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This paper presents a distributed-current-source (DCS) modeling method to analyze the 
eddy-current (EC) induced in an electrically conductive material with a weak magnetic 
permeability. Formulated in state space to solve for an unknown EC density J and electric 
potential ϕ, the method decomposes the conductor into elemental volume/surface current 
sources to model the eddy-current and magnetization effects. The closed-form solutions 
to a three-dimension (3D) EC problem with geometrical boundary effects are derived and 
verified by comparing with finite-element methods and published data, both numerically 
and experimentally. An element-refinement method, which accounts for the skin-depth 
effects and non-uniform boundary EC, is proposed and validated. The DCS modeling 
method has been applied to a field-reconstruction application for parametric analysis 
demonstrating its effectiveness and efficiency.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Eddy current (EC) effect is a useful phenomenon that has been applied to various fields ranging from industrial appli-
cations including geometrical and material sensing [1], induction heating [2] and vibration damping to emerging medical 
applications like magnetic induction tomography [3] and transcranial magnetic stimulation [4] to name a few. Eddy cur-
rent models are important analyzing tools for sensor design optimization, damping force analysis, energy loss prediction in 
electromagnetic devices and EC visualization in defect detection and field reconstruction [5].

EC is often seen in conductive metal induced by an electromagnet (EM) powered by a time-varying current. As a typical 
PDE problem, various modeling methods have been studied in the past few decades. Analytical solutions [6] and improved 
TREE model [7], which were generally derived for axisymmetric systems, are the most well-known methods as they can be 
employed to fast computing. These axisymmetric models, however, assume that eddy currents are circumferential and pla-
nar, and solve for the only unknown magnetic vector potential (MVP) A with the Coulomb gauge, from which the magnetic 
flux density (MFD) B and eddy current density (ECD) J are derived. For a more general 3D EC system where the conductor 
has complicated shapes, analytical solutions have difficulties handling the boundary conditions. These problems are often 
solved numerically using techniques like finite element analysis (FEA) [8–16], finite volume method [17] and finite differ-
ence method [18]. Among them, FEA has been a most popular solving tool for 3D EC problems because commercial software 
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packages are widely available. FEA methods solve the approximate PDE solutions with appropriate boundary constraints in 
each of the discretized elements, and use nodes [15] or edges [9,16] to establish shape functions; the latter is believed 
to yield better accuracies when modeling the media interface where the electric and/or magnetic fields may be spatially 
discontinuous. Since the MVP alone is not sufficient to describe the electromagnetic field, two kinds of formulations are 
widely used; A-ϕ formulation [3,10,11] that solves for the magnetic vector potential and electric scalar potential, and T-Ω
formulation [12–14] that treats electric vector potential T and magnetic scalar potential Ω as unknown. The T-Ω formu-
lation has the advantage of decreasing the unknowns in nonconductor region, thus has gained greater adoption in recent 
years. Regardless the kinds of potential functions or element types in the numerical formulation, FEA requires modeling a 
sufficiently large non-conducting region (including air space) consequently demanding much more degrees of freedom and 
causing convergence issues, which must be carefully handled.

Inspired by the fact that the MVP and MFD fields can be viewed as the effects of current sources, a method called 
distributed current source (DCS) model [19] that decomposes the conductor into elemental current-sources as distributed-
state-variables was developed for solving EC induced in non-magnetic conductors. Since eddy-currents only exist in con-
ducting regions, element discretization is not required in airspace; thus, the DCS model dramatically decreases the number 
of unknowns. The governing equation for EC system can be derived by considering the mutual induction between current 
sources, which can be assembled in state-space representation [20] that familiar to workers in the field of control engi-
neering. Well established methods for solving the dynamic responses can be used to solve EC problems in both time and 
frequency domains. The ECD J induced by a time-varying magnetic field was solved using the DCS method for a large 
conductive plate without boundaries, generally for nonmagnetic conductors. In [20], the ECD was solved as a constrained 
least-square problem neglecting the electric potential effects. Different from existing models that have been widely stud-
ied for non-magnetic conductors, models for magnetic materials are more complicated because the magnetization effects 
alter the ECD and MFD distributions. Magnetic materials can be characterized by a permeability that covers a wide range 
of values. Materials like austenitic stainless steels and metal alloy [21,22] may have a weak permeability commonly seen 
in manufacturing applications. For example, austenitic stainless steels, such as AISI 304, 316L are widely used in additive 
manufacturing. Phase transformations from austenite to martensite may happen during the manufacturing process weakly 
magnetizing the otherwise nonmagnetic conductor, which could affect the final mechanical property [23].

Motivated by the fact that EC-effects have potential applications in monitoring additive manufacturing processes, this pa-
per focuses on extending the EC models to account for the presence of weak permeability in materials with linear magnetic 
properties, where saturation and hysteresis effects can be neglected. Specifically, this paper improves the DCS modeling 
method by accounting for the electric potential and the magnetization effects in the formulation, and thus extends the 
scope of EC applications. The remainder of the paper offers the following:

− The DCS model introduces equivalent magnetizing currents to account for the magnetization effect in the (J-ϕ) state-
space formulation where both the ECD J and Electric potential ϕ are treated as unknown variables. Next, the discrete-
time domain solutions allowing for arbitrary inputs and closed-form harmonic solutions are derived, which solve both 
the ECD and electric potential simultaneously. As will be shown, the optimal problem for solving ECD [20] can be 
reduced to solving a compact and yet physically intuitive set of linear equations.

− Along a proposed procedure for optimizing the element sizes, the DCS modeled harmonic and time-domain solutions 
involving boundary and magnetization effects are illustrated numerically and experimentally. The computing accuracy 
of the 2D and 3D solutions are validated by comparing with finite-element methods and published data.

− The advantage and computing-efficiency of the DCS modeling method are illustrated in the context of a practical field 
reconstruction application. As will be shown, the method is more efficient than conventional FEA methods in solving 
EC problems involving conductors with non-conductive elements.

2. Method

Fig. 1(a) shows a typical eddy-current system where the time-varying magnetic field generated by the electromagnet 
(EM) coil not only induces an ECD field in the magnetic conductor but also magnetizes its material. The operating condition 
is assumed magneto quasi-static for a relatively low frequency ( f ≤ 1 MHz) applications where the displacement current 
can be ignored. The electric field intensity E, time-varying magnetic flux density B and magnetic field intensity H are given 
by the Maxwell-Faraday equation and Ampère’s law (1a, b):

∇ × E = −∂B

∂t
, (1a)

∇ ×H = J+ Je. (1b)

In (1b), J is the ECD induced in the conductor by the magnetic field; and Je is the current density in the EM coil through 
which the current u flows. The ECD J induced in the conductor obeys Ohm’s law (2a) where σ is the electrical conductivity. 
For a linear magnetic material, B and H are related by the constitutive relationship in (2b) where the vector M represents 
the volume density of the magnetic moment due to the material magnetization by H, μ0 is the permeability of free space 
and μr is relative magnetic permeability:
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Fig. 1. Schematics of EM/Conductor system. (a) Conductor with distributed current source modeling. (b) Illustration of surface current density.

J = σE; (2a)

B = μ0(H +M) = μ0μrH. (2b)

Since the eddy current flows into any volume of space equal to that flows out but cannot flow into non-conductive material, 
it satisfies the continuity equation (3a) and the boundary condition (3b) where n is the normal vector out of conductor 
boundary:

∇ · J = 0; (3a)

J · n = 0. (3b)

Equations (1a, b), (2a, b) and (3a), along with the boundary condition (3b), provide a basis to solve for the ECD J induced 
in the conductor. However, the solutions to J for a given current input u involve solving M in the conductor and B in the 
total space (including the EM and free space). Alternatively, the 3D eddy-current boundary-value problem can be recast in 
state space using DCS modeling method, which converts the boundary value problem into an initial value problem directly 
solving J for a given current input u as derived in Subsection 2.1.

2.1. Discrete state-space J-ϕ formulation using DCS models

In the DCS modeling method, the magnetization M in the conductor is equivalently modeled [19] as a pair of volume 
current density JM and surface current density K:

JM = ∇ ×M and (4a)

K = M× n. (4b)

Inside the conductor, Je is zero and M = (μr − 1)H from (2b). From (1b) and (4a), the total volume current density JT inside 
the conductor can thus be expressed as

JT = J+ JM = μrJ. (5)

As derived in Appendix with the aid of Fig. 1(b), the surface magnetizing current density K (4b) is a function of the external 
magnetic flux density B at the conductor/air inference:

K = ρB × n where ρ = 2

μ0

μr − 1

μr + 1
. (6)

With (5) and (6), the eddy-current and magnetization effects are modeled as current sources in the governing equation 
for solving J, which can be derived from (1a) and (2a) where J is replaced by JT (5). Noting that ∇ × (−∇ϕ) = 0 where ϕ is 
a scalar electric potential, J can be expressed in terms of a magnetic vector potential A (where B = ∇ × A and ∇ · A = 0):

J = −σ
∂A

∂t
− σ∇ϕ. (7)

In the right side of (7), the 1st term represents the ECD generated by the time-varying magnetic fields contributed by the 
current sources (Je , JT and K); and the 2nd term accounts for the charge accumulation. Along with the continuity equation 
(3a) and the boundary condition (3b), J is the solutions to the J-ϕ equation (7) where ϕ is treated as additional unknown. 
For an axisymmetric system, J (and hence A) has only a non-zero component in the circumferential (φ) direction and 
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∂ϕ/∂φ = 0 due to symmetry, which imply ∇ϕ = 0, the 2nd term vanishes in (7), and the corresponding constraints (3a, b)
are automatically satisfied. In general, ϕ may not be a constant and its gradient ∇ϕ could have an influence on the ECD 
distribution especially near the boundaries; the corresponding constraints of J cannot be automatically satisfied and must 
be explicitly accounted for.

2.1.1. Derivation of discrete state-space system equation
The DCS method decomposes the conductor into n elemental-volume sources and m elemental-surface sources. As shown 

in (8) where the components are defined in (9a-c), the MVP in the ith volume, Ai , is contributed by Ae due to the time-
varying magnetic field generated by the input current u flowing through the EM, and (Av , Ab) of the volume and surface 
current sources of the conductor:

Ai = Aei +
n∑

l=1

Avil +
m∑

k=1

Abik (8)

Aei = fe(ri)u, where fe(ri) = μ0C0

4π

∫
V E

eθ

ri
dυ and ri = |ri − r|; (9a)

Avil

μrνl
= fv(ril)Jl, where fv(ril) = μ0

4πνiνl

∫
νi

∫
νl

dυ

ril
dυ (9b)

and
Abik

sk
= fb(rik)Kk, where fb(rik) = μ0

4πνi sk

∫
νi

∫
sk

ds

rik
dυ. (9c)

In (9a-c), dυ and ds denote the differential volume and surface respectively; V E is the volume of EM; and (νi and sk) denote 
the (ith volume and kth surface-area). In (9a), Ae at the location ri = [xi yi zi]T, which is linear with respect to the input 
current u, can be computed from the integral solution to the vector Poisson’s equation [24]. The proportionality between 
Ae and u is expressed as a kernel (vector) function fe where C0 is the current density with unit current (1 Ampere) flowing 
through the coil wire; and the vectors in the integral over the coil, r and eθ , denote the position of the target element 
and unit-direction of the current respectively. Similarly, Av and Ab can be computed with a pair of kernel (scalar) functions 
as shown in (9b, c). The integral ( fv or fb) accounts for the average effects of the mutual induction between a target vi

element and a source element (vl or sk with unit current density). However, fv and fb involve double integrals and their 
computations, though straightforward, are time-consuming. For sufficiently small elements, the elements can be treated as 
point sources and thus, both the scalar kernels ( fv and fb) between the source element at r j and the target element at ri
can be approximated by (10):

f(v,b)(ri j) ≈ μ0

4π

{
1/ri j ri j �= 0
2/(3b j) ri j = 0 (10)

where b is the radius of a minimum bounding circle (or sphere) that enclose the surface or volume element [19].
With equation (7) and the elemental MVP in (8), the discretized EC system can be compactly represented in matrix form:

J

−σ
= μrF1

∂J

∂t
+ F2

∂K

∂t
+ Γ Φ + h1u̇ (11)

where J(∈R3n×1) = [JT1 · · · JTi · · · JTn]T; Ji = [ J ix J iy J iz]T;
K
(∈R3m×1) = [

KT
1 · · · KT

k · · · KT
m

]T; Kk = [Kkx Kky Kkz]T;
and Φ(∈ Rn×1) = [ϕ1 · · · ϕi · · · ϕn]T. In (11), Γ (∈ R3n×n) is the gradient operation matrix; and h1, F1 and F2 associated 
with the kernel functions (9a-c), are defined as

h1
(∈R3n×1) = [ fTe(r1) · · · fTe(ri) · · · fTe(rn) ]

T

F1
(∈R3n×3n) =

⎡
⎣ν1fv(r11) · · · νlfv(r1l) · · · νnfv(r1n)

... · · · ... · · · ...

ν1fv(rn1) · · · νlfv(rnl) · · · νnfv(rnn)

⎤
⎦ ;

and F2
(∈R3n×3m) =

⎡
⎣ s1fb(r11) · · · skfb(r1k) · · · smfb(r1m)

... · · · ... · · · ...

s1fb(rn1) · · · skfb(rnk) · · · smfb(rnm)

⎤
⎦ ;

where the kernel vectors (fv, fb) are diagonal matrix, f(v,b)(ri j) = f(v,b)(ri j)I3 and I3 is a 3 × 3 identity matrix.
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For the kth surface element, (6) can be rewritten as

Kk = ρBk × nk or Kk = −ρ[nk]×Bk (12)

where [nk]× denotes the skew matrix of vector nk , that is,

[nk]× =
[ 0 −nkz nky

nkz 0 −nkx
−nky nkx 0

]
.

As in (8) and (9a-c), Bk in (12), is contributed by the time-varying magnetic fields Be of the EM, and (Bv, Bb) of the volume 
and current sources of the conductor:

Bk = Bek +
n∑

l=1

Bvkl +
m∑
i=1

Bbki (13)

Bek = ge(rk)u where ge(ri) = μ0C0

4π

∫
V E

eθ × (ri − r)

|ri − r|3 dυ (14a)

Bvkl

μrνl
= Jl × gv(rkl) where gv(rkl) = μ0

4π skνl

∫
sk

∫
νl

rk − rl
|rk − rl|3 dυ ds (14b)

and
Bbki

si
= Ki × gb(rki) where gb(rki) = μ0

4π sksi

∫
sk

∫
si

rk − ri
|rk − ri|3 dsds. (14c)

Similar to (10), the kernel functions (gv and gb) in (14b, c) that describe the EC-generated MFD can be approximated by

g(v,b)(ri j) ≈ μ0

4π
(ri − r j)

{
r−3
i j ri j �= 0

b−3
j ri j = 0.

(15)

With the kernel functions in (14a-c), the discrete-form of the surface-current-source in (11) is given by (16) where I3m is a 
3m × 3m identity matrix:

K = ρ(I3m − ρG2)
−1(μrG1J− h2u); (16)

where h2(∈ R3m×1) = [N][gTe(r1) · · · gTe(rk) · · · gTe(rm) ]T;

G1
(∈R3m×3n) = [N]

⎡
⎣ ν1[gv(r11)]× · · · νl[gv(r1l)]× · · · νn[gv(r1n)]×

... · · · ... · · · ...

ν1[gv(rm1)]× · · · νl[gv(rml)]× · · · νn[gv(rmn)]×

⎤
⎦ ;

G2
(∈R3m×3m) = [N]

⎡
⎣ s1[gb(r11)]× · · · si[gb(r1i)]× · · · sm[gb(r1m)]×

... · · · ... · · · ...

s1[gb(rm1)]× · · · si[gb(rmi)]× · · · sm[gb(rmm)]×

⎤
⎦ ;

and [N] =
⎡
⎣ [n1]× 0 0

0
. . . 0

0 0 [nm]×

⎤
⎦ .

Substituting (16) to (11), J can be expressed compactly in state-space representation as

J̇ = [α]J+ [β]u̇ + [γ ]Φ (17)

where σμr[α] = −(F1 +ρF2LG1)
−1; [β] = σ [α](h1 −ρF2Lh2); [γ ] = σ [α]Γ and L = (I3m −ρG2)

−1. In (17), J and u̇ are the 
state and input variables respectively, while Φ is treated as additional unknown.

2.1.2. Derivation of constraints on DCS elements
To obtain a unique solution, the continuity and boundary constraints must be appropriately defined to solve for the 

unknown vectors, J and Φ . The eddy current density J must satisfy the continuity equation (3a). For each element in the 
DCS model, the net current flows out of the six faces (Fig. 2a) must be zero. Mathematically,∑ [

si�+(Ji�+ • ni�+) + si�−(Ji�− • ni�−)
] = 0 (18)
�=x,y,z
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Fig. 2. Illustration of constraints imposing method.

where the current density Ji�± at each elemental surface (area si�± and outward normal vector ni�±) is continuous between 
its neighboring elements and can be linearly interpolated/extrapolated by equaling the spatial derivatives on both sides of 
Ji�± . For the ith element which is adjacent to (i − 1)th and/or (i + 1)th element in the direction �(= x, y, z) as illustrated in 
Figs. 2(b-d), Ji�± can be obtained based on the surface type (inner/boundary surface) it located in, which can be formulated 
as:

Ji�± =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

di±1

di + di±1
Ji + di

di + di±1
Ji±1 inner surface (Fig. 2b)

2di + di∓1

di + di∓1
Ji − di

di + di∓1
Ji∓1 boundary surface (Fig. 2c, d).

(19)

Equations (18) and (19) can be assembled as (20):

QcJ = 0. (20)

The ith row of Qc represents the continuity equation (18) for the ith element. As only (n − 1) continuity equations for the 
n elemental sources are independent, Qc ∈R(n−1)×3n .

In (11), the gradient operation matrix Γ of the electric potential is approximated by finite difference methods. The 
specific method for computing the gradient at the ith elemental potential depends on the element type as illustrated in 
Figs. 2(b, c, d):

Fig. 2(b)

Central difference:

∂ϕi

∂�
=

[ −1

di + di−1

di−1 − di+1

(di + di+1)(di + di−1)

1

di+1 + di

][
ϕi−1
ϕi

ϕi+1

]
(21a)

Fig. 2(c)

Forward difference:

∂ϕi

∂�
=

[ −2

di + di+1

2

di + di+1

][
ϕi

ϕi+1

]
(21b)

Fig. 2(d)

Backward difference:

∂ϕi

∂�
=

[ −2

di + di−1

2

di + di−1

][
ϕi−1
ϕi

]
. (21c)

As shown in (21a, b, c) where �(= x, y, z), the gradient of the ith elemental potential in Γ takes up three rows, (3i − 2) to 
3i, where i = 1, 2, . . . , n. Since only the gradient of scalar electric potential, ∇ϕ , in (7) is of interests, the zero ϕ reference 
that can be arbitrarily specified is written as (22) where the vector Qp(∈ R1×n) has one element assigned with 1 and all 
other elements with 0:

QpΦ = 0. (22)

In the following discussion, the potential of the far-field element (the element farthest from EM) is set as zero.

2.2. Solutions to discrete ECD and output equation

The discrete state-space equations describing the 3D eddy-current problem are given by the system equation (17), the 
constraint equation (20) for J and (22) for Φ . The solutions to the ECD J depend on the type of the excitation input to the 
EM coil, which can be derived either in time domain or frequency domain as follows:

Discrete-time domain formulation: The corresponding discrete equivalence (with a zero-order hold) of the distributed 
eddy-current system (17) for iteratively solving the ECD J under a time-varying arbitrary input is given by (23) where 
T
is the sampling period.
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J(k + 1) = [ᾱ]J(k) + [β̄]u̇(k) + [γ̄ ]Φ(k); J(0) = J0 (23)

where [ᾱ] = exp[α]
T ; [β̄] = (
∫ 
T
0 e[α]λdλ)[β]; and [γ̄ ] = (

∫ 
T
0 e[α]λdλ)[γ ].

Harmonic formulation: Sinusoidal inputs are commonly used in eddy-current systems. Using the phasor method that re-
places (J̇, ̇u) as complex variables ( jωJ, jωu) where j = √−1 and ω (= 2π f ) is angular frequency, the differential equation 
(17) reduces to an algebraic equation,(

jωI3n − [α])J− [γ ]Φ = jω[β]u. (24)

Each of the two formulations, discrete-time (23) and frequency domain (24), involves two unknowns; namely, J(k + 1)
and Φ(k) for (23), and the complex J and Φ variables for (24). To account for the additional unknown Φ , the constraints 
(20) and (22) are introduced along with (23) or (24) to construct a compact set of linear equation (25), which can be solved 
from (26) where J and Φ are replaced with J(k + 1) and Φ(k) when solving the discrete-time solutions:

[C][JT ΦT]T = [
bT 01×n 0

]T
(25)[

JT ΦT]T = [C]−1b (26)

where [C] =
[C11 −[γ ]

Qc 0
0 Qp

]
is an 4n × 4n matrix; and 

{
Discrete time: C11 = I3n; b = [ᾱ]J(k) + [β̄]u̇(k).

Harmonic: C11 = jωI3n − [α]; b = jω[β]u.

EC cannot be directly measured but can be evaluated by measuring the EC-generated MFD at the specified location rs , 
which is contributed by all the current sources as derived in (14b, c). In matrix form, B(rs) = [Bsx Bsy Bsz]T = −μrH1J −
H2K where K has been given in (16). Thus, the output equation can be written as

B(rs) = [−μr
(
H1 + ρH2L

−1G1
)]
J+ [

ρH2L
−1h2

]
u (27)

where H1 = [ν1[gv(rs1)]× · · · νl[gv(rsi)]× · · · νn[gv(rsn)]×] and H2 = [s1[gb(rs1)]× · · · sk[gb(rsk)]× · · · sm[gb(rsm)]×].
To summarize, (26) provides the basis to solve EC problem for a conductor with decomposed elements. Once J is solved, 

B can be obtained from (27).

2.2.1. Harmonic solution for an axisymmetric system
For an axisymmetric system where the Φ term vanishes and the constraint equations are automatically satisfied, the 

harmonic solutions to J can be directly obtained from (28):

J = [
jω

(
jωI3n − [α])]−1[β]u. (28)

Since the EC flows only in circumferential direction for an axisymmetric system, the system is modeled with annular ele-
ments [25] in cylindrical coordinates. The corresponding kernel functions, f(v,b) and g(v,b) , for the source element located 
at r j = [r j 0 z j]T and target element ri = [ri 0 zi]T are given by (29a, b):

f(v,b)(ri j) = μ0

4π

2π∫
0

r j cos θdθ√
(ri − r j cos θ)2 + (r j sin θ)2 + (zi − z j)2

(29a)

g(v,b)(ri j) = μ0

4π

2π∫
0

[(zi − z j) cos θ 0 r j − ri cos θ]Tr jdθ
[(ri − r j cos θ)2 + (r j sin θ)2 + (zi − z j)2]3/2 . (29b)

2.3. Element refinement method

In practical implementation, the sizes of the matrices (F1, F2, G1, G2) characterizing the conductor are determined by the 
number of elements. Denser elements contribute to higher accuracy but at the expense of computing cost and complexity. 
An element-refinement procedure is developed for effective trade-off between accuracy and efficiency. As will be shown, 
elements with thin aspect ratios have an adverse effect on the accuracy of the kernel-functions. A method to improve 
accuracy without increasing the matrix sizes is proposed.

2.3.1. Refinement procedure
The procedure begins with subdividing the thickness into layers to account for the skin-depth effects. The skin-depth δ

of a harmonically excited ECD along the depth zh can be approximately expressed in (30) where JS is the ECD at the surface 
[24]:

|J(zh)|
|JS | ≈ exp

(
− zh

δ

)
where δ = 1√

π(μ μ σ) f
. (30)
0 r
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Fig. 3. Illustration of refinement. (a) Refinement in z-direction. (b) Refinement in x-y plane. (c) Plane view of refined element.

For improving the resolution in modeling the skin-depth, the layers along the depth are subdivided such that the integrated 
ECs (shaded areas under the J/Js curve as illustrated in Fig. 3a) in each layer are approximately the same. Mathematically, 
the depths at each interface for a conductor (with thickness h) are divided into nh layers as given by (31):

zhi
δ

= − ln

[
1− i

nh

(
1− e−h/δ

)]
where i = 1,2, . . . ,nh − 1. (31)

In this paper, nh that represents the refinement level is decided by ensuring the decrease of EC density in each layer less 
than 20%.

Next, the elements (with high ECD gradients) in each layer are subdivided (Fig. 3b). To detect the boundary effects and 
regions where changes in the ECD distribution are dominant in each layer, the ECD gradient tensor is defined by (32) for 
the ith element:

Ti =
[

∂ J ix/∂x ∂ J ix/∂ y
∂ J iy/∂x ∂ J iy/∂ y

]
. (32)

To facilitate implementing the matrixes (Qc and Γ ), the refinements are performed by partitioning the elements into four 
sub-elements. The criterion for whether or not sub-dividing an element can be determined by the Frobenius norm of Ti , 
which is

Ti =
√
tr

(
TTi Ti

)
. (33)

If Ti > κTmax where κ is the scale factor of threshold and Tmax is the maximum value in Ti , the element is divided.
With the refined elements, the matrices (Qc and Γ ) are computed similarly as in (19) and (21) except at the boundary 

surface as illustrated in Fig. 3(c) where the current density Ji+ is approximated by interpolating from all of its adjacent 
elements; Ji of the original element, and Ji+1 and Ji+4 of the sub-elements:

Ji+ = di+1

2di + di+1
Ji + di

2di + di+1
(Ji+1 + Ji+4). (34)

The ϕ gradient of these elements can be obtained through single-sided difference as shown in (21b, c).

2.3.2. Effect of approximate kernel functions on accuracy
The approximate kernel functions, (10) and (15), treat the volume/surface elements as unit point sources to calculate the 

MVP and MFD between two elements. The element aspect-ratio has an effect on the approximation accuracy as numerically 
illustrated in Fig. 4, where the MVP and MFD simulated by (10) and (15) are compared with the integral solutions in (9b, 
c) and (14b, c) for two different element types; cube (1:1:1) in Fig. 4(a) and half-cube (2:2:1) in Fig. 4(b). As compared 
in Fig. 4, the approximate kernel functions demonstrate good approximations when the observed point is far from the 
source elements. The approximated MVP and MFD between two cubic elements show excellent agreements with the integral 
solutions in Fig. 4(a) but for the half-cubic elements (Fig. 4b), the approximation errors increase as the observed point is 
closer to the source element; implying that the kernel function approximations approach the integral solutions as the 
element shape approaches a (1:1:1) aspect-ratio.

To maintain accuracy without increasing the matrix sizes, each thin-element is “virtually” divided into approximately 
cubic sub-elements as illustrated in Fig. 4(c). In Fig. 4(c), di� and d j� (� = x, y, z) are the side lengths for the ith volume 
and jth surface elements; bi and b j are the bounding radii; and r is the distance to the other (target or source) element. 
Based on the distance/bounding-radius ratio, the element can be evenly divided into Ni and N j approximately cubic/square 
elements as defined in (35a, b) where d0 = min(di�, d j�, r), [*] denotes rounding operation and the multiplication factor k
increases the number of virtual divisions:
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Fig. 4. Comparison of kernel function and integral method. (a) Cube elements. (b) Half-cube elements. (c) Illustration of virtual subdivision.

Table 1
EM and conductor parameters for 2D axisymmetric system.

Ni =
⎧⎨
⎩

1 r > 3 ·max(bi,b j)

k
∏
�

[di�/d0] r ≤ 3 ·max(bi,b j) (35a)

and N j =
⎧⎨
⎩

1 r > 3 ·max(bi,b j)

k
∏
�

[d j�/d0] r ≤ 3 ·max(bi,b j). (35b)

The improved kernel functions then can be expressed as the average effects of the sub-elements:

f̂(v,b)(ri j) = 1

N j · Ni

N j∑
q=1

Ni∑
p=1

f(v,b)(rpq); (36a)

and ĝ(v,b)(ri j) = 1

N j · Ni

N j∑
q=1

Ni∑
p=1

g(v,b)(rpq). (36b)

3. Verification of the DCS method

The DCS modeling method, which accounts for the magnetization and boundary effects, has been validated numerically 
and experimentally with results organized into three cases:

Case 1 (2D axisymmetric harmonic model): The DCS harmonic solutions derived in (28) with kernel functions for axisym-
metric annular elements (29a, b) are verified analytically in Case 1a) and experimentally in Case 1b), where the EM/plate 
configuration and parametric values for the 2D simulation in cylindrical coordinates are given in Table 1.

1a) The boundary and magnetization effects on the eddy-current were numerically analyzed and validated with analytical 
solutions [6] for four different conductors; two radii (24 mm and 12 mm) and two permeability values (μr = 1 and 10). 
To help visualize, Fig. 5 plots the (real, imaginary) parts of the ECD at the depth of 0.25 mm.

1b) The magnetization effects on the induced eddy current was experimentally investigated on an existing testbed [1]
with an austenitic 304L stainless-steel plate, which is nonmagnetic but can be weakly magnetized after cold work. The 
EC-generated MFDs were measured (at rs = 6 mm, zs = −3.5 mm) and compared with two simulations; nonmagnetic 
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Fig. 5. ECD response of axisymmetric system (verified with analytical solution).

Fig. 6. MFD response of stainless-steel plate (experimental validation).

Table 2
Configuration and parameters of TEAM problem 7 [26].

plate (μr = 1), and plate with a very weak permeability (μr = 1.08). The frequency response (magnitude and phase 
plots) of the measured MFD for the operating frequency ranging from 100 Hz to 25 kHz are shown in Fig. 6.

Case 2 (3D harmonic model): Unlike Case 1 where the continuity equation (20) is automatically satisfied, the 3D models 
account for the geometrical and magnetization effects on the DCS modeled eddy current. Two models, Case 2a) and Case 2b) 
for a nonmagnetic and a magnetic conductor respectively, were numerically illustrated:

2a) A DCS model was formulated for the EM/plate configuration of the TEAM Problem 7 shown in Table 2, where published 
data [26] obtained experimentally at two exciting frequencies, f = 50 and 200 Hz for a nonmagnetic conductor are 
available for validation. The MFD and ECD responses are computed and compared with that reported in [20] where the 
eddy current system is formulated as a constrained least-square (CLS) problem to solve J from (17) but without the 
third term (that models the effect of electric potential ϕ). The results, which show Bz along the A1-B1 and A2-B2 lines 
in the air space above the conductor and J y along the A3-B3 and A4-B4 lines on the top and bottom surfaces of the 
conductor as indicated in Table 2, are summarized in Figs. 7(a, b). The average computing errors relative to experimental 
data [26] are tabulated in Table 2 (third column).

2b) The element-refinement method to improve modeling accuracy of the DCS model based on the J-ϕ formulation is 
numerically illustrated using the non-symmetric EM/plate configuration with a magnetic conductor shown in Table 3
where the parametric values used are listed. For 3D problems where analytical solutions and experimental data ac-
counting for the magnetization and boundary effects on the induced eddy current are not available, the commercial 
FEA software (COMSOL Multiphysics) was utilized as a basis for comparison. The FEA model is shown in Table 3, where 
the EM and plate are enclosed by a spherical air domain (R = 50 mm) utilizing its Infinite Element Domain feature, which 
is not required by the DCS model. The results are summarized in Fig. 8 and Fig. 9.

Case 3 (3D discrete-time model): The time-domain DCS formulation (26), which provides a straightforward approach to 
solve EC problems under an arbitrary current excitation, is numerically validated by comparing results with that simulated 
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Fig. 7. Results for TEAM problem 7. (a) Bz at line A1-B1 and A2-B2. (b) J y at line A3-B3 and A4-B4.

Table 3
Configuration and parameters of magnetic conductor.

in COMSOL. In this study, a rectangular pulse signal with time-constant τ = 10 μs (that accounts for the 1st order EM 
dynamics) was employed as an input excitation to investigate the effects of the hidden rectangular blind-hole (simulating 
a defect) on the Bz measured between the EM center and the plate as shown in Table 4 where the parametric values are 
summarized. The time-domain solutions were iteratively solved with a sampling period 
T of 1 μs. The EC-generated Bz
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Fig. 8. Initial results for magnetic conductor. (a) ECD (verified with COMSOL). (b) Electric potential. (c) Tensor norm for ECD distribution.

Fig. 9. Results after element refinement. (a) Illustration of refined elements. (b) MFD distribution before/after refinement. (c) ECD distribution in refined 
elements.

Table 4
Excitation signal and EM/plate configuration.

of the plate with the tiny defect is simulated in Fig. 10(a); and the differential signal (
Bz = Bz − BzN where BzN is the 
EC-generated MFD of the conductor without the defect) commonly used in defect-detection applications is simulated in 
Fig. 10(b).

All computations are performed on a PC with Intel Core i7-4770, 3.4 GHz CPU, 32 GB RAM and 64-bit OS. The findings 
from Figs. 5 to 10, where the ECD is solved from (28) for 2D case and (26) for 3D case, are summarized and discussed as 
follows:

− Fig. 5 plots the (real, imaginary) parts of the ECD distribution. As compared in Fig. 5, the ECD induced in the magnetic

material (μr = 10, denoted by and ) are much larger than that in nonmagnetic conductor (μr = 1, denoted by ◦
and •). Fig. 5 further illustrates the boundary effects on the ECD models in terms of the conductor-to-EM aspect ratio 
(defined here as the plate-radius divided by the outer-radius of the EM). When the aspect ratio is 4 (24 mm-radius 
plate), both the DCS-model and analytical solutions (that assume a conductor with an infinitely large radius) are nearly 
identical. However, for 12 mm-radius plate that has an aspect ratio of 2, the analytical curves (especially their real part) 
deviate from the DCS-model (that accounts for the boundary effects) near the boundary region.

− Fig. 6 plots the (magnitude, phase) of the DCS models with/without accounting for the very small permeability (μr =
1.08), which are compared with the measured EC-generated MFD for a range of operating frequency. While both models 
(μr = 1 and 1.08) have a nearly identical magnitude curve very close to that obtained experimentally, their phase curves 
differ significantly under low-frequency ( f < 1 kHz) operations. When the very small permeability is accounted for in 
the DCS model, both the magnitude and phase curves agree well with the experimental measurements, implying that 
the proposed method is capable of revealing the effects of very small relative permeability on the phase response of 
the EC-generated MFD, which has been commonly ignored in methods assuming non-magnetic materials.
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Fig. 10. Transient response under pulsed current excitation. (a) MFD response of defective conductor. (b) Differential signal 
Bz .

− Figs. 7(a, b) compare the proposed model with that reported in [20] where J was solved from the constrained least-
square problem without the third term in (17). In Fig. 7(b), the values are extrapolated from the ECD computed at the 
element centers; to improve accuracy, the conductor was decomposed into four layers. As demonstrated in Fig. 7(a, b) 
and Table 2, the results show that the proposed DCS model based on the J-ϕ formulation agrees well with published 
data [26] with less than 3% and 8% errors in the computed MFD and ECD respectively, which represent a significant 
improvement over the CLS method [20]. The discrepancy in the ECD solutions could be due to errors caused by the 
extrapolation.

− Fig. 8(a) compares the DCS-modeled ECD field (imaginary part) with the COMSOL FEA simulation for a magnetic square 
plate, where the EM is placed near the left edge of the 2 mm-thick conductor divided into cubic-volume and square-
surface elements with 2 mm-lengths. Relatively large electric potential gradients near the left edge of the conductor 
can also be seen in Fig. 8(b). Based on simulated results shown in Figs. 8(a, b), the tensor T and its norm T defined 
in (32) and (33) are calculated in Fig. 8(c), where the elements close to the EM have a much larger norm value; thus, 
they are subdivided in the x and y directions based on threshold factor κ = 0.1 to improve computational accuracy. 
The refined elements are shown in Fig. 9(a) where the thickness (z direction) is sub-divided into three layers based 
on the criterion illustrated in (31). Fig. 9(b) graphs the EC-generated MFD components along the x-direction at (y = 0, 
z = −4.5) computed using two DCS-models; namely, the initial single-layer uniform elements in Fig. 8(a), and the re-
fined three-layer elements in Fig. 9(a). As compared in Fig. 9(b), the single-layer DCS model with uniform elements 
yields reasonably good solutions consistent with that simulated using COMSOL within 4.2% difference defined in (37). 
The computing accuracy can be significantly improved by accounting for the edge effects with more refined elements; 
and the three-layer DCS model with refined elements matches the COMSOL FEA within 1.3% difference.

%Difference =
∑

�=x,y,z

|B�D − B�F |/(3× range). (37)

− Fig. 9(c) compares the ECD distributions at three different depths (−0.24, −0.8 and −1.56 mm from the plate surface), 
which reveals no eddy current loops in the 3rd layer (z = −1.56 mm). This phenomenon suggests that the EC has 
a z-component even though the excitation current exists only in the x-y plane, which also indicates that multi-layer 
refinement is necessary for systems with significant edge and skin effects to yield accurate solutions.

− Fig. 10(a) compares the EC-generated Bz modeled by the DCS method with COMSOL FEA simulation for the plate with 
a tiny hidden defect (Table 4), which shows good agreement. However, some discrepancies can be seen in Fig. 10(b) 
where the 
Bz = Bz − BzN differential curves between the FEA and DCS modeled results are compared. Fig. 10(b) 
reveals some unsmooth fluctuations that may be caused by computing error in the FEA simulations. As compared in 
Table 4 (last column), the DCS method which requires much smaller number of elements and degrees-of-freedom than 
the FEA takes 84 seconds (or less than 5% of that taken by FEA) to solve the problem.

4. Illustrative application

The effectiveness of the DCS modeling method is best illustrated in the context of a manufacturing application [5]. The 
ECD solutions (26) and the MFD model (27) along with the designed (geometrical/conductivity) values are used to estab-
lish a reference Bref (perfect conductor) to detect/locate the hidden (non-conductive cavity) defects from the measurements 
Bmeas using an array of p (l-axis) sensors. The reference is formulated as a nonsingular detection matrix [D] defined math-
ematically in (38a) where the ith column di characterizes the MFD change caused by the conductor with and only with ith 
cavity element:

[D](∈Rpl×n) = [d1 · · · di · · · dn] (38a)

where di =
[
BT · · · BT · · · BT ]T − Bref . (38b)
1i ki pi
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Table 5
Parameters and result for computing [D] matrix.

Fig. 11. Simulation results. (a) ECD distribution in conductor with single cavity element. (b) Reconstruction result. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

In (38b), the kth measurement Bik (or the EC-generated MFD of the conductor assuming that the ith element is a cavity) 
can be pre-calculated from (27) where the ECD is solved in (26). Thus, [D] requires solving the closed-form solutions n
times.

To improve the computing efficiency, a position matrix [P] (that assigns the ith element with zero ECD) is introduced so 
that the solutions for a perfect conductor can be modified to establish (the ith column di in) [D]. As an illustration, consider 
([C], b) in (26) for the case of harmonic excitations,

[C] =
[ jωI3n − [P][α] −[P][γ ]

Qc 0
0 Qp

]
; b = jω[P][β]u (39)

where [P](∈ R3n×3n) = diag(p ⊗ [1 1 1]T) with ⊗ stands for Kronecker product; the n × 1 vector p with elements equal 1 
(regular conductor) or 0 (cavity). In other words, all elements of p (except its ith element is 0) are set to 1 when calculating 
the ECD in conductor with ith element as cavity. In (39), the matrices ([α], [β], [γ ] and Qc, Qp) are calculated for a perfect 
conductor without any cavity. With (39), each of the ith column in [D] can be calculated from (26) and (27). Once detection 
matrix [D] and the reference Bref (perfect conductor) are established, the geometrical field can be reconstructed using the 
regularization method proposed in [5] to evaluate the probability vector p̃(∈ Rn×1) that has a value between 0 (conductive) 
and 1 (non-conductive) indicating the likelihood that the element is electrically non-conductive.

p̃ = ([D]T[D] + λ[I])−1[D]T(Bmeas − Bref ). (40)

In (40), λ is the regularization parameter which can be determined using the L-Curve method [27]. In this paper, the 
MATLAB computing package [28] is utilized to calculate (40).

The DCS modeling method for the application is numerically evaluated and compared with results of COMSOL FEA using 
the setup and parametric values given in the 1st column of Table 5, where the test conductor is placed between the EM 
and an array of 10 × 10 of 3-axis sensors which contribute to a total of pl = 300 measurement data. With an estimated 
δ = 2.8 mm (larger than the plate thickness of 1 mm), the conductor is decomposed into a single layer of 900 regular 
hexahedron DCS elements. The FEA was modeled with over 75 K elements including the air space. Simulated results are 
shown in Fig. 11.

Fig. 11(a) compares the ECD distribution in a plate that has one cavity element computed using the DCS modeling 
method with that simulated in COMSOL, which provides the basis to compute [D]. The average computing time for each 
column of [D] (∈ R300×900) are compared in the last row of Table 5, showing that the DCS method took only 2.3 s to solve 
(or less than 4% of that required by the FEA software). Furthermore, the proposed DCS model uses closed-form solutions 
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that do not require re-meshing of elements generally needed in conventional FEA methods when calculating each column 
in [D]. To help visualize, Fig. 11(b) shows the reconstructed geometrical field for a plate with a hole (denoted by red circle) 
located at (10 mm, 10 mm) using (40) and matrix [D] computed from proposed method. The result shows the location of 
the hole can be successfully estimated from the reconstruction.

5. Conclusion

The DCS-based modeling method for 3D EC problems in magnetic conductor has been presented. The EC and magneti-
zation effects are formulated as ECD sources and surface/volume current-density sources, respectively. Electric potential is 
introduced into the formulation to account for the boundary effects. The governing equations of the EC problems are formu-
lated in state-space representation with ECD J in conductor as primary state-variable and electric potential ϕ as additional 
unknown, which are solved along with the continuity equation of the EC. The state-space representation makes it conve-
nient to perform time domain analysis where the transient response can be easily obtained by discretizing the continuous 
system and solve the response iteratively. As a special and most widely used case, the closed-form solution for harmonic 
excitation is also derived, which can be obtained by solving simple linear equations. The accuracy and effectiveness of the 
model have been validated by comparing results with analytical solutions, FEA as well as experimental data. It has been 
shown that the method can accurately solve 2D axisymmetric and 3D EC problems in both nonmagnetic and magnetic con-
ductor. The element refinement method that accounts for the skin-effect and the EC in boundary regions is also illustrated 
with numerical examples. The ability to model magnetic conductors and account for geometric boundaries demonstrates 
the potentials of the model in analyzing nondestructive testing and measurement applications. The efficiency and advan-
tage of the modeling method has been illustrated with a field-reconstruction application where a parametric study is often 
needed to model conductors with small variances. The method is computationally more efficient than FEA because there is 
no need to repetitively modeling the conductor. It also suggests that the proposed method is ideal for applications where 
the conductor matrices (F1, F2, G1, G2) can be pre-calculated. The work required in these problems is only to modify the 
linear equation slightly and solving it.
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Appendix A

Consider Fig. 1(b) showing an external MFD B (= Bn + Bt) on the conductor boundary, where Bn and Bt are the normal 
and resultant tangential components of B respectively; and the MFDs (B+, B−) on the (conductor, air) sides of the boundary 
satisfy (A.1a, b) [24] where only the normal component of MFD across the boundary is continuous:

B+ • n = B− • n; (A.1a)

and (B+/μr − B−) × n = 0 (A.1b)

where B± = Bn + Bt ± B̃t. (A.1c)

In (A.1c), B̃t accounts for the discontinuity in the tangential components (A.1b) due to the magnetizing surface current 
density K. Substituting (A.1c) into (A.1b) yields

Bt + B̃t = μr(Bt − B̃t); (A.2a)

and B+ = Bn + 2μr

μr + 1
Bt. (A.2b)

From (2b), the magnetization vector at the boundary (denoted with M+) can then be written in terms of B+ as

M+ = μr − 1

μ0μr
B+. (A.3)

Hence, the magnetizing surface current density K can be expressed as

K = M+ × n = 2

μ0

μr − 1

μr + 1
Bt × n = ρB× n where ρ = 2

μ0

μr − 1

μr + 1
. (A.4)
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