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Abstract
The purpose of this article is to study an approximation to an abstract Bessel-type
problem, which is a generalization of the extension problem associated with frac-
tional powers of the Laplace operator. Motivated by the success of such approaches
in the analysis of time-stepping methods for abstract Cauchy problems, we adopt a
similar framework herein. The proposed method differs from many standard tech-
niques, as we approximate the true solution to the abstract problem, rather than solve
an associated discrete problem. The numerical method is shown to be consistent, sta-
ble, and convergent in an appropriate Banach space. These results are built upon well
understood results from semigroup theory. Numerical experiments are provided to
demonstrate the theoretical results.
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1 Introduction

Due to itswide array of applications, the computation of fractional powers of theLapla-
cian, and other elliptic operators, has become a problem of great interest [2,9,25,26].
Fractional powers of operators have received this attention due to their applicability
to the accurate modeling of real-world problems with varying scales. Examples of
such problems are found in porous media flow, peridynamics, nonlocal continuum
field theory, finance, and many others (see [8,10,13,29], and the references therein).
However, due to the nonlocal nature of fractional problems, the development of accu-
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rate and efficient computational algorithms has been greatly hindered. In response to
this hurdle, the revolutionary work by Caffarelli and Silvestre demonstrated that the
nonlocal fractional Laplacian problem may be recast into an equivalent local problem
which is amenable to certain standard numerical techniques [7].

In order to demonstrate, fix 0 < s < 1 and consider the function v : R
d → R

which solves

(−Δ)sv = f , x ∈ R
d , (1.1)

where f is a given function of appropriate regularity and the fractional power of the
Laplacian is defined via the hypersingular integral

(−Δ)sv(x) := Cd,s

∫
Rd

v(x) − v(z)

|x − z|d+2s dz (1.2)

withCd,s being some normalization constant [7]. Caffarelli and Silvestre then showed
that for 0 < s < 1, the fractional Laplacian in (1.1) can be realized via the Dirichlet-
to-Neumann map for a function u : R

d ×R+ → R. The function u then satisfies the
following Bessel-type equation

{
∂2t u(x, t) + 1−2s

t ∂t u(x, t) = −Δxu(x, t), (x, t) ∈ R
d × R+,

u(x, 0) = v(x), x ∈ R
d ,

(1.3)

where v is the solution to (1.1). Moreover, the function u satisfying (1.3) may be
viewed as the harmonic extension of v to the fractional dimension 2 − 2s. One can
then calculate (−Δ)sv as

cs f (x) = cs(−Δ)sv(x) = − lim
t→0+ t1−2s∂t u(x, t), x ∈ R

d , (1.4)

where cs is a constant depending upon s, but not on the dimension d, and u solves
(1.3). Moreover, the final equality is (1.4) is known as the conormal derivative. We
have emphasized the relationship between v and f in (1.4) in order to clarify the
ensuing exposition. Further details and applications of this method may be found in
[3,7,14,31].

Several numerical algorithms for solving problems involving fractional powers of
the Laplacian have been developed based upon the Caffarelli-Silvestre extension tech-
nique [12,18,25,26]. These methods have also been extended to problems involving
general elliptic operators and various other physically relevant nonlocal problems.
Despite the increased interest in such methods, these explorations are still in their
infancy and merit further consideration. Moreover, there is the need to improve the
efficiency and accuracy of existing numerical methods.

In order to develop more robust approximations to (1.3), we consider the following
abstract Bessel-type problem

{
u′′(t) + α

t u
′(t) = −Au(t), t ∈ (0,∞),

u(0) = u0 ∈ X ,
(1.5)
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where X is a real separable Banach space, A : D(A) ⊆ X → X is a densely defined
linear operator, and α := 1 − 2s, s ∈ (0, 1). There have been numerous studies
concerned with approximating particular forms of (1.5), but herein we present a novel
method and demonstrate its properties in an arbitrary Banach space for appropriate
abstract operators A. In particular, such analysis allows for mesh independent results,
which are quite useful in application.

Analysis and representations of the true solution of (1.5) have been studied in
multiple settings [3,14,31]. However, to the author’s knowledge, approximations to
(1.5) in this abstract setting have yet to be explored. In particular, the true solution
to (1.5) involves the abstract semigroup generated by the operator A and there have
been few methods employing direct approximations of this operator. These approx-
imations preserve numerous desirable properties inherent to the original semigroup
operator, often resulting in superior approximations, resulting in qualitatively superior
approximations [6,15,27,28].

This article is organized as follows. In Sect. 2 relevant mathematical preliminaries
are outlined for the reader’s convenience. Section 3 is concerned with the development
and stability of the proposed approximation to (1.3). Section 4 provides the necessary
results to guarantee convergence of the proposed method. Section 5 presents some
concrete example of our abstract problem and provides numerical experiments verify-
ing the analytic result. Finally, concluding remarks and an outline of future endeavors
are given in Sect. 6.

2 Preliminaries

Let X be a real separable Banach spacewith norm denoted ‖·‖ and let B(X) denote the
Banach algebra of bounded operators on (X , ‖ · ‖). We wish to consider the following
Bessel-type problem

{
u′′(t) + α

t u
′(t) = −Au(t), t ∈ (0,∞),

u(0) = u0 ∈ X ,
(2.1)

where α := 1 − 2s, s ∈ (0, 1), and A : D(A) ⊆ X → X is linear. The operator
norm on X will also be denoted by ‖ · ‖. Before providing details regarding a solution
to (2.1) we detail a necessary assumption and some relevant background.

Assumption 2.1 Let the operator A be closed and densely defined in X . Moreover, let
A be strictly m−dissipative in X .

We recall that an operator A is called strictly dissipative if and only if

‖(I − t A)u‖ > ‖u‖, for all u ∈ D(A), t ≥ 0,

and it is called strictly m−dissipative if and only if it satisfies the additional range
condition

R(I − t A) = X , for all t ≥ 0.
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The notion of a dissipative operator may also be formalized in the following manner.
Define the (left) semi-inner-product [·, ·] : X × X → R on the Banach space X as

[u, v] := ‖v‖ lim
ε→0−

1

ε
(‖v + εu‖ − ‖v‖) , u, v ∈ X . (2.2)

Then A is strictly dissipative if and only if

Re[Au, u] < 0, for all u ∈ D(A).

Note that the limit in (2.2) exists as [·, ·] is a G-differential of the norm ‖ · ‖. If X is a
Hilbert space then we have that (2.2) coincides with the true inner product on X , that
is [·, ·] = 〈·, ·〉. Moreover, we have that [u, u] = ‖u‖2, for any u ∈ X , and

−‖u‖ ‖v‖ ≤ [u, v] ≤ ‖u‖ ‖v‖,

for any u, v ∈ X . More details regarding properties of (2.2) may be found in [11].

Remark 2.1 It is worth noting that many existing works in the direction of abstract
numerical analysis often require that an operator simply bem-dissipative. The current
work requires a slightly stricter result in order to guarantee the appropriate decay of
the solution (a requirement similar to that in [14,25]).

From this, it readily follows that the resolvent operator R(t, A) := (I − t A)−1 :
X → X of a strictly m−dissipative operator is well-defined and a contraction in
X . It also follows that strictly m−dissipative operators generate strongly continuous
semigroups of contractions [16,21]. We will denote the semigroup generated by A
by (T (t))t≥0. Note that if X is reflexive then every strictly m−dissipative operator is
densely defined. More details regarding m−dissipative operators and their properties
can be found in [4,21].

The following example demonstrates that standard elliptic operators are examples
of the proposed abstract formulation.

Example 2.1 Let Ω ⊂ R
d be a bounded domain with smooth boundary. We may then

consider the operator A = Δ with homogeneous Dirichlet boundary conditions, on
∂Ω. Let X = H1

0 (Ω) ∩ H2(Ω), and for u, v ∈ X , we define

[u, v] =
∫

Ω

uv dΩ and ‖u‖2 = [u, u].

We then have, by employing integration by parts and standard Sobolev-type inequal-
ities, that

[Au, u] = −[∇u,∇u] ≤ −C[u, u],

where C is some positive constant. Thus, we have that Re[Au, u] < 0 for all u ∈ X .

The range condition follows from standard results, as well.
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We also define the logarithmic norm of an operator A with respect to the semi-
inner-product [·, ·] given by (2.2) to be

μ(A) := sup
u∈D(A)

[Au, u]
‖u‖2 . (2.3)

Logarithmic norms have been well studied and more details regarding their properties
may be found in [30].

Example 2.2 If we consider the situation in Example 2.1, again, then it is easy to see
that μ(A) < 0, where A = Δ.

Remark 2.2 It is worth noting that one could easily have considered (the negation) of
any strongly elliptic operator in Examples 2.1 and 2.2, not just the Laplacian. In fact,
one could equivalently define strongly elliptic operators as any operator L such that
μ(L) > 0.

Remark 2.3 While not the focus of this work, one may easily use (2.3) to define the
notion of ellipticity of nonlinear operators on X . This approach can be quite useful
and allows for the consideration of more generalized notions of numerical stability
for stiff systems of equations.

The above formulations allow us to develop the following, very useful, result.

Lemma 2.1 Let A : D(A) ⊆ X → X be the generator of a strongly continuous
semigroup (T (t))t≥0 in D(A). Then,

‖T (t)‖ ≤ etμ(A), t ≥ 0.

Proof This result has been proven elsewhere, but we include a proof for completeness.
Let A be the generator of the semigroup (T (t))t≥0. Then it follows that x(t) = T (t)x0
is the solution to

{
x ′(t) = Ax(t), t > 0,
x(0) = x0.

(2.4)

Recall that the upper right Dini derivative of a function x(t) is defined as

D+
t x(t) := lim sup

ε→0+

x(t + ε) − x(t)

ε
.

By direct calculation, we have

D+
t ‖x(t)‖ = [Ax, x]

‖x‖2 ‖x‖ (2.5)

(see, for instance, [11]). Employing (2.3) and solving (2.5) directly yields the desired
result. ��
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The remainder of this sectionwill serve as a brief introduction to fractional powers of
operators inBanach spaces and provide some existence results for problem (2.1). These
introductory notes are based primarily on the reference [22], with some influence from
[23]. Let L(X) denote the set of all bounded linear operators mapping X into X and

ρ(A) :=
{
λ ∈ C : (λ − A) is injective and (λ − A)−1 ∈ L(X)

}

denote the resolvent set of the linear operator A. For operators A : D(A) ⊆ X → X
satisfying Assumption 2.1 and u ∈ D(A), we define the Balakrishnan operator with
power s ∈ (0, 1) and base −A as

J s−Au := 1

Γ (s)Γ (1 − s)

∫ ∞

0
zs−1(z − A)−1(−A)u dz. (2.6)

This operator will be used to define fractional powers of the operator A. For more
details see [22].

Remark 2.4 The operator J s−A inherits numerous desirable properties from the under-
lying operator A. For instance, if A is bounded or injective, then so is J s−A [22].

With (2.6), we are now able to define fractional powers of abstract operators.

Definition 2.1 Let A be as in Assumption 2.1 and fix s ∈ (0, 1).Thenwe define (−A)s

as

i. (−A)s := J s−A, for A ∈ L(X);
ii. (−A)s :=

(
J s
(−A)−1

)−1
, for A being unbounded.

iii. (−A)s := limδ→0+(−A + δ)su, for A being unbounded, 0 ∈ σ(A) (where σ(A)

is the spectrum of A), and D((−A)s) given by

D(A) =
{
u ∈ D(A) : ∃δ0 > 0, ∀δ ∈ (0, δ0)

s.t. u ∈ D((−A + δ)s), lim
δ→0+(−A + δ)su exists

}
(2.7)

It is worth noting that the above definition yields a well-defined closed operator
which extends the original Balakrishnan operator. Moreover, in [23], it was shown
that for a densely defined linear operator A, we have

J s−A = (−A)s . (2.8)

There is still a wealth of information that one could present to provide background
on fractional powers of operators, but these ideas will not be pertinent to the study at
hand. Interested readers should see [22] for more details.

Based on Assumption 2.1, we are in fact considering a special case of that studied
in [14]. Though the following result was included in [14], the proof was omitted for
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this special case, hence, we include a proof for completeness. The methods employed
below are similar to those in [23].

Theorem 2.1 Let u0 ∈ D((−A)s). Then a solution to (2.1) is given by

u(t) = 1

Γ (s)

∫ ∞

0
zs−1e−t2/4zT (z)(−A)su0 dz (2.9)

and also satisfies

lim
t→0+ t1−2su′(t) = cs(−A)su0, (2.10)

where cs := 21−2sΓ (1 − s)/Γ (s).

Proof We first show (2.9) by demonstrating directly that (2.9) satisfies (2.1) for t > 0.
To that end we have

u′(t) = 1

Γ (s)

∫ ∞

0

[−t

2z

]
zs−1e−t2/4zT (z)(−A)su0 dz

and

u′′(t) = 1

Γ (s)

∫ ∞

0

[−1

2z
+ t2

4z2

]
zs−1e−t2/4zT (z)(−A)su0 dz.

Thus, for t > 0 we have

u′′(t) + α

t
u′(t) = 1

Γ (s)

∫ ∞

0

[
s − 1

z
+ t2

4z2

]
zs−1e−t2/4zT (z)(−A)su0 dz

= 1

Γ (s)

∫ ∞

0

[
d

dz

(
zs−1e−t2/4z

)]
T (z)(−A)su0 dz. (2.11)

Bynoting that d
dz T (z)(−A)su0 = AT (z)(−A)su0 and employing integration by parts,

we have

u′′(t) + α

t
u′(t) = 1

Γ (s)

∫ ∞

0
zs−1e−t2/4z AT (z)(−A)su0 dz

= −Au(t),

which shows that (2.9) is a solution to (2.1).
Next we show (2.10) holds for u0 ∈ D((−A)s). Note that

t1−2su′(t) = 1

Γ (s)

∫ ∞

0

(−t2−2s

2z

)
zs−1e−t2/4zT (z)(−A)su0 dz

= cst−2s

4−sΓ (1 − s)

∫ ∞

0
zs

(
d

dz
e−t2/4z

)
T (z)(−A)su0 dz. (2.12)
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By employing integration by parts in (2.12) we obtain

∫ ∞

0
zs

(
d

dz
e−t2/4z

)
T (z)(−A)su0 dz

= −
∫ ∞

0
e−t2/4z

[
szs−1T (z) − zs AT (z)

]
(−A)su0 dz, (2.13)

where the boundary terms in (2.13) go to zero due toAssumption 2.1.After substituting
(2.13) into (2.12) and employing integration by parts yet again, we obtain

t1−2su′(t) = −cst−2s

4−sΓ (1 − s)

∫ ∞

0
e−t2/4z

[
szs−1T (z) − zs AT (z)

]
(−A)su0 dz

= cs
Γ (−s)

∫ ∞

0
z−s−1e−t2/4zT (z)u0 dz

− cst2

4Γ (1 − s)

∫ ∞

0
z−s−2e−t2/4zT (z)u0 dz

= cs
Γ (−s)

∫ ∞

0
z−s−1e−t2/4z [T (z)u0 − u0] dz

− cst2

4Γ (1 − s)

∫ ∞

0
z−s−2e−t2/4z [T (z)u0 − u0] dz. (2.14)

Note that the first integral in (2.14) is Bochner integrable and is in fact the desired
result, as

lim
t→0+

cs
Γ (−s)

∫ ∞

0
z−s−1e−t2/4z [T (z)u0 − u0] dz

= cs
Γ (−s)

∫ ∞

0
z−s−1 [T (z)u0 − u0] dz

= cs(−A)su0 (2.15)

by Definition 2.1 and (2.8). Thus, (2.10) follows if the second integral in (2.14) goes
to zero. By Taylor expanding T(z) about z = 0 and employing Assumption 2.1, we
have

∥∥∥∥ cst2

4Γ (1 − s)

∫ ∞

0
z−s−2e−t2/4z [T (z)u0 − u0] dz

∥∥∥∥
≤ cst2‖Au0‖

4Γ (1 − s)

∫ ∞

0
z−s−1e−t2/4z dz

= cst2−2s‖Au0‖
4−sΓ (1 − s)

∫ ∞

0
ys−1e−y dy

= 2t2−2s‖Au0‖. (2.16)
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Since D(A) ⊆ D((−A)s), it follows that ‖Au0‖ is bounded by assumption and we
have

lim
t→0+

∥∥∥∥ cst2

4Γ (1 − s)

∫ ∞

0
z−s−2e−t2/4z [T (z)u0 − u0] dz

∥∥∥∥ = 0. (2.17)

Combining (2.15) and (2.17) yields the desired result. ��
Lemma 2.2 For all u0 ∈ X , a solution to (2.1) is given by (2.9).

Proof This result follows from [23] and the fact that A is densely defined in X . ��
It is worth noting that the solution to (2.1) is not known to be unique in the current

setting. However, there are numerous results regarding situations in which uniqueness
is known, for instance, when A is the Laplacian with Dirichlet boundary conditions,
when A is a sectorial operator and X is a Hilbert space, and for all operators A when
s = 1/2 [3,14,23,31]. In order to avoid these issues in our ensuing analysis, we
introduce the following assumption.

Assumption 2.2 The solution to (2.1) is unique in X for all u0 ∈ D((−A)s), and
hence, given by (2.9).

Remark 2.5 One could replace Assumption 2.2 with the condition that the solution to
(2.1) decays to zero at infinity, in some weak sense, and obtained the same result.

Remark 2.6 It is worth noting that (2.9) may seem a bit strange as it involves the
fractional power of the operator −A. However, as discussed in the Introduction, when
considering (1.3) or (2.1) in applications the function (−A)su0 will be given.

We close this section by outlining some basic properties regarding the semigroup
generated by A and the operator (−A)s . For more details, see [17].

Lemma 2.3 Let α ≥ 0 and 0 ≤ γ ≤ 1. Then there exists a constant C > 0 such that

i. ‖(−A)αT (t)‖ ≤ Ct−α, for t > 0;
ii. (−A)αT (t) = T (t)(−A)α, on D((−A)α);
iii. If α ≥ γ, then D((−A)α ⊆ D((−A)γ ).

3 Derivation of approximation

The properties of various forms of (2.9) have been studied by several authors, see
[3,14,23,31] and the references therein. However, in this paper, we are concerned
with the development and analysis of an approximation to (2.9). To that end, fix
0 � M < N < ∞ with M, N ∈ N. Then we define h := M/(N + 1) and set
zk := kh, k = 0, . . . , N + 1. For the sake of the ensuing analysis, we define

u(M)(t) := 1

Γ (s)

∫ M

0
zs−1e−t2/4zT (z)(−A)su0 dz. (3.1)

We then have the following result.
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Lemma 3.1 Let u and u(M) be defined as in (2.9) and (3.1), respectively. Then, if
u0 ∈ D((−A)s), we have

‖u(t) − u(M)(t)‖ ≤ CMs−1eμ(A)M‖(−A)su0‖, t ∈ [0,∞),

where C is a constant independent of s and M .

Proof We proceed by direct calculation. We have

∥∥∥u(t) − u(M)(t)
∥∥∥ = 1

Γ (s)

∥∥∥∥
∫ ∞

0
zs−1e−t2/4zT (z)(−A)su0 dz

−
∫ M

0
zs−1e−t2/4zT (z)(−A)su0 dz

∥∥∥∥
= 1

Γ (s)

∥∥∥∥
∫ ∞

M
zs−1e−t2/4zT (z)(−A)su0 dz

∥∥∥∥
≤ e−t2/4M‖(−A)su0‖

Γ (s)

∫ ∞

M
zs−1eμ(A)z dz

≤ ‖(−A)su0‖
Γ (s)

∫ ∞

M
zs−1eμ(A)z dz, (3.2)

where μ(A) < 0 by Assumption 2.1 and is defined in (2.3). It now remains to bound
the integral in (3.2). To that end, let w = −μ(A)z, to obtain

∫ ∞

M
zs−1eμ(A)z dz = (−μ(A))−s

∫ ∞

−μ(A)M
ws−1e−w dw. (3.3)

Employing the substitution y = w + μ(A)M in (3.3) then yields

(−μ(A))−s
∫ ∞

−μ(A)M
ws−1e−w dw = (−μ(A))−1 Ms−1eμ(A)M [1 + R(M)] ,

(3.4)

where

R(M) := Γ (2 − s)

μ(A)MΓ (s)

∫ ∞

0
ye−y

(∫ 1

0

(
1 − yξ

μ(A)M

)s−2

dξ

)
dy.

Since s ∈ (0, 1), we have

‖R(M)‖ ≤ Γ (2 − s)

|μ(A)|MΓ (s)

∫ ∞

0

∫ 1

0
yey dξ dy = Γ (2 − s)

|μ(A)|MΓ (s)
. (3.5)
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By substituting (3.3)–(3.5) into (3.2), we obtain

∥∥∥u(t) − u(M)(t)
∥∥∥ ≤ CMs−1eμ(A)M‖(−A)su0‖.

��
Remark 3.1 While the constant, C, in Lemma 3.1 is independent of s, t, and M, it
does depend on μ(A). Hence, in practice, if μ(A) is close to zero we will need to
increase the value of M to obtain the desired accuracy.

Now that it has been established that the truncation of the integral will not have
drastic effects on the approximation of (2.9), for large M, we present the proposed
approximation to u(t) in X . For u0 ∈ D((−A)s), we define the following continuous
in time approximation to (2.9)

v(t) :=
N∑

k=0

γk(t)S
k(h)S(h/2)(−A)su0, (3.6)

where

γk(t) := hs[(k + 1)s − ks]
Γ (1 + s)

e−t2/4zk+1/2 and S(h) :=
(
I − h

2
A

)−1 (
I + h

2
A

)
,

with zk+1/2 := zk + h/2.

Assumption 3.1 Let the operator S(w) be nonexpansive in X .

Remark 3.2 Note that if X is in fact a Hilbert space, then the assumption that S(w)

is nonexpansive will always be valid due to Assumption 2.1. That is, let v ∈ D(A),

then

∥∥∥
(
I + w

2
A
)

v

∥∥∥2 = ‖v‖2 + wRe[Av, v] + w2

4
‖Av‖2

≤ ‖v‖2 − wRe[Av, v] + w2

4
‖Av‖2

=
∥∥∥
(
I − w

2
A
)

v

∥∥∥2 ,

where [·, ·] is the inner product on the Hilbert space X . However, in general Assump-
tion 3.1 does not hold in general Banach spaces, X ,with A satisfying Assumption 2.1.
For more details see [4].

We begin by demonstrating that (3.6) is stable in X .

Lemma 3.2 Let u0 ∈ D((−A)s) and v(t) be as defined in (3.6). Then we have

‖v(t)‖ ≤ C‖(−A)su0‖, t ∈ [0,∞),

where C is a constant independent of h and k = 0, . . . , N .
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Proof Direct calculation yields

‖v(t)‖ ≤
N∑

k=0

‖γk(t)‖ ‖S(h)‖k ‖S(h/2)‖ ‖(−A)su0‖ ≤
N∑

k=0

‖γk(t)‖‖(−A)su0‖,

(3.7)

by Assumption 3.1. Thus it we need only consider the γk(t). We first note that since
γk(t) ≥ 0 for t ≥ 0, we have

N∑
k=0

‖γk(t)‖ = hs

Γ (1 + s)

N∑
k=0

[(k + 1)s − ks]e−t2/4zk+1/2

= h

Γ (s)

N∑
k=0

ξ s−1
k e−t2/4zk+1/2 , (3.8)

for some ξk ∈ (zk, zk+1), k = 0, . . . , N . Now let β ∈ N be the index such that
zβ ≤ 1 < zβ+1. We then have, by (3.8),

N∑
k=0

‖γk(t)‖ = h

Γ (s)

N∑
k=0

ξ s−1
k e−t2/4zk+1/2

= h

Γ (s)

β−1∑
k=0

ξ s−1
k e−t2/4zk+1/2 + h

Γ (s)

N∑
k=β

ξ s−1
k e−t2/4zk+1/2

≤ h

Γ (s)

β−1∑
k=0

ξ s−1
k e−t2/4zk+1/2 + h

Γ (s)

N∑
k=β

e−t2/4zk+1/2

By noting that

h

Γ (s)

β−1∑
k=0

zs−1
k+1/2e

−t2/4zk+1/2 ≤ h

Γ (s)

β−1∑
k=0

e−t2/4 ≤ e−t2/4,

we then obtain

h

Γ (s)

N∑
k=0

ξ s−1
k e−t2/4zk+1/2 ≤ e−t2/4 + h

Γ (s)

N∑
k=β+1

e−t2/4zk+1/2 ≤ C, (3.9)

whereC is a constant independent of h and k = 0, . . . , N . Substituting (3.9) into (3.7)
completes the proof. ��
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4 Convergence

We now present several convergence estimates that will be necessary for the main
result of this section.

Lemma 4.1 Let u0 ∈ D((−A)�+s), � = 1, 2. Then we have

∥∥∥∥ 1

Γ (s)

∫ zk+1

zk
zs−1e−t2/4zT (z)(−A)su0 dz − γk(t)T (zk+1/2)(−A)su0

∥∥∥∥ ≤ Ch�+s,

for t ∈ [0,∞), where C is a constant independent of h and k = 0, . . . , N .

Proof We begin by defining

f (z) := e−t2/4zT (z)(−A)su0, (4.1)

for all t ∈ [0,∞). Thus, by employing (4.1), we have by direct calculation

∫ zk+1

zk
zs−1 f (z) dz

=
∫ zk+1

zk
zs−1

[
f (zk+1/2) + f ′(zk+1/2)(z − zk+1/2) + f ′′(ξk)

2
(z − zk+1/2)

2
]
dz

= zsk+1 − zsk
s

f (zk+1/2) + f ′′(ξk)
2

∫ zk+1

zk
zs−1(z − zk+1/2)

2 dz, (4.2)

for some ξk ∈ (zk, zk+1). By noting that

zsk+1 − zsk
s

f (zk+1/2) = Γ (s)γk(t)T (zk+1/2)(−A)su0,

it is clear from (4.2) that it only remains to show

∥∥∥∥ f ′′(ξk)
2

∫ zk+1

zk
zs−1(z − zk+1/2)

2 dz

∥∥∥∥ ≤ Ch�+s+1,

for � = 1, 2. We first note that, by Hille’s theorem, we have

f ′′(z) =
(

t2

4z2
I − A

)2

e−t2/4zT (z)(−A)su0 − t2

4z3
e−t2/4zT (z)(−A)su0. (4.3)

From (4.3), Assumption 2.1, and Lemma 2.3, we have

‖ f ′′(z)‖ ≤ t�−2, (4.4)

since z−ηe−t2/4z is bounded for z ∈ (0,∞) and η = 2, 3, 4.
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We next note that
∥∥∥∥
∫ zk+1

zk
zs−1(z − zk+1/2)

2 dz

∥∥∥∥ ≤ h2

4

∫ zk+1

zk
zs−1 dz = h2+s[(k + 1)s − ks]

4s
.

(4.5)

Combining (4.4) and (4.5) into (4.2) then yields

∥∥∥∥ 1

Γ (s)

∫ zk+1

zk
zs−1e−t2/4zT (z)(−A)su0 dz − γk(t)T (zk+1/2)(−A)su0

∥∥∥∥
=

∥∥∥∥ f ′′(ξk)
Γ (s)2

∫ zk+1

zk
zs−1(z − zk+1/2)

2 dz

∥∥∥∥
≤ ξ�−2

k h2+s[(k + 1)s − ks]
8Γ (1 + s)

≤ Ch�+s,

where � = 1, 2 for u0 ∈ D((−A)�+s), respectively, and C is a constant independent
of h and k = 0, . . . , N . ��

We now define a family of operators which will be employed in the proof of the
following lemma. Let Λk : [0,∞) → B(X) be defined as

Λk(z) := z−k
∫ z

0
T (z − y)

yk−1

(k − 1)! dy, k ≥ 1, (4.6)

with Λ0(z) := T (z). The Λk satisfy the following recurrence relation

Λk(z) = 1

k! I + zAΛk+1(z), k ≥ 0. (4.7)

Lemma 4.2 Let u0 ∈ D((−A)�+s), � = 1, 2. Then we have

∥∥T (h)(−A)su0 − S(h)(−A)su0
∥∥ ≤ Ch�+1,

where C is a constant independent of h and k = 0, . . . , N .

Proof By employing (4.6) and (4.7), we readily obtain

(
I − h

2
A

) [
T (h)(−A)su0 − S(h)(−A)su0

]

=
[(

I − h

2
A

)
(I + hAΛ1(h)) −

(
I + h

2
A

)]
(−A)su0

= hA

[
Λ1(h) − h

2
AΛ1(h) − I

]
(−A)su0

= h2

2
A2 [2Λ2(h) − Λ1(h)] (−A)su0 (4.8)
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for u0 ∈ D((−A)2+s). Further, consideration of (4.8) gives

2Λ2(h) − Λ1(h) =
∫ h

0

[
2y − h

h2

]
T (h − y) dy

=
∫ 1

0
(2w − 1)T (h − hw) dw

= hA
∫ 1

0
w(w − 1)T (h − hw) dw. (4.9)

Combining (4.8) and (4.9) finally gives

T (h)(−A)su0 − S(h)(−A)su0

= h3

2
A3

(
I − h

2
A

)−1 [∫ 1

0
w(w − 1)T (h − hw) dw

]
(−A)su0. (4.10)

The result for � = 1 then follows by taking the norm of both sides of (4.10). Since
A(I−A)−1 is a bounded operator on X , it follows that (4.10) holds for u0 ∈ D(A1+s),

and taking the norm of both sides yields the result for � = 2. ��
Combining the above results, we have the following theorem demonstrating the

desired convergence rate of the proposed scheme.

Theorem 4.1 Let u0 ∈ D((−A)�+s), � = 1, 2. Then, we have

‖u(t) − v(t)‖ ≤ C
(
Ms−1eμ(A)M + h�+s−1

)
, t ∈ [0,∞),

where C is a constant independent of h and k = 0, . . . , N .

Proof We begin by writing the difference as follows

u(t) − v(t)

= 1

Γ (s)

∫ ∞
0

zs−1e−t2/4zT (z)(−A)su0 dz − 1

Γ (s)

∫ M

0
zs−1e−t2/4zT (z)(−A)su0 dz

︸ ︷︷ ︸
:= I1

+ 1

Γ (s)

∫ M

0
zs−1e−t2/4zT (z)(−A)su0 dz −

N∑
k=0

γk(t)T (zk+1/2)(−A)su0

︸ ︷︷ ︸
:= I2

+
N∑

k=0

γk(t)T (zk+1/2)(−A)su0 −
N∑

k=0

γk(t)S
k(h)S(h/2)(−A)su0

︸ ︷︷ ︸
:= I3

= I1 + I2 + I3.
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Wewill now apply the previous lemmas to I1, I2, and I3. First, by Lemma 3.1, it is immediately
clear that we have

‖I1‖ ≤ CMs−1eμ(A)M‖(−A)su0‖, (4.11)

and thus (4.11)may bemade arbitrarily small for large enoughM .Next, by Lemma 4.1
we have

‖I2‖

=
∥∥∥∥∥

N∑
k=0

[
1

Γ (s)

∫ zk+1

zk
zs−1e−t2/4zT (z)(−A)su0 dz − γk(t)T (zk+1/2)(−A)su0

]∥∥∥∥∥

≤
N∑

k=0

∥∥∥∥ 1

Γ (s)

∫ zk+1

zk
zs−1e−t2/4zT (z)(−A)su0 dz − γk(t)T (zk+1/2)(−A)su0

∥∥∥∥

≤
N∑

k=0

Ch�+s+1

≤ Ch�+s, (4.12)

where the value of C changes throughout the calculations, but remains independent
of h and k = 0, . . . , N , with � = 1 or � = 2, depending on the regularity of the initial
data. Finally, by Lemma 4.2, Assumption 2.1, and Assumption 3.1, we have

‖I3‖ =
∥∥∥∥∥

N∑
k=0

γk(t)
[
T k(h)T (h/2) − Sk(h)S(h/2)

]
(−A)su0

∥∥∥∥∥

=
∥∥∥∥∥

N∑
k=0

γk(t)
[
T k(h)T (h/2) − T k(h)S(h/2)

+T k(h)S(h/2) − Sk(h)S(h/2)
]
(−A)su0

∥∥∥

≤
N∑

k=0

γk(t)‖T k(h)‖‖T (h/2) − S(h/2)‖‖(−A)su0‖

+
N∑

k=0

γk(t)
k∑
j=1

‖T k− j (h)‖ ‖T (h) − S(h)‖ ‖S j−1(h)‖‖S(h/2)‖‖(−A)su0‖

≤
N∑

k=0

γk(t)

⎡
⎣Ch�+1 +

k∑
j=1

Ch�+1

⎤
⎦

≤ C
N∑

k=0

γk(t)(1 + k)h�+1

≤ Ch�, (4.13)
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where, once again, C is independent of h and k = 0, . . . , N , with � as before. Com-
bining the obtained bounds in (4.11)–(4.13) yields the desired result. ��

Remark 4.1 The first term in our estimate

Ms−1eμ(A)M

is an expected and standard term (a similar term appears in, for example, [5,9]).
However, we intend to remove this estimate in future work by relating the choice of
M to the parameter h.

5 Numerical experiments

In order to further verify the sharpness of our analysis and demonstrate the efficacy
of the proposed method, we present some numerical experiments. The first and sec-
ond examples consider a one-dimensional and two-dimensional problem, respectively,
where the given operator is the Laplace operator. In both cases, we see that the expected
theoretical convergence results are recovered. The third example outlines how our the-
ory easily includes general strongly elliptic differential operators which still satisfy
the theoretical results from Theorem 4.1.

It is the case that the nonlocality of fractional problems can increase memory
requirements to the point that some standard methods become quite inefficient. To that
end, we briefly explore the memory requirements needed to implement the proposed
method (3.6). If we fix a particular numerical approximation of the operator A, then
our method can be shown to be O(N ). Initially, it may seem that the computations
are more involved, due to the evaluation of the operator Sk(h) (seeming to require N
additions and (N 2 +N )/2 multiplications), but these evaluations can be be completed
with only N additions and N multiplications by employing nested operations similar
to the classical Horner algorithm for polynomials. To determine an exact efficiency,
one must consider the precise discretization method employed to approximate the
operator A. Due to the inversion needed to compute S, it is clear that discretizations
resulting in a banded matrix structure will prove the most efficient. We leave more
detailed studies of the efficiency, as well as computational run time trials, for future
work.

5.1 A one-dimensional example

Let Ω := (−1, 1) ⊂ R and define X = L2(Ω) with its usual inner product and norm.
Consider the problem

{
(−Δ)su = f , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(5.1)
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where

f (x) =
(π

2

)2s
sin

(
π(1 + x)

2

)
,

and the fractional Laplacian is defined via the spectral definition (which can be done
due to the smoothness of f ). That is,

(−Δ)su(x) :=
∑
k∈N

λskukϕk, (5.2)

where the set {ϕk}k∈N ⊂ H1
0 (Ω) forms an orthonormal basis of X and satisfy

{
(−Δ)sϕk = λkϕk, x ∈ Ω,

ϕk = 0, x ∈ ∂Ω,

for each k ∈ N, and

uk := [u, ϕk], k ∈ N,

where [·, ·] is the usual inner product on X . The true solution to (5.1) can be found
explicitly and is given by

u(x) = sin

(
π(1 + x)

2

)
. (5.3)

This true solution may be obtained by using (5.2). We will first demonstrate how
our method can approximate problems such as (5.1) by taking the trace of (3.6), and
then consider the convergence properties of the approximation of the solution to the
extension problem given by (2.1).

As has been demonstrated in this work, it is the case that (5.1) can be recovered
from the following extension problem:

{
v′′(t) + α

t v
′(t) = −Av(t), t ∈ (0,∞),

v(0) = u,
(5.4)

where α = 1 − 2s and A := Δ : H1
0 (Ω) ∩ H2(Ω) ⊂ X → L2(Ω). In order

to implement the problem, we replace the operator A with some finite dimensional
discretization. For simplicity, we employ the standard second-order finite difference
method on uniform grids [19]. It is worth noting that the use of any other consistent
spatial disretization method is acceptable, and as seen below, the convergence rate
in the spatial direction will not be affected. The freedom to choose the discretization
method for the operator A is one of the primary benefits of this approach.

The tables in Table 1 demonstrate the numerical convergence rates of the scheme
given by (3.6). For these experiments, we chose a modest value of M = 100, in order
to demonstrate the efficacy of the method with respect to the truncation. It is clear
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Table 1 Convergence rates of the proposed approximation method when s = 0.9 and M = 100

Spatial convergence rates Extended variable convergence rates

δx Convergence rate h Convergence rate

0.04000 – 2.00 × 10−4 –

0.02000 1.99676 1.00 × 10−4 1.89877

0.01000 1.99913 5.00 × 10−5 1.90122

0.00500 1.99976 2.50 × 10−5 1.90430

0.00250 1.99993 1.25 × 10−5 1.91225

0.00125 2.00007 6.25 × 10−6 1.91275

The convergence in the original spatial variable is the expected second order and the extended variable
convergence rate is approximately 1 + s = 1.9, as predicted

Fig. 1 A three-dimension
surface representing an
approximation to the solution,
v(x, t), of the extension
problem (5.4) on [0, T ]. The
rapid solution decay predicted
by Lemma 3.1 is demonstrated
clearly

0
1

0.5

2

v

1

Approximation of Extended Problem (s=0.9)

x

0

t

1.5

1

-1 0

from this table that the numerical solution converges at the expected rates given by
Theorem 4.1. For the sake of clarity, we present a plot of the numerical solution to
(5.4) in Fig. 1.

Finally, we finish this example by presenting convergence rates for several other
choices of the parameter s. These results are presented in Table 2 and further verify
our theoretical results. For brevity, we omit the convergence rates for the parameter
h, as they are not affected by these choices and match those of Table 1.

Remark 5.1 Wewish tonote that our experiments have shown thatmoremodest choices
of M may still provide accurate numerical solutions, as well. However, we leave a
more detailed study of these choices for future endeavors.

Remark 5.2 We also wish to note that one could potentially increase efficiency of the
proposed numerical method by allowing it to be run in parallel. For instance, one may
rewrite the method as

v(t) =
�N/2�∑
k=0

γ2k S
2k(h)g + S(h)

�N/2�∑
k=0

γ2k+1S
2k(h)g, (5.5)
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Table 2 Extended variable
convergence rates of the
proposed method for various
choices of the parameter s, with
M = 100

h s = 0.8 s = 0.7 s = 0.6 s = 0.5

2.00 × 10−4 – – – –

1.00 × 10−4 1.79112 1.68825 1.58002 1.47790

5.00 × 10−5 1.79982 1.68944 1.58344 1.47999

2.50 × 10−5 1.80012 1.69020 1.58566 1.48212

1.25 × 10−5 1.80323 1.70043 1.59111 1.48892

6.25 × 10−6 1.80895 1.70280 1.59988 1.49489

It is clear from the table that the expected convergence rate of order
1 + s is approximately recovered, as expected

where

g := S(h/2)(−A)su0.

While the implementation of (5.5) requires more direct evaluations than the original
algorithm, one can easily compute (5.5) in parallel by noting that

S2k(h) = Sk(2h) + O(h2). (5.6)

While there is a slight decrease in accuracy due to employing (5.6), it is the case that
for complicated operators A this could potentially be a favorable trade-off.

5.2 A two-dimensional example

Let Ω = {(x, y) ∈ R
2 : x2 + y2 < 1}. We then once again consider the problem

(5.1), but with

f (x, y) = (λ1,1)
sϕ1,1,

where (λ1,1, ϕ1,1) are the first eigenpair of the operator Δ on Ω, and are given by

ϕ1,1(r , θ) = J1( j1,1r)(A1,1cosθ + B1,1 sin θ) (5.7)

and

λ1,1 = j21,1, (5.8)

where J1 is the first Bessel function of the first kind, j1,1 is the first zero of J1, and
A1,1 and B1,1 are real-valued constants that ensure ‖ϕ1,1‖X = 1.

By using (5.2) one may determine the true solution of the extension problem to be
given by

u(r , θ, t) = 21−s t2

Γ (s)
(λ1,1)

s/2ϕ1,1(r , θ)Ks(
√
2π t), (5.9)
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Table 3 Convergence rates for
the numerical solution v with
respect to the extended value
parameter h

h s = 0.8 s = 0.6 s = 0.4 s = 0.2

2.00 × 10−4 – – – –

1.00 × 10−4 1.79112 1.58825 1.38002 1.17790

5.00 × 10−5 1.79982 1.58944 1.38344 1.17999

2.50 × 10−5 1.80012 1.59020 1.38566 1.18212

1.25 × 10−5 1.80323 1.60043 1.39111 1.18892

6.25 × 10−6 1.80895 1.60280 1.39988 1.19489

For these computations, we fixed M = 100. It is clear that the approx-
imate theoretical convergence rate of 1 + s is recovered

where Ks is the modified Bessel function of the second kind (see [1] for more informa-
tion regarding the aforementioned Bessel functions and their properties). Moreover,
it can be shown that j1,1 ≈ 3.8317.

Just as before, we discretize the operator A using standard finite differences (see,
for example, [20] for more details on doing so for Ω as above). However, in this
example we will only consider convergence aspects of the method in the extended
variable direction. A table with convergence rates for various choices of the parameter
s are given in Table 3. As before, the results are in agreement with the rates given in
Theorem 4.1.

5.3 A general second-order elliptic operator

As should be clear from the outlined theory, the proposed numerical algorithm will
still be applicable when the operator A is a general strongly elliptic operator on some
domain Ω ⊂ R

d . Following the construction developed in [9], let L be given by

L u := −divx (A∇xu) + cu, (5.10)

where x ∈ Ω (here we emphasize the difference between the variable x and the
extended variable, t .). We assume that the function c ∈ L∞(Ω) with c ≥ 0 almost
everywhere, A ∈ C0,1(Ω,GL(d,R)) is symmetric and positive definite, and that Ω

is sufficiently smooth. Then, it follows that given f ∈ X := L2(Ω), there exists a
unique u ∈ D(L ) := H1

0 (Ω) ∩ H2(Ω) such that

{
L u = f , x ∈ Ω,

u = 0, x ∈ ∂Ω.

Moreover, we have that L satisfies Assumption 2.1. It is clear that the operator’s
domain is densely defined in X . If we employ the same framework as that in Exam-
ple 2.1, then we have

[−L u, u] = −[A∇xu,∇xu] − [cu, u] ≤ −C[u, u], for all u ∈ D(L ),

123



J. L. Padgett

where [·, ·] is the standard inner product on X , C is a positive constant, and the final
inequality follows from the fact that A is positive definite and c is positive almost
everywhere. Thus, we have Re[−L u, u] < 0 for all u ∈ D(L ), as desired. Further,
the range condition of a strictly m−dissipative operator is satisfied, as well. Thus, it
follows that our approximation, given by (3.6), of the Bessel-type problem

{
v′′(t) + α

t v
′(t) = −L v(t), t ∈ (0,∞),

v(0) = u ∈ X ,
(5.11)

is well-defined, stable, and convergent. Moreover, it follows that the initial datum, u,

will be the solution of the following nonlocal elliptic problem

{
L su = f , x ∈ Ω,

u = 0, x ∈ ∂Ω.
(5.12)

It should be noted that we have omitted some more technical details, such as the fact
that the operatorL s may be extended to the fractional spaceHs(Ω), since such things
are not relevant to the current discussion (this is because we are considering functions
with higher regularity to guarantee the theoretical rates of convergence). However,
interested readers may see [14], and the reference therein, for more details.

In order to provide an explicit example, we let d = 1, Ω := (−1, 1) ⊂ R,

A ≡ 1, c ≡ 1, and f (x) = sin(πx). Since we do not have an explicit solution to
(5.12) on hand, we will approximate the numerical rate of convergence. Let vh denote
the numerical solution obtained by (3.6) on a grid defined by the parameter h. Then
we define vh/ j to be the numerical solution obtained by (3.6) on a grid with spacing
h/ j, j = 2, 4.We then have the followingMilne device for determining the numerical
rate of convergence, denoted ph, given by

ph ≈ 1

ln 2
ln

‖vh − vh/2‖
‖vh/2 − vh/4‖ , (5.13)

where the differences are defined on the grid associated to h (the least refined grid)
and the norm ‖·‖ is an appropriately chosen norm (in our case, the discrete X−norm).

Remark 5.3 The convergence of the numericalmethod given by (3.6) is also influenced
by the error of truncating domain of the Bessel-type problem. However, by assuming
this error is roughly constant, which is reasonable for a fixed value of M and s, the
approximation given by (5.13) will be accurate.

The table in Table 4 demonstrates the obtained numerical convergence rates for
various choices of s, with M = 100. We see from the table that the computed values
still reflect the expected theoretical values obtained in Theorem 4.1. Moreover, we
present the convergence rate for the case when s = 1, to verify the expected second-
order convergence of our method.
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Table 4 Convergence rates of the numerical method when applied to a general elliptic problem, per the
derived Milne device

h s = 1.0 s = 0.9 s = 0.8 s = 0.7 s = 0.6

2.00 × 10−4 – – – – –

1.00 × 10−4 1.99825 1.88933 1.78458 1.67989 1.58991

5.00 × 10−5 1.99914 1.89345 1.79111 1.68631 1.59944

2.50 × 10−5 2.00031 1.89844 1.80001 1.68946 1.60003

1.25 × 10−5 2.00121 1.90034 1.80143 1.69526 1.60139

6.25 × 10−6 2.00317 1.90127 1.80177 1.70020 1.60155

We fix M = 100 and consider various values of s. The results agree with the theoretical values obtained in
Theorem 4.1

6 Concluding remarks

In this article, we consider an approximation to an abstract extension problem, that
is the generalization of the method demonstrated by Caffarelli and Silvestre in [7].
This generalized setting allows for the consideration of a wider class of problems,
while also allowing for the use of robust nonlinear functional analytic techniques. By
taking this novel approach, we develop methods which differ from those presented
in [9,12,18,25], yet are quite effective. In particular, this approach allows for the
consideration of semigroup theory within the numerical framework. As such, the
method is able to exhibit favorable qualities.

Herein, we provide an approach where we approximate the true solution to the
extended problem, as compared to the standard approach of discretizing the underlying
system first. The approximation is shown to be stable, consistent, and convergent for
appropriately smooth initial data.Moreoever, the employedPadé approximation allows
for the efficient construction of the numerical solution via factorization techniques.
However, one could easily replace this approximation with any desired second-order
(or higher) approximation to the associated abstract Cauchy problem.

Moving forward, we will consider improved approximations methods within the
same abstract framework. In particular, we will consider abstract analysis of higher-
order Padé approximations and quadrature techniques, including Runge-Kutta and
exponential integration methods, with the goal of constructing methods of arbitrary
order. This will also allow for the consideration of the underlying algebraic struc-
tures of these methods, as has been done with Butcher and Lie-Butcher series for
classical problems [24]. We also intend to extend these results to abstract problems
posed on abstract manifold structures, allowing for the consideration of novel prob-
lems in differential geometry. Moreover, we hope to better understand how well this
extension technique preserves and approximates the Dirichlet-to-Neumann map that
is of fundamental importance in the underlying theory. Preliminary work indicates
that our proposed numerical method faithfully represents this operator after applying
the conormal derivative given by (1.4), but there is still a need to finish developing a
rigorous analysis of this application. However, more immediate concerns will be the
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deeper comparison of our newly proposed methods with popular existing methods for
the fractional Laplacian problem.
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