retracts of relative cell
inclusions, where a cell is of the form

C(—2) ASEANSTH — C(—,2) ANSLA DY
for some object x in C, ¢ € Z, n > 0, where S"~! — D" is the standard n-cell
in spaces. We then have a subcategory of finite cell C-modules, having objects
the C-modules built from * by attaching finitely many cells. If we insist on using

canonical pushouts in building these complexes (or restrict to a skeleton), then the
resulting subcategory we get is small.

NOTATION 5.26. For C a small spectral category in EKMM S-modules, let Feop
be the small subcategory of Mcop of finite cell C-modules.

We have a spectrally enriched functor C — Feor sending z to C(—, ) A S2. By
the Yoneda lemma
Feor(C(=,2) A S5,C(=,y) A S5) = Fs(S5,C(z,y) A S3)
(where Fs denotes the function S-module) and the map
C(z,y) — Fs(83,C(x,y) A Sg)
is a weak equivalence. The following theorem is now clear from the construction of

Feon.

THEOREM 5.27. For C a small spectral category in EKMM S-modules, the spec-
trally enriched functor C — Feeo is a DK-embedding, and moFcor is the triangulated
subcategory of myMecor generated by the image of C. In particular, C — Feop is a
DK-equivalence if and only if C is pretriangulated.
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Since Feop is a subcategory of cofibrant objects in a simplicial model category
with all objects fibrant, it fits into the context of Example 2.5, and is canonically
a simplicially enriched Waldhausen category. In fact, it is easy to see that the
tensor in Mcop of an object of Feop with a finite simplicial set is isomorphic to
an object of Feep, S0 Feop is a simplicially tensored Waldhausen category. The
following is the main theorem of this section; combined with the previous theorem,
it gives the zigzag of DK-equivalence of spectral categories ®C =~ ﬁgup when C is
pretriangulated.

THEOREM 5.28. For C a small spectral category in EKMM S-modules, there are
zigzags of DK-equivalences of spectral categories (in symmetric spectra in simplicial
sets)

(I)]:cop =~ fgop o -%gop,
where .;—'-:Cop denotes the simplicially tensored Waldhausen category constructed from
Feor by Definition 5.16.

The zigzag of DK-equivalences FS,, ~ fcsop is the one obtained from applying
Theorem 5.9 to the simplicially enriched based weakly exact functor 7’ : Feop — ]T"cop
in part (v) of Theorem 5.12. That leaves us with constructing the zigzag of DK-
equivalences ® Feop =~ .Fgm, which is just the generalization of Proposition 3.17 to
rings with many objects. The proof is essentially identical: Let ® Feor denote the
spectral category (in symmetric spectra in simplicial sets) with the same objects as
Feor, but with mapping spectra ®' Feop (2, y) defined by

' Feon (z, y)(n) = MS((SS_I A Sl)(n)v Freo (x,5"y)),

where we have written F'r,., for the mapping spectrum in Fcor to avoid confusion
with the mapping space (simplicial set) Feor(z,y). For y = z, we have the unit
S — &' Feor(z, x) induced by the unit for Feop (x, ) and the canonical isomorphism

Ms((Sgt ASH O Fr.., (2,5%)) = Ms(S, Freo, (2,9)) = Feon (2, 7).
Composition is induced by the smash product map
Ms (S5t NS, Fre, (y,572)) A Ms (S5t ASH™, Fre, (2,5"y))
— Ms (S5 ASHH, Fro, (3, £72) A Freop (2, 5"y))
and the composition map
F oo (4 272) A Firgoy (2, 2) — Firgon (89, 5772) A Py (2,57)
— Froop (2, 2™172)
analogous to the one in Definition 2.14. We then have spectral functors
D Feor — ' Foov +— Fio
defined as follows. The functor ® Feop — @' Feop is the map
Ms((S5)™, Frpon (2,9)) — Ms((S5" A SH)®, oy (,27))
induced by n-fold suspension
Freo (7,y) — Freo, (8"2,5"y) = Q" Fr o, (2, 5"y)
and the adjunction

Ms((Sg1) ™, Q" Froop (€, 2"y)) 2 Ms((S5") ™ A S, Free, (2, 2y)).
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The functor fgop — @’ is induced by the map
Feon (2, 5"y) = Ms(S, Freos (7, £"y)) — Ms((Sg* A S, Fr.., (2, 5™y))

induced by the canonical collapse map Sgl A S' — S. On mapping spaces, both
these functors are weak equivalences (in fact, level equivalences) of symmetric spec-
tra, and so the functors are DK-equivalences. This completes the proof of Theo-
rem 5.28.
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