MONODROMY AND VANISHING CYCLES IN TORIC SURFACES

NICK SALTER

ABSTRACT. Given an ample line bundle on a toric surface, a question of Donaldson asks
which simple closed curves can be vanishing cycles for nodal degenerations of smooth curves
in the complete linear system. This paper provides a complete answer. This is accomplished
by reformulating the problem in terms of the mapping class group-valued monodromy of the

linear system, and giving a precise determination of this monodromy group.

1. INTRODUCTION

Let X be a smooth toric surface and £ an ample line bundle on X. In the complete linear
system |L|, there is a hypersurface D known as the discriminant locus consisting of the singular
curves C' € |£|. The complement

M(L) = [L]\D
therefore supports a tautological family of closed Riemann surfaces of some genus g(£). Topo-
logically, this is a fiber bundle 7 : £(£) — M(L) with fiber ¥,,). Consequently, there is a
monodromy representation

He - Fl(M(ﬁ),Co) — MOd(Co)

Here, Cy € M(L) is a fixed curve, and Mod(Cy) := 7 (Diff *(Cp)) denotes the mapping class
group of Cy (see Section 2.1). Under ug, a based loop v € m1(M(L),Cy) is mapped to (the
isotopy class of) the diffeomorphism p () € Diff(Cy) obtained by “parallel transport” of Cy
along v. For details, see, e.g., [FM12, Section 5.6.1].

In this paper, we give a nearly complete answer to the following fundamental question. Define
FL = Im(,ug) S MOd(Eg(ﬁ)).

Question 1.1. What is I'c? When is it a finite-index subgroup of Mod(¥y(zy) ¢ Can one give

a precise characterization of I'p ?

Question 1.1 is closely related to a question posed by Donaldson [Don00]. Fix a curve
Co € M(L) and an identification Cy = X r). Define a vanishing cycle for £ as a simple closed
curve v on Cy for which there is a degeneration of Cy to a curve C’ with a single node, such
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that v becomes null-homotopic on C’. If ¢ is a vanishing cycle, then necessarily the Dehn twist

T, lies in T'z; it arises from a loop in M(L) encircling the nodal curve in |L].

Question 1.2 (Donaldson). For £ an ample line bundle on a smooth toric surface X, which

curves (on a fized Cy) are vanishing cycles?

A first insight into Questions 1.1 and 1.2 is to observe the presence of an invariant “higher
spin structure”. Let Kx denote the canonical bundle of X. The adjoint line bundle of L
is the line bundle £ ® Kx. Define r € N to be the highest root of £L ® Kx in Pic(X). As
explained in Proposition 10.2, associated to L ® K is a Z/rZ-valued spin structure ¢, and the
associated stabilizer subgroup Mod(3,(,))[@,] (see Definition 3.14). Proposition 10.2 asserts
that necessarily I'x < Mod(Xy())[¢c]. The function ¢, gives rise to a notion of admissible
curve and the associated subgroup 75, < Mod(X,(.))[@,] of admissible twists (see Definition
3.16). If a curve c is a vanishing cycle, it is necessarily admissible; see Lemma 3.15. Our main
theorem asserts that these necessary conditions are also sufficient (at least “virtually” so, in the

case r is even).

Theorem A. Let L be an ample line bundle on a smooth toric surface X for which the generic
fiber is not hyperelliptic. Assume r > 1 or else g(L) > 5.

o Ifris odd, then I'y = Mod(Xyz))[¢c].

o Ifris even, then I'y < Mod(Xy(r)) is a finite-index subgroup that contains Ty, .

In either case, [Mod(X ) : T'z] is finite. Moreover, Question 1.2 admits the following complete
answer: a curve <y is a vanishing cycle if and only if « is an admissible curve.

We remark that many familiar algebraic surfaces such as CP? and CP* x CP' are smooth
toric surfaces. For instance, as a special case of Theorem A we obtain the following theorem
concerning smooth plane curves. The case d = 5 was addressed in [Sall6], while the cases d < 4

are either classical or trivial.
Theorem 1.3. Set g = (dgl), and define
I'y < Mod(Xy)

to be the monodromy group of the family of smooth curves in CP? of degree d, i.e. the group Tz
for the line bundle £ = O(d) on CP?. Then there exists a Z/(d — 3)Z-valued spin structure ¢g
such that the following hold.

o Ifd is even, then I'y = Mod(2,)[¢ad].
o Ifd is odd, then Ty is of finite index in Mod(X,)[¢a4], where I'y contains the subgroup
Ts, of admissible twists.

Theorem A also addresses a conjecture that was independently formulated by the author in
[Sall6] in the case of X = CP?, and in full generality by Crétois-Lang [CL17a].
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Conjecture 1.4. For any pair (X, L) as above, there is an equality

Iz = Mod(3y(z))[dc).

Theorem A resolves Conjecture 1.4 in the affirmative whenever r is odd, and shows that in
the case r even, I'z is at least of finite index in Mod(X,(.))[¢dc].

Theorem A is proved using a combination of methods from toric geometry and the theory
of the mapping class group. On the toric end of the spectrum, we make essential use of the
powerful results developed by Crétois—Lang in [CL17a]. The centerpiece of their theory is a
combinatorial model for a curve Cy € M(L) based around a convex lattice polygon. Their
results give a description of vanishing cycles in terms of lattice points and line segments, and
allow one to produce many elements of I';. Crétois—Lang developed their methods in order to
address Question 1.2 and Conjecture 1.4 in the case r < 2, and obtained complete answers in
these cases. See [CL17a] for the case r = 1, and [CL17b] for the case r = 2, as well as the case
where the general fiber is hyperelliptic.

On the mapping class group side, we carry out an extensive investigation of the groups
Mod(X,)[¢] and T, mentioned above. We remark here that the theory of higher spin structures
does not require the presence of a specific ample line bundle £, and so we adjust notation
accordingly and refer to Riemann surfaces 3,4, spin structures ¢, etc. Our main result here
is a general criterion for a collection of Dehn twists to generate (a finite-index subgroup of)
Mod(%,)[¢], given in Theorem 9.5.

Outline of the paper. The bulk of the paper (Sections 2 - 9) is devoted to developing the
mapping class group technology necessary to show that the vanishing cycles investigated by
Crétois—Lang generate a finite-index subgroup of the mapping class group. This culminates in
Theorem 9.5. Portions of Theorem 9.5 are established earlier in Proposition 5.1 and Proposition
6.2.

Sections 2 - 4 contain preliminary results that are used throughout the paper. Section 2
collects the necessary background on mapping class groups; these results are standard and are
included so as to fix notation and terminology, and to serve as a guide to the reader approaching
the paper from a background in toric geometry. Section 3 presents the basic theory of higher
spin structures, building off the foundational work of Humphries—Johnson [HJ89]. Section 4
describes the action of the mapping class group on the set of higher spin structures. This
yields several crucial corollaries (Corollaries 4.5, 4.10, and 4.11) concerning the existence of
configurations of curves with prescribed properties which are used extensively in subsequent
sections.

Theorem 9.5 gives a criterion for a collection of Dehn twists to generate the so-called admissible
subgroup Ty associated to a higher spin structure ¢. A study of the admissible subgroup is
sufficient to answer Question 1.2. The reader interested only in this portion of Theorem A can

skip Sections 5 and 6 and jump directly from Section 4 to Section 7.
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The proof of Theorem 9.5 is carried out in Sections 7 - 9. Section 7 establishes the connectivity
of certain simplicial complexes acted on by the stabilizer subgroup of a higher spin structure.
These results are used in the argument of Section 8, and also underlie the method by which the
admissible subgroup is used to study the set of vanishing cycles. Section 8 is devoted to a study
of certain subgroups of the admissible subgroup; the main result Proposition 8.2 furnishes a
generating set for 7, in terms of these subgroups. Section 9 introduces the notion of a network;
ultimately a network is a technical device used to factor the generators given in Proposition
8.2 into products of Dehn twists. Theorem 9.5 gives a sufficient condition, formulated in the
language of networks, for a collection of Dehn twists to generate a subgroup containing the
admissible subgroup.

The portion of Theorem A that goes beyond Question 1.2 concerns establishing that the
admissible subgroup is finite-index in the mapping class group. This is the content of Sections
5 and 6, which treat the case where the Z/rZ-valued spin structure under study has r odd or
even, respectively. The arguments for these two cases are substantially different, owing to the
fact that in the case of r even, the higher spin structure has an Arf invariant which must be
accounted for in various guises.

The net result of Sections 2 - 9 is a criterion for a finite collection of Dehn twists to generate
a finite-index subgroup of the mapping class group. In the final two sections, these results
are applied in the setting of monodromy groups of linear systems on toric surfaces. Section
10 contains the necessary background material on toric surfaces, concentrating on the work of
Crétois—Lang describing a particular finite collection of vanishing cycles. Section 11 exhibits
a network amongst the set of vanishing cycles discussed in Section 10 and verifies that this

network satisfies the hypotheses of Theorem 9.5 in order to obtain Theorem A.

Acknowledgements. The author would like to extend his warmest thanks to R. Crétois and L.
Lang for helpful discussions of their work. He would also like to acknowledge C. McMullen for
some insightful comments on a preliminary draft, and M. Nichols for a productive conversation.
A special thanks is due to an anonymous referee for a very careful reading of the preprint and

for many useful suggestions, both mathematical and expository.

2. MAPPING CLASS GROUPS

This section collects background material on mapping class groups that will be used throughout
the arguments in Sections 3 through 9. Most of the material can be found in [FM12] and so will
only be touched on briefly. The exception to this is the D,, relation of Section 2.3, which will

consequently be dealt with in greater detail.

2.1. Basics. The material in this section is almost certainly well-known to a reader conversant

in mapping class groups, but is included so as to fix notation and terminology.
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FIGURE 1. The standard generators for 3 ;.

Genus, boundary, punctures. All surfaces under consideration are oriented and of finite
type. A surface of genus g with n punctures and b boundary components is denoted by X7 .

When one or more of b,n = 0, the corresponding decoration will be omitted.

Intersection numbers. Let a,b be simple closed curves on a surface S. Often we will confuse
the distinction between a simple closed curve and its isotopy class. The geometric intersection
number between a,b will be notated i(a,b) (see [FM12, Section 1.2.3]). For oriented simple
closed curves a,b, the algebraic intersection number is denoted (a,b). Of course, algebraic

intersection depends only on the homology classes [a], [b] € H;(S;Z).

n

0b written

Mapping class groups. Let Eg’b be a surface. The mapping class group of ¥
Mod(X} ), is defined as

Mod(xy,) = mo(Diff " (27,957 ,)),

where Diﬁ'+( ob 823’17) denotes the group of orientation-preserving diffeomorphisms of E;b
that restrict to the identity on the boundary of X7, and fix the punctures pointwise (not merely

setwise, as some authors adopt).

The standard generators. For a simple closed curve a on EZ’Vb, the left-handed Dehn twist
about a is written T,. For g > 2, the standard generators form a generating set for Mod(E’; b)
consisting of the Dehn twists about the curves ai,ag,b1,...,bg,¢1,...,¢9-1,d1, ..., dpyn—1

shown in Figure 1.

The change-of-coordinates principle. The classification of surfaces theorem asserts that if
S, 8" are two (connected and orientable) surfaces of finite type with the same genus, number of
punctures, and number of boundary components, then there is a diffeomorphism f: S — S’.
This is often exploited in the study of mapping class groups in the guise of the “change-of-
coordinates principle”. It is difficult to write down a single, all-encompassing statement of
the change-of-coordinates principle, but informally, it states that any configuration of curves,
arcs, and/or subsurfaces of a surface S is determined up to diffeomorphism by combinatorial

information alone. In the present paper, the change-of-coordinates principle will often be
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invoked tacitly. The reader interested in a more thorough discussion of the change-of-coordinates
principle is referred to [FM12, Section 1.3].

One consequence of the change-of-coordinates principle is that it becomes easy to understand
the Mod(S) orbits of many different kinds of configurations. As an example, we discuss here

the action on geometric symplectic bases for S.

Definition 2.1. Let S be a surface of genus g > 0 with n > 0 boundary components and b > 0
punctures. A geometric symplectic basis for S is a collection of oriented simple closed curves

B ={a1,p,...,a4, By} satisfying the following properties:

(1) i(a;,b;) =1 for each i =1,...,g, and all other pairs of elements of B are disjoint,
(2) ([a;],[bi]) =1foreachi=1,...,g.

Remark 2.2. The (homology classes of the) curves in a geometric symplectic basis form a
basis for H;(S;Z) in the sense of linear algebra only when n + b < 1. In this paper, geometric
symplectic bases are used to study Z/rZ-valued spin structures. Proposition 3.8 and Theorem
3.9 together imply that a Z/rZ-valued spin structure is determined by its “signature” (Definition

4.1) in combination with its values on a geometric symplectic basis.
The following is a typical statement that is proved using the change-of-coordinates principle.

Lemma 2.3. Let B and B’ be two geometric symplectic bases for S. Then there is a diffeomor-
phism f: S — S such that f(B) = B'.

2.2. The Birman exact sequence. A reference for this subsection is [FM12, Section 4.2].
Consider a surface E;b with n > 1 and 29 + b+ n > 4. There is an inclusion Z;}’b — Egzl

obtained by filling p in. This induces the Birman exact sequence
1= m (37,1 p) = Mod(2],) — Mod(E) 1) — 1. (1)

There is a slight variation on the Birman exact sequence where one fills in a boundary
component with a closed disk, originally due to Johnson. In order to formulate this, we recall
that the unit tangent bundle to a surface S is written UT'S. Then the inclusion Z;b — Eg7b_1
induces the short exact sequence

1= mUTE],_1,p) — Mod(27 ) — Mod(27,_1) — 1, (2)

where p is a unit tangent vector based at p. In both situations, the kernels admit descriptions
in terms of Dehn twists. Consider first the case of (1). Let o be an embedded, oriented simple
closed curve based at p, corresponding to an element a € wl(EZ)gl, p). Let ay (resp. ag)
denote the left (resp. right) side of a neighborhood of «. Both «p,ar are simple closed
curves on X7 ,. Then a € Wl(E;i;l,p) corresponds to Ty, T, ! € Mod(%} ;). The embedding

P Wl(EZ;l’p) — Mod (X} ;) is known as the point-pushing map, and 7 (ZZ_;I) is often referred
to as the point-pushing subgroup of Mod(Z;b).
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It is a basic topological fact that for any surface E;’;l, there exists a collection of simple
closed curves aq, ..., ap based at p, such that {aq,...,ar} generates ﬂl(Z;;l,p). In practice,
this means that to exhibit ﬁl(E;"b, p) as a subgroup of some group H < Mod(E;b), it suffices
to exhibit this finite collection of multitwists.

In the case of (2), everything is much the same. Let X, < X7, | be an inclusion
corresponding to capping off a boundary component A of E;b. Let p € Z;b_l be a point on
the interior of this new disk, and p a tangent vector at p. Suppose that & € Wl(UTE;Lybil,ﬁ)

corresponds to a framed simple closed curve a based at p. We define oy, and ag as before. Then

P(a) =T, T;}Tk

artapR

where k € Z is the winding number of the tangent vector field specified by &, relative to the
tangential framing of the underlying curve a. The subgroup m (UTX] , ;. p) is known as the
disk-pushing subgroup of Mod(EZ,b).

There is an analogous set of “geometric” generators for Wl(UTEZJ)_l,ﬁ). Let a,...,ar be a
collection of C'-embedded simple closed curves on g.b—1 based at p such that 71'1(2];%_1, p) =
(aq,...,04) as above. Each «; determines an element &; € 7?1(22,1,71713) via the so-called
Johnson lift, whereby «; is framed using the forward-pointing tangent vector. Suppose that
each &; is based at some common tangent vector p. Then (U TE;‘)b_l, p) has a generating set

of the following form:

m(UTEg,1,P) = (a1, .-+, Gk, (),
where ( is the loop around the S* fiber in the fibration S* — UTEZ,,)_1 — Z;b_l. In terms of
Dehn twists, the Johnson lifts &; correspond to mapping classes Ty, , Ty, ,1R as before, while (

corresponds to Th.

2.3. Relations. In this subsection we collect various relations in the mapping class group that

will be used throughout the paper.

The braid relation. Suppose a,b are simple closed curves satisfying i(a,b) = 1. Then the
corresponding Dehn twists satisfy the braid relation:

T, TyT, =TT, Ty.

We will also employ the following alternative form, formulated in terms of the curves a,b
themselves:
TaTb(a) =b.

The chain relation. A chain of simple closed curves is a sequence (aq, .. ., a,) of simple closed
curves such that i(a;, aj+1) = 1 and i(a;, a;) = 0 otherwise. Let v denote a regular neighborhood
of a chain of length n, where the representative curves aq, ..., a, are in minimal position. When
n is odd, dv has two components A; and As; for n even, v = A is a single (necessarily
separating) curve. Abusing terminology, we will speak of the boundary of a chain itself, by which

we mean the boundary of v. Given a subsurface S with 1 or 2 boundary components, a chain
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FIGURE 2. The configuration of curves used in the D, relation. Note the

presence of the unlabeled curve cog41 on the far right side.

ai,...,a, of curves on S is maximal if there is a deformation retraction of S onto a; U---U ay,.

The following appears as [FM12, Proposition 4.12].
Proposition 2.4 (Chain relation). For n odd,
(Tay -+ To,))" ™ =T, Ta,,

and for n even,

(Ta, ... Ty, )" 2 = Th.

Remark 2.5. The intersection pattern of a chain of n simple closed curves is recorded by the
Dynkin diagram of type A,,, where vertices in the graph are adjacent if the corresponding curves
intersect, and are nonadjacent if the curves are disjoint. Such a chain of curves determines a
homomorphism from the Artin group A(A4,,) of type A, into the mapping class group Mod(v),
where generators of A(A,,) are sent to Dehn twists about the corresponding curves.

Under this homomorphism, the chain relation is a consequence of the fact that A(A,,) has
nontrivial center. The twist(s) about the boundary component(s) appearing on the right-hand
side of the expressions in Proposition 2.4 are elements of the center of Mod(v), while the
left-hand side merely gives the expression for a generator of Z(A(A,)) as a word in the standard
generators of A(A,). In [Mat00, Section 2.4], Matsumoto explains how to determine the precise
expression for this central element as a Dehn multitwist; this is the principle underlying the

“D,, relation” given in Proposition 2.6 below.

The D,, relation. There is an analogous (though less ubiquitous) relation that arises from a
configuration of curves whose intersection pattern is modeled on the Dynkin diagram of type
D,,. Proposition 2.6 below is the specialization of [Mat00, Proposition 2.4] to the case of an
Artin group of type D,,. The case of n odd is treated explicitly in [Mat00, Theorem 1.5], while

the case of n even is given an alternate proof in [Sall6, Proposition 4.5].
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Proposition 2.6 (D, relation). Let n > 3 be given, and express n = 2g+1 orn = 2g + 2
according to whether n is odd or even. With reference to Figure 2, let H, be the group generated

by elements of the form T,, with x € 9, one of the curves below:
Dp ={a,d ,c1,...,cn 2}

Then forn =2g+ 1 odd,

T Tp, € Hy,
and for n =29+ 2 even,

TXOTAlTA’l € H,.

The D, relation has some useful consequences which we record in Corollary 2.7 below. It is
necessary to first describe the curves C} that will appear in the statement. For 1 < k < g+ 1,
let vk be a regular neighborhood of the subconfiguration Zs511 C Z,,. Each such vy is a surface
of genus k with two boundary components. One of these is Ag; the other is defined to be the
curve Cy. Note in particular that Cy = Ay and that Cy1 is the unlabeled boundary component

of the ambient surface on the far right side of Figure 2.

Corollary 2.7. Fiz notation as in Proposition 2.6, and for 1 < ¢ < 2g + 3, consider the

configurations
Dy ={a,d ;c1,. .. co 2}
as i Figure 2. Let H2+9+3 be the group generated by Hogi3 and the Dehn twist Ta,. Then the

following assertions hold:

(1) TA/I 6H2t7+3’
(2) TG € Hy 5 for any 1 <k < g+ 1 and any m such that (2k — 1)m divides g.

Proof. The proof of (1) follows from an important simple principle. Given a mapping class f

and a simple closed curve d, there is a relation

JTaf " =Ty

It follows that if f,Ty € H2+g+3, then also T(qy € H;'g+3. To establish (1), we will find f € H;rg+3
such that f(cag4+1) = A}. This will be accomplished by means of the braid relation.
The curves a,d’,cy,...,co4 are arranged in the configuration of the Dyy o relation; the

boundary components correspond to Ag, A1, A]. By the Dygio-relation (Proposition 2.6),

g +
TAOTAlTAi S H2g+3,

and since Th, € H{HS by assumption, also TXOTA/1 € H;;]Jr?,. Since Ay is disjoint from both
cog+1 and A7, the braid relation implies that

g _ A/
T629+1TAQTA/1 (629+1) = Tczg+1TA'1 (CQQJrl) - A1'

Since (T, Ta;) € Hyy, 3, this shows Ta, € Hy, 5 as required.
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We observe that (2) follows from the Dgj_ relation (as applied to the subconfiguration
Doi—1) and the claim that Tgo € H;'g+3; this latter assertion follows from the D49 relation
(applied to Za442) and (1). O

2.4. The Torelli group. Most of the material in this subsection can be found in [FM12,
Chapter 6], but see also [Joh83]. We begin by observing that the action of Mod(X,) on Hy(2,;Z)

preserves the algebraic intersection pairing (-, -), leading to the symplectic representation
U : Mod(X,) — Sp(29,Z). (3)

This is classically known to be a surjection. The Torelli group, notated Z, is the kernel of this
representation:

Ty = ker(¥).

Bounding pairs and separating twists. There are two types of elements in Z, that will be
of particular importance. Suppose that ¢, d are simple closed curves such that ¢ U d bounds
a subsurface S = X¥j, 2. Then TCTC;1 € 1, is known as a bounding pair map. The genus of a
bounding pair map is slightly ambiguous: if ¢ U d bounds a surface ¥, 2, then also ¢ U d bounds
a surface X4_j_1,2 on the other side. One defines the genus of TCT(;1 as min{h, g — h —1}. The
second important class of elements is the class of separating twists - these are Dehn twists T, for
c a separating curve. The genus of a separating twist T, that bounds a subsurface of genus h is
defined as g(¢) = min{h, g — h}.

The Johnson homomorphism. A fundamental tool in the study of Z, is the Johnson

homomorphism, due to D. Johnson in [Joh80a]. This is a surjective homomorphism
7:Z, — N Hy/Hz, (4)
where for convenience we define H,4 := H;(2,; A) for some abelian group A. The embedding
Hy; — N3Hy is defined via
zr 2 AN (1 Ay + - F 2 AYg),

where {z1,...,y,} is a symplectic basis for Hz. Recall that a symplectic basis must satisfy
(i, ys) =1 and (x;, x;) = (x;,y;) = 0 for i # j.

We will not need to know a precise definition of 7, but it will be useful to know some basic

properties of 7, including how to compute 7 on bounding pair maps and separating twists.

Lemma 2.8 (Johnson, [Joh80a]).
1) 7 is Sp(2g; Z)-equivariant, with respect to the conjugation action on L, and the evident
g
action on N>Hz/Hy.
(2) 7(T.) = 0 for any separating twist Te..
(3) Let cUd bound a subsurface Xy, 5. Choose any further subsurface X1 C Xp 2, and let
{z1,91,...,2n, yn} be a symplectic basis for Hi(Xp1;Z). Then

T(T.T; ) = (x1 Ayr + -+ 2 Ayn) Ald,
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where c is oriented with Xy, o to the left. In the case h =1, if a, 5, is a mazimal chain

on X192, then
T(TT; ) = [ A B A ).

The Johnson kernel. The Johnson kernel, written Ky, is the kernel of the Johnson homomor-
phism:
Ky = ker(7).

A fundamental theorem of Johnson gives an alternate characterization of /C; in terms of
separating twists.

Theorem 2.9 (Johnson, [Joh85al). Let T, be the subgroup of K, generated by all separating
twists of genus at most two. Then for all g > 3,

Tg:’Cg-

3. SPIN STRUCTURES

In this section we introduce and study higher spin structures and their stabilizer subgroups.
Section 3.1 defines higher spin structures and presents the work of Humphries—Johnson that gives
a cohomological formulation of a higher spin structure. Section 3.2 discusses some cut-and-paste
operations on simple closed curves and how these operations interact with higher spin structures.
Section 3.3 defines spin structure stabilizer groups and some important elements of these groups.
Finally Section 3.4 explains the connection between higher spin structures and the classical

theory of spin structures as quadratic forms on vector spaces over Z/27Z.

3.1. Spin structures. Let S be a surface of genus g > 0. For simplicity, we assume in this
section that S can have boundary components but not punctures; for surfaces with puncture, one
can simply remove an open neighborhood of the puncture to produce a surface with boundary.
Let S denote the set of isotopy classes of oriented simple closed curves on S. In keeping with
standard practice, the term “curve” will often be used to refer to an isotopy class of curves.
Crucially, curves are not required to be essential (see property (2) of Definition 3.1). The
following definition is due to Humphries—Johnson [HJ89]; see Remark 3.2 for a discussion of

how to reconcile their definition with the one given here.

Definition 3.1 (spin structure). A Z/rZ-valued spin structure on S is a function ¢ : S — Z/rZ
satisfying the following two properties.

(1) (Twist-linearity) Let ¢,d € S be arbitrary. Then

¢(Te(d)) = ¢(d) + (d; c)¢(c)  (mod 7).

(2) (Normalization) For ¢ the boundary of an embedded disk D C S, oriented with D to
the left, ¢(¢) = 1.
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Remark 3.2. The definition of a Z/rZ-valued spin structure presented in Definition 3.1 is
superficially different from that given by Humphries—Johnson [HJ89] in several respects. First, it
should be noted that Humphries—Johnson study a more general notion of “twist-linear function”;
only spin structures are needed in the present paper. Secondly, in Definition 3.1, simple closed
curves are considered up to the equivalence relation of isotopy. This is an a priori different
equivalence relation than the notion of “L-direct homotopy” defined in [HJ89, p. 366]. The
precise definition of L-directness is cumbersome, but if two simple closed curves ¢ and d are
L-directly homotopic, then they are in particular homotopic in the ordinary sense. It is well-
known that homotopy and isotopy determine the same equivalence relation on simple closed
curves, see e.g. [FM12, Proposition 1.10]. Moreover, an isotopy is an instance of an L-direct

homotopy, so that these notions coincide in our setting.

Remark 3.3. In the literature, higher spin structures go by various names and have various
definitions; the term “r-spin structure” is especially common. It is not a priori clear how to
reconcile the definition given here with others. See Remark 3.7 for a brief discussion, or [Sall6,

Sections 2-3] for a fuller treatment.

Convention 3.4. Often we will speak of the value ¢(c) where ¢ is some Z/rZ-valued spin
structure and c is a curve without a specified orientation. Such a statement should be understood

to mean that there is some unspecified orientation on ¢ for which ¢(c) has the stated value.

The Johnson lift. Recall from the discussion in Section 2.2 the notion of the Johnson lift.
In [HJ89], Johnson-Humphries use the Johnson lift to give a homological formulation of a
Z/rZ-valued spin structure. The following is an amalgamation of the Remark following Theorem
2.1 and Theorem 2.5 of [HJ89].

Theorem 3.5 (Humphries—Johnson). Let S be a surface. An element 1 € HY(UTS;Z/rZ)

determines a Z/rZ-valued spin structure via
a = (@),

where « is a simple closed curve on S and & is the Johnson lift. This determines a 1 — 1

correspondence
{¢ a Z/rZ-valued spin structure on S} +» {¢ € H (UTS;Z/rZ) | $(¢) = 1}.

Remark 3.6. From the standard presentation
g
m(UTEg) = (a1, b1, ..., a4,bg,C | H[ai,bz‘] =(*7%)
i=1

and the Universal Coefficient Theorem, one sees that

HYUTE,; A) = Hom(m (UTY,), A) = Hom(Z* & Z/(2g — 2)Z, A).
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¢

FiGUure 3. The smoothing operation.

The factor Z/(2g — 2)Z in Hi(UTY,;Z) = 7?9 ® Z/(2g — 2)Z is generated by the class of ¢, the
Johnson lift of the non-essential curve ¢. In the case A = 7Z/rZ, it follows that there exists a

spin structure if and only if r | (29 — 2).

Remark 3.7. Via covering space theory, Z/rZ-valued spin structures on X, are in correspon-
dence with cyclic r-fold coverings (71:_2/9 — UTY, that restrict to connected coverings of the
fiber S1. In the setting of linear systems on toric surfaces, such coverings arise from the presence
of roots of the canonical line bundle of the generic fiber. See Proposition 10.2 and the references
mentioned therein for more details.

An important consequence of Theorem 3.5 is the fact that Z/rZ-valued spin structures satisfy
a property known as the homological coherence criterion. This follows by combining Theorem
3.5 with [HJ89, Lemma 2.4].

Proposition 3.8 (Homological coherence criterion). Let ¢ be a Z/rZ-valued spin structure
on a surface S, and let S' C S be a subsurface with Euler characteristic x(S") = m. Suppose
98"y =c1U---Ucy, and all ¢; are oriented so that S’ is to the left. Then > ¢(c;) = m.

Theorem 3.5 shows that Z/rZ-valued spin structures are determined by a finite amount
of data. In the sequel it will be useful to have an explicit criterion for the equality of two
Z/rZ-valued spin structures. The following appears as [HJ89, Corollary 2.6].

Theorem 3.9 (Humphries—Johnson). Let S be a surface of genus g > 0. Let B ={v1,...,7}
be a set of oriented simple closed curves such that the set {[y1],...,[vk]} forms a basis for
Hy(X4;Z). Suppose ¢ and ¢ are Z/rZ-valued spin structures on S. Then ¢ = if and only if
d(vi) = ¥(vi) for each v; € B.

3.2. Operations on curves. In what follows, we will make use of two procedures for con-
structing new simple closed curves from old. Here, we define these operations and collect some

facts about how they interact with spin structures.

Definition 3.10 (Smoothing, curve sum). Let C = {c1,...,¢,} be a collection of oriented

embedded simple closed curves on a surface S. Suppose that all intersections between elements
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-~
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§

FIGURE 4. The curve-arc sum operation.

of C are transverse. The smoothing of C is the embedded multicurve obtained from C by smoothly
resolving all intersections in the unique orientation-preserving way. See Figure 3.

Now suppose « and § are oriented simple closed curves. For natural numbers m, n, define
the curve sum ma + nf as the smoothing of m parallel copies of o with n copies of 5. In case

m < 0 or n < 0, the curve sum ma + nf can be defined as before, with the orientation on «

(resp. B) reversed if m < 0 (resp. n < 0). See Figure 4.
By choosing arbitrary representatives in minimal position, both of these operations are

well-defined on the level of isotopy classes.

Lemma 3.11. Let a, 8 be oriented simple closed curves in minimal position, and let ¢ be a

Z/rZ-valued spin structure. Then for any integers m,n,
d(ma + nf) = mé(a) + no(B).
If in addition, i(a, 8) =1 and ged(m,n) = 1, then ma + nB has a single component.

Proof. The first assertion follows directly from the identification of ¢ with an element of
HYUTS;Z/rZ) given in Theorem 3.5, while the second is straightforward to verify. O

Definition 3.12 (Curve-arc sum). Let o and 8 be disjoint oriented simple closed curves on
S, and let € be an arc connecting « to [ whose interior is disjoint from o U 8. A regular
neighborhood v of aUe U § is homeomorphic to ¥y 3. Two of the boundary components of
v are homotopic to « and [, respectively. The curve-arc-sum « +. § is the third boundary

component of v. Again, the curve-arc sum descends to the level of isotopy classes.

Lemma 3.13. Let o, 8,e,v be as above. Orient a, 8 so that € connects the left sides of «, 3,
and orient a +. 8 so that the subsurface v is to the right. Then for ¢ a Z/rZ-valued spin

structure,

Pla+e B) = ¢(a) +o(8) + 1.
In addition, on the level of homology, [a +. 8] = [a] + [B].

Proof. Observe that x(v) = —1. By the homological coherence criterion (Proposition 3.8),

—1=¢(a) + ¢(B) + ¢(—(a +: B)),
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where —(a 4. ) denotes the curve o 4. 3 with orientation opposite to that specified above.
By the case (m,n) = (—1,0) of Lemma 3.11, it follows that ¢(—(a +. B)) = —é(a +. 8), from
which the first claim follows. The second claim is an immediate consequence of the orientation
conventions. O

3.3. The group Mod(S)[¢]; first examples of elements. For any surface S, there is an
obvious (left) action of Mod(S) on the set of Z/rZ-valued spin structures: for f € Mod(S) and
c €S, define (f - ¢)(c) = ¢(f1(c)). Similarly, if f : S — S’ is a diffeomorphism and ¢ is a
7 /rZ-valued spin structure on S’; there is a pullback f*(¢) defined on S via (f*®)(c) = ¢(f(c)).

Definition 3.14 (Stabilizer subgroup). Let ¢ be a spin structure on a surface S. The stabilizer
subgroup of ¢, written Mod(S)[#], is defined as

Mod(5)[¢] = {f € Mod(S) | (f - ¢) = ¢}-

Let ¢ be a Z/rZ-valued spin structure on a surface S. Below we discuss some fundamental

examples of elements in Mod(S)[¢].

Dehn twist powers and admissible twists. The twist-linearity formula of Definition 3.1

immediately implies the following characterization of Dehn twists in Mod(S)[¢].

Lemma 3.15. Let ¢ be a simple closed curve on S. If ¢ is separating, then T, € Mod(S)[¢]. If
c is nonseparating, then T* € Mod(S)[¢] if and only if k¢(c) =0 (mod r). In particular, for c
nonseparating, T, € Mod(S)[¢] if and only if ¢p(c) = 0.

Definition 3.16 (Admissible). A nonseparating curve ¢ with ¢(c) = 0 is called an admissible
curve. The associated element T, € Mod(S)[¢] is called an admissible twist. The group generated
by all admissible twists is written 74, and is called the admissible subgroup.

Fundamental multitwists. Let P = ¥ 3 be a pair of pants with boundary curves «, 3, 7.
Suppose that ¢(a) = a,$(8) = b, and that ¢(v) = ¢, with all curves oriented so that P lies to
the left. By the homological coherence property, a + b+ ¢ = —1.

Definition 3.17. Let P and ¢ be as above. A ¢-bounding multitwist associated to P, denoted
Tp(x,y,2), is given by

Tp(x,y,2) = T3TETS
for any choice of integers x,y, z such that Tp € Mod(S)[¢].

By the above, Tp(r,r,7) is a ¢-bounding multitwist for any P and ¢, but for special values

of a, b, c, there are much simpler examples.

Lemma 3.18. Let P be as above, and suppose thatb = —a, so that ¢ = —1. Then Tp(1,—1,b) =
TaTﬁ_le; is a ¢-bounding multitwist. The element Tp(1,—1,b) is called a fundamental multitwist
for P and is denoted Tp.
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Proof. Let d be any curve on S; we must show that ¢(d) = QS(TQTEITAI;(d)). As «, 8, are all
disjoint, the twist-linearity property, in combination with the fact that [« + 8 +~] = 0 in Hy(S5),

gives

HTaTy ' T3(d) = é(d) + (d, aya — (d, B)b — (d, )b
o(d) = (d,a+ B +)b
¢

(d).

]

Remark 3.19. Of course, if Tp(1, —1, b) is a fundamental multitwist, then so is Tp(1, —1,b+kr)
for any k € Z. An important special case is when ¢(a) = ¢(8) = 0. Then ToéTg1 is a fundamental

multitwist.

3.4. “Classical” spin structures. Spin structures in the sense of Definition 3.1 generalize
the more familiar notion of a “classical” spin structure. In our setting, a classical spin structure
is a spin structure valued in Z/27Z. We pause here to briefly review the theory of classical spin
structures and the connection with our definition. These results, especially the theory of the
Arf invariant, will play a crucial role in the analysis of Z/rZ-valued spin structures for r even to
be begun in Proposition 4.9 and Corollary 4.10, and returned to in Section 6.

Let V be a vector space over the field Z/2Z equipped with a nondegenerate symplectic pairing
(-,-) (i.e. a nondegenerate bilinear pairing satisfying (z,z) = 0 for all € V). The motivating
example is V' = Hy(X4;Z/2Z) with the intersection pairing. A Z/2Z quadratic form relative to
(-,+) is a function q : V' — Z/27Z such that for any x,y € V, the equation

q(z+y) = q(x) + qy) + (z,y) (5)

holds.
Let B={z1,y1,...,%4,yq} be a symplectic basis for V. Tt is clear that ¢ is determined by its
values on B. Define Q(V (-, -)) as the set of Z/27Z quadratic forms on V relative to (-,-); then a

choice of B provides a bijection
QV, () = (z/22)*.

There is an evident action of the group Sp(V,{(:,-)) of (-,-)-preserving automorphisms on

To understand the set of orbits, we introduce the Arf invariant. The Arf invariant of ¢ is the
element of Z/27 defined by the following formula:

Arf(q) := Z q(xi)q(y:).
i=1

q is said to be even or odd according to whether Arf(q) = 0,1 respectively; in this way we will
speak of the parity of a spin structure. The following records some well-known properties of the

Arf invariant.
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Lemma 3.20. Let (V,(-,-)) be a symplectic vector space over Z/2Z, and let q,q' € Q(V, {-,-))

be quadratic forms.

(1) Arf(q) is well-defined independently of the choice of symplectic basis,
(2) q and ¢’ are in the same orbit of Sp(V, (-,-)) if and only if Arf(q) = Arf(¢’).

Suppose now that ¢ is a Z/2dZ-valued spin structure in the sense of Definition 3.1. The
reduction Z/2d7Z — Z/2Z associates to ¢ an underlying Z/2Z-valued spin structure which we
denote ¢. A priori, ¢ is defined on the set S of isotopy classes of oriented curves on Yy It
follows from [Joh80b, Theorem 1A] that ¢ factors through the map [] : S — Hi(Xy;Z/2Z).
The induced map

¢ Hy(Sy;Z/27) — 7.)27

is not quite a classical spin structure, but it follows from [Joh80b, Theorem 1A] that the function

aSNl

g =0 +1 (6)

does determine a classical spin structure.

In the remainder of this paper we will exclusively use the term “spin structure” in the sense
of Definition 3.1. The reader versed in classical spin structures should be aware that certain
formulas appear different in this setting. For instance, a Dehn twist about some nonseparating
curve ¢ preserves a Z/2Z-valued spin structure ¢ if and only if ¢(c) = 0, whereas a transvection
about some nonzero v € V preserves a quadratic form ¢ if and only if ¢(v) = 1. Likewise, if ¢
is a Z/2dZ-valued spin structure, the formula for the Arf invariant Arf(¢) of the underlying

classical spin structure is given by

g

Arf(¢) = D ((zs) + 1)((yi) +1) (mod 2). (7)

i=1

4. THE ACTION OF THE MAPPING CLASS GROUP ON SPIN STRUCTURES

In what follows, we will need to understand the action of Mod(X,) on the set of Z/rZ-valued
spin structures. Following the discussion in Section 3.4, when r is even, the Arf invariant shows
there are at least two orbits of Mod(S) on the set of Z/rZ-valued spin structures, but it is not
clear what happens for odd r, nor whether there are further invariants leading to more orbits.
The goal of this section is to give a complete description of this action. In the case of r odd, the
mapping class group action on the set of Z/rZ-valued spin structures is described in Proposition
4.2, and for r even it is described in Proposition 4.9. Both results can be understood as asserting

that there are no “higher Arf invariants”.

4.1. Odd 7. In the case of r odd, we will need to consider surfaces with multiple boundary
components. Before formulating the results, we define the notion of the signature of a Z/rZ-

valued spin structure.
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Definition 4.1 (Signature of a Z/rZ-valued spin structure). Let S be a surface equipped with
a Z/rZ-valued spin structure ¢. Enumerate the boundary components as Aq,..., A, each one
oriented so that S is to the left. The signature of S rel ¢ is defined as the n-tuple of values
sig(S, @) = (¢(A1), ..., d(A,)). We will also speak of the signature of an individual Ay, defined

as ¢(Ag).

Proposition 4.2. Fiz an odd integer r. Let S be a surface, and let ¢ and ¢ be Z/rZ-valued
spin structures on S satisfying sig(¢) = sig(v)). Suppose that either g(S) # 1 or else g =1 and
there is at least one boundary component with signature ¢(c1) = (c1) =k for some k such that
k + 1 generates Z/rZ. Then there is a mapping class f € Mod(S) such that f*(1)) = ¢.

Proof. The proof is by induction on the genus g(S). If g(S) = 0, then every curve c on S is
separating, so that the homological coherence criterion (Proposition 3.8) implies that ¢(c) and
¥(c) can be computed just from the signature. In this case, it follows that in fact ¢ = 1.

For g(S) > 1, let ag, By be curves on S satisfying i(ag, Bo) = 1. Choose nonzero integers
a,b € Z such that a = ¢(agp) and b = ¢(fy) (mod r). Let d = ged(a, d), and define x = a/d,y =
b/d; by construction, x,y are coprime. Define the curve a; = yag — 28y in the sense of Definition
3.10. By Lemma 3.11, ¢(ay) = 0.

Choose any curve g satisfying i(a1,v0) = 1. We claim there exists some separating oriented
curve ¢ on S that is disjoint from 79 U a; and such that ¢(c) = k for k such that k+ 1 generates
Z/rZ. In the case g(S) = 1 this is true by hypothesis, while for g(S) > 2, the curve ¢ can be
taken to be the neighborhood of some subsurface 7' C S with T' = 3; ; and T disjoint from
a1 U~ In this case, orient ¢ so that T lies to the right. By the homological coherence property,
such a c satisfies ¢(c) = 1, and since r is odd, the claim follows.

Either c is isotopic to a boundary component of S and is oriented with S lying to the right,
or else (by the change-of-coordinates principle), there exists an arc ¢ from the left side of ¢ to
the left side of ¢ that is disjoint from «;. In the former case, there exists an arc gy from the right
side of vy to the right side of ¢ that is disjoint from «;. Via Lemma 3.13, the curve-arc sum
Y1 = Y0 +¢, ¢ satisfies ¢(y1) = d(70) — (k+ 1) in the former case, and ¢(y1) = ¢(v0) + (k+ 1) in
the latter case. Since the curve c is null-homologous, there is an equality [y1] = [Y0]. A further
appeal to the change-of-coordinates principle shows that there is another arc £; from the left side
of 71 to the left of ¢, again disjoint from «;. This process can therefore be repeated indefinitely,
giving rise to curves 7, satisfying ¢(vm) = ¢(70) + m(k + 1). By hypothesis, k + 1 € Z/rZ
is a generator, so that ¢(v,,) = 0 for some m. Set 81 = ~,, for such an m. By construction,
i(a1, 1) = 1.

Likewise, construct curves o}, 8] satistying i(of, 51) = 1 and ¥ (o)) = ¢(B1) = 0. Take (open)
regular neighborhoods T and T} of oy U 81 and o U 31, respectively. There is a diffeomorphism
f1: Ty — T for which fi(a;) = o} and fi(B1) = B;. Define ¢; = 0T} and ¢j = 9T]. Then
¢(c1) = 1 when ¢; is oriented with T} on the right, and similarly for ¢j. The curve ¢; is therefore

a boundary component of S\ T} with signature ¢(c1) = 1, and likewise for ¢}. This shows that
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the inductive hypothesis is satisfied, and so there exists a diffeomorphism fo: S\ Ty — S\ T}

taking ¢; to ¢} and fixing each remaining mutual boundary component, such that

W s\ty) = ¢ |s\1o.

The diffeomorphisms f; and fs can be chosen in such a way as to extend to a diffeomorphism
f:8—= 8. Let B={ai,p,...,0q, B4} be a geometric symplectic basis for S, with a1, 1 the
same curves as above. Necessarily ay, O are curves on S\ T} for k > 2. By construction, the spin
structures ¢ and f*(¢) take the same values on each element of B, and sig(S, ¢) = sig(S, f*(¥)).
It then follows from Proposition 3.9 that ¢ = f*(¢) as claimed. O

Proposition 4.2 has several corollaries that will be used extensively in the remainder of the
paper. These play the role of a change-of-coordinates principle for surfaces in the presence of a
Z/rZ-valued spin structure. The first of these was established in the second paragraph of the
proof of Proposition 4.2. We remark that the assumption that r is odd played no role in the

argument.

Corollary 4.3. Let r be an integer and let ¢ be a Z/rZ-valued spin structure on a surface S.
Let 8" C S be a subsurface of genus h > 1. Then there is some admissible curve a C S’ that is

not parallel to a boundary component.

This in turn leads to another useful result that will allow us to construct curves with prescribed
intersection properties and arbitrary ¢-values.

Corollary 4.4. Let r be an integer and let ¢ be a Z/rZ-valued spin structure on a surface S.
Let a,cq,...,c; be a collection of simple closed curves. Assume that there is some connected
subsurface T C S of positive genus disjoint from a,cy,. .., ck, and that there is an arc € connecting
a to OT that is disjoint from all c;. Then for £ € Z/rZ arbitrary, there is a simple closed curve
ag for which i(ag, ¢;) = i(a,c;) fori=1,...,k, and for which ¢(a;) = £.

Proof. By Corollary 4.3, there exists an admissible curve b C T' that is not boundary-parallel.
The arc € can be concatenated with an arc joining 0T to b; denote this extended arc by &’.
Set ¢y = ¢(a) (where a is oriented with & lying to the left), and define ay, := a. Define
Apy+1 = Ggy +e b. By Lemma 3.13, ¢(ag,+1) = d(ag) +1 = 4o+ 1.

To see that i(ag,+1,¢i) = i(a, ¢;), we appeal to the bigon criterion of [FM12, Proposition 1.7].
Choose representative curves for a,cy, ..., ¢k, pairwise in minimal position. The bigon criterion
asserts that a, ¢; are in minimal position if and only if the configuration a U ¢; does not bound
any bigons, i.e. an embedded disk whose boundary is the union of an arc of a and an arc of
¢; meeting in exactly two points. The curve-arc sum ay, 41 meets each ¢; in exactly the same
set of points as ay,. To conclude, it thus suffices to see that no bigons were introduced by the
summing procedure. The only arc of ag,+; that is not also an arc of ay, is the one along which
the summing procedure is performed; denote the original arc of ay, by a and the modified arc
by «’. Suppose that there is an arc v of ¢; such that o’ U~ bounds a bigon. As o/ = a+. b,
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it must be the case that the curve o Uy is isotopic to b. But by assumption, b C T is not
boundary-parallel, so this cannot happen.

To construct ay for ¢ € Z/rZ arbitrary, one simply repeats the above construction, producing,
for any t > 0, a curve ay,4+; with the same intersection properties as ay, and satisfying
¢(a50+t) =ly+t. O

For the remaining corollaries of Proposition 4.2, we re-instate the requirement that r be odd.

Corollary 4.5. Let r be an odd integer and let ¢ be a Z/rZ-valued spin structure on a surface
S. Let 8" C S be a subsurface of genus h > 1, and suppose that if h =1, then S’ includes some
boundary component of signature k such that k + 1 generates Z/rZ.

(1) For all x € Z/rZ, there exists some nonseparating curve ¢ supported on S’ satisfying
o(c) =z,

(2) For any 2h-tuple (i1, j1,...,in,Jn) of elements of Z/rZ, there is some geometric sym-
plectic basis B = {a1,b1,...,an,bp} for S" with ¢(ag) = iy and ¢(by) = je for all
1<0<h,

(8) For any 2h-tuple (ki,...,kan) of elements of Z/rZ, there is some chain (aq,...,asp)
of curves on S’ such that ¢(ag) = k¢ for all 1 < € < 2h.

Proof. Certainly (1) follows from (2). To establish (2), choose any geometric symplectic basis
B = {a},b;} on S’. There is some spin structure ¢ on S’ for which ¢ (a}) = i, and (b)) = je.
By Proposition 4.2, there is a diffeomorphism f of S’ such that f*(3) = ¢. Then B = f~1(B’)
has the required properties.

We will deduce (3) from (2). Given the 2h-tuple (k1, ..., kap), define a 2h-tuple (i1, j1, .- - ,in, Jn)
as follows: set ip = 1 — £ + Zle koi—1, and set j; = koy. By (2), there exists a geometric
symplectic basis B = {cg,d¢} on S’ whose ¢-values realize the tuple (i1, j1,...,in,jn). Any
geometric symplectic basis can be “completed” into a chain as follows: for £ =1,...,h — 1, let
fe be a simple closed curve satisfying i(f¢,d¢) = i(fe,de+1) = 1 and i(fe,z) = 0 for all other
elements = € B. As B is a geometric symplectic basis, this imposes the homological relation
[fe] = [cex1] — [ce], and the intersection conditions imposed on the set of curves { fo} imply that
this homology is realized geometrically: ¢, U f; U cg41 must bound a pair of pants P, for each
£=1,...,h—1. The orientations can be arranged so that P, lies to the right of ¢, and f, and
to the left of co11.

Applying the homological coherence property to each P, it follows that ¢(fe) = kopt1. By

construction, the curves ¢y, dy, f1,ds, fa,ds, ..., fn_1,d, form a chain of length 2h; denote this
chain by C. By construction, ¢(c;) = i3 = k1, and ¢(dg) = kag. Altogether, this shows that C
has the required properties. O

4.2. Even r. Following the discussion in Section 3.4, we see that the Arf invariant distinguishes

at least two orbits of Mod(%,) on the set of Z/rZ-valued spin structures. To see that there are

exactly two orbits, in Definition 4.6 we formulate two “model” Z/rZ-valued spin structures ¢5, .,
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and qSOde of prescribed Arf invariant, and in Proposition 4.9 we show that every Z/rZ-valued
B

B on or ¢5,,. We restrict attention here to the case where

spin structure is equivalent to one of ¢
the surface S has at most one boundary component. The general setting of multiple boundary
components introduces considerable subtlety owing to the failure for the intersection pairing to
determine a symplectic form, and our results require only the case of at most one boundary

component.

Definition 4.6. Let S be a surface of genus g > 1 with at most one boundary component. Fix
a geometric symplectic basis B = {1, B1, ..., ag, B4 }. Define ¢B,.,, and ¢5,, as the Z/rZ-valued

even

spin structures such that ¢Z .. (v) = ¢5,,(v) = 0 for all v € B\ {3,}, and where ¢5 ., (3,) and

even even

#B,,(B,) are chosen to be 0 or 1 as necessary so that Arf(¢5 ) =0 and Arf(¢5,,) = 1.

even

In spite of the evident dependence on geometric symplectic basis, as B ranges over the set of

all geometric symplectic bases, the elements qﬁfdd lie in a single orbit of Mod(S) (and the same
B

is also true of ¢2,.,,

). The following is immediate via the change-of-coordinates principle.

Lemma 4.7. Let B and B’ be geometric symplectic bases. Then there is a diffeomorphism
f:8 — S such that f(B) = B'. Consequently, f*(¢5,.,) = ¢5,., and f*( OB;d) = @5,

even even

Definition 4.8. Let S be a surface of genus g > 1 with at most one boundary component
endowed with a Z/rZ-valued spin structure ¢. We say that ¢ is even if there is a geometric
symplectic basis B such that ¢ = ¢5 and we say that ¢ is odd if ¢ = ¢5,,.

even’

Proposition 4.9. Fiz an even integer r. Let S be a surface of genus g > 2 with at most
one boundary component. Let ¢ be a Z/rZ-valued spin structure on S. Then in the sense of
Definition 4.8, either ¢ is even, or else ¢ is odd.

Proof. The argument makes use of the techniques of the proof of Proposition 4.2. Let B =
{a1,B1,..., 04, B4} be a geometric symplectic basis, and let S; denote the genus-1 subsurface
determined by «;, f;; define D; as the boundary curve of S;. Exactly as in Proposition 4.2, each
pair «;, 8; can be replaced by new curves o}, 8/ supported on S; and satisfying (o, ;) = 1,
such that o} is admissible. Denote the corresponding geometric symplectic basis by B’. For
an arc € connecting 8] to Do and disjoint from all other D;, the curve-arc sum 5] +. Do
satisfies ¢(3] +- D2) = ¢(31) + 2. By repeatedly performing this curve-arc sum using an arc
¢ disjoint from B’ \ {85} (as in Proposition 4.2), 3} can be replaced with a curve 85 such
that ¢(85) =0 or 1. By performing an analogous operation on all 5}, one obtains a geometric
symplectic basis B” = {a}, 87, ..., ay, By} such that ¢(a;) =0 and ¢(3]") =0 or 1.

It remains to further alter each 37, ..., B;_; so that ¢(3]) = 0 in this range. For 1 <i < g—1,
let v; be a collection of disjoint curves such that Bi,71,...,8¢9—1,79—1,08¢ forms a chain of

length 2g — 1, and such that each ~; is disjoint from all a;». Then necessarily «;, i, ait1
forms a pair of pants, and so ¢(v;) = —1. If ¢(8) = 1, then ¢(T,,(5))) = 0. Replace
1,84 by Ty, (8)), Ty, (BY), respectively. Repeat, applying T% to T,,(B") for k such that
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qS(Tfsz%( 7)) = 0. Proceed in this way, taking each 8} for i < g — 1 to some ;" with
#(B;") = 0. At the end, the geometric symplectic basis B” = {a}, 81", ..., aq, 87"} will satisfy
#(v) = 0 for all v € B" except possibly v = 3;". By repeating the curve-arc summing procedure,
B, can be altered to satisfy ¢ (8;") = 0 or 1 as required. Define B to be this geometric symplectic

B

B .
owen O @5, as required. d

basis. Applying Theorem 3.9, we see that ¢ = ¢

There is an analogue of Corollary 4.5 for r even, although the Arf invariant provides an

obstruction that was not present in the case of odd r.

Corollary 4.10. Let r be an even integer, and let S C S be a subsurface of genus h > 2

endowed with a Z/rZ-valued spin structure ¢. Then the following assertions hold:

(1) For all x € Z/rZ, there exists some nonseparating curve ¢ supported on S’ satisfying
o(c) = x.

(2) For a given 2h-tuple (i1,J1,--.,%n,jn) of elements of Z/rZ, there is some geometric
symplectic basis B = {a1,b1,...,ap,bp} for S with ¢(ar) = iy and ¢(by) = jo for
1 < ¢ < h if and only if the parity of the spin structure defined by these conditions agrees
with the parity of the restriction ¢ls: to S'.

(8) Forany (2h—2)-tuple (i1, j1, - -,ih—1,jn—1) of elements of Z/r7Z, there is some geometric
symplectic basis B = {a1,b1,...,ap,bp} for S" with ¢(ar) = iy and ¢(by) = je for
1</<h-1.

(4) For a given 2h-tuple (k1,...,kon) of elements of Z/rZ, there is some chain (aq, ..., asp)
of curves on S’ such that ¢(ae) = k¢ for all 1 < € < 2h if and only if the parity of the
spin structure defined by these conditions agrees with the parity of the restriction ¢ls: to
S’

(5) For any (2h — 2)-tuple (k1,...,kan—2) of elements of Z/rZ, there is some chain
(a1,...,a2n—2) of curves on S’ such that ¢p(ag) = k¢ for all 1 < € < 2h — 2.

Proof. The proof is essentially identical to that of Corollary 4.5. The arguments for (2) and (3)
are slightly novel; the remaining points follow their counterparts in Corollary 4.5 verbatim. To
establish (2), let B’ = {a}, b} be a geometric symplectic basis on S’. Let S” be a subsurface of
S’ containing each curve in B’ that has only one boundary component. Given (i1, j1,.-.,in, jrn),
there is some spin structure ¢ on S” for which ¢(a}) = ¢ and ¥(b}) = j, for 1 < ¢ < h. By
Proposition 4.9, there is an element f € Mod(S”) for which f*(¢) = ¢ if and only if the Arf
invariants of ¢ and v agree; if they do, then B = f~1(B’) has the required properties.

(3) will be obtained from (2). Let ¢ € Z/27 denote the Arf invariant of ¢, and define the

quantity
h—1

=Y (ir+1)(je+1) (mod2).
=1
As the formula (7) for the Arf invariant shows, given any (2h — 2)-tuple (i1, ji, ..., ip—1, jh—1)
and any value € € Z/2Z, there is a choice of iy, j, € Z/rZ for which n+ (i, + 1)(jr +1) =€

(mod 2). The result now follows by applying (2) to the tuple (i1, 71,---,%n,jn)- |
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We will also require a result establishing the existence of configurations Z,, as in the D,

relation (Proposition 2.6).

Corollary 4.11. Let r = 2d be an even integer, and let ¥, be a closed surface endowed with a
Z/2dZ-valued spin structure ¢. Let A be a curve on X, that separates ¥, into subsurfaces Si, Sa
for which the genus g(S1) > d+ 1. Set n =2¢(S1) —2d + 1. Then there exists a configuration
a,a’,ci,...,cn_2 of curves on Sy arranged in the 9D, configuration, such that the elements a,a’,

and ¢; are admissible for all i, and such that A = Ag as in Figure 2.

Proof. By Corollary 4.10.5, there exists a chain a,cy, ..., c,_2 of admissible curves on S;. Let
a’ C S1 be chosen so that a Ua’ U A bounds a subsurface of genus g(51) —d — 1 containing ¢;
for ¢ > 2, and such that i(a’,c;) = 1. The other side of a U a’ bounds a subsurface of genus
d, and so the homological coherence property implies that o’ is admissible. By construction,
the curves a,a’,c1,...,c,_o form the configuration 2, of the D, relation, and the boundary

component As of Figure 2 is given here by A. O

5. r ODD: GENERATING Mod(X,)[¢] BY DEHN TWISTS

Let ¢ be a Z/rZ-valued spin structure on a closed surface 3,. Throughout this section we
assume that r | (29 —2) (so that, following Remark 3.6, ¥, admits a Z/rZ-valued spin structure)
and that r is odd. Recall from Definition 3.16 that the admissible subgroup is defined via

Ty = (T, | a nonseparating curve, ¢(a) = 0).

By construction, 74 < Mod(X,)[¢]. The main result of this section is that for r odd, this
containment is an equality.

Proposition 5.1. For any g > 3 and for any odd integer r satisfying r < g — 1, there is an
equality
Ty = Mod(%)[¢]-

Before beginning with the proof, we will first establish some properties of the group 7, which
will be used throughout this section and the next.

Lemma 5.2. Let ¢ be a Z/rZ-valued spin structure on a surface ¥4 withr < g—1 and g > 5.
Let ¢ be any nonseparating simple closed curve on 3. Suppose that r is odd, or else that r is
even and ¢(c) =1 (mod 2). Then T € Ty.

Proof. Let ¢ be as in the statement of Lemma 5.2. Our first objective is to construct a
configuration of admissible curves %, 13 as in Corollary 2.7 for which ¢ = Cy. By hypothesis,
there is an expression of the form ¢(c) = 2k — 1 (mod r) for some integer 1 < k < r. Invoking
Corollary 4.5.3 or 4.10.5 as appropriate, the hypothesis » < g — 1 implies that there is a
chain a,cq, ..., cor—1 of admissible curves disjoint from ¢, and there is a chain cog41, ..., corq1
of admissible curves disjoint from ¢ and from a,cy,...,cor_1. Let a’ be a curve such that

aUa’ Uc bounds a surface of genus k — 1 containing cs, .. ., cop—1, and satisfying i(a’,¢1) = 1
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and i(a’,¢;) = 0 for 2k + 1 <4 < 2r + 1. The homological coherence property implies that a’ is
admissible.
To complete the construction, it remains only to find the curve cr. Such a curve ¢ must

be admissible, and cop must have the following intersection properties:
i(cok, cokx1) = 1,  i(cop,a) = i(cog, a’) =i(cop,c;) =0 for |[i —2k| > 1, i(cop,c)=2. (8)

Let ¢}, be any curve satisfying the intersection properties (8). If we can show that the complement
of a regular neighborhood of the configuration 2, 5 :=a,a’,c1,. .., car—1, Corrs Cokt1, - - -5 Corg1
is a surface of positive genus, then the existence of co) will follow from Corollary 4.4.

The configuration %5, , 5 is contained in a surface of genus 741 with two boundary components.
FEach boundary component is homologous to the nonseparating curve ¢, so the complement has
genus g — r — 2. We must show that this quantity is positive. Establishing g —r —2>11is a

matter of simple arithmetic. Writing r = % for some m > 3, we have

m — 2 g
g—r—2:T(g—1)—1Z§—1>0a
since g > 5 by hypothesis.

Recalling that the group H 43 from Corollary 2.7 is defined to be the group generated by
the Dehn twists about the elements of Zs,13 U {A1}, it follows that if each element of %, 3
is admissible, then H;,Jrg < Ty. We have constructed the curves a,d’,c1, ..., cory1 S0 as to
be admissible; homological coherence implies that also A; is admissible. Corollary 2.7.2 then
implies that 7¢, € Ty for any 1 <k <r+ 1. O

Lemma 5.3. Let ¢ be a Z/rZ-valued spin structure on a surface L4, and let v € Hi(X4;Z)
be any primitive homology class. If r is odd, then for any k € Z/rZ, there exists a curve ¢ for
which [c] = v and ¢(c) = k. If r is even, then for any k € Z/rZ such that ¢ (mod 2)(v) = k

(mod 2), there exists a curve ¢ for which [c] = v and ¢(c) = k.

Proof. Let ¢y be any (oriented) curve on X, with [co] = v; set ¢(co) = ko. Let ¢; be a curve
disjoint from c¢q such that ¢o Uc; bounds a subsurface of genus 1, oriented to the left of ¢y. Then
¢(c1) = ko + 2 when oriented with the subsurface to the right, and [co] = [e1]. This construction
can be repeated, giving rise to curves ¢, with ¢(¢;,) = ko + 2m. If r is odd, then the set of
values kg + 2m for various values of m exhausts Z/rZ, and if r is even, then the set of values
ko + 2m exhausts the coset ko + 2Z/rZ. The claim follows by taking ¢ = ¢,, for the appropriate
value of m. |

Proof. (of Proposition 5.1) The method is to compare the intersections of 74 and Mod(X,)[¢]
with Z, and K,. We first present a high-level overview of the logical structure of the proof that
explains how Proposition 5.1 follows from ancillary results; these results are then obtained in
Steps 1-4.
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Overview. Recall from (3) the symplectic representation ¥ : Mod(X,) — Sp(2g, Z) with kernel
given by the Torelli group Z,. To show that 7, = Mod(X,)[¢], it suffices to show that (I)
U(Ty) = U(Mod(X2,)[¢]) and that (II) T, N Z, = Mod(X,)[¢] N Z,.

The equality of (I) is obtained in Step 1 as Lemma 5.4. The proof of (II) is carried out in
Steps 2-4. The method is to study the restriction of the Johnson homomorphism to the groups
T3 NI, and Mod(X,)[¢] NZy. Recall from (4) that the Johnson homomorphism is the surjective
homomorphism

7:T, — N*Hy/Hy,
and that the kernel is written ;. To establish (II), it suffices to show that (i) 7(Tg NZ,) =
T(Mod(X4)[¢] N Z,) and that (ii) T4 N Ky = Mod(X,)[¢] N K,y. The equality of (i) is carried
in Steps 2 and 3. The main result of Step 2, Lemma 5.7, establishes an upper bound on the
image 7(Mod(X4)[¢] NZ,), and the main result of Step 3, Lemma 5.8, shows that the subgroup
7(Ty NZL,) realizes this upper bound. Finally (ii) is established in Step 4: Lemma 5.9 shows

that there is a containment Ky < 7g.

Step 1: The symplectic quotient. The first step is to understand the image of 74 and
Mod(%,)[¢] in the symplectic group Sp(2g,Z).

Lemma 5.4. For r odd, the symplectic representation ¥ : Mod(X,) — Sp(2g,Z) restricts to a
surjection

U : Ty, — Sp(2¢9,Z).
It follows that also W : Mod(3,)[¢] — Sp(2g,Z) is a surjection.

Proof. Let v € Hi(X4;Z) be a primitive element. By Lemma 5.3, there is some curve ¢ with
[c] = v and ¢(c) = 0. The result follows from this, since Sp(2g,Z) is generated by the set of
transvections T, given by z +— x 4 (z,v)v for v € Hi(¥y;Z) primitive, and ¥(T,) = Tjg. O

Step 2: Mod(X,)[¢] and the Johnson homomorphism. Our next objective is Lemma 5.7
below. This concerns the image of Mod(3,)[¢] NZ, under the Johnson homomorphism. In order
to formulate the result, it is necessary to first study a different quotient of Z, first constructed by
Chillingworth in [Chi72a] and [Chi72b]. Chillingworth’s work is formulated using the notion of
a “winding number function”; as explained in [HJ89, Introduction], a winding number function
is a particular instance of a spin structure. The properties of a winding number function that
Chillingworth exploits in his work are common to all spin structures, and so we formulate his
results in this larger context. See also [Joh80a, Section 5] for a brief summary of Chillingworth’s
work. Recall in the statement below that S is defined to be the set of isotopy classes of oriented

simple closed curves on a surface X.

Theorem 5.5 (Chillingworth). Let ¢ be a Z/rZ-valued spin structure on a closed surface L.
Let ¢ be the function ¢ : T, x S — Z/rZ defined by the formula

c(f, ) = o(f(7) — o(7)-
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Then the value c(f,v) depends only on the homology class [y] € Hyz, and ¢ descends to a
homomorphism

c: I, — Hom(Hz,Z/r7) = H" (X, Z/r7).

In particular, ¢ does not depend on the choice of Z/rZ-valued spin structure.

In [Joh80a], Johnson related Chillingworth’s homomorphism to the Johnson homomorphism.
To formulate the precise connection, we require the following well-known lemma,; see e.g [Joh80a,
Sections 5,6].

Lemma 5.6. There is a Sp(2g, Z)-equivariant surjection
C: N*Hz/Hy — Hyj(g—1yz2
given by the “contraction”
ClxhyNhz)={z,y)z+ (y,z)z+ (z,2)y (mod g —1). (9)
It follows that for any r | (¢ — 1), there is a Sp(2g, Z)-equivariant surjection
C,: N*Hy/Hz — Hy),z

given by post-composing C' with the reduction mod r. We can now formulate the main result of
Step 3.

Lemma 5.7. Let ¢ be a Z/rZ-valued spin structure on a surface of genus g, with g > 3 and r
odd. Then C\. o1 =0 on Mod(X,)[¢] NZ,.

Proof. According to [Joh80a, Theorem 3], the composition C,. o7 coincides (up to an application
of Poincaré duality) with the mod-r Chillingworth homomorphism ¢ : Z, — H'(Z,; Z/rZ). The
formula for c given in Theorem 5.5 shows that ¢ measures how f € Z, alters the set of values
{¢(7) | v € S}; it therefore follows immediately that the restriction of ¢ to Mod(X,)[¢] N Z, is
trivial. O

Step 3: Ty and the Johnson homomorphism. In the previous step, we showed that there

is a containment
T(Mod(Xy)[¢] NZ,) < ker(C, o 7).

Our next result establishes that this containment is an equality, even when restricted to the
subgroup 7(Ty NZy).

Lemma 5.8. Forr < g—1 odd and for g > 3, the Johnson homomorphism T gives a surjection

T:Tp NIy — ker(Cy o).
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Proof. Define K := ker(C,). We must show that 7, NZ, surjects onto K under 7. The first
step will be to determine a generating set for K, and then we will exhibit each generator within
T(Ts NIy).

To determine a generating set for K, we consider the short exact sequence

1 — K — A*Hy/Hyz — Hy)z — 1.

determined by C,.. By lifting a set of relations {r;} for Hz /7 to N3 Hy/Hyz, we will obtain a set
of generators {7;} for K. Let B = {z1,y1,..., %y, yq} be a symplectic basis for Hz. There is an
associated basis A2B C A2Hyz given by

NB:= {21 Az A 23 | z; € B distinct}

Thus also A3Hyz/Hy is generated by the image of A3B.

To determine the relations r;, we must understand C,.(z1 A 22 A z3) for the various possibilities
for {z1, 22, z3}. There are two orbits of generators under the action of Sp(2g,Z). The first orbit
consists of elements of the form z A z; A y; (necessarily with z # x;,y;), and the second orbit
consists of elements of the form z; A z; A z;, with each 2z, € {x/,y,} and with ¢, j, k mutually
distinct.

The image of 2 Aw; Ay; in Hz ),z is
Crlz Nz Ny;) = z,

while Cy(2; A z; A z) = 0 for elements of the second type. Define A to be the abelian group
generated by the symbols C,.(z1 A 22 A 23) for 21 A 23 A 23 € A3B, subject to the relations
(R1)-(R3) below:

(R1) rCr(zANx; Ay;) =0

(R2) Cr(zANai Ay;) —Cr(z Az Ayj) =0

(R3) Cp(zi Azj ANzp) =0 for {i,7,k} C {1,..., g} distinct.

It can be easily verified that there is an isomorphism A = Hy,7, so that the relations (R1) -
(R3) can be lifted to A3Hz/Hy to give a generating set for K as desired. The corresponding
generators are given below.

(Gl) rz ANz Ay,

(G2) 2 A (xi Nyi — i Nyj)

(G3) zi A zj Az for {i,j,k} C {1,..., g} distinct.

Having determined a generating set for K, it remains to exhibit each such generator in
the form 7(f) for f € 75 NZ,. These will be handled on a case-by-case basis. We start with
(G1). By Lemma 2.8, there exist curves ¢, d that determine a genus-1 bounding pair map with
(T.T; ") = 2z Axi Ay;. By Lemma 5.2, T, T € Ty, so that T'T;" € T, is an element with
the required properties.

Next we consider (G2). Let ¢ be a curve with [¢] = z and ¢(¢) = 0. By the change-of-
coordinates principle, there exist curves a,b with the following properties: (1) a Ub bounds a
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G2.{ps,eps,pdf} not found (or no BBox)

FIGURE 5. The configuration of curves used to exhibit (G2).

subsurface S of genus 2, (2) ¢ C S, (3) [a] = [b] = [¢], and ¢ separates S into two subsurfaces
51,82 each of genus 1, (4) x;,y; determine a symplectic basis for S7 and z;,y; determine a
symplectic basis for Ss. Such a configuration is shown in Figure 5. By homological coherence,
¢(a) = ¢(b) = —2 when a, b are oriented with S to the left. By Lemma 2.8,

(T =2 ANwg Ay

and

(LT, Y = -2 Axj ANy;.
Therefore, it is necessary to show T,T,T. 2 € T,. By hypothesis, T, € T;. By Corollary
4.5.3, there exists a chain ay, ..., a5 of curves on S for which ¢(a;) = 0. By the chain relation
(Proposition 2.4), T, T, € Ty, and the result follows.

It remains to exhibit generators of type (G3). Any such generator is equivalent under the
action of Sp(2g,Z) to y1 A y2 A ys. By combining the Sp(2g, Z)-equivariance of 7 (Lemma 2.8.1)
with the result of Lemma 5.4, it suffices to exhibit only y; A y2 A y3. Figure 6 shows the two
3-chains C = (1, ¢2,¢3) and Cy = (¢, ¢, ¢] +< d). Observe that d is a boundary component
for regular neighborhoods of both C; and Cj; let e, es denote the other boundary component
of C1, Cy, respectively.

By Corollary 4.5.2, there exists a geometric symplectic basis B that contains the elements
c1,¢2,b, f as depicted in the top portion of Figure 6, with homology classes and ¢-values given
in the table below. The remaining entries in the table have been filled in using the homological
coherence property. (A value of * indicates that the value is irrelevant and/or underdetermined,

and if an orientation is left unspecified, this is in accordance with Convention 3.4).

Curve: c1 c3 c} b f d ) +ed
Homology class: | x1 y1 Y2 —21 T1—Y3 Y3 —Y2 Y2 Y2+Yys—1T1
¢-value: 0 = 0 * * -1 =2 *
By Lemma 2.8,

T(TyT;") = z1 Ay Ay,

T(TdTezl) = (331 — yg) N Y1 A\ Yo.
It follows that T(Te_llTez) =y3 Ay1 Ay2. As dUe; and dU es each bound subsurfaces of genus 1

and ¢(d) = —2 when d is oriented with these subsurfaces to the left, the homological coherence
property implies that e; and e; are admissible. The result follows. (|

Step 4: The Johnson kernel. The final piece of the analysis concerns the relationship
between Mod(X,)[¢] and the Johnson kernel &C,.
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FIGURE 6. Top: The relevant portion of the geometric symplectic basis B.
Bottom: The configuration of curves used to exhibit (G3). Orientations have

been suppressed wherever possible.

Lemma 5.9. Let ¢ be a Z/rZ-valued spin structure with r odd. If g > 3, then Ty contains the
Johnson kernel Ky4. It follows that also

Ky < Mod(2g)[¢].

Proof. According to Johnson’s Theorem 2.9, K4 has a generating set consisting of the set of all
T for ¢ a separating curve. Each such ¢ divides ¥, into two subsurfaces S, S, and since g > 3,
without loss of generality we can assume that g(S) > 1. By Corollary 4.5.3, there exists a chain
ai,...,as4(s) of curves on S such that ¢(a;) = 0 for all 4. By hypothesis, T, € Ty for all i. By
the chain relation (Proposition 2.4), it follows that T, € T4 as required. ]

This concludes the proof of Proposition 5.1. U
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6. 7 EVEN: T, HAS FINITE INDEX IN Mod(3,)

We continue to assume that r | (29 — 2), but now we take r = 2d to be even. For r even, we
cannot give a complete characterization of 74 as in Proposition 5.1, but we will show that 74
has finite index in Mod(2,). The minimal genus for which the ensuing arguments apply has a

rather intricate dependence on r, encapsulated in the definition below.
Definition 6.1. For an integer d > 1, define k(d) as follows:

2 doddord>6even
k(d)=46 d=2
5 d=4.
Suppose r = 2d is an even integer. Define

g(r) =k(d)d+ 1.

Proposition 6.2. Let r = 2d be an even integer. Suppose g > g(r) and that r < g — 1. Then
Ty is a finite-index subgroup of Mod(%,).

The presence of an underlying Z/27Z spin structure makes proving the analogues of Lemma
5.8 and Lemma 5.9 substantially more difficult. At present, we do not know how to establish
the analogue of Lemma 5.8, owing to the fact that the Arf invariant provides an obstruction to
finding the configurations of curves on subsurfaces needed for the arguments therein. Thus we

content ourselves with showing that 7, < Mod(X,) is finite-index.

Proof. (of Proposition 6.2) The proof of Proposition 6.2 follows a similar outline to that of

Proposition 5.1. We begin with an overview of the proof.

Overview. To establish finiteness of the index [Mod(%,) : 74|, it suffices to show that the
indices [Sp(2¢,Z) : ¥(Ty)] and [Z, : T NZ,] are both finite. Finiteness of [Sp(2¢,Z) : ¥(Ty)] is
established in Lemma 6.4 of Step 1, which moreover gives a complete description of the subgroup
(7).

Finiteness of [Z, : 74 N Z,] is obtained in Steps 2 and 3, again by using the Johnson
homomorphism to analyze the intersection 74 NZ, as in Steps 2-4 of the proof of Proposition
5.1. The main result of Step 2 is Lemma 6.6, which shows that 7(74 NZ,) has finite index
in A3Hy/Hyz. Step 3 completes the argument by showing the containment K, < Tg; this is
obtained as Lemma 6.7. We advise the reader that Step 3 is substantially more complicated
than its counterpart Step 4 of the proof of Proposition 5.1, and will require an explanatory

outline of its own.

Step 1: The symplectic quotient. The case of r even is no more difficult than for r odd.

Let ¢ be a Z/2Z-valued spin structure. An anisotropic transvection is a transvection

Ty(w) = w+ (w,v)v
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for a primitive v € Hy(3,;Z) such that ¢(v) = 0.
The following theorem is surely well-known to experts but we were unable to find a reference.
A special case is treated in [Die73, Proposition 14].

Theorem 6.3 (Folklore). Let q be a Z/2Z-valued spin structure on ¥4 for g > 3, and let
Sp(2g,7Z)[q] denote the subgroup of Sp(2g,Z) that fixes q. Then Sp(2g,7)[q] is generated by the

collection of anisotropic transvections
{T,|ve H,(3g4;Z) primitive, q(v) = 0}.

Proof. The action of Sp(2g,Z) on the set of spin structures factors through the quotient
f : Sp(29,Z) — Sp(29,Z/2Z). Define Sp(2g,Z)[2] := ker(f). Thus, there is a short exact
sequence
1 — Sp(2g,Z)[2] — Sp(29,Z)[q] — Sp(29,Z/2Z)]q] — 1,
with Sp(2g,Z/2Z)[q] denoting the stabilizer of ¢ in Sp(2g,Z/27). According to [Gro02, Theorem
14.16], the group Sp(2g,Z/27Z)[q] is generated by the images of all anisotropic transvections. So
it remains to see only that the subgroup of Sp(2g,Z)[q] generated by anisotropic transvections
contains Sp(2g, Z)[2]. According to [Joh85b, Lemma 5|, the group Sp(2g,Z)[2] is generated by
the collection of “square transvections” T2, where w ranges over all primitive w € H; (Xg: 7).
If g(w) = 0 then T, € Sp(2¢,Z)[g] and so there is nothing to show. Assume now that

g(w) = 1. It is easy to produce (e.g. by the change-of-coordinates principle on X,) vectors
v1,v2,v3 € H1(X,;Z) with the following properties:

(1) ¢(v;) =0 for all 1,

(2) (v1,v2) = (v2,v3) =1 and (v, v3) =0,

(3) (v;,w) =0 for all ¢,

(4) v1 +vs =w.

The chain relation in Mod(X,) (Proposition 2.4) descends to show the relation
(Tvl z1112,11113)4 = T2'

w

Since the left-hand side is a product of anisotopic transvections, it follows that for w arbitrary,
T2 € Sp(2g,Z)[q] as required. O

The following is the main result of Step 1.
Lemma 6.4. Let ¢ be a Z/rZ-valued spin structure for r an even integer, and let
g:=¢ (mod 2)

denote the associated Z/2Z-valued spin structure. The symplectic representation ¥ : Mod(¥X,) —
Sp(2g,Z) restricts to a surjection

U : T, — Sp(29,Z)[q],

where Sp(2g,Z)[q] denotes the stabilizer of q in Sp(2g,Z).
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Proof. As T, preserves the Z/rZ-valued spin structure ¢, it also preserves the mod-2 reduction
¢. Thus Ty < Mod(X,)[g] and so ¥(7,) < Sp(29,Z)[q]. Let v € H1(X,;Z) be a primitive
element satisfying ¢(v) = 0. By Lemma 5.3, there is some curve ¢ with [¢] = v and ¢(c) = 0. As
T. € Mod(%,)[¢] and ¥(T,) = T, the result now follows from Theorem 6.3. O

Step 2: The Johnson homomorphism. We remind the reader that while the value ¢(c) on
a simple closed curve depends on more than the homology class [c] € H1(2,;Z), the discussion
of Section 3.4 establishes that the mod-2 reduction ¢(c) does depend only on the homology class
[c] (indeed, the coeflicients here can be taken to be Z/2Z). Thus the arguments in Step 3 can
be carried out entirely in the homological setting.

For the duration of Step 2, we adopt the following notation. As usual, define
q:=¢ (mod 2).

There exists a symplectic basis {1,91, . . ., g, yq} for H1(X4;Z) such that g(x;) =0for1 <i<g
and ¢(y;) =0 for 1 < j < g — 1; with such a basis, Arf(q) depends only on g and on ¢(y,).
Before proceeding to the main result of Step 2 (Lemma 6.6), we begin with an algebraic

lemma.
Lemma 6.5. Set v:=x; Ay, Azy. Let V < A3Hy denote the submodule generated by the set

{gv | g € Sp(29,Z)[q]}.
Then V = A3Hy, for g > 5.

Proof. As remarked in Lemma 5.8, A®Hz, is generated by elements of the form z; A z; A z; with
each z; € {z1,y1,...,24,ys}. To begin with, we will exhibit generators for the submodule of
A3 Hy, spanned by generators z; A z; A zx for which z;, 25, zx € {z1,91,...,%4-1,Yg—1}. The
restriction of Sp(2¢; Z)[g| to this submodule is independent of the parity of q. For i # j <g—1,
define S; ; € Sp(2¢,Z) via

Sij(wi) = xy, Si.i(Yi) = vy,
S j(x5) = w4, Sii(Y;) = vis

with all other generators fixed. As ¢(x) = q(yx) =0 for k < g — 1, in fact S, ; is an element of
Sp(2g,Z)[q). Applying S; ; for 4,5 # 4 to v shows that V' contains all generators of the form
;s ANy A x4, Applying S; 4 to x; A y; A x4 for i # j shows that V' contains all generators of the
form x; Ay; Ax; for j # 4; then applying S;4 to x; A y; A x; shows that V' contains all elements
of the form z; A y; A x;.

For 1 <i < g—1, define R; € Sp(2¢,Z) via

Ri(z;) = yi, Ri(yi) = —m4
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with all other generators fixed. Again, the condition ¢(zy) = g(yx) = 0 for k < g — 1 implies
that R; is an element of Sp(2g,Z)[q]. Applying R; to x; Ay; A x; shows that also V' contains all
elements of the form x; A y; A y;.

It remains to exhibit generators of the form z; A z; A 2z, with zp € {x¢,ye} and 4,5,k < g all
distinct. Consider the transvection T, ., € Sp(2g,Z)[g]. Applied to x1 A y1 A z2, this shows
that

1A (Y1 +x4) Ao €V,

hence also z1 A za A x4 € V. Now by repeated applications of the elements S; ; and R;, one can
produce all remaining generators.

In the case q(y,) = 0, the elements S; ;, and R, are contained in Sp(2g,Z)[g], and so the
above argument extends to complete this case. It remains to consider the case where ¢(y,) = 1.
In this case, the formula (5) defining a Z/2Z-valued quadratic form shows that ¢(y,—1 +y4) = 0.
Applying Ty,_1+y, to the elements x1 Axs Awy_1 and x1 Ays A zy—1 shows that 1 Aza Ay,
and z1 A y1 A x4 are elements of V. Applying S; ; and R; for 4,7 < g — 1 produces all elements
of the form z; A z; Ay, with 2, € {x¢,y¢} (4,j < g —1). Then applying T, to these elements
shows that also each z; Az; Azy € V.

By (5), we have g(z1 + 24 — y4) = 0. Applying Tt to y1 Aya A yg gives

T1+Tg—Yg
w=(y1+x1+ x5 —yg) ANy2 A (T1 4+ 24);

expanding this product yields the expression w = —ya A x4 A yy + w', with w’ expressed entirely
in terms of generators already known to be elements of V. Applying S; ; and R; as in the above

paragraph shows that all the remaining generators z; A x4 Ay, are elements of V. (]
The following is the main result of Step 2.

Lemma 6.6. For g > 5, the image 7(T4NZ,) under the Johnson homomorphism is a finite-index
subgroup of N3Hy/Hy,.

Proof. As stated in Lemma 2.8.1, the homomorphism 7 : Z, — A3Hz/Hy is Sp(2g,7Z)-
equivariant. The strategy for the proof of Lemma 6.6 is to first exhibit a single nonzero
element of 7(7, NZ,), and then to exploit this equivariance.

By Corollary 4.10.5, there exists a 3-chain of admissible curves aq, as, a3z such that
1] = z1, Jao] =1, [az] =24 — 21,

Let v be a regular neighborhood of this chain, and denote the boundary curves as b,b’. As a;
and as are admissible, homological coherence implies that ¢(b) = ¢(b') = —1 when oriented
so that v lies to the left of both b,0’. By Lemma 5.2, T} is an element of 7y. It follows by
the chain relation (Proposition 2.4) that the bounding pair map T T,," € 7. One sees that
[b] = [a1] + [as] = 4. By Lemma 2.8.3,

(T T, ") = r(x1 Ayr A xg).
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By Lemma 6.4 and the equivariance of 7 with respect to Sp(2g,Z) (and a fortiori with respect
to Sp(2¢, Z)[q]), it follows that 7(74 NZ,) contains the Z-span of the entire Sp(2g, Z)[g]-orbit of
v:=r(xr1 Ay Ax4). Lemma 6.6 now follows from Lemma 6.5. O

Step 3: The Johnson kernel. In this section, we establish the following result.

Lemma 6.7. Let ¢ be a Z/2dZ-valued spin structure on ¥,. Assume that g satisfies the
hypotheses of Proposition 6.2. Then Ty contains the Johnson kernel Kg4.

Before beginning the proof, we explain the difficulties imposed by the assumption that r = 2d

is even.

The Arf invariant as obstruction. The mechanism of proof for Lemma 5.9 was the chain
relation (Proposition 2.4): if S C ¥, has one boundary component, we exploited Corollary 4.5
to produce a maximal chain {a;} of curves on S with ¢(a;) = 0, and then used the chain relation
to express Tps in terms of the admissible twists {T,,}. Now suppose ¢ is a Z/rZ-valued spin
structure for r even, and let ¢ = ¢ (mod 2) denote the mod-2 reduction. For any subsurface
S C X, with one boundary component, ¢ restricts to give a Z/2Z-valued spin structure ¢|s on
S. The Arf invariant of g|s, written here as £(S), provides an obstruction to the existence of
a maximal chain {a;} of admissible curves on S, since such a chain determines the value £(.5)
solely as a function of g(S).

Suppose ¢ C X, is a separating curve that divides ¥, into disjoint surfaces S,S’. Such a
c is called easy if at least one of S, S’ supports a maximal chain of admissible curves, and is
hard otherwise. By Corollary 4.10.4 and the chain relation (Proposition 2.4), if ¢ is easy, then
T.€Ty.

Outline of proof of Lemma 6.7. We begin with Lemma 6.8, which characterizes those
subsurfaces supporting a maximal chain of admissible curves in terms of the Arf invariant. This
in particular shows the relevance of the genus of the subsurface mod 4, which in turn forces
us to treat the cases r = 0,7 = 2 (mod 4) separately. We therefore establish Lemma 6.7 by
combining Lemma 6.10 and 6.13, which treat the cases of r =2 (mod 4) and r =0 (mod 4),
respectively.

These are handled in Substeps 1 and 2, respectively. In each case, we first show that all
separating twists of particular genera are elements of 74. In Substep 1, Lemma 6.9 shows that
all separating twists of genus d lie in 74. In Substep 2, Lemma 6.11 shows that all separating
twists of genus h = d + 2 (mod 2d) lie in 74, and Lemma 6.12 establishes the same result for
separating twists of genus h = d + 4 (mod 2d). Lemmas 6.10 and 6.13 then follow from these

preliminary results and an application of the D,, relation (Proposition 2.6).

Lemma 6.8. Let S C X be a subsurface with single boundary component. Assume the genus
g(S) > 2. Then there is a mazimal chain of admissible curves on S if and only if one of the

following conditions hold:
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e g(S)=1 or2 (mod 4) and e(S) =1,
e g(S)=3 or0 (mod 4) and e(S) = 0.

Proof. Suppose S supports a maximal chain ay, ..., as4(s) of admissible curves. Since the chain
determines a basis for Hq(S;Z), the conditions ¢(a;) = 0 completely determine ¢. One can
easily compute £(S) from this and see that the above conditions are necessary. Sufficiency
follows from Corollary 4.10.4. |

Substep 1: d odd. The objective of Substep 1 is Lemma 6.10 below. The first step is to see

that all separating twists 7% of genus d are elements of 74, regardless of whether c is easy.

Lemma 6.9. Let S C X, be a subsurface of genus d with a single boundary component c. If ¢
is a Z/2dZ-valued spin structure with d odd, then T, € T.

Proof. If ¢ is easy then there is nothing to show. Assume therefore that c¢ is hard. If c is
oriented so that S lies to the right, then ¢(c) = —(1 —2d) = —1 (mod 2d). The assumption that
r = 2d < g — 1 implies that ¥, \ S has genus at least 2. We claim that there exists a 3-chain of
admissible curves z,y,z on X4 \ S such that ¢ Ux U z forms a pair of pants. To see this, we
invoke Corollary 4.3 to let  C 3, \ S be an admissible curve. Let z C X, \ S be any curve such
that ¢ Uz U z bounds a pair of pants; admissibility of z follows by the homological coherence
property, as ¢ is oriented with ¥, \ S to the left. To construct y, let 3’ C £, \ S be any curve
such that z,1’, z forms a chain. By Corollary 4.4, ¢’ can be replaced with an admissible curve y
with the same intersection properties.

Let S’ denote the connected surface of genus d + 1 containing S and x Uy U z. If B is a basis
for H1(S;Z), then BU {x,y} forms a basis for Hy(S’;Z). Applying the formula (7) for the Arf
invariant, it follows that £(S") = ¢(S) + 1.

Since ¢ is hard and d = ¢(S) is odd, Lemma 6.8 implies that ¢(S) = 0 if g(S) =1 (mod 4)
and that £(S) = 1 otherwise. Recalling that (S’) = &(S) + 1, in the first case, g(S') = 2
(mod 4) and ¢(S”) = 1, and in the second case, g(S’) = 0 (mod 4) and £(5’) = 0. Lemma
6.8 then implies that ¢’ := 95" must be easy, and so T» € T4. Applying the chain relation
(Proposition 2.4) to z,y, z shows that T.T. € Ty; this implies that also T, € 7. |

Lemma 6.10. Let ¢ be a Z/2dZ-valued spin structure on X, with d odd. Assume that g satisfies
the hypotheses of Proposition 6.2. Then Ty contains the Johnson kernel K.

Proof. By Theorem 2.9, it suffices to show that T, € 7 for all separating curves c of arbitrary
genus. To do this, we combine Lemma 6.9 with the D,, relation (Proposition 2.6). Suppose ¢ is a
separating curve on X,. Since g = kd + 1 with k£ > 2, at least one side of ¢ must be a subsurface
S of genus ¢g(S) > d+1. Set n :=2¢(S) —2d+ 1. By Corollary 4.11, there is a configuration %,
of admissible curves as in the D,, relation for which Ay = ¢. The other boundary component
Ay bounds a subsurface of genus d. Applying the D,, relation, we have T Xo_lT ¢ € Ty. But since
A bounds a surface of genus d, also Ta, € Ty by Lemma 6.9. Thus Ky < 7y in this case. O
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Substep 2: d even. The objective is to establish Lemma 6.13. The argument here follows a

similar outline to that of Substep 1 but now requires the two preliminary Lemmas 6.11 and 6.12.

Lemma 6.11. Let S C X, be a subsurface of genus g(S) > 5 with a single boundary component
¢, such that g(S) = d+ 2 (mod 2d). If ¢ is a Z/2dZ-valued spin structure with d even, then
T. €Ty.

Proof. Orient ¢ so that S lies to the left. Then
Plc)=1-2g(S)=1-2(d+2)=—-3 (mod 2d).

By Corollary 4.10.5, there exists a chain aq, ..., ag of admissible curves on S. Let a7 be any curve
on S such that i(az,ar) =1 for kK = 6 and is zero for k < 5, and such that cUa; Uaz UasUar
bounds a subsurface of S homeomorphic to ¥y 5. By homological coherence, a7 is admissible.
Let S” denote the subsurface of S homeomorphic to ¥,(g)_3,1 determined by the complement
of the chain ay, . .., ay. Applying the formula (7) for the Arf invariant, one finds that £(S") = &(S).
On the other hand, g(S") = ¢g(S) + 1 (mod 4). By hypothesis, g(S) is even, and so referring to
Lemma 6.8, if ¢ is hard, then ¢’ := 35S’ must be easy. The arguments given at the conclusion of

Lemma 6.9 now apply to give the result. ]

Lemma 6.12. Let S C X be a subsurface of genus g(S) > 9 with a single boundary component
¢, such that g(S) = d+ 4 (mod 2d). If ¢ is a Z/2dZ-valued spin structure with d even, then
T.€Ty.

Proof. This is proved along similar lines to Lemma 6.11. Arguing as in the first paragraph
of the proof of Lemma 6.11, there exists a chain aq,...,a5 of admissible curves on S such
that cUa; Uasg U--- U as bounds a subsurface of S homeomorphic to Xgg9. Let S’ denote
the subsurface of S homeomorphic to ¥,(g)_7 1 determined by the complement of the chain
ai,...,a15. The rest of the argument proceeds as in Lemma 6.11: one shows that if ¢ is
hard, necessarily ¢’ := 95’ must be easy, and the result follows as before by the chain relation
(Proposition 2.4). O

Lemma 6.13. Let ¢ be a Z/2dZ-valued spin structure on X, with d even. Assume that g
satisfies the hypotheses of Proposition 6.2. Then T4 contains the Johnson kernel K.

Proof. According to Johnson’s Theorem 2.9, in order to show that ICy < Ty, it suffices to exhibit
all separating twists of genus 1 and 2 as elements of 7. To do this, we again appeal to the D,
relation (Proposition 2.6). Suppose ¢ is a separating curve on ¥, with g(c) < 2. By hypothesis,
g > kd+ 1 with d even and k£ > 2. Since the genus of one side of ¢ is at most 2, the genus h of
the other side of ¢ is at least kd — 1 > 2d — 1. If d > 6, then 2d — 1 > 11. If d = 4, then by
assumption k£ > 5, and so h > 19. If d = 2 then we assume k > 6, so that A > 11.

In all three of these cases, Corollary 4.11 implies that there exists an n > 4 and a configuration

a,a’,ci,...,co,_1 of admissible curves in the configuration of the Dg, 1 relation, with As = ¢
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o

FIGURE 7. The configuration of curves needed for Lemma 7.3.

and C4 bounding a subsurface of genus ¢(S) = d + 4 (mod 2d) disjoint from S, such that the
hypotheses of Lemmas 6.11 and 6.12 hold.

By the Dy relation (for k = 2n + 1,5, 9 respectively), Tiz_ch and TR Tc, and TZOTC4 are
all elements of 74. By Lemma 6.11, T, € T4 as well, hence Tgo € T4. Likewise, Lemma 6.12
shows that T, € Ty, hence T go € 7. Combining these last two results shows that Ta, € Ty,
and ultimately that T, € 7, as required. O

This concludes the proof of Proposition 6.2. U

7. CONNECTIVITY OF SOME COMPLEXES

This section is devoted to establishing the connectivity of the simplicial complexes Csep 2(24)
and Cé(Eg) to be defined below. The first of these will be an important ingredient in the proof
of Proposition 8.2, and the second will feature in the proof of Theorem A. The mechanism
by which these will be seen to be connected is the so-called Putman trick. The version given
below is slightly less general than the full theorem as stated in [Put08], but will suffice for our

purposes.

Theorem 7.1 (The Putman trick). Let X be a simplicial graph, and let G act on X by simplicial
automorphisms. Suppose that the action of G on the set of vertices X©) is transitive. Fiz some
base vertez v € X . Let ¥ = X1 be a symmetric set of generators for G, and suppose that for

each s € X3, there is a path in X connecting v to s-v. Then X is connected.

Definition 7.2. Csep2(2,) is the simplicial graph where vertices correspond to (isotopy classes
of) separating curves ¢ bounding a subsurface homeomorphic to ¥3 1, and where ¢ and d are

adjacent in Csep2(24) whenever ¢ and d are disjoint in 3.

Lemma 7.3. Csep2(X,) is connected for g > 5.

Proof. This is a straightforward consequence of Theorem 7.1. With reference to Figure 7 and
the standard generating set of Figure 1, observe that only the generator ch does not fix the
base vertex c¢. In this case, the genus 2 subsurface determined by d is disjoint from both ¢ and
ch;(c), and so there is a path ¢, d, Tciz(c) in Csep,2(Xg). O
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Definition 7.4. Let ¢ be a Z/rZ-valued spin structure on a surface 3,. The graph C4(3,)
has vertices consisting of the admissible curves for ¢, where a and b are adjacent whenever
i(a,b) = 0. The graph Cé(Eg) has the same vertex set as Cy(X,), but vertices a, b are adjacent

whenever i(a,b) = 1.
Lemma 7.5. C}(%,) is connected for g > 5.

Proof. The first step is to establish the connectivity of C4(X,). Let a,b be vertices. Choose
subsurfaces S,, S, containing a, b respectively, each homeomorphic to ¥3 ;. By Lemma 7.3,
there is a path Sy, ..., Sa, in Csep2(Xy) with a C Sy, and b C S,,,, with each S,, disjoint from

Sa,4,- By Corollary 4.3, on each S,; there exists some admissible curve a;. By construction,
a=ap,ai,...,a, =bis a path in C4(3,) connecting a to b.
The connectivity of Cé(Eg) now follows readily. Given a path a = ag,...,a, = b in

C4(X4), Corollary 4.4 implies that for each 4, there exists some admissible curve ¢; such that

i(a;, ¢;) = i(aiy1,¢;) = 1. The path ag, co,a1,¢1,...,¢n—1,an connects a to b in Cé(Zg). O
8. SUBSURFACE PUSH SUBGROUPS AND T

As discussed in the introduction, the main technical result on the groups Mod(X,)[¢] and
T, that we require is a criterion for a collection of Dehn twists to generate 7y, given below
as Theorem 9.5. This is the first of two sections dedicated to proving Theorem 9.5. Here, we
formulate and prove the intermediate result Proposition 8.2, which gives a generating set for 74
not consisting entirely of Dehn twists. The results here concern a class of subgroups known as

spin subsurface push subgroups; these are introduced in Sections 8.1 and 8.2.

8.1. Subsurface push subgroups. Recall the classical inclusion map, as discussed in [FM12,
Theorem 3.18]. Let S” C S be a subsurface either of genus ¢g(S’) > 2 with n > 1 boundary
components, or else of genus ¢g(S’) = 1 with n > 2 boundary components. Assume that no
component of 95’ bounds a closed disk in S. Let a, ..., a; denote the boundary components of
S’ that bound punctured disks in .S, let by, b], ..., b, b} denote the pairs of boundary components
of S’ that cobound an annulus in S, and ¢y, ..., ¢, denote the remaining boundary components.
Let 4, : Mod(S") — Mod(S) denote the map on mapping class groups arising from the inclusion
i:S5" < S. Then
ker(iv) = (Tuys - - - ak,TblTbill,...,Tbgszly

Let A be a boundary component of S/, and suppose that A does not bound a punctured disk
in S. Let S’ denote the surface obtained from S’ by capping off A with a closed disk. According
to (2), there is a subgroup of Mod(S’) isomorphic to 7, (UT'S”). The subsurface push subgroup
for (57, A) is defined to be the image of 71 (UTS’) under the inclusion 4, : Mod(S") — Mod(S).
This will be written II(S’, A), or simply II(S’) if the boundary component does not need to be
emphasized.

We remark here that i, restricts to an injection w1 (UT'S”) — Mod(S), even when there exists
some other boundary component A’ of S’ such that A U A’ cobounds an annulus on S. To see
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this, observe that 71 (UT'S") < Mod(S’) is characterized by the property that f € m (UTS’) if
and only if f becomes isotopic to the identity when extended to S’. It is easy to see that no
element of ker(i.) has this property.

8.2. Spin subsurface push subgroups. Let S’ C S be a subsurface with some boundary
component A satisfying ¢(A) = —1. The following lemma shows that Mod(S)[¢] contains a
finite-index subgroup of II(S’, A). This subgroup, written ﬁ(S’, A), is called a spin subsurface
push subgroup. Before proceeding with the rest of the section, the reader may wish to review

the notion of a fundamental multitwist defined in Section 3.3.

Lemma 8.1. Let S’ C S be a subsurface with some boundary component A satisfying $(A) = —1.
Then there is a finite-index subgroup I1(S', A) < Mod(S)[¢] NIL(S’, A) characterized by the

diagram given below, whose rows are short exact sequences:

1 (TR) M(s', A) ™1 () 1 (10)
1 (Th) (5", A) (S 1.

The subgroup II(S", A) contains all fundamental multitwists for pairs of pants P C S’ of the
form P=aUbUA.

Proof. Following the discussion of Section 2.2, there exists a “geometric” generating set for
7 (UTS', A) of the following form:

m(UTS") = (a1, ..., d,C). (11)

Here o; is some simple closed curve on S’ based at A, and &; denotes the Johnson lift to
7 (UTS’). As before, ¢ denotes the loop around the fiber. As an element of Mod(S’), each &;
is of the form T, , T;

ai.r Lo, » Where a; 1, denotes the curve on S’ lying to the left of o and oy g lies

to the right. It follows that P; = oy 1 U oy, g U A forms a pair of pants on S’. Following Lemma

3.18, the fundamental multitwist

Tp, = Ta, , Ty TR

i i Lo R
lies in Mod(S)[¢] NTI(S’, A). Embedding 71 (UT'S’) into Mod(S’), the generating set of (11)
can be replaced by the following generating set for II(.S’, A):
(S, A) = (Tp,,...,Tp,, TA).
Define
(S, A) = (Tp,,...,Tp,, TA).

By construction, ﬁ(S',A) < Mod(S)[¢]. Under the projection II(S’, A) — 71(S’), the set
{Tp,} maps onto a generating set for 71 (S’). It follows that II(S", A) surjects onto 71 (S7). As
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T € Mod(S)[¢] if and only if 7 | m, it follows that I1(S’, A) is indeed characterized by the
diagram (10) as claimed.

For the second claim, let P = a UbU A be a pair of pants on S’. The curves a, b are isotopic
on S” and cobound an annulus containing the basepoint. It follows that T, aTb_1 € m (). Via
(10), there is some lift 7,7, 'T% € II(S',A), and as Tk € II(S", A) as well, it follows that all
fundamental multitwists for P are elements of II(S’, A) as claimed. O

For the purposes of this paper, we will most often be concerned with subsurface push
subgroups for a special class of subsurfaces. Let b C ¥, be a nonseparating closed curve
satisfying ¢(b) = —1. The boundary component A of X, \ {b} corresponding to the left side of b
satisfies $(A) = —1, and to ease notation, we write ﬁ(Eg \ {b}) to refer to this spin subsurface

push subgroup.
8.3. Generating admissible twists. We have arrived at the key result of the section.

Proposition 8.2. Let ¢ be a Z/rZ-valued spin structure on a closed surface ¥, for g > 5
and any integer r. Let (ag,a1,b) be an ordered 3-chain of curves with ¢(ag) = ¢(a1) =0 and
¢(b) = —1. Let H < Mod(X,) be a subgroup containing T, Ta, and the spin subsurface push
group TI(2, \ {b}). Then H contains Ty.

The proof will require the preliminary Lemma 8.3, for which we introduce some terminology.
For a subgroup H < Mod(X,), we say that a simple closed curve a is an H-curve if T, € H.
We also say that curves a,b are H-equivalent if there exists some f € H with f(a) =b. If ¢ and
b= f(a) are H-equivalent and II(2, \ {a}) < H, then also TI(X, \ {b}) = fII(Z, \ {a})f ' is a
subgroup of H.

The following lemma establishes some sufficient conditions for H-equivalence of curves.

Lemma 8.3. Let X, be a surface of genus g > 5. Let ag,a1,b be an ordered 3-chain of curves
with ¢(ag) = ¢(a1) = 0 and ¢(b) = —1. Let H < Mod(X,) be a subgroup containing Ty, Ty,
and TI(Z, \ {b}).
(1) Let b’ be an oriented curve satisfying ¢p(b') = —1 such that i(b,b') =0 and i(ay,b’) = 1.
Then b and b are H-equivalent. It follows that TI(S, \ {0'}) < H.
(2) Let a’ be any nonseparating curve satisfying ¢p(a’) = 0 such that a’ is disjoint from the
configuration agUay Ub. Then o’ is an H-curve.
(8) Let b’ be any nonseparating curve satisfying ¢p(b') = —1 such that b’ is disjoint from the
configuration ag Ua; Ub. Then b and b’ are H-equivalent, and hence ﬁ(Eg \{b}) < H.

Proof. (1): If b =1 there is nothing to prove. Otherwise, given ay,b,b’, we define a curve b as
follows. Let & be the portion of a; connecting the left side of b to one of the sides of b’; then b
is defined as the curve-arc sum b” := b+, b'. By construction bU b U b” bounds a pair of pants
P lying to the left of b, and i(a1,b”) = 0. By Lemma 3.13, there exists an orientation of b” such
that ¢(b"”) = —1. This can be determined as follows: b” is oriented with P lying to the right
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if and only if P lies to the left of '. If P lies to the left of &/, then the element TbTb/TbT/1 is a
fundamental multitwist and hence an element of TI(2, \ {b}) < H. Otherwise, T T, ' Ty is a
fundamental multitwist. In the first case, the braid relation implies that

Ta (TbTb’Tb_”l)Tal (b) = bl’

1

while in the second case,
T, (T, Ty )Ta, (b) = V.

In either case, the indicated element lies in H, showing the H-equivalence between b, b'.

(2): Let € be an arc connecting ag to a’ that is disjoint from a; U b, and define ¥’ := ag +. @’
It is possible that ¥ = b, but this will not pose any difficulty. Then ag U a’ Ub forms a
pair of pants and o’ satisfies the intersection conditions i(b, ") = 0 and i(a;,b’) = 1. By the
homological coherence property, ¢(b’) = —1. By the second assertion of (1), ﬁ(Eg \{v'}) < H.
As ag Ua’ Ub forms a pair of pants, it follows that T,, 7, is a fundamental multitwist, and so

ao*a’

To Tt € ﬁ(Zg \{b'}) < H. As T,, € H by hypothesis, this shows that T,, € H as desired.

(3): Given V', Corollary 4.4 implies that there exists an admissible curve a’ that is disjoint
from ag U a; Ub and for which i(a’,b") = 1. Corollary 4.4 also establishes the existence of a

curve b, satsifying ¢(b") = —1, with the following intersection properties:
0, 6") = (W, 6") = i(ao,0") =0, i(d',b") =i(a1,b") = 1.

By (1), b and b” are H-equivalent. By (2), a’ is an H-curve, so that by (1) again, b and b’ are
H-equivalent, showing the result. |

Proof. (of Proposition 8.2) Let a be any admissible curve. There is some genus 2 subsurface

S’ = 3,1 containing a, and there is also some genus 2 subsurface S = X ; that contains the

curves ag,ai,b. By Lemma 7.3, there is a path Sg = S —S; — -+ — S, = §’ of subsurfaces
homeomorphic to X3 ; with boundary components 95; and 95,4, disjoint for i =1,...,n -1,
hence S; N S;y1 =0 fori=1,...,n—1.

For ¢ = 1,...,n, let ag; be an admissible curve contained in S;; we take as, = a. We

claim that there exist curves ag;11 and b; on S; such that ag;,as;+1,b; forms a chain, and
@(azi+1) = 0,0(b;) = —1. To see this, let T C S; be a subsurface of genus 1 that does not
contain ag;. By Corollary 4.3, there is an admissible curve o' contained in T'. Let € be an arc
connecting ag; and a’; then b; := ag; 4. a’ satisfies ¢(b) = —1 for a suitable choice of orientation.
Let ¢ be any curve on S; such that i(c,as;) = i(c,b;) = 1. Then ag;y1 := T;:(C)(c) is admissible,
and ag;, ag;t1,b; forms a chain as required.

We assume for the sake of induction that ag;, ag;11 are H-curves and that ﬁ(Zg \ {b;}) < H.
Then by Lemma 8.3.2, also ag;12, ag;+3 are H-curves, and fI(Eg \ {bi+1}) < H. The base case
1 = 0 holds by hypothesis, taking by = b. The claim now follows by induction. ]
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9. NETWORKS

In this section we deduce Theorem 9.5 from Proposition 8.2. The key notion is that of a
network of curves. In Section 9.1, we establish the basic theory of networks, and in Section 9.2,
we state and prove Theorem 9.5. Departing from our conventions elsewhere in the paper, in

this section we work with individual curves and not merely their isotopy classes.

9.1. Networks and their basic theory.

Definition 9.1. Let S = X0 be a surface, viewed as a compact surface with marked points.
A network on S is any collection N' = {aq,...,a,} of simple closed curves on S, disjoint from
any marked points, such that #(a; Na;) <1 for all pairs of curves a;,a; € N, and such that
there are no triple intersections. A network A has an associated intersection graph I, whose
vertices correspond to curves x € N, with vertices z,y adjacent if and only if #(zNy)=1. A

network is said to be connected if I"nr is connected, and arboreal if I' s is a tree. A network is

filling if
S\ U a
a€N
is a disjoint union of disks and boundary-parallel annuli; each component is allowed to contain

at most one marked point of S.

The data of a network encodes both an abstract finite set of curves as well as a topological
subspace of the surface S. To avoid confusing these, let the symbol A/ denote this finite set,
and let N denote the space. When N is arboreal, there is a simple generating set for (/V ).
To describe it, endow N with the structure of a CW complex, and let T be a spanning tree for
this CW complex.

Lemma 9.2. Let N be an arboreal network. Then there is a 1-1 correspondence between the

set of edges N'\ T, and the set N

Proof. Each edge of A is contained in a unique element of \. For a given a € N, let ay, ..., (n(a)
denote these edges, ordered so that adjacent edges are numbered consecutively. For each a € N,
the sequence ay, ..., ay(q) forms a cycle in N. Thus for each a € N/ , there is at least one edge
ay (without loss of generality) that is not contained in 7.

It remains to show that for each a € N, there is exactly one edge not contained in 7.
Equivalently, we must show that the intersection a N7 is connected as a topological space. The
assumption that A is arboreal implies that I'yr has the following property: let T'xr(a) be the
graph obtained from I'»r by removing all edges incident to a. Then each vertex b adjacent to a
in 'y determines a distinct component of T'ar(a).

Let v, w € a be vertices of JV, and let eq, ..., e, be the unique geodesic path in 7 connecting
v to w. It suffices to show that this path is contained in a. If this is not the case, let k1 (resp.
k2) be the minimal (resp. maximal) integer such that ey, (resp. eg,) is not contained in a. Then

exactly one vertex vy of ey, (resp. v of ey, ) lies on a, and the other lies on some adjacent curve
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by (resp. ba). As i(a,b;) =i(a,be) =1 and the path ey, ..., e, visits each vertex in N at most
once, it follows that b; and b, are distinct elements of . As explained in the above paragraph,
the arboreality assumption implies that every path in N connecting a point in b; to a point in
bs must pass through a. Any such path must pass through v; and vy: this shows that if the

path eq,..., e, enters by, it must pass through v at least twice, contrary to assumption. [

Via Lemma 9.2, each a € N/ determines a unique based loop P(a) by following the unique
path in 7 from the basepoint to a. Lemma 9.3 below now follows by a standard application of
the Seifert-Van Kampen theorem.

~

Lemma 9.3. Let N be an arboreal network. Then m (N) is generated by the set of loops
{P(a) | a € N'}. If N is moreover filling, then the map w1 (N') — m1(S) is a surjection, and so
m1(S) is also generated by this collection of loops.

71(S) is a normal subgroup of Mod(S): if a € m1(S) is a mapping class corresponding to a
based loop and f € Mod(S) is arbitrary, then conjugation by f takes a to the mapping class
corresponding to the based loop f(«). In the context of the “network presentation” of 7 (S)

arising from the surjection 71 (N) — 71(5), this means that 71 (S) has a very simple normal
generating set as a subgroup of Mod(.S), as the following makes precise.

Lemma 9.4. Let N C S be an arboreal filling network. Let H < Mod(S) be a subgroup
containing T, for each a € N'. If H also contains P(ay) € m(S) for some a1 € N, then H
contains the entire point-pushing subgroup m1(S).

~

Proof. As recorded in Lemma 9.3, w1 (N), and hence also 71 (S), is generated by the collection
of elements P(a) for a € N'. We will proceed by induction. Define connected subnetworks

NcCcMNMC---CN, =N

as follows: N} consists of all those curves a at a distance of at most k from the base vertex
ay € Ty (viewing Ty as a metric space for which each edge has length 1). We suppose that
m (./\A/'k) < H; the base case k = 0 holds by hypothesis.

Let a € Ny41 \ Nk be arbitrary. Let o’ € Ny be adjacent to a. By the braid relation,

TyTy(a") = a,
and hence P(a) = (T,T,)P(a')(T,T,)~' € H. This completes the inductive step. O
9.2. Network generating sets for 7,. Having established some of the basic theory of
networks, we can now formulate and prove the key technical result of the paper. For hypotheses
(2) and (3), the reader may wish to consult Figure 2 and the surrounding discussion of the D,

relation (Proposition 2.6) and the configuration %,,. For an example of a network satisfying the
hypotheses of Theorem 9.5, see Figure 8.

Theorem 9.5. Let ¢ be a Z/rZ-valued spin structure on a closed surface 3y, with1 <r < g—1.
Let N = {a,} be a connected filling network of curves on ¥, with the following properties:
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(1) Every element a,, is admissible,

(2) There is a collection a1, ...,as,14 of elements of N such that a1, . ..,as,13 are arranged
in the configuration of the curves Pary3 of the Daoyy3 relation, and ag,44 corresponds
to the boundary component Ay associated to the subconfiguration Doy yo.

(3) Let b C £y correspond to the curve Ao of the Do,y 3 relation, as appearing in Figure 2.
Then N must contain some curve d with i(d,b) = 1.

(4) Let N C N be the subnetwork consisting of all curves in N disjoint from b. Then N’
must be an arboreal filling network for ¥4\ {b}.

If g > 5, then (T,,, a; € N') contains the admissible subgroup Tg.
Moreover, if r is odd, then

(T,,, a; € N) = Mod(X,)[¢].

If r = 2d is even and g > g(r) for the function g(r) of Definition 6.1, then (T,,, a; € N') is a
subgroup of finite index in Mod(X,)[¢].

Proof. Define

H = <Ta1’, a; €N>

By hypothesis (1), H < 7,. We establish the opposite containment 7, < H. The remaining
assertions in the statement of Theorem 9.5 follow by an appeal to Proposition 5.1 or Proposition
6.2 as appropriate. The containment 74 < H will follow from Proposition 8.2. To see that
the hypotheses of Proposition 8.2 are satisfied by H, it is necessary to establish a containment
(2, \ {b}) < H, and to find suitable curves corresponding to ag,a; in the statement of
Proposition 8.2.

Consider the curves {a1,...,as.+4} C N corresponding to o413 U {A;1} as in Corollary 2.7,
as posited by hypothesis (2). Without loss of generality, assume that aj, as,as € N correspond
to the curves a, ci,a’ of P43, so that b C 3 is one of the boundary components of the chain
a1,az,a3. Let d be the curve with i(d,b) = 1 posited by hypothesis (3), and let P be the pair
of pants bounded by ai,a3,b. The intersection d N P must be a single arc, since d € N and
so #(dNay) <1 and #(dNaz) < 1. Without loss of generality, assume #(dNay) = 1 and
#(dNas) = 0. Then the 3-chain a1, d, b on ¥, corresponds to the 3-chain ag, a1, b of Proposition
8.2, since ¢(b) = —1 by the homological coherence property. By assumption, Ty, T, € H, so it
remains only to establish ﬁ(Eg \ {b}) < H.

By hypothesis (4), the restriction N determines an arboreal filling network on ¥, \ {b}. The
same is therefore true on the surface m obtained by filling in the boundary component
corresponding to the left side of b (where b is oriented so that aj, as lie to the left). The surface
m is connected, since the hypothesis i(d, b) = 1 implies that d is nonseparating. We treat
m as a surface 2517_171, with the marked point corresponding to the filled-in left side of b.
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We will show that ﬁ(Zg \ {b}) < H by appealing to Lemma 8.1. We must therefore show
that 7, is an element of H, and show that the image of the map

(T,,a € Ny — Mod (X, \ {b})

contains the point-pushing subgroup m (2, \ {b}). Applying Corollary 2.7.2, we obtain T, € H.
To exhibit m (X, \ {b}), we will appeal to Lemma 9.4. The element T,,T,! corresponds to an

element P(a1) € m1(X, \ {b}). By Lemma 9.4, it follows that the entire point-pushing subgroup
(24 \ {b}) is contained in the subgroup (T,,a € N') < H. O

10. LINEAR SYSTEMS IN TORIC SURFACES

The purpose of this section is to give a minimal account of the work of Crétois—Lang in
[CL17a]. We do not attempt to give a detailed summary of the theory of toric surfaces; the
interested reader is referred to [CL17a] and the references therein.

Consider the integer lattice Z2 C R2. A lattice polygon A is the convex hull of a finite
collection {v1,...,v,} of n > 3 elements v; € Z2, not all collinear. Given a polygon A which
contains at least one lattice point in the interior int(A), the adjoint polygon A, is defined to be
the convex hull of int(A) N Z2.

The following proposition is a concise summary of the correspondence between line bundles
on toric surfaces and polygons. For details, see [CL17a, Section 3]. In item (1), a unimodular
transformation of R? is an affine map A : R? — R? (necessarily invertible) such that AZ? = Z2.

Proposition 10.1. Let X be a smooth toric surface.

(1) Associated to any nef line bundle L on X is a convex lattice polygon Ar, well-defined
up to unimodular transformations.

(2) If L is nef, then the roots of L (i.e. the line bundles S for which nS = L for some integer
n) are in correspondence with the dilates %Ag for which %Ag is a lattice polygon.

(3) Suppose that L is ample and that int(Az) N Z2% is nonempty. Then the adjoint line
bundle L @ Kx is nef, and Argry = (Ar)a-

(4) Let L be ample. The genus g(L) of a smooth C € |L| is given by the formula

9(L) = #(int(Az) NZ%) = #((Ar)a NZ?).
(5) Let L be ample. A generic fiber C € |L| is hyperelliptic if and only if (Ar)q is a line

segment.

The following proposition indicates the connection between the divisibility properties of
L ® Kx as an element of Pic(X) (or after Proposition 10.1.2, the divisibility of (Az).), and the
presence of invariant higher spin structures. It is a folklore theorem; see [Sall6, Theorem 1.1]
and [CL17a, Proposition 2.7] for written accounts.
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Proposition 10.2. Let £ be an ample line bundle on a smooth toric surface X. For any r
such that the adjoint line bundle £L ® Kx admits a v'" root in Pic(X), there exists a (unique)

Z/rZ-valued spin structure ¢ preserved by the monodromy pic:
FL < Mod(Zg(ﬁ))[gb]

Proposition 10.1 suggests that it might be profitable to “model” a smooth C € |£| on the
lattice polygon A,.

Construction 10.3 (Inflation procedure). Let A be a lattice polygon. Let B(r,z) denote the
open ball of radius r centered at x € R2. Define the surface with boundary

A=A\ ] B@1/4).
vEint(A)NZ?
The inflation of A is the surface Ca obtained as the double of A° along its boundary. It is a
closed oriented surface of genus g = #(int(A) N Z2). In particular, for A = A, for some ample
L, the inflation Ca has genus g(£). See Figure 8 for the example of O(6) on CP?.

The first indication of the utility of the inflation procedure is provided by the following
theorem of Crétois—Lang. For an inflation Ca, define an A-curve to be any simple closed curve

on Ca that corresponds to the circle of radius 1/4 centered at an interior lattice point of A.

Theorem 10.4 ([CL17a], Theorem 3). Let L be an ample line bundle on a smooth toric surface
X. There is a homeomorphism [ : Co — Ca, identifying a smooth Cy € |L| with Ca,, such

that every A-curve a C Ca, is a vanishing cycle, and
T, el,.

Crétois—Lang also determine a second family of elements of I'; arising from the combinatorics
of A. A primitive integer segment is a line segment o C R? whose endpoints lie on Z? and whose
interior is disjoint from Z2. A primitive integer segment determines a line in R? in the obvious
way. When a lattice polygon A is fixed, it will be understood that a primitive integer segment
connects lattice points v, w € A N Z2, and such that v and w do not lie along the same edge of
A. Under the inflation procedure, a primitive integer segment corresponds to a simple closed
curve. For a primitive integer segment o, we write T, for the corresponding Dehn twist.

Suppose that A is a lattice polygon, let d > 1 be an integer. We say that A is divisible by d
if the dilate éA is again a lattice polygon. If A is divisible by d, then after translating A so

that one vertex lies in the sublattice dZ?, the remaining vertices do also. We write
A(d) :== AN dZ?,

relative to any such embedding. The following is a combination of Propositions 7.13 and 7.16 of
[CL17a].
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Theorem 10.5 (Crétois—Lang). Let £ be an ample line bundle on a smooth toric surface
X. Suppose that the adjoint polygon (Ar), is divisible by d. Suppose that o is a primitive
integer segment such that the line it generates intersects (Ar)q(d). Then, with respect to the
identification f : Co — Ca,. of Theorem 10.4, we have that o is a vanishing cycle and T, € I'.

Taken together, Theorems 10.4 and 10.5 produce a large family of Dehn twists in I'z. In the
next section, we will see that they provide sufficiently many elements to satisfy the hypotheses
of Theorem 9.5, which will lead to a proof of Theorem A.

11. PROOF OF THEOREM A

Fix a toric surface X and an ample line bundle £. This determines the polygons A, and
(Ar)a, as well as the monodromy group I'z. For convenience, we will drop reference to £ from
the notation, and speak of A, A,, I, etc. We also shorten notation for the inflation curve Ca,
and refer simply to C instead.

By hypothesis, r is the highest root of the line bundle £ ® Kx. Proposition 10.1.2 implies
that A, is r-divisible. Our first objective is to find a network N satisfying the hypotheses
of Theorem 9.5. This will show all but the last assertion of Theorem A. Once this has been

accomplished, we will see that the answer to Question 1.2 readily follows.

Genus hypotheses. We first address the genus assumptions of Theorem 9.5. Recalling that
A, is assumed to be r-divisible, a calculation using Pick’s formula implies that for r > 1,

g (r+1)(r+2).
2
This shows that g > 5 for all » > 1 and that g > r + 1 for r = 2d even. For r = 2d = 4, this
gives g > 15, and for r = 2d = 8 this gives g > 45. In all cases, the hypothesis g > g(r) of
Theorem 9.5 holds.

The remaining assumption to be addressed is the requirement that r < g — 1. As noted in
Remark 3.6,  must divide 2¢g — 2, so we must only show that the cases r =2g—2and r =g —1
do not occur in the study of linear systems on toric surfaces. Suppose first that r = 2g — 2. This
implies that the adjoint polygon A, contains precisely g lattice points, but is also 2g — 2-divisible.
This is an absurdity: let e be an edge of the lattice polygon 2g¥72Aa; then the dilate (29 — 2)e
contains at least 2g — 1 > g lattice points. In the case r = g — 1, a similar analysis shows that
in fact A, must equal the g — 1-fold dilation of a primitive integer segment. By Proposition
10.1.5, this implies that the general fiber of the linear system is hyperelliptic, which we have

excluded from consideration.

Constructing the network A. Recall that according to Theorem 10.4, each integer point
v € A, NZ? determines a vanishing cycle in I'; we introduce the notation A(v) to refer to the
curve associated to v. When we have a specific identification of A with a lattice polygon, we will
use the notation A(x,y) to refer to the A-curve at the integer point (x,y). Similarly, given a

primitive integer segment o, we let B(o) denote the associated simple closed curve on C. When
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A is identified with a lattice polygon, we write B((z,¥), (z,w)) for the B-curve associated to
the primitive integer segment connecting (z,y) and (z,w). We refer to these as A-curves and
B-curves, respectively.

To define the network N, it will be useful to introduce some terminology. Let o be a primitive
integer segment, and let L(o) be the line determined by o. For an integer point v, we say that o
points towards v if v € L(c). We also introduce the notion of a k-standard embedding. Let k be
a vertex of A,. A k-standard embedding is an embedding of A into R? such that x corresponds
to (0,0) and such that the edges of A, incident to  lie along the x and y axes. Any embedding
A C R? can be made k-standard by applying a suitable unimodular transformation. Following
Proposition 10.1.1, we are free to apply unimodular transformations as needed.

Let x be a vertex of A,. Let N be the network consisting of the following curves:

(1) All A-curves.

(2) The curve B(c), where o is defined as follows. Let x’ be a vertex of A, adjacent to .
Let ¢’ be the edge of A, containing s’ and not containing k, and let w € A, be the
integer point lying on €’ that is connected to &’ by a primitive integer segment o.

(3) The curve B(7) defined as follows. Under a x-standard embedding of A, necessarily
(0,—1) € OA. Since A, is assumed to be d-divisible, the edge of A, lying along the
x-axis extends at least as far as (d,0). We take 7 to be the primitive integer segment
identified with B((d,0), (0, —1)) in this embedding of A.

(4) All B-curves associated to primitive integer segments pointing towards r, but such that
the associated line does not pass through the interior of the segments ¢ or 7 or the

primitive integer segment connecting (—1,1) to (0, 1).

See Figure 8 for a picture of AV in the case of the line bundle O(6) on CP?.

Remark 11.1. As can be seen in Figure 8, certain elements of N are mutually isotopic. This
harmless excess is introduced only to make the definition of A" more tidy.

In anticipation of an appeal to Theorem 9.5, we also define the subnetwork

N =N\ {A4(0,1)}. (12)

First properties of A'. We first claim that A is a network. Indeed, all A-curves are mutually
disjoint. The set of primitive integer segments under consideration meet only at integer points
in A,, and hence the associated B-curves are also mutually disjoint. Suppose ¢ has endpoints
v,w. Then i(A(v), B(o)) = i(A(w), B(c)) = 1, and i(A(u), B(c)) = 0 for any other integer
point u. Thus N is a network.

Indeed, AV is a connected network, as follows from the description of I'yr and ' given below.

Lemma 11.2. The graph T'xr has the homotopy type of S, and T is a tree, i.e. N7 is

arboreal.
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——O0—O0—O
B(7)

FIGURE 8. Example: (X,L£) = (CP? O(6)); here r = 3. Left: the lattice
polygons A and A, (shaded). Right: the inflation construction, and the
network N, depicted in both shades of blue. The curves aq, ..., a1o of Theorem
9.5.2 and 9.5.3 are shown in the light shade of blue. Note the curve b (in red)

is not part of the network, but does correspond to the curve b of Theorem 9.5.3.

Proof. We first establish that I'ss is connected. It suffices to show that every ¢ € A is connected
to A(k). We first consider the case of an A-curve A(v). If v € A, is some other integer point,
there is a line segment L connecting v to x. This decomposes as a union of primitive integer
segments o; based at the integer points v; lying on L. Each such segment determines a B-curve
in NV, and it is clear that there is a path from A(v) to A(k) alternating between B(o;) and
A(v;). The argument for a B-curve (including the exceptional elements B(o) and B(7)) is
similarly straightforward.
We next claim that the subnetwork

N'":= N\ B(o)

is arboreal. The curves B(o) and B(7) are the only B-curves in A/ that do not lie on a line
passing through . Thus the network consisting only of curves of type (1) and (4) is arboreal by
construction. As B(7) intersects only A(d,0), this shows that the network consisting of curves
of type (1),(3), and (4) is also arboreal, but this network is N/ by definition.

The curve B(co) intersects only the A-curves A(k’) and A(w). Thus Ty is obtained from the
tree Ty by adding one new vertex that is connected to two edges, so that I'ys ~ S as claimed.

It will follow from this that N’ is also arboreal. The path in I'ar connecting &’ to w follows
the y-axis down to x, then proceeds out along the line connecting x to wj; in particular, it passes
through the vertex (0,1). Thus, removing A(0, 1) to create the network N’ removes the single

circuit in I'ar, so that 'y~ is a tree as claimed. O
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We claim that A is filling. This will be established in the next two lemmas. Recall the
definition of A° from the definition of the inflation procedure in Construction 10.3.

Lemma 11.3. Let S C A denote the union of all primitive integer segments associated to
B-curves in N. Then

(1) Each component of A°\ S is simply-connected.
(2) For each component D of A°\ S, the intersection D N OA has at most one component.

Proof. We begin by observing that there are homotopy equivalences A° ~ A\ (A, N Z?) and
A\ S ~ A\ (SU(A,NZ?)). Tt will be tidier to work with this latter space, and so we formulate
our arguments in this setting.

Embed A into R? and consider S as a planar graph contained in A. Basic properties of
convexity imply that for any integer point v € Z2 N A,, the line connecting v and x does not
intersect either of B(o) or B(7). Hence this line determines a union of primitive integer segments

in A/, and upon the removal of these segments over all v, there is an equality
A\ (SU(Z*NAL)) =A\S.

To prove (1), it therefore suffices to show that Hi(A \ S;Z) = 0. There is a map of pairs
(A 0A) — (S?,%), where x € §2 is an arbitrary basepoint. f induces a homeomorphism

FiA\IA — S2\ {x}.

Since the segment B(7) (among many others) intersects dA, it follows that f induces a homotopy
equivalence

FrANS = 52\ f(9),

and hence there is an isomorphism
fo: Hi(A\ S;Z) — Hi(S*\ f(S5); Z).
By Alexander duality, H;(S?\ f(S);Z) = HO(f(S);Z) = 0, the latter holding because S is

connected by construction. This proves (1).

For (2), consider the subconfiguration S’ C S consisting of all primitive integer segments
lying along a line connecting s to any integer point v € 0A. This provides a subdivision of A
into convex sets, each of which has a vertex at x. Convexity then implies that each component
D} of A\ S’ intersects A in at most one component. The subdivision of A induced by S is a
refinement of that induced by S’. Since all segments in S that intersect A are elements of S’,
there is an equality

OAN (SNAA) = dA\ (S NIA).

Thus each component of OA \ (S N OA) corresponds to a distinct component of A\ S, and (2)
follows. O

Lemma 11.4. Each component of C\ N is simply-connected, i.e. N s filling.
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Proof. By construction, the “deflation” map p : C' — A takes components of C\ /N to components
of A\ S, where S continues to denote the union of all primitive integer segments associated to
B-curves in N. This map on components is at most 2-to-1, and is ezactly 2-to-1 in the case
where the component D of A\ S does not contain a lattice point in its interior and does not
intersect OA. In this 2-to-1 case, each component Dy, Dy of C \ N is mapped homeomorphically
by p onto the component of A°\ S corresponding to D. Since D is assumed to contain no lattice
points in the interior, it follows that the corresponding component of A°\ S is simply-connected,
and hence Dl, Dg are as well.

Lemma 11.3.1 implies that no component of A\ S contains an interior lattice point, and so it
remains only to be seen that every component of C'\ N that corresponds to a component of
A\ S intersecting OA is simply-connected. Let DccC \ NV be such a component, and let D be
the corresponding component of A°\ S. Observe that D is constructed by attaching two copies
of D along D NAA. It follows that D is simply-connected if and only if D N A is connected.
The result now follows by Lemma 11.3.2. (]

Applicability of Theorem 9.5. It remains to verify the properties (1) — (4) of Theorem 9.5.
By Theorem 10.4, for an A-curve A(v), the associated Dehn twist T4(,y € I'. By Theorem 10.5,
any curve B(¢) € N arising from a primitive integer segment & also satisfies Tg(¢) € T'. It follows
from the definitions that any curve ¢ in any connected network is necessarily non-separating.
For a nonseparating curve ¢ C C, the Dehn twist T, € I" only if the associated spin structure
satisfies ¢(c) = 0. Hence (1) holds.

For (2), we take a k-standard embedding of A. It is now easy to find a collection of curves
Sor+4 determining the configuration Zo,3U{A;} of Corollary 2.7. We take a = B((0,0), (0, —1))
and a’ = B((0,0),(0,1)). Since A, is assumed to be r-divisible, the edge of A, lying along the -
axis extends at least as far as (r,0). For 1 < k < r+1, we can therefore take co,—1 to be A(0, k—1),
and for 1 < k < r, we take cai, to be B((k—1,0), (k,0)). We take a,+1 = B(7) = B((r,0), (0,—1)).
The segments connecting (0, —1), (0,0), (1,0),...,(d,0), (0, —1) separate A into two components,
hence under the inflation procedure, the associated B-curves separate C'. From the construction
it is clear that the curves bound a subsurface of genus 0 with r + 2 boundary components, as
required for the configuration %s,.+3 U {A1} of Corollary 2.7.

For (3), we observe that from the construction, the Ay curve of the configuration %o, 3
corresponds to b := B((—1,1),(0,1)) on A. One sees that A(0,1) intersects this curve, and is
an element of N as needed.

For (4), we begin by observing that only the element A(0,1) € N intersects B((—1,1), (0,1)).
Enumerate the components of C \ N as {D;}. We claim that there are exactly three disks
D1, Do, D3 in C'\ NV with boundary lying on A(0,1), and that b C D; C C. Indeed, using the
notation of item (2) in the definition of N, the disks Dy and Ds arise via inflation from the

component of A\ S bounded by the triangle formed by €', o, and the primitive integer segment(s)
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connecting x to w. Neither Dy nor Dj intersects b, and the only curve in A intersecting b is
A(0,1); this implies that b C D; as claimed.

Thus, in (C'\ N)U A(0,1), the disks Dy and Dj are joined into a single disk DT, while D
has two portions of its boundary joined to create an annulus with core curve b. Upon passing to
(C'\ {b}) \ W, this annulus is cut open to create two annular regions bounded by b, while the
disks Dt and D; for i > 4 are unaffected. Thus N’ does determine a filling network on C'\ {b}
as required. Arboreality of N/ was established in Lemma 11.2.

From admissible twists to vanishing cycles. In order to address Question 1.2, it is necessary
to better understand the relationship between admissible twists and vanishing cycles. A first
remark is that any vanishing cycle is necessarily an admissible curve, so it remains only to show
the converse. We observe that if a is a loop in M(L) based at Cy that determines a vanishing
cycle, then any conjugate SaB~! also determines a vanishing cycle. To complete the argument,
it therefore suffices to establish the following claim.

Lemma 11.5. Let a be any admissible curve on Cy. Then T, is conjugate in I' to some twist

T. for ¢ a vanishing cycle.

Proof. An admissible curve a determines a vertex in the graph Cé(Co) of Section 7. Theorems
10.4 and 10.5 together imply that I" has a generating set consisting entirely of vanishing cycles.
Thus the set of vertices in quﬁ(C’o) corresponding to vanishing cycles is nonempty.

We claim that if a € Cé(CO) is adjacent to some vanishing cycle ¢, then a is also a vanishing
cycle. Indeed, the condition that a and c are adjacent in C(})(Co) is equivalent to i(a,c) = 1, and
hence by the braid relation,

Ty = (T.T,)T(TeT,) "

As T,, T, € T by the first part of Theorem A, the above observation implies that Ty, is a vanishing

cycle. The claim now follows from the connectivity of C;(Co) established in Lemma 7.5. O
This concludes the proof of Theorem A. (|
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