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Abstract. Given an ample line bundle on a toric surface, a question of Donaldson asks

which simple closed curves can be vanishing cycles for nodal degenerations of smooth curves

in the complete linear system. This paper provides a complete answer. This is accomplished

by reformulating the problem in terms of the mapping class group-valued monodromy of the

linear system, and giving a precise determination of this monodromy group.

1. Introduction

Let X be a smooth toric surface and L an ample line bundle on X. In the complete linear

system |L|, there is a hypersurface D known as the discriminant locus consisting of the singular

curves C ∈ |L|. The complement

M(L) := |L| \ D

therefore supports a tautological family of closed Riemann surfaces of some genus g(L). Topo-

logically, this is a fiber bundle π : E(L) → M(L) with fiber Σg(L). Consequently, there is a

monodromy representation

µL : π1(M(L), C0) → Mod(C0).

Here, C0 ∈ M(L) is a fixed curve, and Mod(C0) := π0(Diff+(C0)) denotes the mapping class

group of C0 (see Section 2.1). Under µL, a based loop γ ∈ π1(M(L), C0) is mapped to (the

isotopy class of) the diffeomorphism µL(γ) ∈ Diff(C0) obtained by “parallel transport” of C0

along γ. For details, see, e.g., [FM12, Section 5.6.1].

In this paper, we give a nearly complete answer to the following fundamental question. Define

ΓL := Im(µL) 6 Mod(Σg(L)).

Question 1.1. What is ΓL? When is it a finite-index subgroup of Mod(Σg(L))? Can one give

a precise characterization of ΓL?

Question 1.1 is closely related to a question posed by Donaldson [Don00]. Fix a curve

C0 ∈ M(L) and an identification C0
∼= Σg(L). Define a vanishing cycle for L as a simple closed

curve γ on C0 for which there is a degeneration of C0 to a curve C ′ with a single node, such
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that γ becomes null-homotopic on C ′. If c is a vanishing cycle, then necessarily the Dehn twist

Tc lies in ΓL; it arises from a loop in M(L) encircling the nodal curve in |L|.

Question 1.2 (Donaldson). For L an ample line bundle on a smooth toric surface X, which

curves (on a fixed C0) are vanishing cycles?

A first insight into Questions 1.1 and 1.2 is to observe the presence of an invariant “higher

spin structure”. Let KX denote the canonical bundle of X. The adjoint line bundle of L

is the line bundle L ⊗ KX . Define r ∈ N to be the highest root of L ⊗ KX in Pic(X). As

explained in Proposition 10.2, associated to L⊗KX is a Z/rZ-valued spin structure φL, and the

associated stabilizer subgroup Mod(Σg(L))[φL] (see Definition 3.14). Proposition 10.2 asserts

that necessarily ΓL 6 Mod(Σg(L))[φL]. The function φL gives rise to a notion of admissible

curve and the associated subgroup TφL
6 Mod(Σg(L))[φL] of admissible twists (see Definition

3.16). If a curve c is a vanishing cycle, it is necessarily admissible; see Lemma 3.15. Our main

theorem asserts that these necessary conditions are also sufficient (at least “virtually” so, in the

case r is even).

Theorem A. Let L be an ample line bundle on a smooth toric surface X for which the generic

fiber is not hyperelliptic. Assume r > 1 or else g(L) ≥ 5.

• If r is odd, then ΓL = Mod(Σg(L))[φL].

• If r is even, then ΓL 6 Mod(Σg(L)) is a finite-index subgroup that contains TφL
.

In either case, [Mod(Σg(L)) : ΓL] is finite. Moreover, Question 1.2 admits the following complete

answer: a curve γ is a vanishing cycle if and only if γ is an admissible curve.

We remark that many familiar algebraic surfaces such as CP2 and CP
1 × CP

1 are smooth

toric surfaces. For instance, as a special case of Theorem A we obtain the following theorem

concerning smooth plane curves. The case d = 5 was addressed in [Sal16], while the cases d ≤ 4

are either classical or trivial.

Theorem 1.3. Set g =
(
d−1
2

)
, and define

Γd 6 Mod(Σg)

to be the monodromy group of the family of smooth curves in CP
2 of degree d, i.e. the group ΓL

for the line bundle L = O(d) on CP
2. Then there exists a Z/(d− 3)Z-valued spin structure φd

such that the following hold.

• If d is even, then Γd = Mod(Σg)[φd].

• If d is odd, then Γd is of finite index in Mod(Σg)[φd], where Γd contains the subgroup

Tφd
of admissible twists.

Theorem A also addresses a conjecture that was independently formulated by the author in

[Sal16] in the case of X = CP
2, and in full generality by Crétois–Lang [CL17a].
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Conjecture 1.4. For any pair (X,L) as above, there is an equality

ΓL = Mod(Σg(L))[φL].

Theorem A resolves Conjecture 1.4 in the affirmative whenever r is odd, and shows that in

the case r even, ΓL is at least of finite index in Mod(Σg(L))[φL].

Theorem A is proved using a combination of methods from toric geometry and the theory

of the mapping class group. On the toric end of the spectrum, we make essential use of the

powerful results developed by Crétois–Lang in [CL17a]. The centerpiece of their theory is a

combinatorial model for a curve C0 ∈ M(L) based around a convex lattice polygon. Their

results give a description of vanishing cycles in terms of lattice points and line segments, and

allow one to produce many elements of ΓL. Crétois–Lang developed their methods in order to

address Question 1.2 and Conjecture 1.4 in the case r ≤ 2, and obtained complete answers in

these cases. See [CL17a] for the case r = 1, and [CL17b] for the case r = 2, as well as the case

where the general fiber is hyperelliptic.

On the mapping class group side, we carry out an extensive investigation of the groups

Mod(Σg)[φ] and Tφ mentioned above. We remark here that the theory of higher spin structures

does not require the presence of a specific ample line bundle L, and so we adjust notation

accordingly and refer to Riemann surfaces Σg, spin structures φ, etc. Our main result here

is a general criterion for a collection of Dehn twists to generate (a finite-index subgroup of)

Mod(Σg)[φ], given in Theorem 9.5.

Outline of the paper. The bulk of the paper (Sections 2 - 9) is devoted to developing the

mapping class group technology necessary to show that the vanishing cycles investigated by

Crétois–Lang generate a finite-index subgroup of the mapping class group. This culminates in

Theorem 9.5. Portions of Theorem 9.5 are established earlier in Proposition 5.1 and Proposition

6.2.

Sections 2 - 4 contain preliminary results that are used throughout the paper. Section 2

collects the necessary background on mapping class groups; these results are standard and are

included so as to fix notation and terminology, and to serve as a guide to the reader approaching

the paper from a background in toric geometry. Section 3 presents the basic theory of higher

spin structures, building off the foundational work of Humphries–Johnson [HJ89]. Section 4

describes the action of the mapping class group on the set of higher spin structures. This

yields several crucial corollaries (Corollaries 4.5, 4.10, and 4.11) concerning the existence of

configurations of curves with prescribed properties which are used extensively in subsequent

sections.

Theorem 9.5 gives a criterion for a collection of Dehn twists to generate the so-called admissible

subgroup Tφ associated to a higher spin structure φ. A study of the admissible subgroup is

sufficient to answer Question 1.2. The reader interested only in this portion of Theorem A can

skip Sections 5 and 6 and jump directly from Section 4 to Section 7.
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The proof of Theorem 9.5 is carried out in Sections 7 - 9. Section 7 establishes the connectivity

of certain simplicial complexes acted on by the stabilizer subgroup of a higher spin structure.

These results are used in the argument of Section 8, and also underlie the method by which the

admissible subgroup is used to study the set of vanishing cycles. Section 8 is devoted to a study

of certain subgroups of the admissible subgroup; the main result Proposition 8.2 furnishes a

generating set for Tφ in terms of these subgroups. Section 9 introduces the notion of a network;

ultimately a network is a technical device used to factor the generators given in Proposition

8.2 into products of Dehn twists. Theorem 9.5 gives a sufficient condition, formulated in the

language of networks, for a collection of Dehn twists to generate a subgroup containing the

admissible subgroup.

The portion of Theorem A that goes beyond Question 1.2 concerns establishing that the

admissible subgroup is finite-index in the mapping class group. This is the content of Sections

5 and 6, which treat the case where the Z/rZ-valued spin structure under study has r odd or

even, respectively. The arguments for these two cases are substantially different, owing to the

fact that in the case of r even, the higher spin structure has an Arf invariant which must be

accounted for in various guises.

The net result of Sections 2 - 9 is a criterion for a finite collection of Dehn twists to generate

a finite-index subgroup of the mapping class group. In the final two sections, these results

are applied in the setting of monodromy groups of linear systems on toric surfaces. Section

10 contains the necessary background material on toric surfaces, concentrating on the work of

Crétois–Lang describing a particular finite collection of vanishing cycles. Section 11 exhibits

a network amongst the set of vanishing cycles discussed in Section 10 and verifies that this

network satisfies the hypotheses of Theorem 9.5 in order to obtain Theorem A.

Acknowledgements. The author would like to extend his warmest thanks to R. Crétois and L.

Lang for helpful discussions of their work. He would also like to acknowledge C. McMullen for

some insightful comments on a preliminary draft, and M. Nichols for a productive conversation.

A special thanks is due to an anonymous referee for a very careful reading of the preprint and

for many useful suggestions, both mathematical and expository.

2. Mapping class groups

This section collects background material on mapping class groups that will be used throughout

the arguments in Sections 3 through 9. Most of the material can be found in [FM12] and so will

only be touched on briefly. The exception to this is the Dn relation of Section 2.3, which will

consequently be dealt with in greater detail.

2.1. Basics. The material in this section is almost certainly well-known to a reader conversant

in mapping class groups, but is included so as to fix notation and terminology.
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invoked tacitly. The reader interested in a more thorough discussion of the change-of-coordinates

principle is referred to [FM12, Section 1.3].

One consequence of the change-of-coordinates principle is that it becomes easy to understand

the Mod(S) orbits of many different kinds of configurations. As an example, we discuss here

the action on geometric symplectic bases for S.

Definition 2.1. Let S be a surface of genus g ≥ 0 with n ≥ 0 boundary components and b ≥ 0

punctures. A geometric symplectic basis for S is a collection of oriented simple closed curves

B = {α1, β1, . . . , αg, βg} satisfying the following properties:

(1) i(ai, bi) = 1 for each i = 1, . . . , g, and all other pairs of elements of B are disjoint,

(2) 〈[ai], [bi]〉 = 1 for each i = 1, . . . , g.

Remark 2.2. The (homology classes of the) curves in a geometric symplectic basis form a

basis for H1(S;Z) in the sense of linear algebra only when n+ b ≤ 1. In this paper, geometric

symplectic bases are used to study Z/rZ-valued spin structures. Proposition 3.8 and Theorem

3.9 together imply that a Z/rZ-valued spin structure is determined by its “signature” (Definition

4.1) in combination with its values on a geometric symplectic basis.

The following is a typical statement that is proved using the change-of-coordinates principle.

Lemma 2.3. Let B and B′ be two geometric symplectic bases for S. Then there is a diffeomor-

phism f : S → S such that f(B) = B′.

2.2. The Birman exact sequence. A reference for this subsection is [FM12, Section 4.2].

Consider a surface Σn
g,b with n ≥ 1 and 2g + b + n ≥ 4. There is an inclusion Σn

g,b ↪→ Σn−1
g,b

obtained by filling p in. This induces the Birman exact sequence

1 → π1(Σ
n−1
g,b , p) → Mod(Σn

g,b) → Mod(Σn−1
g,b ) → 1. (1)

There is a slight variation on the Birman exact sequence where one fills in a boundary

component with a closed disk, originally due to Johnson. In order to formulate this, we recall

that the unit tangent bundle to a surface S is written UTS. Then the inclusion Σn
g,b → Σn

g,b−1

induces the short exact sequence

1 → π1(UTΣ
n
g,b−1, p̃) → Mod(Σn

g,b) → Mod(Σn
g,b−1) → 1, (2)

where p̃ is a unit tangent vector based at p. In both situations, the kernels admit descriptions

in terms of Dehn twists. Consider first the case of (1). Let α be an embedded, oriented simple

closed curve based at p, corresponding to an element α ∈ π1(Σ
n−1
g,b , p). Let αL (resp. αR)

denote the left (resp. right) side of a neighborhood of α. Both αL, αR are simple closed

curves on Σn
g,b. Then α ∈ π1(Σ

n−1
g,b , p) corresponds to TαL

T−1
αR

∈ Mod(Σn
g,b). The embedding

P : π1(Σ
n−1
g,b , p) → Mod(Σn

g,b) is known as the point-pushing map, and π1(Σ
n−1
g,b ) is often referred

to as the point-pushing subgroup of Mod(Σn
g,b).
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It is a basic topological fact that for any surface Σn−1
g,b , there exists a collection of simple

closed curves α1, . . . , αk based at p, such that {α1, . . . , αk} generates π1(Σ
n−1
g,b , p). In practice,

this means that to exhibit π1(Σ
n
g,b, p) as a subgroup of some group H 6 Mod(Σn

g,b), it suffices

to exhibit this finite collection of multitwists.

In the case of (2), everything is much the same. Let Σn
g,b ↪→ Σn

g,b−1 be an inclusion

corresponding to capping off a boundary component ∆ of Σn
g,b. Let p ∈ Σn

g,b−1 be a point on

the interior of this new disk, and p̃ a tangent vector at p. Suppose that α̃ ∈ π1(UTΣ
n
g,b−1, p̃)

corresponds to a framed simple closed curve α based at p̃. We define αL and αR as before. Then

P (α̃) = TαL
T−1
αR
T k
∆

where k ∈ Z is the winding number of the tangent vector field specified by α̃, relative to the

tangential framing of the underlying curve α. The subgroup π1(UTΣ
n
g,b−1, p̃) is known as the

disk-pushing subgroup of Mod(Σn
g,b).

There is an analogous set of “geometric” generators for π1(UTΣ
n
g,b−1, p̃). Let α1, . . . , αk be a

collection of C1-embedded simple closed curves on Σn
g,b−1 based at p such that π1(Σ

n
g,b−1, p) =

〈α1, . . . , αk〉 as above. Each αi determines an element α̃i ∈ π1(Σ
n
g,b−1, p̃) via the so-called

Johnson lift, whereby αi is framed using the forward-pointing tangent vector. Suppose that

each α̃i is based at some common tangent vector p̃. Then π1(UTΣ
n
g,b−1, p̃) has a generating set

of the following form:

π1(UTΣ
n
g,b−1, p̃) = 〈α̃1, . . . , α̃k, ζ〉,

where ζ is the loop around the S1 fiber in the fibration S1 → UTΣn
g,b−1 → Σn

g,b−1. In terms of

Dehn twists, the Johnson lifts α̃i correspond to mapping classes Tαi,L
T−1
αi,R

as before, while ζ

corresponds to T∆.

2.3. Relations. In this subsection we collect various relations in the mapping class group that

will be used throughout the paper.

The braid relation. Suppose a, b are simple closed curves satisfying i(a, b) = 1. Then the

corresponding Dehn twists satisfy the braid relation:

TaTbTa = TbTaTb.

We will also employ the following alternative form, formulated in terms of the curves a, b

themselves:

TaTb(a) = b.

The chain relation. A chain of simple closed curves is a sequence (a1, . . . , an) of simple closed

curves such that i(ai, ai+1) = 1 and i(ai, aj) = 0 otherwise. Let ν denote a regular neighborhood

of a chain of length n, where the representative curves a1, . . . , an are in minimal position. When

n is odd, ∂ν has two components ∆1 and ∆2; for n even, ∂ν = ∆ is a single (necessarily

separating) curve. Abusing terminology, we will speak of the boundary of a chain itself, by which

we mean the boundary of ν. Given a subsurface S with 1 or 2 boundary components, a chain
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Proposition 2.6 (Dn relation). Let n ≥ 3 be given, and express n = 2g + 1 or n = 2g + 2

according to whether n is odd or even. With reference to Figure 2, let Hn be the group generated

by elements of the form Tx, with x ∈ Dn one of the curves below:

Dn = {a, a′, c1, . . . , cn−2}.

Then for n = 2g + 1 odd,

T 2g−1
∆0

T∆2
∈ Hn,

and for n = 2g + 2 even,

T g
∆0
T∆1

T∆′

1
∈ Hn.

The Dn relation has some useful consequences which we record in Corollary 2.7 below. It is

necessary to first describe the curves Ck that will appear in the statement. For 1 ≤ k ≤ g + 1,

let νk be a regular neighborhood of the subconfiguration D2k+1 ⊂ Dn. Each such νk is a surface

of genus k with two boundary components. One of these is ∆0; the other is defined to be the

curve Ck. Note in particular that Cg = ∆2 and that Cg+1 is the unlabeled boundary component

of the ambient surface on the far right side of Figure 2.

Corollary 2.7. Fix notation as in Proposition 2.6, and for 1 ≤ ` ≤ 2g + 3, consider the

configurations

D` = {a, a′, c1, . . . , c`−2}

as in Figure 2. Let H+
2g+3 be the group generated by H2g+3 and the Dehn twist T∆1

. Then the

following assertions hold:

(1) T∆′

1
∈ H+

2g+3,

(2) Tm
Ck

∈ H+
2g+3 for any 1 ≤ k ≤ g + 1 and any m such that (2k − 1)m divides g.

Proof. The proof of (1) follows from an important simple principle. Given a mapping class f

and a simple closed curve d, there is a relation

fTdf
−1 = Tf(d).

It follows that if f, Td ∈ H+
2g+3, then also Tf(d) ∈ H+

2g+3. To establish (1), we will find f ∈ H+
2g+3

such that f(c2g+1) = ∆′
1. This will be accomplished by means of the braid relation.

The curves a, a′, c1, . . . , c2g are arranged in the configuration of the D2g+2 relation; the

boundary components correspond to ∆0,∆1,∆
′
1. By the D2g+2-relation (Proposition 2.6),

T g
∆0
T∆1

T∆′

1
∈ H+

2g+3,

and since T∆1
∈ H+

2g+3 by assumption, also T g
∆0
T∆′

1
∈ H+

2g+3. Since ∆0 is disjoint from both

c2g+1 and ∆′
1, the braid relation implies that

Tc2g+1
T g
∆0
T∆′

1
(c2g+1) = Tc2g+1

T∆′

1
(c2g+1) = ∆′

1.

Since (T g
∆0
T∆′

1
) ∈ H+

2g+3, this shows T∆′

1
∈ H+

2g+3 as required.
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We observe that (2) follows from the D2k−1 relation (as applied to the subconfiguration

D2k−1) and the claim that T g
∆0

∈ H+
2g+3; this latter assertion follows from the D2g+2 relation

(applied to D2g+2) and (1). �

2.4. The Torelli group. Most of the material in this subsection can be found in [FM12,

Chapter 6], but see also [Joh83]. We begin by observing that the action of Mod(Σg) on H1(Σg;Z)

preserves the algebraic intersection pairing 〈·, ·〉, leading to the symplectic representation

Ψ : Mod(Σg) → Sp(2g,Z). (3)

This is classically known to be a surjection. The Torelli group, notated Ig, is the kernel of this

representation:

Ig := ker(Ψ).

Bounding pairs and separating twists. There are two types of elements in Ig that will be

of particular importance. Suppose that c, d are simple closed curves such that c ∪ d bounds

a subsurface S ∼= Σh,2. Then TcT
−1
d ∈ Ig is known as a bounding pair map. The genus of a

bounding pair map is slightly ambiguous: if c ∪ d bounds a surface Σh,2, then also c ∪ d bounds

a surface Σg−h−1,2 on the other side. One defines the genus of TcT
−1
d as min{h, g− h− 1}. The

second important class of elements is the class of separating twists - these are Dehn twists Tc for

c a separating curve. The genus of a separating twist Tc that bounds a subsurface of genus h is

defined as g(c) = min{h, g − h}.

The Johnson homomorphism. A fundamental tool in the study of Ig is the Johnson

homomorphism, due to D. Johnson in [Joh80a]. This is a surjective homomorphism

τ : Ig → ∧3HZ/HZ, (4)

where for convenience we define HA := H1(Σg;A) for some abelian group A. The embedding

HZ ↪→ ∧3HZ is defined via

z 7→ z ∧ (x1 ∧ y1 + · · ·+ xg ∧ yg),

where {x1, . . . , yg} is a symplectic basis for HZ. Recall that a symplectic basis must satisfy

〈xi, yi〉 = 1 and 〈xi, xj〉 = 〈xi, yj〉 = 0 for i 6= j.

We will not need to know a precise definition of τ , but it will be useful to know some basic

properties of τ , including how to compute τ on bounding pair maps and separating twists.

Lemma 2.8 (Johnson, [Joh80a]).

(1) τ is Sp(2g;Z)-equivariant, with respect to the conjugation action on Ig and the evident

action on ∧3HZ/HZ.

(2) τ(Tc) = 0 for any separating twist Tc.

(3) Let c ∪ d bound a subsurface Σh,2. Choose any further subsurface Σh,1 ⊂ Σh,2, and let

{x1, y1, . . . , xh, yh} be a symplectic basis for H1(Σh,1;Z). Then

τ(TcT
−1
d ) = (x1 ∧ y1 + · · ·+ xh ∧ yh) ∧ [c],
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where c is oriented with Σh,2 to the left. In the case h = 1, if α, β, γ is a maximal chain

on Σ1,2, then

τ(TcT
−1
d ) = [α] ∧ [β] ∧ [γ].

The Johnson kernel. The Johnson kernel, written Kg, is the kernel of the Johnson homomor-

phism:

Kg := ker(τ).

A fundamental theorem of Johnson gives an alternate characterization of Kg in terms of

separating twists.

Theorem 2.9 (Johnson, [Joh85a]). Let Tg be the subgroup of Kg generated by all separating

twists of genus at most two. Then for all g ≥ 3,

Tg = Kg.

3. Spin structures

In this section we introduce and study higher spin structures and their stabilizer subgroups.

Section 3.1 defines higher spin structures and presents the work of Humphries–Johnson that gives

a cohomological formulation of a higher spin structure. Section 3.2 discusses some cut-and-paste

operations on simple closed curves and how these operations interact with higher spin structures.

Section 3.3 defines spin structure stabilizer groups and some important elements of these groups.

Finally Section 3.4 explains the connection between higher spin structures and the classical

theory of spin structures as quadratic forms on vector spaces over Z/2Z.

3.1. Spin structures. Let S be a surface of genus g ≥ 0. For simplicity, we assume in this

section that S can have boundary components but not punctures; for surfaces with puncture, one

can simply remove an open neighborhood of the puncture to produce a surface with boundary.

Let S denote the set of isotopy classes of oriented simple closed curves on S. In keeping with

standard practice, the term “curve” will often be used to refer to an isotopy class of curves.

Crucially, curves are not required to be essential (see property (2) of Definition 3.1). The

following definition is due to Humphries–Johnson [HJ89]; see Remark 3.2 for a discussion of

how to reconcile their definition with the one given here.

Definition 3.1 (spin structure). A Z/rZ-valued spin structure on S is a function φ : S → Z/rZ

satisfying the following two properties.

(1) (Twist-linearity) Let c, d ∈ S be arbitrary. Then

φ(Tc(d)) = φ(d) + 〈d, c〉φ(c) (mod r).

(2) (Normalization) For ζ the boundary of an embedded disk D ⊂ S, oriented with D to

the left, φ(ζ) = 1.



12 NICK SALTER

Remark 3.2. The definition of a Z/rZ-valued spin structure presented in Definition 3.1 is

superficially different from that given by Humphries–Johnson [HJ89] in several respects. First, it

should be noted that Humphries–Johnson study a more general notion of “twist-linear function”;

only spin structures are needed in the present paper. Secondly, in Definition 3.1, simple closed

curves are considered up to the equivalence relation of isotopy. This is an a priori different

equivalence relation than the notion of “L-direct homotopy” defined in [HJ89, p. 366]. The

precise definition of L-directness is cumbersome, but if two simple closed curves c and d are

L-directly homotopic, then they are in particular homotopic in the ordinary sense. It is well-

known that homotopy and isotopy determine the same equivalence relation on simple closed

curves, see e.g. [FM12, Proposition 1.10]. Moreover, an isotopy is an instance of an L-direct

homotopy, so that these notions coincide in our setting.

Remark 3.3. In the literature, higher spin structures go by various names and have various

definitions; the term “r-spin structure” is especially common. It is not a priori clear how to

reconcile the definition given here with others. See Remark 3.7 for a brief discussion, or [Sal16,

Sections 2-3] for a fuller treatment.

Convention 3.4. Often we will speak of the value φ(c) where φ is some Z/rZ-valued spin

structure and c is a curve without a specified orientation. Such a statement should be understood

to mean that there is some unspecified orientation on c for which φ(c) has the stated value.

The Johnson lift. Recall from the discussion in Section 2.2 the notion of the Johnson lift.

In [HJ89], Johnson-Humphries use the Johnson lift to give a homological formulation of a

Z/rZ-valued spin structure. The following is an amalgamation of the Remark following Theorem

2.1 and Theorem 2.5 of [HJ89].

Theorem 3.5 (Humphries–Johnson). Let S be a surface. An element ψ ∈ H1(UTS;Z/rZ)

determines a Z/rZ-valued spin structure via

α 7→ ψ(α̃),

where α is a simple closed curve on S and α̃ is the Johnson lift. This determines a 1 − 1

correspondence

{φ a Z/rZ-valued spin structure on S} ↔ {φ ∈ H1(UTS;Z/rZ) | φ(ζ) = 1}.

Remark 3.6. From the standard presentation

π1(UTΣg) = 〈a1, b1, . . . , ag, bg, ζ |

g∏

i=1

[ai, bi] = ζ2−2g〉

and the Universal Coefficient Theorem, one sees that

H1(UTΣg;A) ∼= Hom(π1(UTΣg), A) ∼= Hom(Z2g ⊕ Z/(2g − 2)Z, A).
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where −(α +ε β) denotes the curve α +ε β with orientation opposite to that specified above.

By the case (m,n) = (−1, 0) of Lemma 3.11, it follows that φ(−(α+ε β)) = −φ(α+ε β), from

which the first claim follows. The second claim is an immediate consequence of the orientation

conventions. �

3.3. The group Mod(S)[φ]; first examples of elements. For any surface S, there is an

obvious (left) action of Mod(S) on the set of Z/rZ-valued spin structures: for f ∈ Mod(S) and

c ∈ S, define (f · φ)(c) = φ(f−1(c)). Similarly, if f : S → S′ is a diffeomorphism and φ is a

Z/rZ-valued spin structure on S′, there is a pullback f∗(φ) defined on S via (f∗φ)(c) = φ(f(c)).

Definition 3.14 (Stabilizer subgroup). Let φ be a spin structure on a surface S. The stabilizer

subgroup of φ, written Mod(S)[φ], is defined as

Mod(S)[φ] = {f ∈ Mod(S) | (f · φ) = φ}.

Let φ be a Z/rZ-valued spin structure on a surface S. Below we discuss some fundamental

examples of elements in Mod(S)[φ].

Dehn twist powers and admissible twists. The twist-linearity formula of Definition 3.1

immediately implies the following characterization of Dehn twists in Mod(S)[φ].

Lemma 3.15. Let c be a simple closed curve on S. If c is separating, then Tc ∈ Mod(S)[φ]. If

c is nonseparating, then T k
c ∈ Mod(S)[φ] if and only if kφ(c) ≡ 0 (mod r). In particular, for c

nonseparating, Tc ∈ Mod(S)[φ] if and only if φ(c) = 0.

Definition 3.16 (Admissible). A nonseparating curve c with φ(c) = 0 is called an admissible

curve. The associated element Tc ∈ Mod(S)[φ] is called an admissible twist. The group generated

by all admissible twists is written Tφ, and is called the admissible subgroup.

Fundamental multitwists. Let P ∼= Σ0,3 be a pair of pants with boundary curves α, β, γ.

Suppose that φ(α) = a, φ(β) = b, and that φ(γ) = c, with all curves oriented so that P lies to

the left. By the homological coherence property, a+ b+ c = −1.

Definition 3.17. Let P and φ be as above. A φ-bounding multitwist associated to P , denoted

TP (x, y, z), is given by

TP (x, y, z) = T x
αT

y
βT

z
γ

for any choice of integers x, y, z such that TP ∈ Mod(S)[φ].

By the above, TP (r, r, r) is a φ-bounding multitwist for any P and φ, but for special values

of a, b, c, there are much simpler examples.

Lemma 3.18. Let P be as above, and suppose that b = −a, so that c = −1. Then TP (1,−1, b) =

TαT
−1
β T b

γ is a φ-bounding multitwist. The element TP (1,−1, b) is called a fundamental multitwist

for P and is denoted TP .
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Proof. Let d be any curve on S; we must show that φ(d) = φ(TαT
−1
β T b

γ (d)). As α, β, γ are all

disjoint, the twist-linearity property, in combination with the fact that [α+ β + γ] = 0 in H1(S),

gives

φ(TαT
−1
β T b

γ (d)) = φ(d) + 〈d, α〉a− 〈d, β〉b− 〈d, γ〉b

= φ(d)− 〈d, α+ β + γ〉b

= φ(d).

�

Remark 3.19. Of course, if TP (1,−1, b) is a fundamental multitwist, then so is TP (1,−1, b+kr)

for any k ∈ Z. An important special case is when φ(α) = φ(β) = 0. Then TαT
−1
β is a fundamental

multitwist.

3.4. “Classical” spin structures. Spin structures in the sense of Definition 3.1 generalize

the more familiar notion of a “classical” spin structure. In our setting, a classical spin structure

is a spin structure valued in Z/2Z. We pause here to briefly review the theory of classical spin

structures and the connection with our definition. These results, especially the theory of the

Arf invariant, will play a crucial role in the analysis of Z/rZ-valued spin structures for r even to

be begun in Proposition 4.9 and Corollary 4.10, and returned to in Section 6.

Let V be a vector space over the field Z/2Z equipped with a nondegenerate symplectic pairing

〈·, ·〉 (i.e. a nondegenerate bilinear pairing satisfying 〈x, x〉 = 0 for all x ∈ V ). The motivating

example is V = H1(Σg;Z/2Z) with the intersection pairing. A Z/2Z quadratic form relative to

〈·, ·〉 is a function q : V → Z/2Z such that for any x, y ∈ V , the equation

q(x+ y) = q(x) + q(y) + 〈x, y〉 (5)

holds.

Let B = {x1, y1, . . . , xg, yg} be a symplectic basis for V . It is clear that q is determined by its

values on B. Define Q(V, 〈·, ·〉) as the set of Z/2Z quadratic forms on V relative to 〈·, ·〉; then a

choice of B provides a bijection

Q(V, 〈·, ·〉) ∼= (Z/2Z)2g.

There is an evident action of the group Sp(V, 〈·, ·〉) of 〈·, ·〉-preserving automorphisms on

Q(V, 〈·, ·〉).

To understand the set of orbits, we introduce the Arf invariant. The Arf invariant of q is the

element of Z/2Z defined by the following formula:

Arf(q) :=

g∑

i=1

q(xi)q(yi).

q is said to be even or odd according to whether Arf(q) = 0, 1 respectively; in this way we will

speak of the parity of a spin structure. The following records some well-known properties of the

Arf invariant.
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Lemma 3.20. Let (V, 〈·, ·〉) be a symplectic vector space over Z/2Z, and let q, q′ ∈ Q(V, 〈·, ·〉)

be quadratic forms.

(1) Arf(q) is well-defined independently of the choice of symplectic basis,

(2) q and q′ are in the same orbit of Sp(V, 〈·, ·〉) if and only if Arf(q) = Arf(q′).

Suppose now that φ is a Z/2dZ-valued spin structure in the sense of Definition 3.1. The

reduction Z/2dZ → Z/2Z associates to φ an underlying Z/2Z-valued spin structure which we

denote φ̄. A priori, φ̄ is defined on the set S of isotopy classes of oriented curves on Σg. It

follows from [Joh80b, Theorem 1A] that φ̄ factors through the map [·] : S → H1(Σg;Z/2Z).

The induced map

¯̄φ : H1(Σg;Z/2Z) → Z/2Z

is not quite a classical spin structure, but it follows from [Joh80b, Theorem 1A] that the function

qφ := ¯̄φ+ 1 (6)

does determine a classical spin structure.

In the remainder of this paper we will exclusively use the term “spin structure” in the sense

of Definition 3.1. The reader versed in classical spin structures should be aware that certain

formulas appear different in this setting. For instance, a Dehn twist about some nonseparating

curve c preserves a Z/2Z-valued spin structure φ if and only if φ(c) = 0, whereas a transvection

about some nonzero v ∈ V preserves a quadratic form q if and only if q(v) = 1. Likewise, if φ

is a Z/2dZ-valued spin structure, the formula for the Arf invariant Arf(φ) of the underlying

classical spin structure is given by

Arf(φ) =

g∑

i=1

(φ̄(xi) + 1)(φ̄(yi) + 1) (mod 2). (7)

4. The action of the mapping class group on spin structures

In what follows, we will need to understand the action of Mod(Σg) on the set of Z/rZ-valued

spin structures. Following the discussion in Section 3.4, when r is even, the Arf invariant shows

there are at least two orbits of Mod(S) on the set of Z/rZ-valued spin structures, but it is not

clear what happens for odd r, nor whether there are further invariants leading to more orbits.

The goal of this section is to give a complete description of this action. In the case of r odd, the

mapping class group action on the set of Z/rZ-valued spin structures is described in Proposition

4.2, and for r even it is described in Proposition 4.9. Both results can be understood as asserting

that there are no “higher Arf invariants”.

4.1. Odd r. In the case of r odd, we will need to consider surfaces with multiple boundary

components. Before formulating the results, we define the notion of the signature of a Z/rZ-

valued spin structure.
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Definition 4.1 (Signature of a Z/rZ-valued spin structure). Let S be a surface equipped with

a Z/rZ-valued spin structure φ. Enumerate the boundary components as ∆1, . . . ,∆n, each one

oriented so that S is to the left. The signature of S rel φ is defined as the n-tuple of values

sig(S, φ) = (φ(∆1), . . . , φ(∆n)). We will also speak of the signature of an individual ∆k, defined

as φ(∆k).

Proposition 4.2. Fix an odd integer r. Let S be a surface, and let φ and ψ be Z/rZ-valued

spin structures on S satisfying sig(φ) = sig(ψ). Suppose that either g(S) 6= 1 or else g = 1 and

there is at least one boundary component with signature φ(c1) = ψ(c1) = k for some k such that

k + 1 generates Z/rZ. Then there is a mapping class f ∈ Mod(S) such that f∗(ψ) = φ.

Proof. The proof is by induction on the genus g(S). If g(S) = 0, then every curve c on S is

separating, so that the homological coherence criterion (Proposition 3.8) implies that φ(c) and

ψ(c) can be computed just from the signature. In this case, it follows that in fact φ = ψ.

For g(S) ≥ 1, let α0, β0 be curves on S satisfying i(α0, β0) = 1. Choose nonzero integers

a, b ∈ Z such that a ≡ φ(α0) and b ≡ φ(β0) (mod r). Let d = gcd(a, b), and define x = a/d, y =

b/d; by construction, x, y are coprime. Define the curve α1 = yα0−xβ0 in the sense of Definition

3.10. By Lemma 3.11, φ(α1) = 0.

Choose any curve γ0 satisfying i(α1, γ0) = 1. We claim there exists some separating oriented

curve c on S that is disjoint from γ0 ∪α1 and such that φ(c) = k for k such that k+1 generates

Z/rZ. In the case g(S) = 1 this is true by hypothesis, while for g(S) ≥ 2, the curve c can be

taken to be the neighborhood of some subsurface T ⊂ S with T ∼= Σ1,1 and T disjoint from

α1 ∪ γ0. In this case, orient c so that T lies to the right. By the homological coherence property,

such a c satisfies φ(c) = 1, and since r is odd, the claim follows.

Either c is isotopic to a boundary component of S and is oriented with S lying to the right,

or else (by the change-of-coordinates principle), there exists an arc ε0 from the left side of γ0 to

the left side of c that is disjoint from α1. In the former case, there exists an arc ε0 from the right

side of γ0 to the right side of c that is disjoint from α1. Via Lemma 3.13, the curve-arc sum

γ1 = γ0 +ε0 c satisfies φ(γ1) = φ(γ0)− (k+1) in the former case, and φ(γ1) = φ(γ0) + (k+1) in

the latter case. Since the curve c is null-homologous, there is an equality [γ1] = [γ0]. A further

appeal to the change-of-coordinates principle shows that there is another arc ε1 from the left side

of γ1 to the left of c, again disjoint from α1. This process can therefore be repeated indefinitely,

giving rise to curves γm satisfying φ(γm) = φ(γ0) +m(k + 1). By hypothesis, k + 1 ∈ Z/rZ

is a generator, so that φ(γm) = 0 for some m. Set β1 = γm for such an m. By construction,

i(α1, β1) = 1.

Likewise, construct curves α′
1, β

′
1 satisfying i(α′

1, β
′
1) = 1 and ψ(α′

1) = ψ(β′
1) = 0. Take (open)

regular neighborhoods T1 and T ′
1 of α1 ∪β1 and α′

1 ∪β
′
1, respectively. There is a diffeomorphism

f1 : T1 → T ′
1 for which f1(α1) = α′

1 and f1(β1) = β′
1. Define c1 = ∂T1 and c′1 = ∂T ′

1. Then

φ(c1) = 1 when c1 is oriented with T1 on the right, and similarly for c′1. The curve c1 is therefore

a boundary component of S \ T1 with signature φ(c1) = 1, and likewise for c′1. This shows that
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the inductive hypothesis is satisfied, and so there exists a diffeomorphism f2 : S \ T1 → S \ T ′
1

taking c1 to c′1 and fixing each remaining mutual boundary component, such that

f∗2 (ψ |S\T ′

1
) = φ |S\T1.

The diffeomorphisms f1 and f2 can be chosen in such a way as to extend to a diffeomorphism

f : S → S. Let B = {α1, β1, . . . , αg, βg} be a geometric symplectic basis for S, with α1, β1 the

same curves as above. Necessarily αk, βk are curves on S\T1 for k ≥ 2. By construction, the spin

structures φ and f∗(ψ) take the same values on each element of B, and sig(S, φ) = sig(S, f∗(ψ)).

It then follows from Proposition 3.9 that φ = f∗(ψ) as claimed. �

Proposition 4.2 has several corollaries that will be used extensively in the remainder of the

paper. These play the role of a change-of-coordinates principle for surfaces in the presence of a

Z/rZ-valued spin structure. The first of these was established in the second paragraph of the

proof of Proposition 4.2. We remark that the assumption that r is odd played no role in the

argument.

Corollary 4.3. Let r be an integer and let φ be a Z/rZ-valued spin structure on a surface S.

Let S′ ⊂ S be a subsurface of genus h ≥ 1. Then there is some admissible curve a ⊂ S′ that is

not parallel to a boundary component.

This in turn leads to another useful result that will allow us to construct curves with prescribed

intersection properties and arbitrary φ-values.

Corollary 4.4. Let r be an integer and let φ be a Z/rZ-valued spin structure on a surface S.

Let a, c1, . . . , ck be a collection of simple closed curves. Assume that there is some connected

subsurface T ⊂ S of positive genus disjoint from a, c1, . . . , ck, and that there is an arc ε connecting

a to ∂T that is disjoint from all ci. Then for ` ∈ Z/rZ arbitrary, there is a simple closed curve

a` for which i(a`, ci) = i(a, ci) for i = 1, . . . , k, and for which φ(a`) = `.

Proof. By Corollary 4.3, there exists an admissible curve b ⊂ T that is not boundary-parallel.

The arc ε can be concatenated with an arc joining ∂T to b; denote this extended arc by ε′.

Set `0 = φ(a) (where a is oriented with ε′ lying to the left), and define a`0 := a. Define

a`0+1 := a`0 +ε′ b. By Lemma 3.13, φ(a`0+1) = φ(a`0) + 1 = `0 + 1.

To see that i(a`0+1, ci) = i(a, ci), we appeal to the bigon criterion of [FM12, Proposition 1.7].

Choose representative curves for a, c1, . . . , ck, pairwise in minimal position. The bigon criterion

asserts that a, ci are in minimal position if and only if the configuration a ∪ ci does not bound

any bigons, i.e. an embedded disk whose boundary is the union of an arc of a and an arc of

ci meeting in exactly two points. The curve-arc sum a`0+1 meets each ci in exactly the same

set of points as a`0 . To conclude, it thus suffices to see that no bigons were introduced by the

summing procedure. The only arc of a`0+1 that is not also an arc of a`0 is the one along which

the summing procedure is performed; denote the original arc of α`0 by α and the modified arc

by α′. Suppose that there is an arc γ of ci such that α′ ∪ γ bounds a bigon. As α′ = α+ε′ b,
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it must be the case that the curve α ∪ γ is isotopic to b. But by assumption, b ⊂ T is not

boundary-parallel, so this cannot happen.

To construct a` for ` ∈ Z/rZ arbitrary, one simply repeats the above construction, producing,

for any t ≥ 0, a curve a`0+t with the same intersection properties as a`0 and satisfying

φ(a`0+t) = `0 + t. �

For the remaining corollaries of Proposition 4.2, we re-instate the requirement that r be odd.

Corollary 4.5. Let r be an odd integer and let φ be a Z/rZ-valued spin structure on a surface

S. Let S′ ⊂ S be a subsurface of genus h ≥ 1, and suppose that if h = 1, then S′ includes some

boundary component of signature k such that k + 1 generates Z/rZ.

(1) For all x ∈ Z/rZ, there exists some nonseparating curve c supported on S′ satisfying

φ(c) = x,

(2) For any 2h-tuple (i1, j1, . . . , ih, jh) of elements of Z/rZ, there is some geometric sym-

plectic basis B = {a1, b1, . . . , ah, bh} for S′ with φ(a`) = i` and φ(b`) = j` for all

1 ≤ ` ≤ h,

(3) For any 2h-tuple (k1, . . . , k2h) of elements of Z/rZ, there is some chain (a1, . . . , a2h)

of curves on S′ such that φ(a`) = k` for all 1 ≤ ` ≤ 2h.

Proof. Certainly (1) follows from (2). To establish (2), choose any geometric symplectic basis

B = {a′`, b
′
`} on S′. There is some spin structure ψ on S′ for which ψ(a′`) = i` and ψ(b

′
`) = j`.

By Proposition 4.2, there is a diffeomorphism f of S′ such that f∗(ψ) = φ. Then B = f−1(B′)

has the required properties.

We will deduce (3) from (2). Given the 2h-tuple (k1, . . . , k2h), define a 2h-tuple (i1, j1, . . . , ih, jh)

as follows: set i` = 1 − ` +
∑`

t=1 k2t−1, and set j` = k2`. By (2), there exists a geometric

symplectic basis B = {c`, d`} on S′ whose φ-values realize the tuple (i1, j1, . . . , ih, jh). Any

geometric symplectic basis can be “completed” into a chain as follows: for ` = 1, . . . , h− 1, let

f` be a simple closed curve satisfying i(f`, d`) = i(f`, d`+1) = 1 and i(f`, x) = 0 for all other

elements x ∈ B. As B is a geometric symplectic basis, this imposes the homological relation

[f`] = [c`+1]− [c`], and the intersection conditions imposed on the set of curves {f`} imply that

this homology is realized geometrically: c` ∪ f` ∪ c`+1 must bound a pair of pants P` for each

` = 1, . . . , h− 1. The orientations can be arranged so that P` lies to the right of c` and f` and

to the left of c`+1.

Applying the homological coherence property to each P`, it follows that φ(f`) = k2`+1. By

construction, the curves c1, d1, f1, d2, f2, d3, . . . , fh−1, dh form a chain of length 2h; denote this

chain by C. By construction, φ(c1) = i1 = k1, and φ(d`) = k2`. Altogether, this shows that C

has the required properties. �

4.2. Even r. Following the discussion in Section 3.4, we see that the Arf invariant distinguishes

at least two orbits of Mod(Σg) on the set of Z/rZ-valued spin structures. To see that there are

exactly two orbits, in Definition 4.6 we formulate two “model” Z/rZ-valued spin structures φBeven
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and φBodd of prescribed Arf invariant, and in Proposition 4.9 we show that every Z/rZ-valued

spin structure is equivalent to one of φBeven or φBodd. We restrict attention here to the case where

the surface S has at most one boundary component. The general setting of multiple boundary

components introduces considerable subtlety owing to the failure for the intersection pairing to

determine a symplectic form, and our results require only the case of at most one boundary

component.

Definition 4.6. Let S be a surface of genus g ≥ 1 with at most one boundary component. Fix

a geometric symplectic basis B = {α1, β1, . . . , αg, βg}. Define φBeven and φBodd as the Z/rZ-valued

spin structures such that φBeven(γ) = φBodd(γ) = 0 for all γ ∈ B \ {βg}, and where φBeven(βg) and

φBodd(βg) are chosen to be 0 or 1 as necessary so that Arf(φBeven) = 0 and Arf(φBodd) = 1.

In spite of the evident dependence on geometric symplectic basis, as B ranges over the set of

all geometric symplectic bases, the elements φBodd lie in a single orbit of Mod(S) (and the same

is also true of φBeven). The following is immediate via the change-of-coordinates principle.

Lemma 4.7. Let B and B′ be geometric symplectic bases. Then there is a diffeomorphism

f : S → S such that f(B) = B′. Consequently, f∗(φB
′

even) = φBeven and f∗(φB
′

odd) = φBodd.

Definition 4.8. Let S be a surface of genus g ≥ 1 with at most one boundary component

endowed with a Z/rZ-valued spin structure φ. We say that φ is even if there is a geometric

symplectic basis B such that φ = φBeven, and we say that φ is odd if φ = φBodd.

Proposition 4.9. Fix an even integer r. Let S be a surface of genus g ≥ 2 with at most

one boundary component. Let φ be a Z/rZ-valued spin structure on S. Then in the sense of

Definition 4.8, either φ is even, or else φ is odd.

Proof. The argument makes use of the techniques of the proof of Proposition 4.2. Let B =

{α1, β1, . . . , αg, βg} be a geometric symplectic basis, and let Si denote the genus-1 subsurface

determined by αi, βi; define Di as the boundary curve of Si. Exactly as in Proposition 4.2, each

pair αi, βi can be replaced by new curves α′
i, β

′
i supported on Si and satisfying i(α′

i, β
′
i) = 1,

such that α′
i is admissible. Denote the corresponding geometric symplectic basis by B′. For

an arc ε connecting β′
1 to D2 and disjoint from all other Di, the curve-arc sum β′

1 +ε D2

satisfies φ(β′
1 +ε D2) = φ(β′

1) + 2. By repeatedly performing this curve-arc sum using an arc

ε disjoint from B′ \ {β′
2} (as in Proposition 4.2), β′

2 can be replaced with a curve β′′
2 such

that φ(β′′
2 ) = 0 or 1. By performing an analogous operation on all β′

i, one obtains a geometric

symplectic basis B′′ = {α′
1, β

′′
1 , . . . , α

′
g, β

′′
g } such that φ(α′

i) = 0 and φ(β′′
i ) = 0 or 1.

It remains to further alter each β′′
1 , . . . , β

′′
g−1 so that φ(β′′

i ) = 0 in this range. For 1 ≤ i ≤ g−1,

let γi be a collection of disjoint curves such that β1, γ1, . . . , βg−1, γg−1, βg forms a chain of

length 2g − 1, and such that each γi is disjoint from all α′
j . Then necessarily αi, γi, αi+1

forms a pair of pants, and so φ(γi) = −1. If φ(β′′
1 ) = 1, then φ(Tγ1

(β′′
1 )) = 0. Replace

β′′
1 , β

′′
2 by Tγ1

(β′′
1 ), Tγ1

(β′′
2 ), respectively. Repeat, applying T k

γ2
to Tγ1

(B′′) for k such that
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φ(T k
γ2
Tγ1

(β′′
2 )) = 0. Proceed in this way, taking each β′′

i for i ≤ g − 1 to some β′′′
i with

φ(β′′′
i ) = 0. At the end, the geometric symplectic basis B′′′ = {α′

1, β
′′′
1 , . . . , α

′
g, β

′′′
g } will satisfy

φ(γ) = 0 for all γ ∈ B′′′ except possibly γ = β′′′
g . By repeating the curve-arc summing procedure,

β′′′
g can be altered to satisfy ψ(β′′′

g ) = 0 or 1 as required. Define B̃ to be this geometric symplectic

basis. Applying Theorem 3.9, we see that φ = φB̃even or φB̃odd as required. �

There is an analogue of Corollary 4.5 for r even, although the Arf invariant provides an

obstruction that was not present in the case of odd r.

Corollary 4.10. Let r be an even integer, and let S′ ⊂ S be a subsurface of genus h ≥ 2

endowed with a Z/rZ-valued spin structure φ. Then the following assertions hold:

(1) For all x ∈ Z/rZ, there exists some nonseparating curve c supported on S′ satisfying

φ(c) = x.

(2) For a given 2h-tuple (i1, j1, . . . , ih, jh) of elements of Z/rZ, there is some geometric

symplectic basis B = {a1, b1, . . . , ah, bh} for S′ with φ(a`) = i` and φ(b`) = j` for

1 ≤ ` ≤ h if and only if the parity of the spin structure defined by these conditions agrees

with the parity of the restriction φS′ to S′.

(3) For any (2h−2)-tuple (i1, j1, . . . , ih−1, jh−1) of elements of Z/rZ, there is some geometric

symplectic basis B = {a1, b1, . . . , ah, bh} for S′ with φ(a`) = i` and φ(b`) = j` for

1 ≤ ` ≤ h− 1.

(4) For a given 2h-tuple (k1, . . . , k2h) of elements of Z/rZ, there is some chain (a1, . . . , a2h)

of curves on S′ such that φ(a`) = k` for all 1 ≤ ` ≤ 2h if and only if the parity of the

spin structure defined by these conditions agrees with the parity of the restriction φS′ to

S′.

(5) For any (2h − 2)-tuple (k1, . . . , k2h−2) of elements of Z/rZ, there is some chain

(a1, . . . , a2h−2) of curves on S′ such that φ(a`) = k` for all 1 ≤ ` ≤ 2h− 2.

Proof. The proof is essentially identical to that of Corollary 4.5. The arguments for (2) and (3)

are slightly novel; the remaining points follow their counterparts in Corollary 4.5 verbatim. To

establish (2), let B′ = {a′`, b
′
`} be a geometric symplectic basis on S′. Let S′′ be a subsurface of

S′ containing each curve in B′ that has only one boundary component. Given (i1, j1, . . . , ih, jh),

there is some spin structure ψ on S′′ for which ψ(a′`) = i` and ψ(b′`) = j` for 1 ≤ ` ≤ h. By

Proposition 4.9, there is an element f ∈ Mod(S′′) for which f∗(ψ) = φ if and only if the Arf

invariants of φ and ψ agree; if they do, then B = f−1(B′) has the required properties.

(3) will be obtained from (2). Let ε ∈ Z/2Z denote the Arf invariant of φ, and define the

quantity

η =

h−1∑

`=1

(i` + 1)(j` + 1) (mod 2).

As the formula (7) for the Arf invariant shows, given any (2h− 2)-tuple (i1, ji, . . . , ih−1, jh−1)

and any value ε ∈ Z/2Z, there is a choice of ih, jh ∈ Z/rZ for which η + (ih + 1)(jh + 1) ≡ ε

(mod 2). The result now follows by applying (2) to the tuple (i1, j1, . . . , ih, jh). �
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We will also require a result establishing the existence of configurations Dn as in the Dn

relation (Proposition 2.6).

Corollary 4.11. Let r = 2d be an even integer, and let Σg be a closed surface endowed with a

Z/2dZ-valued spin structure φ. Let ∆ be a curve on Σg that separates Σg into subsurfaces S1, S2

for which the genus g(S1) ≥ d+ 1. Set n = 2g(S1)− 2d+ 1. Then there exists a configuration

a, a′, c1, . . . , cn−2 of curves on S1 arranged in the Dn configuration, such that the elements a, a′,

and ci are admissible for all i, and such that ∆ = ∆2 as in Figure 2.

Proof. By Corollary 4.10.5, there exists a chain a, c1, . . . , cn−2 of admissible curves on S1. Let

a′ ⊂ S1 be chosen so that a ∪ a′ ∪∆ bounds a subsurface of genus g(S1)− d− 1 containing ci

for i ≥ 2, and such that i(a′, c1) = 1. The other side of a ∪ a′ bounds a subsurface of genus

d, and so the homological coherence property implies that a′ is admissible. By construction,

the curves a, a′, c1, . . . , cn−2 form the configuration Dn of the Dn relation, and the boundary

component ∆2 of Figure 2 is given here by ∆. �

5. r odd: generating Mod(Σg)[φ] by Dehn twists

Let φ be a Z/rZ-valued spin structure on a closed surface Σg. Throughout this section we

assume that r | (2g−2) (so that, following Remark 3.6, Σg admits a Z/rZ-valued spin structure)

and that r is odd. Recall from Definition 3.16 that the admissible subgroup is defined via

Tφ = 〈Ta | a nonseparating curve, φ(a) = 0〉.

By construction, Tφ 6 Mod(Σg)[φ]. The main result of this section is that for r odd, this

containment is an equality.

Proposition 5.1. For any g ≥ 3 and for any odd integer r satisfying r < g − 1, there is an

equality

Tφ = Mod(Σg)[φ].

Before beginning with the proof, we will first establish some properties of the group Tφ which

will be used throughout this section and the next.

Lemma 5.2. Let φ be a Z/rZ-valued spin structure on a surface Σg with r < g − 1 and g ≥ 5.

Let c be any nonseparating simple closed curve on Σg. Suppose that r is odd, or else that r is

even and φ(c) ≡ 1 (mod 2). Then T r
c ∈ Tφ.

Proof. Let c be as in the statement of Lemma 5.2. Our first objective is to construct a

configuration of admissible curves D2r+3 as in Corollary 2.7 for which c = Ck. By hypothesis,

there is an expression of the form φ(c) = 2k − 1 (mod r) for some integer 1 ≤ k ≤ r. Invoking

Corollary 4.5.3 or 4.10.5 as appropriate, the hypothesis r < g − 1 implies that there is a

chain a, c1, . . . , c2k−1 of admissible curves disjoint from c, and there is a chain c2k+1, . . . , c2r+1

of admissible curves disjoint from c and from a, c1, . . . , c2k−1. Let a′ be a curve such that

a ∪ a′ ∪ c bounds a surface of genus k − 1 containing c2, . . . , c2k−1, and satisfying i(a′, c1) = 1
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and i(a′, ci) = 0 for 2k + 1 ≤ i ≤ 2r + 1. The homological coherence property implies that a′ is

admissible.

To complete the construction, it remains only to find the curve c2k. Such a curve c2k must

be admissible, and c2k must have the following intersection properties:

i(c2k, c2k±1) = 1, i(c2k, a) = i(c2k, a
′) = i(c2k, ci) = 0 for |i− 2k| > 1, i(c2k, c) = 2. (8)

Let c′2k be any curve satisfying the intersection properties (8). If we can show that the complement

of a regular neighborhood of the configuration D ′
2r+3 := a, a′, c1, . . . , c2k−1, c2k′ , c2k+1, . . . , c2r+1

is a surface of positive genus, then the existence of c2k will follow from Corollary 4.4.

The configuration D ′
2r+3 is contained in a surface of genus r+1 with two boundary components.

Each boundary component is homologous to the nonseparating curve c, so the complement has

genus g − r − 2. We must show that this quantity is positive. Establishing g − r − 2 ≥ 1 is a

matter of simple arithmetic. Writing r = 2g−2
m for some m ≥ 3, we have

g − r − 2 =
m− 2

m
(g − 1)− 1 ≥

g

3
− 1 > 0,

since g ≥ 5 by hypothesis.

Recalling that the group H+
2r+3 from Corollary 2.7 is defined to be the group generated by

the Dehn twists about the elements of D2r+3 ∪ {∆1}, it follows that if each element of D2r+3

is admissible, then H+
2r+3 6 Tφ. We have constructed the curves a, a′, c1, . . . , c2r+1 so as to

be admissible; homological coherence implies that also ∆1 is admissible. Corollary 2.7.2 then

implies that T r
Ck

∈ Tφ for any 1 ≤ k ≤ r + 1. �

Lemma 5.3. Let φ be a Z/rZ-valued spin structure on a surface Σg, and let v ∈ H1(Σg;Z)

be any primitive homology class. If r is odd, then for any k ∈ Z/rZ, there exists a curve c for

which [c] = v and φ(c) = k. If r is even, then for any k ∈ Z/rZ such that φ (mod 2)(v) ≡ k

(mod 2), there exists a curve c for which [c] = v and φ(c) = k.

Proof. Let c0 be any (oriented) curve on Σg with [c0] = v; set φ(c0) = k0. Let c1 be a curve

disjoint from c0 such that c0 ∪ c1 bounds a subsurface of genus 1, oriented to the left of c0. Then

φ(c1) = k0 +2 when oriented with the subsurface to the right, and [c0] = [c1]. This construction

can be repeated, giving rise to curves cm with φ(cm) = k0 + 2m. If r is odd, then the set of

values k0 + 2m for various values of m exhausts Z/rZ, and if r is even, then the set of values

k0 + 2m exhausts the coset k0 + 2Z/rZ. The claim follows by taking c = cm for the appropriate

value of m. �

Proof. (of Proposition 5.1) The method is to compare the intersections of Tφ and Mod(Σg)[φ]

with Ig and Kg. We first present a high-level overview of the logical structure of the proof that

explains how Proposition 5.1 follows from ancillary results; these results are then obtained in

Steps 1–4.
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Overview. Recall from (3) the symplectic representation Ψ : Mod(Σg) → Sp(2g,Z) with kernel

given by the Torelli group Ig. To show that Tφ = Mod(Σg)[φ], it suffices to show that (I)

Ψ(Tφ) = Ψ(Mod(Σg)[φ]) and that (II) Tφ ∩ Ig = Mod(Σg)[φ] ∩ Ig.

The equality of (I) is obtained in Step 1 as Lemma 5.4. The proof of (II) is carried out in

Steps 2-4. The method is to study the restriction of the Johnson homomorphism to the groups

Tφ ∩ Ig and Mod(Σg)[φ]∩ Ig. Recall from (4) that the Johnson homomorphism is the surjective

homomorphism

τ : Ig → ∧3HZ/HZ,

and that the kernel is written Kg. To establish (II), it suffices to show that (i) τ(Tφ ∩ Ig) =

τ(Mod(Σg)[φ] ∩ Ig) and that (ii) Tφ ∩ Kg = Mod(Σg)[φ] ∩ Kg. The equality of (i) is carried

in Steps 2 and 3. The main result of Step 2, Lemma 5.7, establishes an upper bound on the

image τ(Mod(Σg)[φ] ∩ Ig), and the main result of Step 3, Lemma 5.8, shows that the subgroup

τ(Tφ ∩ Ig) realizes this upper bound. Finally (ii) is established in Step 4: Lemma 5.9 shows

that there is a containment Kg 6 Tφ.

Step 1: The symplectic quotient. The first step is to understand the image of Tφ and

Mod(Σg)[φ] in the symplectic group Sp(2g,Z).

Lemma 5.4. For r odd, the symplectic representation Ψ : Mod(Σg) → Sp(2g,Z) restricts to a

surjection

Ψ : Tφ � Sp(2g,Z).

It follows that also Ψ : Mod(Σg)[φ] � Sp(2g,Z) is a surjection.

Proof. Let v ∈ H1(Σg;Z) be a primitive element. By Lemma 5.3, there is some curve c with

[c] = v and φ(c) = 0. The result follows from this, since Sp(2g,Z) is generated by the set of

transvections Tv given by x 7→ x+ 〈x, v〉v for v ∈ H1(Σg;Z) primitive, and Ψ(Tc) = T[c]. �

Step 2: Mod(Σg)[φ] and the Johnson homomorphism. Our next objective is Lemma 5.7

below. This concerns the image of Mod(Σg)[φ]∩Ig under the Johnson homomorphism. In order

to formulate the result, it is necessary to first study a different quotient of Ig first constructed by

Chillingworth in [Chi72a] and [Chi72b]. Chillingworth’s work is formulated using the notion of

a “winding number function”; as explained in [HJ89, Introduction], a winding number function

is a particular instance of a spin structure. The properties of a winding number function that

Chillingworth exploits in his work are common to all spin structures, and so we formulate his

results in this larger context. See also [Joh80a, Section 5] for a brief summary of Chillingworth’s

work. Recall in the statement below that S is defined to be the set of isotopy classes of oriented

simple closed curves on a surface Σg.

Theorem 5.5 (Chillingworth). Let φ be a Z/rZ-valued spin structure on a closed surface Σg.

Let c be the function c : Ig × S → Z/rZ defined by the formula

c(f, γ) = φ(f(γ))− φ(γ).



26 NICK SALTER

Then the value c(f, γ) depends only on the homology class [γ] ∈ HZ, and c descends to a

homomorphism

c : Ig → Hom(HZ,Z/rZ) ∼= H1(Σg;Z/rZ).

In particular, c does not depend on the choice of Z/rZ-valued spin structure.

In [Joh80a], Johnson related Chillingworth’s homomorphism to the Johnson homomorphism.

To formulate the precise connection, we require the following well-known lemma; see e.g [Joh80a,

Sections 5,6].

Lemma 5.6. There is a Sp(2g,Z)-equivariant surjection

C : ∧3HZ/HZ → HZ/(g−1)Z

given by the “contraction”

C(x ∧ y ∧ z) = 〈x, y〉z + 〈y, z〉x+ 〈z, x〉y (mod g − 1). (9)

It follows that for any r | (g − 1), there is a Sp(2g,Z)-equivariant surjection

Cr : ∧3HZ/HZ → HZ/rZ

given by post-composing C with the reduction mod r. We can now formulate the main result of

Step 3.

Lemma 5.7. Let φ be a Z/rZ-valued spin structure on a surface of genus g, with g ≥ 3 and r

odd. Then Cr ◦ τ = 0 on Mod(Σg)[φ] ∩ Ig.

Proof. According to [Joh80a, Theorem 3], the composition Cr ◦ τ coincides (up to an application

of Poincaré duality) with the mod-r Chillingworth homomorphism c : Ig → H1(Σg;Z/rZ). The

formula for c given in Theorem 5.5 shows that c measures how f ∈ Ig alters the set of values

{φ(γ) | γ ∈ S}; it therefore follows immediately that the restriction of c to Mod(Σg)[φ] ∩ Ig is

trivial. �

Step 3: Tφ and the Johnson homomorphism. In the previous step, we showed that there

is a containment

τ(Mod(Σg)[φ] ∩ Ig) 6 ker(Cr ◦ τ).

Our next result establishes that this containment is an equality, even when restricted to the

subgroup τ(Tφ ∩ Ig).

Lemma 5.8. For r < g− 1 odd and for g ≥ 3, the Johnson homomorphism τ gives a surjection

τ : Tφ ∩ Ig � ker(Cr ◦ τ).
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Proof. Define K := ker(Cr). We must show that Tφ ∩ Ig surjects onto K under τ . The first

step will be to determine a generating set for K, and then we will exhibit each generator within

τ(Tφ ∩ Ig).

To determine a generating set for K, we consider the short exact sequence

1 → K → ∧3HZ/HZ → HZ/rZ → 1.

determined by Cr. By lifting a set of relations {ri} for HZ/rZ to ∧3HZ/HZ, we will obtain a set

of generators {r̃i} for K. Let B = {x1, y1, . . . , xg, yg} be a symplectic basis for HZ. There is an

associated basis ∧3B ⊂ ∧3HZ given by

∧3B := {z1 ∧ z2 ∧ z3 | zi ∈ B distinct}

Thus also ∧3HZ/HZ is generated by the image of ∧3B.

To determine the relations ri, we must understand Cr(z1∧z2∧z3) for the various possibilities

for {z1, z2, z3}. There are two orbits of generators under the action of Sp(2g,Z). The first orbit

consists of elements of the form z ∧ xi ∧ yi (necessarily with z 6= xi, yi), and the second orbit

consists of elements of the form zi ∧ zj ∧ zk with each z` ∈ {x`, y`} and with i, j, k mutually

distinct.

The image of z ∧ xi ∧ yi in HZ/rZ is

Cr(z ∧ xi ∧ yi) = z,

while Cr(zi ∧ zj ∧ zk) = 0 for elements of the second type. Define A to be the abelian group

generated by the symbols Cr(z1 ∧ z2 ∧ z3) for z1 ∧ z2 ∧ z3 ∈ ∧3B, subject to the relations

(R1)-(R3) below:

(R1) rCr(z ∧ xi ∧ yi) = 0

(R2) Cr(z ∧ xi ∧ yi)− Cr(z ∧ xj ∧ yj) = 0

(R3) Cr(zi ∧ zj ∧ zk) = 0 for {i, j, k} ⊂ {1, . . . , g} distinct.

It can be easily verified that there is an isomorphism A ∼= HZ/rZ, so that the relations (R1) -

(R3) can be lifted to ∧3HZ/HZ to give a generating set for K as desired. The corresponding

generators are given below.

(G1) rz ∧ xi ∧ yi

(G2) z ∧ (xi ∧ yi − xj ∧ yj)

(G3) zi ∧ zj ∧ zk for {i, j, k} ⊂ {1, . . . , g} distinct.

Having determined a generating set for K, it remains to exhibit each such generator in

the form τ(f) for f ∈ Tφ ∩ Ig. These will be handled on a case-by-case basis. We start with

(G1). By Lemma 2.8, there exist curves c, d that determine a genus-1 bounding pair map with

τ(TcT
−1
d ) = z ∧ xi ∧ yi. By Lemma 5.2, T r

c , T
r
d ∈ Tφ, so that T r

c T
−r
d ∈ Tφ is an element with

the required properties.

Next we consider (G2). Let c be a curve with [c] = z and φ(c) = 0. By the change-of-

coordinates principle, there exist curves a, b with the following properties: (1) a ∪ b bounds a
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G2.{ps,eps,pdf} not found (or no BBox)

Figure 5. The configuration of curves used to exhibit (G2).

subsurface S of genus 2, (2) c ⊂ S, (3) [a] = [b] = [c], and c separates S into two subsurfaces

S1, S2 each of genus 1, (4) xi, yi determine a symplectic basis for S1 and xj , yj determine a

symplectic basis for S2. Such a configuration is shown in Figure 5. By homological coherence,

φ(a) = φ(b) = −2 when a, b are oriented with S to the left. By Lemma 2.8,

τ(TaT
−1
c ) = z ∧ xi ∧ yi

and

τ(TbT
−1
c ) = −z ∧ xj ∧ yj .

Therefore, it is necessary to show TaTbT
−2
c ∈ Tφ. By hypothesis, Tc ∈ Tφ. By Corollary

4.5.3, there exists a chain a1, . . . , a5 of curves on S for which φ(ai) = 0. By the chain relation

(Proposition 2.4), TaTb ∈ Tφ, and the result follows.

It remains to exhibit generators of type (G3). Any such generator is equivalent under the

action of Sp(2g,Z) to y1 ∧ y2 ∧ y3. By combining the Sp(2g,Z)-equivariance of τ (Lemma 2.8.1)

with the result of Lemma 5.4, it suffices to exhibit only y1 ∧ y2 ∧ y3. Figure 6 shows the two

3-chains C1 = (c1, c2, c3) and C2 = (c′1, c2, c
′
1 +ε d). Observe that d is a boundary component

for regular neighborhoods of both C1 and C2; let e1, e2 denote the other boundary component

of C1, C2, respectively.

By Corollary 4.5.2, there exists a geometric symplectic basis B that contains the elements

c1, c2, b, f as depicted in the top portion of Figure 6, with homology classes and φ-values given

in the table below. The remaining entries in the table have been filled in using the homological

coherence property. (A value of ∗ indicates that the value is irrelevant and/or underdetermined,

and if an orientation is left unspecified, this is in accordance with Convention 3.4).

Curve: c1 c2 c3 c′1 b f d c′1 +ε d

Homology class: x1 y1 y2 − x1 x1 − y3 y3 −y2 y2 y2 + y3 − x1

φ-value: 0 ∗ 0 ∗ ∗ −1 −2 ∗

By Lemma 2.8,

τ(TdT
−1
e1 ) = x1 ∧ y1 ∧ y2,

τ(TdT
−1
e2 ) = (x1 − y3) ∧ y1 ∧ y2.

It follows that τ(T−1
e1 Te2) = y3 ∧ y1 ∧ y2. As d∪ e1 and d∪ e2 each bound subsurfaces of genus 1

and φ(d) = −2 when d is oriented with these subsurfaces to the left, the homological coherence

property implies that e1 and e2 are admissible. The result follows. �

Step 4: The Johnson kernel. The final piece of the analysis concerns the relationship

between Mod(Σg)[φ] and the Johnson kernel Kg.
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6. r even: Tφ has finite index in Mod(Σg)

We continue to assume that r | (2g − 2), but now we take r = 2d to be even. For r even, we

cannot give a complete characterization of Tφ as in Proposition 5.1, but we will show that Tφ

has finite index in Mod(Σg). The minimal genus for which the ensuing arguments apply has a

rather intricate dependence on r, encapsulated in the definition below.

Definition 6.1. For an integer d ≥ 1, define k(d) as follows:

k(d) =





2 d odd or d ≥ 6 even

6 d = 2

5 d = 4.

Suppose r = 2d is an even integer. Define

g(r) = k(d)d+ 1.

Proposition 6.2. Let r = 2d be an even integer. Suppose g ≥ g(r) and that r < g − 1. Then

Tφ is a finite-index subgroup of Mod(Σg).

The presence of an underlying Z/2Z spin structure makes proving the analogues of Lemma

5.8 and Lemma 5.9 substantially more difficult. At present, we do not know how to establish

the analogue of Lemma 5.8, owing to the fact that the Arf invariant provides an obstruction to

finding the configurations of curves on subsurfaces needed for the arguments therein. Thus we

content ourselves with showing that Tφ 6 Mod(Σg) is finite-index.

Proof. (of Proposition 6.2) The proof of Proposition 6.2 follows a similar outline to that of

Proposition 5.1. We begin with an overview of the proof.

Overview. To establish finiteness of the index [Mod(Σg) : Tφ], it suffices to show that the

indices [Sp(2g,Z) : Ψ(Tφ)] and [Ig : Tφ ∩ Ig] are both finite. Finiteness of [Sp(2g,Z) : Ψ(Tφ)] is

established in Lemma 6.4 of Step 1, which moreover gives a complete description of the subgroup

Ψ(Tφ).

Finiteness of [Ig : Tφ ∩ Ig] is obtained in Steps 2 and 3, again by using the Johnson

homomorphism to analyze the intersection Tφ ∩ Ig as in Steps 2-4 of the proof of Proposition

5.1. The main result of Step 2 is Lemma 6.6, which shows that τ(Tφ ∩ Ig) has finite index

in ∧3HZ/HZ. Step 3 completes the argument by showing the containment Kg 6 Tφ; this is

obtained as Lemma 6.7. We advise the reader that Step 3 is substantially more complicated

than its counterpart Step 4 of the proof of Proposition 5.1, and will require an explanatory

outline of its own.

Step 1: The symplectic quotient. The case of r even is no more difficult than for r odd.

Let q be a Z/2Z-valued spin structure. An anisotropic transvection is a transvection

Tv(w) = w + 〈w, v〉v
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for a primitive v ∈ H1(Σg;Z) such that q(v) = 0.

The following theorem is surely well-known to experts but we were unable to find a reference.

A special case is treated in [Die73, Proposition 14].

Theorem 6.3 (Folklore). Let q be a Z/2Z-valued spin structure on Σg for g ≥ 3, and let

Sp(2g,Z)[q] denote the subgroup of Sp(2g,Z) that fixes q. Then Sp(2g,Z)[q] is generated by the

collection of anisotropic transvections

{Tv | v ∈ H1(Σg;Z) primitive, q(v) = 0}.

Proof. The action of Sp(2g,Z) on the set of spin structures factors through the quotient

f : Sp(2g,Z) → Sp(2g,Z/2Z). Define Sp(2g,Z)[2] := ker(f). Thus, there is a short exact

sequence

1 → Sp(2g,Z)[2] → Sp(2g,Z)[q] → Sp(2g,Z/2Z)[q] → 1,

with Sp(2g,Z/2Z)[q] denoting the stabilizer of q in Sp(2g,Z/2Z). According to [Gro02, Theorem

14.16], the group Sp(2g,Z/2Z)[q] is generated by the images of all anisotropic transvections. So

it remains to see only that the subgroup of Sp(2g,Z)[q] generated by anisotropic transvections

contains Sp(2g,Z)[2]. According to [Joh85b, Lemma 5], the group Sp(2g,Z)[2] is generated by

the collection of “square transvections” T 2
w, where w ranges over all primitive w ∈ H1(Σg;Z).

If q(w) = 0 then Tw ∈ Sp(2g,Z)[q] and so there is nothing to show. Assume now that

q(w) = 1. It is easy to produce (e.g. by the change-of-coordinates principle on Σg) vectors

v1, v2, v3 ∈ H1(Σg;Z) with the following properties:

(1) q(vi) = 0 for all i,

(2) 〈v1, v2〉 = 〈v2, v3〉 = 1 and 〈v1, v3〉 = 0,

(3) 〈vi, w〉 = 0 for all i,

(4) v1 + v3 = w.

The chain relation in Mod(Σg) (Proposition 2.4) descends to show the relation

(Tv1
Tv2Tv3)

4 = T 2
w.

Since the left-hand side is a product of anisotopic transvections, it follows that for w arbitrary,

T 2
w ∈ Sp(2g,Z)[q] as required. �

The following is the main result of Step 1.

Lemma 6.4. Let φ be a Z/rZ-valued spin structure for r an even integer, and let

q := φ (mod 2)

denote the associated Z/2Z-valued spin structure. The symplectic representation Ψ : Mod(Σg) →

Sp(2g,Z) restricts to a surjection

Ψ : Tφ � Sp(2g,Z)[q],

where Sp(2g,Z)[q] denotes the stabilizer of q in Sp(2g,Z).
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Proof. As Tφ preserves the Z/rZ-valued spin structure φ, it also preserves the mod-2 reduction

q. Thus Tφ 6 Mod(Σg)[q] and so Ψ(Tφ) 6 Sp(2g,Z)[q]. Let v ∈ H1(Σg;Z) be a primitive

element satisfying q(v) = 0. By Lemma 5.3, there is some curve c with [c] = v and φ(c) = 0. As

Tc ∈ Mod(Σg)[φ] and Ψ(Tc) = Tv, the result now follows from Theorem 6.3. �

Step 2: The Johnson homomorphism. We remind the reader that while the value φ(c) on

a simple closed curve depends on more than the homology class [c] ∈ H1(Σg;Z), the discussion

of Section 3.4 establishes that the mod-2 reduction q(c) does depend only on the homology class

[c] (indeed, the coefficients here can be taken to be Z/2Z). Thus the arguments in Step 3 can

be carried out entirely in the homological setting.

For the duration of Step 2, we adopt the following notation. As usual, define

q := φ (mod 2).

There exists a symplectic basis {x1, y1, . . . , xg, yg} forH1(Σg;Z) such that q(xi) = 0 for 1 ≤ i ≤ g

and q(yj) = 0 for 1 ≤ j ≤ g − 1; with such a basis, Arf(q) depends only on g and on q(yg).

Before proceeding to the main result of Step 2 (Lemma 6.6), we begin with an algebraic

lemma.

Lemma 6.5. Set v := x1 ∧ y1 ∧ x4. Let V 6 ∧3HZ denote the submodule generated by the set

{gv | g ∈ Sp(2g,Z)[q]}.

Then V = ∧3HZ for g ≥ 5.

Proof. As remarked in Lemma 5.8, ∧3HZ is generated by elements of the form zi ∧ zj ∧ zk with

each zi ∈ {x1, y1, . . . , xg, yg}. To begin with, we will exhibit generators for the submodule of

∧3HZ spanned by generators zi ∧ zj ∧ zk for which zi, zj , zk ∈ {x1, y1, . . . , xg−1, yg−1}. The

restriction of Sp(2g;Z)[q] to this submodule is independent of the parity of q. For i 6= j ≤ g − 1,

define Si,j ∈ Sp(2g,Z) via

Si,j(xi) = xj , Si,j(yi) = yj ,

Si,j(xj) = xi, Si,j(yj) = yi,

with all other generators fixed. As q(xk) = q(yk) = 0 for k ≤ g − 1, in fact Si,j is an element of

Sp(2g,Z)[q]. Applying Si,j for i, j 6= 4 to v shows that V contains all generators of the form

xi ∧ yi ∧ x4. Applying Si,4 to xj ∧ yj ∧ x4 for i 6= j shows that V contains all generators of the

form xj ∧ yj ∧ xi for j 6= 4; then applying Sj,4 to xj ∧ yj ∧ xi shows that V contains all elements

of the form xj ∧ yj ∧ xi.

For 1 ≤ i ≤ g − 1, define Ri ∈ Sp(2g,Z) via

Ri(xi) = yi, Ri(yi) = −xi
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with all other generators fixed. Again, the condition q(xk) = q(yk) = 0 for k ≤ g − 1 implies

that Ri is an element of Sp(2g,Z)[q]. Applying Ri to xj ∧ yj ∧ xi shows that also V contains all

elements of the form xj ∧ yj ∧ yi.

It remains to exhibit generators of the form zi ∧ zj ∧ zk with z` ∈ {x`, y`} and i, j, k < g all

distinct. Consider the transvection Tx4−x1
∈ Sp(2g,Z)[q]. Applied to x1 ∧ y1 ∧ x2, this shows

that

x1 ∧ (y1 + x4) ∧ x2 ∈ V,

hence also x1 ∧ x2 ∧ x4 ∈ V . Now by repeated applications of the elements Si,j and Ri, one can

produce all remaining generators.

In the case q(yg) = 0, the elements Si,g and Rg are contained in Sp(2g,Z)[q], and so the

above argument extends to complete this case. It remains to consider the case where q(yg) = 1.

In this case, the formula (5) defining a Z/2Z-valued quadratic form shows that q(yg−1 + yg) = 0.

Applying Tyg−1+yg
to the elements x1 ∧ x2 ∧ xg−1 and x1 ∧ y1 ∧ xg−1 shows that x1 ∧ x2 ∧ yg

and x1 ∧ y1 ∧ xg are elements of V . Applying Si,j and Ri for i, j ≤ g − 1 produces all elements

of the form zi ∧ zj ∧ yg with z` ∈ {x`, y`} (i, j ≤ g − 1). Then applying Txg
to these elements

shows that also each zi ∧ zj ∧ xg ∈ V .

By (5), we have q(x1 + xg − yg) = 0. Applying T−1
x1+xg−yg

to y1 ∧ y2 ∧ yg gives

w = (y1 + x1 + xg − yg) ∧ y2 ∧ (x1 + xg);

expanding this product yields the expression w = −y2 ∧ xg ∧ yg +w′, with w′ expressed entirely

in terms of generators already known to be elements of V . Applying Si,j and Ri as in the above

paragraph shows that all the remaining generators zi ∧ xg ∧ yg are elements of V . �

The following is the main result of Step 2.

Lemma 6.6. For g ≥ 5, the image τ(Tφ∩Ig) under the Johnson homomorphism is a finite-index

subgroup of ∧3HZ/HZ.

Proof. As stated in Lemma 2.8.1, the homomorphism τ : Ig → ∧3HZ/HZ is Sp(2g,Z)-

equivariant. The strategy for the proof of Lemma 6.6 is to first exhibit a single nonzero

element of τ(Tφ ∩ Ig), and then to exploit this equivariance.

By Corollary 4.10.5, there exists a 3-chain of admissible curves a1, a2, a3 such that

[a1] = x1, [a2] = y1, [a3] = x4 − x1.

Let ν be a regular neighborhood of this chain, and denote the boundary curves as b, b′. As a1

and a2 are admissible, homological coherence implies that φ(b) = φ(b′) = −1 when oriented

so that ν lies to the left of both b, b′. By Lemma 5.2, T r
b is an element of Tφ. It follows by

the chain relation (Proposition 2.4) that the bounding pair map T r
b T

−r
b′ ∈ Tφ. One sees that

[b] = [a1] + [a3] = x4. By Lemma 2.8.3,

τ(T r
b T

−r
b′ ) = r(x1 ∧ y1 ∧ x4).
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By Lemma 6.4 and the equivariance of τ with respect to Sp(2g,Z) (and a fortiori with respect

to Sp(2g,Z)[q]), it follows that τ(Tφ ∩ Ig) contains the Z-span of the entire Sp(2g,Z)[q]-orbit of

v := r(x1 ∧ y1 ∧ x4). Lemma 6.6 now follows from Lemma 6.5. �

Step 3: The Johnson kernel. In this section, we establish the following result.

Lemma 6.7. Let φ be a Z/2dZ-valued spin structure on Σg. Assume that g satisfies the

hypotheses of Proposition 6.2. Then Tφ contains the Johnson kernel Kg.

Before beginning the proof, we explain the difficulties imposed by the assumption that r = 2d

is even.

The Arf invariant as obstruction. The mechanism of proof for Lemma 5.9 was the chain

relation (Proposition 2.4): if S ⊂ Σg has one boundary component, we exploited Corollary 4.5

to produce a maximal chain {ai} of curves on S with φ(ai) = 0, and then used the chain relation

to express T∂S in terms of the admissible twists {Tai
}. Now suppose φ is a Z/rZ-valued spin

structure for r even, and let q = φ (mod 2) denote the mod-2 reduction. For any subsurface

S ⊂ Σg with one boundary component, q restricts to give a Z/2Z-valued spin structure q S on

S. The Arf invariant of q S , written here as ε(S), provides an obstruction to the existence of

a maximal chain {ai} of admissible curves on S, since such a chain determines the value ε(S)

solely as a function of g(S).

Suppose c ⊂ Σg is a separating curve that divides Σg into disjoint surfaces S, S′. Such a

c is called easy if at least one of S, S′ supports a maximal chain of admissible curves, and is

hard otherwise. By Corollary 4.10.4 and the chain relation (Proposition 2.4), if c is easy, then

Tc ∈ Tφ.

Outline of proof of Lemma 6.7. We begin with Lemma 6.8, which characterizes those

subsurfaces supporting a maximal chain of admissible curves in terms of the Arf invariant. This

in particular shows the relevance of the genus of the subsurface mod 4, which in turn forces

us to treat the cases r ≡ 0, r ≡ 2 (mod 4) separately. We therefore establish Lemma 6.7 by

combining Lemma 6.10 and 6.13, which treat the cases of r ≡ 2 (mod 4) and r ≡ 0 (mod 4),

respectively.

These are handled in Substeps 1 and 2, respectively. In each case, we first show that all

separating twists of particular genera are elements of Tφ. In Substep 1, Lemma 6.9 shows that

all separating twists of genus d lie in Tφ. In Substep 2, Lemma 6.11 shows that all separating

twists of genus h ≡ d+ 2 (mod 2d) lie in Tφ, and Lemma 6.12 establishes the same result for

separating twists of genus h ≡ d+ 4 (mod 2d). Lemmas 6.10 and 6.13 then follow from these

preliminary results and an application of the Dn relation (Proposition 2.6).

Lemma 6.8. Let S ⊂ Σ be a subsurface with single boundary component. Assume the genus

g(S) ≥ 2. Then there is a maximal chain of admissible curves on S if and only if one of the

following conditions hold:
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• g(S) ≡ 1 or 2 (mod 4) and ε(S) = 1,

• g(S) ≡ 3 or 0 (mod 4) and ε(S) = 0.

Proof. Suppose S supports a maximal chain a1, . . . , a2g(S) of admissible curves. Since the chain

determines a basis for H1(S;Z), the conditions φ(ai) = 0 completely determine φ. One can

easily compute ε(S) from this and see that the above conditions are necessary. Sufficiency

follows from Corollary 4.10.4. �

Substep 1: d odd. The objective of Substep 1 is Lemma 6.10 below. The first step is to see

that all separating twists Tc of genus d are elements of Tφ, regardless of whether c is easy.

Lemma 6.9. Let S ⊂ Σg be a subsurface of genus d with a single boundary component c. If φ

is a Z/2dZ-valued spin structure with d odd, then Tc ∈ Tφ.

Proof. If c is easy then there is nothing to show. Assume therefore that c is hard. If c is

oriented so that S lies to the right, then φ(c) = −(1− 2d) ≡ −1 (mod 2d). The assumption that

r = 2d < g − 1 implies that Σg \ S has genus at least 2. We claim that there exists a 3-chain of

admissible curves x, y, z on Σg \ S such that c ∪ x ∪ z forms a pair of pants. To see this, we

invoke Corollary 4.3 to let x ⊂ Σg \ S be an admissible curve. Let z ⊂ Σg \ S be any curve such

that c ∪ x ∪ z bounds a pair of pants; admissibility of z follows by the homological coherence

property, as c is oriented with Σg \ S to the left. To construct y, let y′ ⊂ Σg \ S be any curve

such that x, y′, z forms a chain. By Corollary 4.4, y′ can be replaced with an admissible curve y

with the same intersection properties.

Let S′ denote the connected surface of genus d+ 1 containing S and x ∪ y ∪ z. If B is a basis

for H1(S;Z), then B ∪ {x, y} forms a basis for H1(S
′;Z). Applying the formula (7) for the Arf

invariant, it follows that ε(S′) = ε(S) + 1.

Since c is hard and d = g(S) is odd, Lemma 6.8 implies that ε(S) = 0 if g(S) ≡ 1 (mod 4)

and that ε(S) = 1 otherwise. Recalling that ε(S′) = ε(S) + 1, in the first case, g(S′) ≡ 2

(mod 4) and ε(S′) = 1, and in the second case, g(S′) ≡ 0 (mod 4) and ε(S′) = 0. Lemma

6.8 then implies that c′ := ∂S′ must be easy, and so Tc′ ∈ Tφ. Applying the chain relation

(Proposition 2.4) to x, y, z shows that TcTc′ ∈ Tφ; this implies that also Tc ∈ Tφ. �

Lemma 6.10. Let φ be a Z/2dZ-valued spin structure on Σg with d odd. Assume that g satisfies

the hypotheses of Proposition 6.2. Then Tφ contains the Johnson kernel Kg.

Proof. By Theorem 2.9, it suffices to show that Tc ∈ Tφ for all separating curves c of arbitrary

genus. To do this, we combine Lemma 6.9 with the Dn relation (Proposition 2.6). Suppose c is a

separating curve on Σg. Since g = kd+1 with k ≥ 2, at least one side of c must be a subsurface

S of genus g(S) ≥ d+1. Set n := 2g(S)− 2d+1. By Corollary 4.11, there is a configuration Dn

of admissible curves as in the Dn relation for which ∆2 = c. The other boundary component

∆0 bounds a subsurface of genus d. Applying the Dn relation, we have Tn−1
∆0

Tc ∈ Tφ. But since

∆0 bounds a surface of genus d, also T∆0
∈ Tφ by Lemma 6.9. Thus Kg 6 Tφ in this case. �
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Substep 2: d even. The objective is to establish Lemma 6.13. The argument here follows a

similar outline to that of Substep 1 but now requires the two preliminary Lemmas 6.11 and 6.12.

Lemma 6.11. Let S ⊂ Σg be a subsurface of genus g(S) ≥ 5 with a single boundary component

c, such that g(S) ≡ d+ 2 (mod 2d). If φ is a Z/2dZ-valued spin structure with d even, then

Tc ∈ Tφ.

Proof. Orient c so that S lies to the left. Then

φ(c) = 1− 2g(S) ≡ 1− 2(d+ 2) ≡ −3 (mod 2d).

By Corollary 4.10.5, there exists a chain a1, . . . , a6 of admissible curves on S. Let a7 be any curve

on S such that i(a7, ak) = 1 for k = 6 and is zero for k ≤ 5, and such that c ∪ a1 ∪ a3 ∪ a5 ∪ a7

bounds a subsurface of S homeomorphic to Σ0,5. By homological coherence, a7 is admissible.

Let S′ denote the subsurface of S homeomorphic to Σg(S)−3,1 determined by the complement

of the chain a1, . . . , a7. Applying the formula (7) for the Arf invariant, one finds that ε(S′) = ε(S).

On the other hand, g(S′) ≡ g(S) + 1 (mod 4). By hypothesis, g(S) is even, and so referring to

Lemma 6.8, if c is hard, then c′ := ∂S′ must be easy. The arguments given at the conclusion of

Lemma 6.9 now apply to give the result. �

Lemma 6.12. Let S ⊂ Σ be a subsurface of genus g(S) ≥ 9 with a single boundary component

c, such that g(S) ≡ d+ 4 (mod 2d). If φ is a Z/2dZ-valued spin structure with d even, then

Tc ∈ Tφ.

Proof. This is proved along similar lines to Lemma 6.11. Arguing as in the first paragraph

of the proof of Lemma 6.11, there exists a chain a1, . . . , a15 of admissible curves on S such

that c ∪ a1 ∪ a3 ∪ · · · ∪ a15 bounds a subsurface of S homeomorphic to Σ0,9. Let S′ denote

the subsurface of S homeomorphic to Σg(S)−7,1 determined by the complement of the chain

a1, . . . , a15. The rest of the argument proceeds as in Lemma 6.11: one shows that if c is

hard, necessarily c′ := ∂S′ must be easy, and the result follows as before by the chain relation

(Proposition 2.4). �

Lemma 6.13. Let φ be a Z/2dZ-valued spin structure on Σg with d even. Assume that g

satisfies the hypotheses of Proposition 6.2. Then Tφ contains the Johnson kernel Kg.

Proof. According to Johnson’s Theorem 2.9, in order to show that Kg 6 Tφ, it suffices to exhibit

all separating twists of genus 1 and 2 as elements of Tφ. To do this, we again appeal to the Dn

relation (Proposition 2.6). Suppose c is a separating curve on Σg with g(c) ≤ 2. By hypothesis,

g ≥ kd+ 1 with d even and k ≥ 2. Since the genus of one side of c is at most 2, the genus h of

the other side of c is at least kd − 1 ≥ 2d − 1. If d ≥ 6, then 2d − 1 ≥ 11. If d = 4, then by

assumption k ≥ 5, and so h ≥ 19. If d = 2 then we assume k ≥ 6, so that h ≥ 11.

In all three of these cases, Corollary 4.11 implies that there exists an n ≥ 4 and a configuration

a, a′, c1, . . . , c2n−1 of admissible curves in the configuration of the D2n+1 relation, with ∆2 = c
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Definition 7.4. Let φ be a Z/rZ-valued spin structure on a surface Σg. The graph Cφ(Σg)

has vertices consisting of the admissible curves for φ, where a and b are adjacent whenever

i(a, b) = 0. The graph C1
φ(Σg) has the same vertex set as Cφ(Σg), but vertices a, b are adjacent

whenever i(a, b) = 1.

Lemma 7.5. C1
φ(Σg) is connected for g ≥ 5.

Proof. The first step is to establish the connectivity of Cφ(Σg). Let a, b be vertices. Choose

subsurfaces Sa, Sb containing a, b respectively, each homeomorphic to Σ2,1. By Lemma 7.3,

there is a path Sa0
, . . . , San

in Csep,2(Σg) with a ⊂ Sa0
and b ⊂ San

, with each Sai
disjoint from

Sai+1
. By Corollary 4.3, on each Sai

there exists some admissible curve ai. By construction,

a = a0, a1, . . . , an = b is a path in Cφ(Σg) connecting a to b.

The connectivity of C1
φ(Σg) now follows readily. Given a path a = a0, . . . , an = b in

Cφ(Σg), Corollary 4.4 implies that for each i, there exists some admissible curve ci such that

i(ai, ci) = i(ai+1, ci) = 1. The path a0, c0, a1, c1, . . . , cn−1, an connects a to b in C1
φ(Σg). �

8. Subsurface push subgroups and Tφ

As discussed in the introduction, the main technical result on the groups Mod(Σg)[φ] and

Tφ that we require is a criterion for a collection of Dehn twists to generate Tφ, given below

as Theorem 9.5. This is the first of two sections dedicated to proving Theorem 9.5. Here, we

formulate and prove the intermediate result Proposition 8.2, which gives a generating set for Tφ

not consisting entirely of Dehn twists. The results here concern a class of subgroups known as

spin subsurface push subgroups; these are introduced in Sections 8.1 and 8.2.

8.1. Subsurface push subgroups. Recall the classical inclusion map, as discussed in [FM12,

Theorem 3.18]. Let S′ ⊂ S be a subsurface either of genus g(S′) ≥ 2 with n ≥ 1 boundary

components, or else of genus g(S′) = 1 with n ≥ 2 boundary components. Assume that no

component of ∂S′ bounds a closed disk in S. Let a1, . . . , ak denote the boundary components of

S′ that bound punctured disks in S, let b1, b
′
1, . . . , b`, b

′
` denote the pairs of boundary components

of S′ that cobound an annulus in S, and c1, . . . , cm denote the remaining boundary components.

Let i∗ : Mod(S′) → Mod(S) denote the map on mapping class groups arising from the inclusion

i : S′ ↪→ S. Then

ker(i∗) = 〈Ta1
, . . . , Tak

, Tb1T
−1
b′
1

, . . . , Tb`T
−1
b′
`

〉.

Let ∆ be a boundary component of S′, and suppose that ∆ does not bound a punctured disk

in S. Let S′ denote the surface obtained from S′ by capping off ∆ with a closed disk. According

to (2), there is a subgroup of Mod(S′) isomorphic to π1(UTS′). The subsurface push subgroup

for (S′,∆) is defined to be the image of π1(UTS′) under the inclusion i∗ : Mod(S′) → Mod(S).

This will be written Π(S′,∆), or simply Π(S′) if the boundary component does not need to be

emphasized.

We remark here that i∗ restricts to an injection π1(UTS′) ↪→ Mod(S), even when there exists

some other boundary component ∆′ of S′ such that ∆ ∪∆′ cobounds an annulus on S. To see
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this, observe that π1(UTS′) 6 Mod(S′) is characterized by the property that f ∈ π1(UTS′) if

and only if f becomes isotopic to the identity when extended to S′. It is easy to see that no

element of ker(i∗) has this property.

8.2. Spin subsurface push subgroups. Let S′ ⊂ S be a subsurface with some boundary

component ∆ satisfying φ(∆) = −1. The following lemma shows that Mod(S)[φ] contains a

finite-index subgroup of Π(S′,∆). This subgroup, written Π̃(S′,∆), is called a spin subsurface

push subgroup. Before proceeding with the rest of the section, the reader may wish to review

the notion of a fundamental multitwist defined in Section 3.3.

Lemma 8.1. Let S′ ⊂ S be a subsurface with some boundary component ∆ satisfying φ(∆) = −1.

Then there is a finite-index subgroup Π̃(S′,∆) 6 Mod(S)[φ] ∩ Π(S′,∆) characterized by the

diagram given below, whose rows are short exact sequences:

1 // 〈T r
∆〉

//

��

Π̃(S′,∆) //

��

π1(S′) // 1

1 // 〈T∆〉 // Π(S′,∆) // π1(S′) // 1.

(10)

The subgroup Π̃(S′,∆) contains all fundamental multitwists for pairs of pants P ⊂ S′ of the

form P = a ∪ b ∪∆.

Proof. Following the discussion of Section 2.2, there exists a “geometric” generating set for

π1(UTS′,∆) of the following form:

π1(UTS′) = 〈α̃1, . . . , α̃k, ζ〉. (11)

Here αi is some simple closed curve on S′ based at ∆, and α̃i denotes the Johnson lift to

π1(UTS′). As before, ζ denotes the loop around the fiber. As an element of Mod(S′), each α̃i

is of the form Tαi,L
Tαi,R

, where αi,L denotes the curve on S′ lying to the left of αi and αi,R lies

to the right. It follows that Pi = αi,L ∪ αi,R ∪∆ forms a pair of pants on S′. Following Lemma

3.18, the fundamental multitwist

TPi
= Tαi,L

T−1
αi,R

T
φ(αi,R)
∆

lies in Mod(S)[φ] ∩ Π(S′,∆). Embedding π1(UTS′) into Mod(S′), the generating set of (11)

can be replaced by the following generating set for Π(S′,∆):

Π(S′,∆) = 〈TP1
, . . . , TPk

, T∆〉.

Define

Π̃(S′,∆) = 〈TP1
, . . . , TPk

, T r
∆〉.

By construction, Π̃(S′,∆) 6 Mod(S)[φ]. Under the projection Π(S′,∆) → π1(S′), the set

{TPi
} maps onto a generating set for π1(S′). It follows that Π̃(S′,∆) surjects onto π1(S′). As
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Tm
∆ ∈ Mod(S)[φ] if and only if r | m, it follows that Π̃(S′,∆) is indeed characterized by the

diagram (10) as claimed.

For the second claim, let P = a ∪ b ∪∆ be a pair of pants on S′. The curves a, b are isotopic

on S′ and cobound an annulus containing the basepoint. It follows that TaT
−1
b ∈ π1(S′). Via

(10), there is some lift TaT
−1
b T k

∆ ∈ Π̃(S′,∆), and as T r
∆ ∈ Π̃(S′,∆) as well, it follows that all

fundamental multitwists for P are elements of Π̃(S′,∆) as claimed. �

For the purposes of this paper, we will most often be concerned with subsurface push

subgroups for a special class of subsurfaces. Let b ⊂ Σg be a nonseparating closed curve

satisfying φ(b) = −1. The boundary component ∆ of Σg \ {b} corresponding to the left side of b

satisfies φ(∆) = −1, and to ease notation, we write Π̃(Σg \ {b}) to refer to this spin subsurface

push subgroup.

8.3. Generating admissible twists. We have arrived at the key result of the section.

Proposition 8.2. Let φ be a Z/rZ-valued spin structure on a closed surface Σg for g ≥ 5

and any integer r. Let (a0, a1, b) be an ordered 3-chain of curves with φ(a0) = φ(a1) = 0 and

φ(b) = −1. Let H 6 Mod(Σg) be a subgroup containing Ta0
, Ta1

and the spin subsurface push

group Π̃(Σg \ {b}). Then H contains Tφ.

The proof will require the preliminary Lemma 8.3, for which we introduce some terminology.

For a subgroup H 6 Mod(Σg), we say that a simple closed curve a is an H-curve if Ta ∈ H.

We also say that curves a, b are H-equivalent if there exists some f ∈ H with f(a) = b. If a and

b = f(a) are H-equivalent and Π̃(Σg \ {a}) 6 H , then also Π̃(Σg \ {b}) = fΠ̃(Σg \ {a})f
−1 is a

subgroup of H.

The following lemma establishes some sufficient conditions for H-equivalence of curves.

Lemma 8.3. Let Σg be a surface of genus g ≥ 5. Let a0, a1, b be an ordered 3-chain of curves

with φ(a0) = φ(a1) = 0 and φ(b) = −1. Let H 6 Mod(Σg) be a subgroup containing Ta0
, Ta1

and Π̃(Σg \ {b}).

(1) Let b′ be an oriented curve satisfying φ(b′) = −1 such that i(b, b′) = 0 and i(a1, b
′) = 1.

Then b and b′ are H-equivalent. It follows that Π̃(Σg \ {b
′}) 6 H.

(2) Let a′ be any nonseparating curve satisfying φ(a′) = 0 such that a′ is disjoint from the

configuration a0 ∪ a1 ∪ b. Then a′ is an H-curve.

(3) Let b′ be any nonseparating curve satisfying φ(b′) = −1 such that b′ is disjoint from the

configuration a0 ∪ a1 ∪ b. Then b and b′ are H-equivalent, and hence Π̃(Σg \ {b
′}) 6 H.

Proof. (1): If b = b′ there is nothing to prove. Otherwise, given a1, b, b
′, we define a curve b′′ as

follows. Let ε be the portion of a1 connecting the left side of b to one of the sides of b′; then b′′

is defined as the curve-arc sum b′′ := b+ε b
′. By construction b ∪ b′ ∪ b′′ bounds a pair of pants

P lying to the left of b, and i(a1, b
′′) = 0. By Lemma 3.13, there exists an orientation of b′′ such

that φ(b′′) = −1. This can be determined as follows: b′′ is oriented with P lying to the right
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if and only if P lies to the left of b′. If P lies to the left of b′, then the element TbTb′T
−1
b′′ is a

fundamental multitwist and hence an element of Π̃(Σg \ {b}) 6 H. Otherwise, TbT
−1
b′ Tb′′ is a

fundamental multitwist. In the first case, the braid relation implies that

Ta1
(TbTb′T

−1
b′′ )Ta1

(b) = b′,

while in the second case,

T−1
a1

(TbT
−1
b′ Tb′′)Ta1

(b) = b′.

In either case, the indicated element lies in H, showing the H-equivalence between b, b′.

(2): Let ε be an arc connecting a0 to a′ that is disjoint from a1 ∪ b, and define b′ := a0 +ε a
′.

It is possible that b′ = b, but this will not pose any difficulty. Then a0 ∪ a′ ∪ b′ forms a

pair of pants and b′ satisfies the intersection conditions i(b, b′) = 0 and i(a1, b
′) = 1. By the

homological coherence property, φ(b′) = −1. By the second assertion of (1), Π̃(Σg \ {b
′}) 6 H.

As a0 ∪ a
′ ∪ b′ forms a pair of pants, it follows that Ta0

T−1
a′ is a fundamental multitwist, and so

Ta0
T−1
a′ ∈ Π̃(Σg \ {b

′}) 6 H. As Ta0
∈ H by hypothesis, this shows that Ta′ ∈ H as desired.

(3): Given b′, Corollary 4.4 implies that there exists an admissible curve a′ that is disjoint

from a0 ∪ a1 ∪ b and for which i(a′, b′) = 1. Corollary 4.4 also establishes the existence of a

curve b′′, satsifying φ(b′′) = −1, with the following intersection properties:

i(b, b′′) = i(b′, b′′) = i(a0, b
′′) = 0; i(a′, b′′) = i(a1, b

′′) = 1.

By (1), b and b′′ are H-equivalent. By (2), a′ is an H-curve, so that by (1) again, b′′ and b′ are

H-equivalent, showing the result. �

Proof. (of Proposition 8.2) Let a be any admissible curve. There is some genus 2 subsurface

S′ ∼= Σ2,1 containing a, and there is also some genus 2 subsurface S ∼= Σ2,1 that contains the

curves a0, a1, b. By Lemma 7.3, there is a path S0 = S − S1 − · · · − Sn = S′ of subsurfaces

homeomorphic to Σ2,1 with boundary components ∂Si and ∂Si+1 disjoint for i = 1, . . . , n− 1,

hence Si ∩ Si+1 = ∅ for i = 1, . . . , n− 1.

For i = 1, . . . , n, let a2i be an admissible curve contained in Si; we take a2n = a. We

claim that there exist curves a2i+1 and bi on Si such that a2i, a2i+1, bi forms a chain, and

φ(a2i+1) = 0, φ(bi) = −1. To see this, let T ⊂ Si be a subsurface of genus 1 that does not

contain a2i. By Corollary 4.3, there is an admissible curve a′ contained in T . Let ε be an arc

connecting a2i and a
′; then bi := a2i +ε a

′ satisfies φ(b) = −1 for a suitable choice of orientation.

Let c be any curve on Si such that i(c, a2i) = i(c, bi) = 1. Then a2i+1 := T
φ(c)
bi

(c) is admissible,

and a2i, a2i+1, bi forms a chain as required.

We assume for the sake of induction that a2i, a2i+1 are H-curves and that Π̃(Σg \ {bi}) 6 H .

Then by Lemma 8.3.2, also a2i+2, a2i+3 are H-curves, and Π̃(Σg \ {bi+1}) 6 H. The base case

i = 0 holds by hypothesis, taking b0 = b. The claim now follows by induction. �
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9. Networks

In this section we deduce Theorem 9.5 from Proposition 8.2. The key notion is that of a

network of curves. In Section 9.1, we establish the basic theory of networks, and in Section 9.2,

we state and prove Theorem 9.5. Departing from our conventions elsewhere in the paper, in

this section we work with individual curves and not merely their isotopy classes.

9.1. Networks and their basic theory.

Definition 9.1. Let S = Σn
g,b be a surface, viewed as a compact surface with marked points.

A network on S is any collection N = {a1, . . . , an} of simple closed curves on S, disjoint from

any marked points, such that #(ai ∩ aj) ≤ 1 for all pairs of curves ai, aj ∈ N , and such that

there are no triple intersections. A network N has an associated intersection graph ΓN , whose

vertices correspond to curves x ∈ N , with vertices x, y adjacent if and only if #(x ∩ y) = 1. A

network is said to be connected if ΓN is connected, and arboreal if ΓN is a tree. A network is

filling if

S \
⋃

a∈N

a

is a disjoint union of disks and boundary-parallel annuli; each component is allowed to contain

at most one marked point of S.

The data of a network encodes both an abstract finite set of curves as well as a topological

subspace of the surface S. To avoid confusing these, let the symbol N denote this finite set,

and let N̂ denote the space. When N is arboreal, there is a simple generating set for π1(N̂ ).

To describe it, endow N̂ with the structure of a CW complex, and let T be a spanning tree for

this CW complex.

Lemma 9.2. Let N be an arboreal network. Then there is a 1–1 correspondence between the

set of edges N̂ \ T , and the set N .

Proof. Each edge of N̂ is contained in a unique element of N . For a given a ∈ N , let a1, . . . , an(a)

denote these edges, ordered so that adjacent edges are numbered consecutively. For each a ∈ N ,

the sequence a1, . . . , an(a) forms a cycle in N̂ . Thus for each a ∈ N , there is at least one edge

a1 (without loss of generality) that is not contained in T .

It remains to show that for each a ∈ N , there is exactly one edge not contained in T .

Equivalently, we must show that the intersection a ∩ T is connected as a topological space. The

assumption that N is arboreal implies that ΓN has the following property: let ΓN (a) be the

graph obtained from ΓN by removing all edges incident to a. Then each vertex b adjacent to a

in ΓN determines a distinct component of ΓN (a).

Let v, w ∈ a be vertices of N̂ , and let e1, . . . , en be the unique geodesic path in T connecting

v to w. It suffices to show that this path is contained in a. If this is not the case, let k1 (resp.

k2) be the minimal (resp. maximal) integer such that ek1
(resp. ek2

) is not contained in a. Then

exactly one vertex v1 of ek1
(resp. v2 of ek2

) lies on a, and the other lies on some adjacent curve
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b1 (resp. b2). As i(a, b1) = i(a, b2) = 1 and the path e1, . . . , en visits each vertex in N̂ at most

once, it follows that b1 and b2 are distinct elements of N . As explained in the above paragraph,

the arboreality assumption implies that every path in N̂ connecting a point in b1 to a point in

b2 must pass through a. Any such path must pass through v1 and v2: this shows that if the

path e1, . . . , en enters b1, it must pass through v1 at least twice, contrary to assumption. �

Via Lemma 9.2, each a ∈ N determines a unique based loop P (a) by following the unique

path in T from the basepoint to a. Lemma 9.3 below now follows by a standard application of

the Seifert-Van Kampen theorem.

Lemma 9.3. Let N be an arboreal network. Then π1(N̂ ) is generated by the set of loops

{P (a) | a ∈ N}. If N is moreover filling, then the map π1(N̂ ) → π1(S) is a surjection, and so

π1(S) is also generated by this collection of loops.

π1(S) is a normal subgroup of Mod(S): if α ∈ π1(S) is a mapping class corresponding to a

based loop and f ∈ Mod(S) is arbitrary, then conjugation by f takes α to the mapping class

corresponding to the based loop f(α). In the context of the “network presentation” of π1(S)

arising from the surjection π1(N̂ ) → π1(S), this means that π1(S) has a very simple normal

generating set as a subgroup of Mod(S), as the following makes precise.

Lemma 9.4. Let N̂ ⊂ S be an arboreal filling network. Let H 6 Mod(S) be a subgroup

containing Ta for each a ∈ N . If H also contains P (a1) ∈ π1(S) for some a1 ∈ N , then H

contains the entire point-pushing subgroup π1(S).

Proof. As recorded in Lemma 9.3, π1(N̂ ), and hence also π1(S), is generated by the collection

of elements P (a) for a ∈ N . We will proceed by induction. Define connected subnetworks

N0 ⊂ N1 ⊂ · · · ⊂ Nn = N

as follows: Nk consists of all those curves a at a distance of at most k from the base vertex

a1 ∈ ΓN (viewing ΓN as a metric space for which each edge has length 1). We suppose that

π1(N̂k) 6 H; the base case k = 0 holds by hypothesis.

Let a ∈ Nk+1 \ Nk be arbitrary. Let a′ ∈ Nk be adjacent to a. By the braid relation,

Ta′Ta(a
′) = a,

and hence P (a) = (Ta′Ta)P (a
′)(Ta′Ta)

−1 ∈ H. This completes the inductive step. �

9.2. Network generating sets for Tφ. Having established some of the basic theory of

networks, we can now formulate and prove the key technical result of the paper. For hypotheses

(2) and (3), the reader may wish to consult Figure 2 and the surrounding discussion of the Dn

relation (Proposition 2.6) and the configuration Dn. For an example of a network satisfying the

hypotheses of Theorem 9.5, see Figure 8.

Theorem 9.5. Let φ be a Z/rZ-valued spin structure on a closed surface Σg, with 1 ≤ r < g−1.

Let N = {an} be a connected filling network of curves on Σg with the following properties:
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(1) Every element an is admissible,

(2) There is a collection a1, . . . , a2r+4 of elements of N such that a1, . . . , a2r+3 are arranged

in the configuration of the curves D2r+3 of the D2r+3 relation, and a2r+4 corresponds

to the boundary component ∆1 associated to the subconfiguration D2r+2.

(3) Let b ⊂ Σg correspond to the curve ∆0 of the D2r+3 relation, as appearing in Figure 2.

Then N must contain some curve d with i(d, b) = 1.

(4) Let N ′ ⊂ N be the subnetwork consisting of all curves in N disjoint from b. Then N ′

must be an arboreal filling network for Σg \ {b}.

If g ≥ 5, then 〈Tai
, ai ∈ N〉 contains the admissible subgroup Tφ.

Moreover, if r is odd, then

〈Tai
, ai ∈ N〉 = Mod(Σg)[φ].

If r = 2d is even and g ≥ g(r) for the function g(r) of Definition 6.1, then 〈Tai
, ai ∈ N〉 is a

subgroup of finite index in Mod(Σg)[φ].

Proof. Define

H = 〈Tai
, ai ∈ N〉.

By hypothesis (1), H 6 Tφ. We establish the opposite containment Tφ 6 H. The remaining

assertions in the statement of Theorem 9.5 follow by an appeal to Proposition 5.1 or Proposition

6.2 as appropriate. The containment Tφ 6 H will follow from Proposition 8.2. To see that

the hypotheses of Proposition 8.2 are satisfied by H, it is necessary to establish a containment

Π̃(Σg \ {b}) 6 H, and to find suitable curves corresponding to a0, a1 in the statement of

Proposition 8.2.

Consider the curves {a1, . . . , a2r+4} ⊂ N corresponding to D2r+3 ∪ {∆1} as in Corollary 2.7,

as posited by hypothesis (2). Without loss of generality, assume that a1, a2, a3 ∈ N correspond

to the curves a, c1, a
′ of D2r+3, so that b ⊂ Σg is one of the boundary components of the chain

a1, a2, a3. Let d be the curve with i(d, b) = 1 posited by hypothesis (3), and let P be the pair

of pants bounded by a1, a3, b. The intersection d ∩ P must be a single arc, since d ∈ N and

so #(d ∩ a1) ≤ 1 and #(d ∩ a3) ≤ 1. Without loss of generality, assume #(d ∩ a1) = 1 and

#(d∩a3) = 0. Then the 3-chain a1, d, b on Σg corresponds to the 3-chain a0, a1, b of Proposition

8.2, since φ(b) = −1 by the homological coherence property. By assumption, Td, Ta1
∈ H, so it

remains only to establish Π̃(Σg \ {b}) 6 H.

By hypothesis (4), the restriction N ′ determines an arboreal filling network on Σg \ {b}. The

same is therefore true on the surface Σg \ {b} obtained by filling in the boundary component

corresponding to the left side of b (where b is oriented so that a1, a3 lie to the left). The surface

Σg \ {b} is connected, since the hypothesis i(d, b) = 1 implies that d is nonseparating. We treat

Σg \ {b} as a surface Σ1
g−1,1, with the marked point corresponding to the filled-in left side of b.
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We will show that Π̃(Σg \ {b}) 6 H by appealing to Lemma 8.1. We must therefore show

that T r
b is an element of H, and show that the image of the map

〈Ta, a ∈ N ′〉 → Mod(Σg \ {b})

contains the point-pushing subgroup π1(Σg \ {b}). Applying Corollary 2.7.2, we obtain T r
b ∈ H .

To exhibit π1(Σg \ {b}), we will appeal to Lemma 9.4. The element Ta1
T−1
a3

corresponds to an

element P (a1) ∈ π1(Σg \ {b}). By Lemma 9.4, it follows that the entire point-pushing subgroup

π1(Σg \ {b}) is contained in the subgroup 〈Ta, a ∈ N ′〉 6 H. �

10. Linear systems in toric surfaces

The purpose of this section is to give a minimal account of the work of Crétois–Lang in

[CL17a]. We do not attempt to give a detailed summary of the theory of toric surfaces; the

interested reader is referred to [CL17a] and the references therein.

Consider the integer lattice Z
2 ⊂ R

2. A lattice polygon ∆ is the convex hull of a finite

collection {v1, . . . , vn} of n ≥ 3 elements vi ∈ Z
2, not all collinear. Given a polygon ∆ which

contains at least one lattice point in the interior int(∆), the adjoint polygon ∆a is defined to be

the convex hull of int(∆) ∩ Z
2.

The following proposition is a concise summary of the correspondence between line bundles

on toric surfaces and polygons. For details, see [CL17a, Section 3]. In item (1), a unimodular

transformation of R2 is an affine map A : R2 → R
2 (necessarily invertible) such that AZ2 = Z

2.

Proposition 10.1. Let X be a smooth toric surface.

(1) Associated to any nef line bundle L on X is a convex lattice polygon ∆L, well-defined

up to unimodular transformations.

(2) If L is nef, then the roots of L (i.e. the line bundles S for which nS = L for some integer

n) are in correspondence with the dilates 1
n∆L for which 1

n∆L is a lattice polygon.

(3) Suppose that L is ample and that int(∆L) ∩ Z
2 is nonempty. Then the adjoint line

bundle L ⊗KX is nef, and ∆L⊗KX
= (∆L)a.

(4) Let L be ample. The genus g(L) of a smooth C ∈ |L| is given by the formula

g(L) = #(int(∆L) ∩ Z
2) = #((∆L)a ∩ Z

2).

(5) Let L be ample. A generic fiber C ∈ |L| is hyperelliptic if and only if (∆L)a is a line

segment.

The following proposition indicates the connection between the divisibility properties of

L⊗KX as an element of Pic(X) (or after Proposition 10.1.2, the divisibility of (∆L)a), and the

presence of invariant higher spin structures. It is a folklore theorem; see [Sal16, Theorem 1.1]

and [CL17a, Proposition 2.7] for written accounts.
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Proposition 10.2. Let L be an ample line bundle on a smooth toric surface X. For any r

such that the adjoint line bundle L ⊗KX admits a rth root in Pic(X), there exists a (unique)

Z/rZ-valued spin structure φ preserved by the monodromy µL:

ΓL 6 Mod(Σg(L))[φ].

Proposition 10.1 suggests that it might be profitable to “model” a smooth C ∈ |L| on the

lattice polygon ∆L.

Construction 10.3 (Inflation procedure). Let ∆ be a lattice polygon. Let B(r, x) denote the

open ball of radius r centered at x ∈ R
2. Define the surface with boundary

∆◦ := ∆ \
⋃

v∈int(∆)∩Z2

B(v, 1/4).

The inflation of ∆ is the surface C∆ obtained as the double of ∆◦ along its boundary. It is a

closed oriented surface of genus g = #(int(∆) ∩ Z
2). In particular, for ∆ = ∆L for some ample

L, the inflation C∆ has genus g(L). See Figure 8 for the example of O(6) on CP
2.

The first indication of the utility of the inflation procedure is provided by the following

theorem of Crétois–Lang. For an inflation C∆, define an A-curve to be any simple closed curve

on C∆ that corresponds to the circle of radius 1/4 centered at an interior lattice point of ∆.

Theorem 10.4 ([CL17a], Theorem 3). Let L be an ample line bundle on a smooth toric surface

X. There is a homeomorphism f : C0 → C∆L
identifying a smooth C0 ∈ |L| with C∆L

, such

that every A-curve a ⊂ C∆L
is a vanishing cycle, and

Ta ∈ ΓL.

Crétois–Lang also determine a second family of elements of ΓL arising from the combinatorics

of ∆. A primitive integer segment is a line segment σ ⊂ R
2 whose endpoints lie on Z

2 and whose

interior is disjoint from Z
2. A primitive integer segment determines a line in R

2 in the obvious

way. When a lattice polygon ∆ is fixed, it will be understood that a primitive integer segment

connects lattice points v, w ∈ ∆ ∩ Z
2, and such that v and w do not lie along the same edge of

∆. Under the inflation procedure, a primitive integer segment corresponds to a simple closed

curve. For a primitive integer segment σ, we write Tσ for the corresponding Dehn twist.

Suppose that ∆ is a lattice polygon, let d ≥ 1 be an integer. We say that ∆ is divisible by d

if the dilate 1
d∆ is again a lattice polygon. If ∆ is divisible by d, then after translating ∆ so

that one vertex lies in the sublattice dZ2, the remaining vertices do also. We write

∆(d) := ∆ ∩ dZ2,

relative to any such embedding. The following is a combination of Propositions 7.13 and 7.16 of

[CL17a].
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Theorem 10.5 (Crétois–Lang). Let L be an ample line bundle on a smooth toric surface

X. Suppose that the adjoint polygon (∆L)a is divisible by d. Suppose that σ is a primitive

integer segment such that the line it generates intersects (∆L)a(d). Then, with respect to the

identification f : C0 → C∆L
of Theorem 10.4, we have that σ is a vanishing cycle and Tσ ∈ ΓL.

Taken together, Theorems 10.4 and 10.5 produce a large family of Dehn twists in ΓL. In the

next section, we will see that they provide sufficiently many elements to satisfy the hypotheses

of Theorem 9.5, which will lead to a proof of Theorem A.

11. Proof of Theorem A

Fix a toric surface X and an ample line bundle L. This determines the polygons ∆L and

(∆L)a, as well as the monodromy group ΓL. For convenience, we will drop reference to L from

the notation, and speak of ∆,∆a,Γ, etc. We also shorten notation for the inflation curve C∆L
,

and refer simply to C instead.

By hypothesis, r is the highest root of the line bundle L ⊗KX . Proposition 10.1.2 implies

that ∆a is r-divisible. Our first objective is to find a network N satisfying the hypotheses

of Theorem 9.5. This will show all but the last assertion of Theorem A. Once this has been

accomplished, we will see that the answer to Question 1.2 readily follows.

Genus hypotheses. We first address the genus assumptions of Theorem 9.5. Recalling that

∆a is assumed to be r-divisible, a calculation using Pick’s formula implies that for r > 1,

g ≥
(r + 1)(r + 2)

2
.

This shows that g ≥ 5 for all r > 1 and that g ≥ r + 1 for r = 2d even. For r = 2d = 4, this

gives g ≥ 15, and for r = 2d = 8 this gives g ≥ 45. In all cases, the hypothesis g ≥ g(r) of

Theorem 9.5 holds.

The remaining assumption to be addressed is the requirement that r < g − 1. As noted in

Remark 3.6, r must divide 2g− 2, so we must only show that the cases r = 2g− 2 and r = g− 1

do not occur in the study of linear systems on toric surfaces. Suppose first that r = 2g− 2. This

implies that the adjoint polygon ∆a contains precisely g lattice points, but is also 2g−2-divisible.

This is an absurdity: let e be an edge of the lattice polygon 1
2g−2∆a; then the dilate (2g − 2)e

contains at least 2g − 1 > g lattice points. In the case r = g − 1, a similar analysis shows that

in fact ∆a must equal the g − 1-fold dilation of a primitive integer segment. By Proposition

10.1.5, this implies that the general fiber of the linear system is hyperelliptic, which we have

excluded from consideration.

Constructing the network N . Recall that according to Theorem 10.4, each integer point

v ∈ ∆a ∩ Z
2 determines a vanishing cycle in Γ; we introduce the notation A(v) to refer to the

curve associated to v. When we have a specific identification of ∆ with a lattice polygon, we will

use the notation A(x, y) to refer to the A-curve at the integer point (x, y). Similarly, given a

primitive integer segment σ, we let B(σ) denote the associated simple closed curve on C. When
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∆ is identified with a lattice polygon, we write B((x, y), (z, w)) for the B-curve associated to

the primitive integer segment connecting (x, y) and (z, w). We refer to these as A-curves and

B-curves, respectively.

To define the network N , it will be useful to introduce some terminology. Let σ be a primitive

integer segment, and let L(σ) be the line determined by σ. For an integer point v, we say that σ

points towards v if v ∈ L(σ). We also introduce the notion of a κ-standard embedding. Let κ be

a vertex of ∆a. A κ-standard embedding is an embedding of ∆ into R
2 such that κ corresponds

to (0, 0) and such that the edges of ∆a incident to κ lie along the x and y axes. Any embedding

∆ ⊂ R
2 can be made κ-standard by applying a suitable unimodular transformation. Following

Proposition 10.1.1, we are free to apply unimodular transformations as needed.

Let κ be a vertex of ∆a. Let N be the network consisting of the following curves:

(1) All A-curves.

(2) The curve B(σ), where σ is defined as follows. Let κ′ be a vertex of ∆a adjacent to κ.

Let e′ be the edge of ∆a containing κ′ and not containing κ, and let w ∈ ∂∆a be the

integer point lying on e′ that is connected to κ′ by a primitive integer segment σ.

(3) The curve B(τ) defined as follows. Under a κ-standard embedding of ∆, necessarily

(0,−1) ∈ ∂∆. Since ∆a is assumed to be d-divisible, the edge of ∆a lying along the

x-axis extends at least as far as (d, 0). We take τ to be the primitive integer segment

identified with B((d, 0), (0,−1)) in this embedding of ∆.

(4) All B-curves associated to primitive integer segments pointing towards κ, but such that

the associated line does not pass through the interior of the segments σ or τ or the

primitive integer segment connecting (−1, 1) to (0, 1).

See Figure 8 for a picture of N in the case of the line bundle O(6) on CP
2.

Remark 11.1. As can be seen in Figure 8, certain elements of N are mutually isotopic. This

harmless excess is introduced only to make the definition of N more tidy.

In anticipation of an appeal to Theorem 9.5, we also define the subnetwork

N ′ := N \ {A(0, 1)}. (12)

First properties of N . We first claim that N is a network. Indeed, all A-curves are mutually

disjoint. The set of primitive integer segments under consideration meet only at integer points

in ∆a, and hence the associated B-curves are also mutually disjoint. Suppose σ has endpoints

v, w. Then i(A(v), B(σ)) = i(A(w), B(σ)) = 1, and i(A(u), B(σ)) = 0 for any other integer

point u. Thus N is a network.

Indeed, N is a connected network, as follows from the description of ΓN and ΓN ′ given below.

Lemma 11.2. The graph ΓN has the homotopy type of S1, and ΓN ′ is a tree, i.e. N ′ is

arboreal.
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We claim that N is filling. This will be established in the next two lemmas. Recall the

definition of ∆◦ from the definition of the inflation procedure in Construction 10.3.

Lemma 11.3. Let S ⊂ ∆ denote the union of all primitive integer segments associated to

B-curves in N . Then

(1) Each component of ∆◦ \ S is simply-connected.

(2) For each component D of ∆◦ \ S, the intersection D ∩ ∂∆ has at most one component.

Proof. We begin by observing that there are homotopy equivalences ∆◦ ' ∆ \ (∆a ∩ Z
2) and

∆◦ \S ' ∆\ (S ∪ (∆a∩Z
2)). It will be tidier to work with this latter space, and so we formulate

our arguments in this setting.

Embed ∆ into R
2 and consider S as a planar graph contained in ∆. Basic properties of

convexity imply that for any integer point v ∈ Z
2 ∩∆a, the line connecting v and κ does not

intersect either of B(σ) or B(τ). Hence this line determines a union of primitive integer segments

in N , and upon the removal of these segments over all v, there is an equality

∆ \ (S ∪ (Z2 ∩∆a)) = ∆ \ S.

To prove (1), it therefore suffices to show that H1(∆ \ S;Z) = 0. There is a map of pairs

f : (∆, ∂∆) → (S2, ∗), where ∗ ∈ S2 is an arbitrary basepoint. f induces a homeomorphism

f : ∆ \ ∂∆ → S2 \ {∗}.

Since the segment B(τ) (among many others) intersects ∂∆, it follows that f induces a homotopy

equivalence

f : ∆ \ S → S2 \ f(S),

and hence there is an isomorphism

f∗ : H̃1(∆ \ S;Z) → H̃1(S
2 \ f(S);Z).

By Alexander duality, H̃1(S
2 \ f(S);Z) ∼= H̃0(f(S);Z) = 0, the latter holding because S is

connected by construction. This proves (1).

For (2), consider the subconfiguration S′ ⊂ S consisting of all primitive integer segments

lying along a line connecting κ to any integer point v ∈ ∂∆. This provides a subdivision of ∆

into convex sets, each of which has a vertex at κ. Convexity then implies that each component

D′
i of ∆ \ S′ intersects ∂∆ in at most one component. The subdivision of ∆ induced by S is a

refinement of that induced by S′. Since all segments in S that intersect ∂∆ are elements of S′,

there is an equality

∂∆ \ (S ∩ ∂∆) = ∂∆ \ (S′ ∩ ∂∆).

Thus each component of ∂∆ \ (S ∩ ∂∆) corresponds to a distinct component of ∆ \ S, and (2)

follows. �

Lemma 11.4. Each component of C \ N is simply-connected, i.e. N is filling.
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Proof. By construction, the “deflation” map p : C → ∆ takes components of C\N to components

of ∆ \ S, where S continues to denote the union of all primitive integer segments associated to

B-curves in N . This map on components is at most 2-to-1, and is exactly 2-to-1 in the case

where the component D of ∆ \ S does not contain a lattice point in its interior and does not

intersect ∂∆. In this 2-to-1 case, each component D̃1, D̃2 of C \N is mapped homeomorphically

by p onto the component of ∆◦ \S corresponding to D. Since D is assumed to contain no lattice

points in the interior, it follows that the corresponding component of ∆◦ \S is simply-connected,

and hence D̃1, D̃2 are as well.

Lemma 11.3.1 implies that no component of ∆ \ S contains an interior lattice point, and so it

remains only to be seen that every component of C \ N that corresponds to a component of

∆ \ S intersecting ∂∆ is simply-connected. Let D̃ ⊂ C \ N be such a component, and let D be

the corresponding component of ∆◦ \ S. Observe that D̃ is constructed by attaching two copies

of D along D ∩ ∂∆. It follows that D̃ is simply-connected if and only if D ∩ ∂∆ is connected.

The result now follows by Lemma 11.3.2. �

Applicability of Theorem 9.5. It remains to verify the properties (1)− (4) of Theorem 9.5.

By Theorem 10.4, for an A-curve A(v), the associated Dehn twist TA(v) ∈ Γ. By Theorem 10.5,

any curve B(ξ) ∈ N arising from a primitive integer segment ξ also satisfies TB(ξ) ∈ Γ. It follows

from the definitions that any curve c in any connected network is necessarily non-separating.

For a nonseparating curve c ⊂ C, the Dehn twist Tc ∈ Γ only if the associated spin structure

satisfies φ(c) = 0. Hence (1) holds.

For (2), we take a κ-standard embedding of ∆. It is now easy to find a collection of curves

S2r+4 determining the configuration D2r+3∪{∆1} of Corollary 2.7. We take a = B((0, 0), (0,−1))

and a′ = B((0, 0), (0, 1)). Since ∆a is assumed to be r-divisible, the edge of ∆a lying along the x-

axis extends at least as far as (r, 0). For 1 ≤ k ≤ r+1, we can therefore take c2k−1 to be A(0, k−1),

and for 1 ≤ k ≤ r, we take c2k to be B((k−1, 0), (k, 0)). We take ar+1 = B(τ) = B((r, 0), (0,−1)).

The segments connecting (0,−1), (0, 0), (1, 0), . . . , (d, 0), (0,−1) separate ∆ into two components,

hence under the inflation procedure, the associated B-curves separate C. From the construction

it is clear that the curves bound a subsurface of genus 0 with r + 2 boundary components, as

required for the configuration D2r+3 ∪ {∆1} of Corollary 2.7.

For (3), we observe that from the construction, the ∆0 curve of the configuration D2r+3

corresponds to b := B((−1, 1), (0, 1)) on ∆. One sees that A(0, 1) intersects this curve, and is

an element of N as needed.

For (4), we begin by observing that only the element A(0, 1) ∈ N intersects B((−1, 1), (0, 1)).

Enumerate the components of C \ N as {Di}. We claim that there are exactly three disks

D1, D2, D3 in C \ N with boundary lying on A(0, 1), and that b ⊂ D1 ⊂ C. Indeed, using the

notation of item (2) in the definition of N , the disks D2 and D3 arise via inflation from the

component of ∆\S bounded by the triangle formed by e′, σ, and the primitive integer segment(s)
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connecting κ to w. Neither D2 nor D3 intersects b, and the only curve in N intersecting b is

A(0, 1); this implies that b ⊂ D1 as claimed.

Thus, in (C \ N ) ∪A(0, 1), the disks D2 and D3 are joined into a single disk D+, while D1

has two portions of its boundary joined to create an annulus with core curve b. Upon passing to

(C \ {b}) \ N ′, this annulus is cut open to create two annular regions bounded by b, while the

disks D+ and Di for i ≥ 4 are unaffected. Thus N ′ does determine a filling network on C \ {b}

as required. Arboreality of N ′ was established in Lemma 11.2.

From admissible twists to vanishing cycles. In order to address Question 1.2, it is necessary

to better understand the relationship between admissible twists and vanishing cycles. A first

remark is that any vanishing cycle is necessarily an admissible curve, so it remains only to show

the converse. We observe that if α is a loop in M(L) based at C0 that determines a vanishing

cycle, then any conjugate βαβ−1 also determines a vanishing cycle. To complete the argument,

it therefore suffices to establish the following claim.

Lemma 11.5. Let a be any admissible curve on C0. Then Ta is conjugate in Γ to some twist

Tc for c a vanishing cycle.

Proof. An admissible curve a determines a vertex in the graph C1
φ(C0) of Section 7. Theorems

10.4 and 10.5 together imply that Γ has a generating set consisting entirely of vanishing cycles.

Thus the set of vertices in C1
φ(C0) corresponding to vanishing cycles is nonempty.

We claim that if a ∈ C1
φ(C0) is adjacent to some vanishing cycle c, then a is also a vanishing

cycle. Indeed, the condition that a and c are adjacent in C1
φ(C0) is equivalent to i(a, c) = 1, and

hence by the braid relation,

Ta = (TcTa)Tc(TcTa)
−1.

As Tc, Ta ∈ Γ by the first part of Theorem A, the above observation implies that Ta is a vanishing

cycle. The claim now follows from the connectivity of C1
φ(C0) established in Lemma 7.5. �

This concludes the proof of Theorem A. �
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et Industrielles, No. 1040.

[Don00] S. Donaldson. Polynomials, vanishing cycles and Floer homology. In Mathematics: frontiers and

perspectives, pages 55–64. Amer. Math. Soc., Providence, RI, 2000.



MONODROMY AND VANISHING CYCLES IN TORIC SURFACES 53

[FM12] B. Farb and D. Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical

Series. Princeton University Press, Princeton, NJ, 2012.

[Gro02] L.C. Grove. Classical groups and geometric algebra, volume 39 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, 2002.

[HJ89] S. Humphries and D. Johnson. A generalization of winding number functions on surfaces. Proc. London

Math. Soc. (3), 58(2):366–386, 1989.

[Joh80a] D. Johnson. An abelian quotient of the mapping class group Ig . Math. Ann., 249(3):225–242, 1980.

[Joh80b] D. Johnson. Spin structures and quadratic forms on surfaces. J. London Math. Soc. (2), 22(2):365–373,

1980.

[Joh83] D. Johnson. A survey of the Torelli group. In Low-dimensional topology (San Francisco, Calif., 1981),

volume 20 of Contemp. Math., pages 165–179. Amer. Math. Soc., Providence, RI, 1983.

[Joh85a] D. Johnson. The structure of the Torelli group. II. A characterization of the group generated by twists

on bounding curves. Topology, 24(2):113–126, 1985.

[Joh85b] D. Johnson. The structure of the Torelli group. III. The abelianization of T . Topology, 24(2):127–144,

1985.

[Mat00] M. Matsumoto. A presentation of mapping class groups in terms of Artin groups and geometric

monodromy of singularities. Math. Ann., 316(3):401–418, 2000.

[Put08] A. Putman. A note on the connectivity of certain complexes associated to surfaces. Enseign. Math. (2),

54(3-4):287–301, 2008.

[Sal16] N. Salter. On the monodromy group of the family of smooth plane curves. Preprint,

https://arxiv.org/pdf/1610.04920.pdf, 2016.

E-mail address: nks@math.columbia.edu

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027


	1. Introduction
	2. Mapping class groups
	2.1. Basics
	2.2. The Birman exact sequence
	2.3. Relations
	2.4. The Torelli group

	3. Spin structures
	3.1. Spin structures
	3.2. Operations on curves
	3.3. The group `39`42`"613A``45`47`"603AMod(S)[]; first examples of elements
	3.4. ``Classical'' spin structures

	4. The action of the mapping class group on spin structures
	4.1. Odd r
	4.2. Even r

	5. r odd: generating `39`42`"613A``45`47`"603AMod(g)[] by Dehn twists
	6. r even: T has finite index in `39`42`"613A``45`47`"603AMod(g)
	7. Connectivity of some complexes
	8. Subsurface push subgroups and T
	8.1. Subsurface push subgroups
	8.2. Spin subsurface push subgroups
	8.3. Generating admissible twists

	9. Networks
	9.1. Networks and their basic theory
	9.2. Network generating sets for T

	10. Linear systems in toric surfaces
	11. Proof of Theorem A
	References

