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Inverse Models and Harmonics Compensation
for Suppressing Torque Ripples of Multiphase

Permanent Magnet Motor
Lei Li , Kok-Meng Lee , Fellow, IEEE, Kun Bai , Member, IEEE, Xiaoping Ouyang, and Huayong Yang

Abstract—This paper presents two methods to derive an
inverse model in harmonic forms for analyzing the interac-
tions between the torque/current gains and currents, and for
suppressing the torque ripples of a multiphase permanent
magnet (PM) motor. The first method directly calculates the
desired current harmonics from a pseudo-inverse model of
a multiphase PM motor with no input-voltage saturation,
which is independent of its rotor displacements, for torque
ripple compensation. The second is an iterative-freemethod
formulating the inverse model as an optimization problem
thatminimizes the copper loss subject to torque constraints
while accounting for the effects of the input-voltage satura-
tion. The formulation and significance of the two methods
are illustrated with a multiphase PM motor for which pub-
lished measurements are available for model validation and
compared with three other commonly used current wave-
forms for benchmark comparison in terms of torque-ripples
and copper losses.

Index Terms—Harmonics, inverse model, PM motor,
real-time compensation, torque ripple suppression.

NOMENCLATURE
a Torque characteristic vector.
e Unit-speed back-EMF vector.
gi , gp Current and cogging torque harmonic vector.
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i, ik Current harmonic amplitude vector and kth
component.

R, L Resistance and inductance matrices.
u, x Control (voltage) and stator (current) vectors.
τR , τ cog Harmonic amplitude vectors of (ref., cog.) torque.
Γ Impedance vector of stator winding per phase.
aj jth component of a.
imk kth harmonic amplitude of the mth phase current.
le Effective length of the PM motor.
ra Mean radius of the air-gap.
rsi , rro Stator-bore radius and rotor outer radii.
um , vp mth control voltage and the maximum voltage.
Br , Bt Radial and tangential components of net MFD.
BrE , BtE (Radial, tangential)MFDcomponents ofwindings.
BrP , BtP Radial and tangential components ofMFDbyPMs.
LS , MS Self- and mutual-inductance of phases.
Ncog Number of cogging torque harmonic components.
Nk , Nτ Number of current/torque harmonic components.
NP , Nph Number of PM pole-pairs/phases.
NS , Nt Stator-slot number and wire-turns per coil.
RS Resistance of each phase.
Tcog Cogging torque of the PM motor.
αk Phase angle of the kth current harmonic.
βl Phase angle of the lth cogging torque harmonic.
φm Electrical phase angle of the mth phase.
μo Permeability of air.
ξj±k Harmonic indicator of torque ripples.
τc Desired position-independent torque.
ω Operating speed of the PM motor.
ϕ Angular position in static-frame XYZ.
θ Rotor displacement.

I. INTRODUCTION

MULTIPHASE permanentmagnet (PM)motors have been
increasingly used in emerging applications (for exam-

ples, more-electric aircraft [1]–[2], electric-vehicles [3], and
intelligent manufacturing machines [4]) because of its intrin-
sic advantage in fault-tolerance and control performance [5].
Spin torque ripples (resulting from electromagnetic torque fluc-
tuations and cogging torques) acting on the rotor incur vibra-
tions and noises [6]. To ensure smooth and quiet operations of
multiphase PM motors in high-performance applications, there
is a need to develop effective design and control methods to
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suppress torque ripples. Although torque ripples can be
suppressed by properly manipulating the multiphase currents,
practical implementation in real time remains a challenge. A
common problem is the lack of an appropriate inverse model
that derives the desired currents and its effective solutions while
avoiding any input-voltage saturation to control the multiphase
PM motor in real time.
Techniques to suppress torque ripples of PM motors can be

accommodated during the design stage (offline) and/or oper-
ation stage (online). For design purposes, a forward (torque)
model that describes the effects of optimal parameters on the
input currents and output torque is numerically analyzed for
performance tradeoffs. Parametric investigations include the ef-
fects of PM shape [7]–[9] and arc [10], stator geometry [11],
and slot/pole number combination [12] on torque ripples, where
Scuiller [7] utilizes small trapezoid notches and [8] and [9]
are based on harmonic injecting to optimize the PM shape to
suppress the torque ripples. For a given PM motor design, the
torque ripples can be further compensated through a real-time
controller. A common method is to apply a direct torque con-
troller that adjusts the control inputs based on the difference
between reference and measured/estimated torques; for exam-
ples [13]– [15]. These methods require a flux estimator and a
torque sensor with relatively high bandwidth and high resolu-
tion, and thus are generally costly in implementation.
Another common method is to derive a set of optimal

input currents from an inverse model for a specified rotor
displacement-independent torque at steady state, which are then
used as a reference for feedback control of the phase currents.
Inverse models for suppressing ripples can be classified into
two categories depending on the formulation of the currents
and torque ripples expressed in time domain or in terms of har-
monics. Time-based inverse models [4], [12] derive the currents
at each sampled rotor displacements. Harmonics-based inverse
models compensate the torque-ripple harmonics with the phase-
current harmonics (amplitudes and angles), which were calcu-
lated analytically [16], [17] or using artificial neuro-networks
[18] for three-phase PM motors. However, the possible voltage
saturation was not considered.
In practice, inverse models must be computed in real time;

any reduction in computational time-delay can significantly im-
prove the controller performance [19], [20]. Hence, it is essential
to avoid complex algorithms (such as matrix inversion and iter-
ations) when implementing the solutions to the inverse model in
real time. As multiple solutions to the current inputs exist for a
specified torque in multiphase PM motors, an optimal solution
that minimizes a specified cost function (such as copper loss) is
considered here. For a voltage-controlled multiphase PM mo-
tor operating at high speed [21], the input voltage inequality
constraint poses another challenge for solving the optimal cur-
rents from the inverse model in real time. This paper proposes
a method to formulate an inverse model in harmonic forms for
deriving the desired currents to compensate the torque ripples in
real time while minimizing copper losses; both with and without
input-voltage saturations are considered. The remainder of this
paper offers the following.

1) The torque model for a multiphase PM motor is for-
mulated in harmonic forms, which provide a basis for

Fig. 1. Schematics illustrating multiphase PM motor. (a) Parameters
used in model. (b) Air-gap MFD. (c) Equivalent stator winding circuit.

analyzing the interactions between the harmonics of the
torque/current gains and that of the input currents for
compensating the torque-ripple harmonics using the cur-
rent harmonics.

2) Two methods to derive the inverse models in harmonic
forms are presented; a displacement-independent pseudo-
inverse model for a multiphase motor without input satu-
ration, and an iterative-freemethod to solve for an optimal
current vector that minimizes its copper loss subject to the
torque constraint and the voltage inequality constraint.

3) The formulation and physical significance of the pro-
posed methods are illustrated with a multiphase PM
motor where published measurements are available for
model validation and benchmark comparison.

II. INVERSE MODELS OF A MULTIPHASE PM MOTOR

Fig. 1(a) and (b) schematically shows the geometrical pa-
rameters for analyzing a multiphase PM motor, where the XYZ
and xyz are the stator (reference) and rotor (moving) coordinate
frames, respectively; the Z and z are aligned; and θ is the rotor
displacement from the X-axis. In Fig. 1(b), ϕ denotes the an-
gular position of a point in the air-gap between the rotor outer
radius rro and the stator-bore radius rsi in the XYZ frame.

A. Analytical Models in State-Space Representation

The following assumptions are made in deriving the state-
space models for control analysis of a multiphase PM motor.

1) The magnetic forces along X- and Y-axes are self-
balanced and thus not considered in this study.

2) TheNP PM pole-pairs are surface-mounted on the cylin-
drical rotor iron-core (nonsalient). The spatial distri-
bution of the PM remanences are symmetric about its
center.

3) The stator windings are grouped into Nph phases, each
of which is constituted of NC coils with Nt wire-turns
such that the mth phase is characterized by the electrical
angular position φm

φm = φ1 + (m − 1)
2π

Nph
where m = 1, . . . , Nph .

(1)
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4) The effects of eddy-currents and the end-fringing on the
magnetic flux density (MFD) in the stator/rotor air-gap
are negligibly small [22]–[24].

5) The system with stator/rotor iron cores of infinitely large
permeability and no iron-saturation is magnetically lin-
ear. Iron-saturation that results in degraded performances,
is usually avoided during normal operations in industry,
thus the assumption of no iron-saturation is reasonable.

1) Magnetic Field: At any stationary point (rro ≤ r ≤
rsi , ϕ) within the air-gap, the net MFDs contributed by the
PMs and the currents flowing through the stator windings can
be decomposed into radial and tangential components (Br , Bt)

B =

[
Br

Bt

]
=

[
BrP + BrE

BtP + BtE

]
. (2)

In (2), the subscripts “P and E” denote that the MFDs con-
tributed by the rotor-PMs and the electrical stator windings,
respectively. For completeness, the formulation based on exact
subdomain model [22]–[24] for computing (Br , Bt) is given
in Appendix A, which provides a basis to solve for the back
electromotive force (EMF) and the electromagnetic torque.

2) Electrical Circuit Model: Fig. 1(c) shows an equivalent
RL circuit for lumped-parameter modeling of the electrical in-
put system to the motor, where (u, e) are the (input voltage,
unit-speed back-EMF); and (R, L) are the (resistance, induc-
tance) matrices made up of the phase resistance RS ,, self-
inductance LS , and mutual-inductance MS . The phase currents
(im where m = 1, 2 . . . Nph) are described by the column vec-
tor x(θ) defined in (3)

x(θ) =
[
i1(θ) · · · im (θ) · · · iNp h

(θ)
]T

. (3)

In state-space representation, the phase-current vector x is
governed by the control (voltage) vector u and unit-speed back-
EMF vector e (that depends on the rotor displacement θ)

u = L
dx
dt

+ Rx + ω e(θ) (4a)

R = diag
(
RS · · · RS · · · RS

)
(4b)

and L =

⎡
⎢⎢⎢⎢⎣

LS MS . . . MS

MS LS . . . MS

. . . . . . . . . . . .

MS MS MS LS

⎤
⎥⎥⎥⎥⎦ . (4c)

In (4a), ω = dθ/ dt is the PM motor operating speed; and
u and e are the column vectors with elements um and em ,
respectively, where m = 1, 2, . . . , Nph .

3) Torque Model: The electromagnetic torque τ (θ) of the
multiphase PM motor can be derived using the Maxwell stress
tensor [22]

τ(θ) =
ler

2
a

μo

∫ 2π

0
[BrE BtE + (BrE BtP + BrP BtE )

+ BrP BtP ] dϕ. (5a)

For motors with nonsalient rotor-cores, BrE BtE does not
contribute to the generation of the torque. Hence, the torque can

Fig. 2. Inverse model in the speed control system for PM motors.

be expressed as

τ(θ) = ax + Tcog(θ) (5b)

where ra = (rro + rsi)/2 is the mean radius of the air-gap.
The 1st term on the right side of the forward model (5b)
can also be computed using the Lorentz-force equation, where
the torque/current gain a is a row vector of Nph elements,
am (θ, φm ). The cogging torque Tcog depends on BrpBtp of the
PMs. For low-loss motors, a ≈ eT [18]. To generate a ripple-
free torque of the PMmotor, torque ripples (originated fromTcog

as well as the interactions between e and x) must be suppressed.

B. Inverse Models

For a multiphase motor where the number of independent
inputs is larger than one (single-axis rotating motor), an opti-
mum x that minimizes a cost function for a specified position-
independent τc at steady-state can be formulated as the inverse
model. Unlike the forward model (5b) where τ (θ) is uniquely
solved in terms of x for design and offline analysis, the inverse
model must be computed in real time for the phase-current vec-
tor x for varying τc to eliminate the speed error Δω between the
speed reference ωr and ω in the speed control system as shown
in Fig. 2.

1) Time Domain Inverse Model: For generating a position-
independent τc at steady-state, a common inverse model is given
in (6) where the optimal x is derived from the pseudo-inverse
of a(θ) that minimizes the copper loss of a current-controlled
ironless PM motor

x = a(θ)
[
a(θ)aT(θ)

]−1
[τc − Tcog (θ)] . (6)

Once the optimal x is found, the control vector u can be
determined from (4a). However, x in (6) depends on the rotor
displacement θ and thus, additional memory is required to store
the look-up table of a(θ). For a multiphase PM motor (with
large Nph ) operating at high speed, the real-time computational
update of the displacement-dependent current vector x(θ) from
(6) that neglects input saturation presents a significant problem
in implementing the optimal torque control in practice.

2) Inverse Model in Harmonic Form (Without Input Volt-
age Constraint): Because of the periodicity, (im , Tcog, and τ)
can be expressed in harmonic forms [25]. The method, which
takes advantages of the forward model to reduce computation in
real time, identifies the phase current harmonics for suppressing
the torque ripples. In this method, the mth phase of the current
vector x(θ) is expressed in terms of the parameter vectors (gi

and i) to characterize the identified current harmonics

im (θ) = gi(θ)i. (7a)
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In practice, only finite Nk current harmonic components are
considered; gi ∈ R1×2Nk and i ∈ R2Nk ×1 . Similarly, the cog-
ging torque Tcog can be rewritten as

Tcog(θ) = gp(θ)τcog . (7b)

With (7a) and (7b), an alternative displacement-independent
pseudo-inverse model (8) for a multiphase PM motor with-
out input saturation can be derived to generate the specified
position-independent τc while eliminating the torque ripples
due to Tcog(θ)

i = Z
[
ZZT]−1

τR where τR =
[
τc −τT

cog
]T

. (8)

Given that Ncog harmonic components of the cogging torque
Tcog are significant, the motor torque τ must have Nτ harmonic
components to eliminate the ripples while avoiding undesired
harmonics caused by the interactions between a(θ) and x

τR ∈ R(2Nτ +1)×1 where Ncog ≤ Nτ < Nk .

The vectors (gi , gp , τ cog) and matrix Z in (8) are derived in
the Section II-C from the harmonic-based forward torque model
for offline computation.

C. Harmonic Components in Torque Model

In harmonic forms (with period 2π/NP ), the mth element of
the vectors a(θ) and the current im of a typical multiphase PM
motor are given by (9a) and (9b), respectively

am (θ, φm ) =
∞∑

j=1,3,5...

aj sin (jθm ) (9a)

im (θ) =
∞∑

k=1,3,5...

imk sin (kθm + αk ). (9b)

In (9a) and (9b), (aj , imk ) are the (j, k)th harmonic amplitudes
of (am , im ); θm = NP θ − φm and αk is the corresponding
angle difference from θm . Similarly, the harmonic form of the
cogging torque model is given in (9c) where (τl , βl) are the
(amplitude, phase angle) of its lth harmonics and Nr is the least
common multiple of the slot number NS and 2NP [11]

Tcog(θ) =
∞∑

l=1,2,3...

τl sin (lNrθ + βl). (9c)

1) Position-Dependent Torque Model: From (9b) and
(9c), the components of the phase current im and the cogging
torque defined in (7a) and (7b) are derived as follows:

iT =
[
. . . ik . . .

]
(10a)

where ik = imkh′(αk ) (10b)

and gi(θ) =
[
. . . h (kθm ) . . .

]
(10c)

τ T
cog =

[
. . . τlh (βl) . . .

]
(11a)

and gp(θ) =
[
. . . h′ (lNrθ) . . .

]
(11b)

where h(·) =
[
sin(·) cos(·) ] (12a)

and h′(·) =
[
cos(·) sin(·) ] . (12b)

Since all the phase currents (im where m = 1, . . . ,Nph ) and
their corresponding kth harmonic components have the same
amplitude imk phase difference angle αk , the forward model
(5b) for generating a steady-state τc is rewritten in harmonic
forms using (9a) and (9b) and the derivation is given inAppendix
B

τc − Tcog(θ) = a(θ)x

=
∞∑

k=1,3..

⎛
⎝ ∞∑

j=1,3...

[
h′ (θj−k ) h′ (θj+k )

]

×
[

Zj−k

Zj+k

])
ik (13a)

where Zj±k =
Nphaj ξj±k

2

[∓1 0

0 sgn (j ± k)

]
(13b)

θj±k = (j ± k) (NP θ − φ1) (13c)

and ξj±k =

{
1 j ± k = �Nph , � = 0,±1, . . .

0 others
. (13d)

In (13a), h′(θj±k ) defined in (12b) and (13c) depends on θ
accounting for the phase angle of the (j ± k)th components of
the Lorentz force harmonics (due to the interaction between a
and x) for a given NP . On the other hand, the coefficient matrix
Zj±k defined in (13b) depends only on its amplitude aj ξj±k / 2
for a given Nph where ξj±k serves as a harmonic indicator. The
term sgn(j−k) is used to negate θj±k when j < k.

2) Position-Independent Ripple-Free Torque Model: For
solving the optimal currents (8), (13a) is rewritten as (14a) to
identify the position-independent τc

Zi =

[
zc

Zc

]
i = τR . (14a)

As shown in (13a) and (13c), θj−k = 0 and h′(0)Zj−k =
(Nphaj/ 2) [1 0] when j = k. The ripple-free torque τc can be
formulated as

τc = Np h

2

∞∑
k=1,3...

[aj=kh′ (0)] ik = zc i (14b)

where zc

(∈ R1×2Nk
)

= Np h

2

[
a1h′ (0) · · · aj=kh′ (0) · · · ].

(14c)

From (14a), Zci = −τ cog; thus, Zc has the following form:

Zc

(∈ R2Nτ ×2Nk
)

=

⎡
⎢⎢⎢⎢⎢⎣

Zl1 · · · Zlk · · ·
... · · · ... · · · ...

Zl1 · · · Zlk · · ·
... . . .

... . . .
...

⎤
⎥⎥⎥⎥⎥⎦ (14d)

where Zlk

(∈ R2×2) =
∑

|j±k |NP =�Nr

(Zj−k + Zj+k ). (14e)

The Z formulated in (14) is position-independent providing
a basis to precompute the optimal i and phase current im from
(8) and (7a), respectively, for a specified τR . The solutions to
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(3) based on (8) assumes that none of the input voltage element
um in (4a) is saturated.

D. Inverse Model With Input Voltage Constraint

For a multiphase PM motor with symmetrical components,
the sum of im (where m = 1, . . . , Nph ) is zero. The mth ele-
ment of the control vector in (4a) is given by

um = (LS − MS ) ω
dgi(θ)

dθ
i + RSgi(θ)i + ωem .

Given that each phase control-voltage um is bounded by the
maximum available voltage |vp |, the constraint equation can be
written as (15) where h is defined in (12a)

|um | = ω |Γ (θm ) i + em (θ)| ≤ |νp | (15)

where Γ (θm ) =
[
. . .

[
(LS − MS ) d

dθ + RS

ω

]
h (kθm ) . . .

]
.

In the following discussion, the impedance vector Γ(θm ) and
back-EMF em (θ) are assumed to have the same waveform but
different phase angles defined in (9b); thus, all the Nph phases
have the maximum |um |.
To account for any phase input voltage saturation, the inverse

model is formulated as an optimization problem that minimizes
the copper loss J(i) subject to the torque and input constraints

J (i) =
1
2
RS

Np h∑
m=1

∫ θi +2π/NP

θi

[gi(θ)i]
2dθ.

Mathematically, the optimal i is solved from the following
equations:

Minimize J (i) =
π

2

(
Nph

NP

)
RS iT i (16a)

Subject to Zi = τR (16b)

and |Γ(θ)i + em (θ)| ≤ |νp |
ω

. (16c)

To solve the inverse model with input saturation, the number
of current harmonicsNk should be larger thanNτ by 1 such that
the dimension of i (2Nk ) is larger than the equality constraints
number (2Nτ + 1) in (16b) by 1. Equation (16b) can be rewritten
as

τR

im1 cos α1
−

Nk∑
i=3,5...

[
Zi Zi+1

] iTk
im1 cos α1

=Z1 + Z2 tan(α1)

that can be reduced to the form in the following equation:

i′ =
[

τR . . . Zi Zi+1 . . .
]−1 [Z1 + Z2 tan(α1)] (17)

where i′ = 1
im 1 cos α1

[ 1 · · · ik · · · ]T ;Zi is the ith column vector
of Z defined in (14a); and ik corresponds to the (0.5i + 0.5)th
subvector of i. Given (Z, τR ), (17) implies that ik (k = 3, . . .)
andim1 cos α1can be expressed in terms of (tanα1); thus (16a)
and (16c) depend only on (tanα1). From (14c), the 1st element
of Z2 is 0; hence im1 cos α1 is invariant with (tanα1). Further-
more, the cost function (16a) is proportional to the fundamental
component and increases with|tan α1 |,

iT1 i1 = (im1 cos α1)
2 (1 + tan2α1

)
.

Fig. 3. Forward model validation. (a) PM motor prototype [2], [26].
(b) Cogging torque Tcog. (c) Phase 1 back-EMF. (d) Torque τ .

Thus, the optimal solutions to (16) correspond to the mini-
mum | tan α1 | that satisfies the inequality constraint (16c).
Given Γ(θm ) and em (θ), the maximum |um /ω| as a function

of i (that depends on τc and/or tan α1) can be calculated offline
from (8) and (15) in advance to determines whether the input
voltage is saturated or the voltage constraint (16c) is violated. To
account for the input voltage constraint, i′ in (17) is computed as
a function of (tanα1) for a specified τc , which are then substi-
tuted into (15) to compute the maximum |um |/ω. The minimum
|tan α1 | that satisfies (16c) is stored as a two-dimensional (2-D)
look-up table output with τc and |vp |/ω as inputs to determine
the optimal (tanα1) in real time. With the optimal (tanα1),
i can be directly solved from (17). This iteration-free method
represents a novel improvement over traditional solutions to an
optimization problem with inequality constraints.
In summary, (Z, i, and τ cog) formulated in the position-

independent torque model (14a)–(14e) can be predetermined.
For operations without any input constraints, the optimal cur-
rents are given by (8). For operations with input constraints
(16c), a look-up-table that stores the optimal (tanα1) for spec-
ified τc and |vp/ω| is used to derive the optimal currents
from (17).

III. RESULTS AND DISCUSSIONS

The formulation and physical significance of the inversemod-
els are illustrated with the multiphase PM motor [see Fig. 3(a)]
reported in [2], [26] where essential parametric values (listed
in the top right of Table I) and experimental measurements
are available for model validation and benchmark comparison.
The PM motor was designed with a rated sinusoidal current
In = 21.1 A (rms value) and dc link voltage 270 V. To provide
a basis for illustration, the solutions to the forward model (5b)
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TABLE I
MAIN PARAMETRIC VALUES OF THE PM MOTOR

based on the scalar magnetic potentials formulated in Appendix
A are analytically calculated and verified against publishedmea-
surements [26] in Fig. 3.
The following observations can be made from Fig. 3.
1) Fig. 3(b) and (c) shows good agreements between the

computed cogging torque Tcog(θ) and the (Phase 1) non-
sinusoidal unit-speed back-EMF e1(θ) and the published
measurements.

2) Fig. 3(d) shows the computed torque τ (θ) generated with
a constant (Phase 1) current, where the results for three
different current values (10, 20, and 30 A) are compared
with themeasured torques. The torque comparisons agree
excellently well except in the regions (θ � [0°, 20°]�
[70°, 90°])whenPhase 1was suppliedwith constant 30A.
The discrepancy was caused by the magnetic saturation
occurred in the stator-iron where both (BrP , BtP ) and
(BrE , BtE ) are relatively large and in same direction.

3) The comparisons validate the forward model (5b) of the
PM motor (without stator-iron saturation) for formulat-
ing (14a) and solving the inverse model (8). In general,
constant exciting currents are only used for test purpose
and the iron saturation can be avoided by proper manip-
ulating the phase current angle α1 of the fundamental
component.

The remaining results are organized into three sections:
Section III-A illustrates the formulation of the forward model
(14a) of the PM motor (without stator-iron saturation) for solv-
ing the inverse model (8). The effects of the input-voltage sat-
uration on the torque ripples and copper losses are discussed
in Section III-B. In Section III-C, the inverse models are vali-
dated by comparing the harmonics-based inverse solutions with
published experimental data [26] and evaluated against the time-
based inverse model (6).

A. Inverse Model (Without Input Constraint)

As indicated in Table I, Phase 1 is located at φ1 = 0 deg.
The stator windings are singer-layered with negligible mutual
inductance (MS ≈ 0mH as compared with the individual self-
inductance [27]). Using (9a) and (9c), the torque/current gain
and the cogging torque Tcog were determined analytically in
(18a) and (18b) where the coefficients are listed in Table I (bot-
tom right)

am (≈em ) ≈ a1 sin θm + a5 sin 5θm + a7 sin 7θm (18a)

TABLE II
HARMONICS IDENTIFICATION (Nph = 6 AND NP = 4)

k = 1 k = 3 k = 5 k = 7 k = 9 k = 11

j = 1 0 0 (24) (24) 0 48
j = 3 0 0, 24 0 0 24, 48 0
j = 5 (24) 0 0 (48) 0 24
j = 7 (24) 0 (48) 0 0 72
j = 9 0 24, 48 0 0 0, 72 0
j = 11 48 0 24 72 0 0

Tcog(θ) ≈ τ1 sin (Nrθ + β1) + τ2 sin (2Nrθ + β2). (18b)

The forward model (14a) of the PM motor for solving the
inverse model (8) in harmonic forms is formulated as follows:
Step 1: identifies the torque harmonics contributed by a(θ)x

using (13b). The results (for j, k = 1, 3, 5, 7, 9, 11)
are tabulated in Table II to facilitate the discussion.
The diagonal (j = k) elements are θj±k = (0, 2kNP θ)
where the bold zeros imply that the torque com-
ponents are ripple-free. The nonzero element (when
j ± k = �Nph ) results in a nonzero Zlk in (14e) with
θj±k = 24 θ, 48 θ, 72 θ.

Step 2: determines the k orders of current harmonics. As shown
in (18a) and (18b), j = 1,5,7 and l = 1, 2. SinceNτ ≥
Ncog = 2 and lNr = (24, 48), the torque due to the in-
teractions between a(θ) and xmust be capable of com-
pensating the cogging torque ripples with harmonics
θj±k = (24 θ, 48 θ) while avoiding (j ± k)NP = 72
that introduces an unwanted harmonics θj±k = 72θ.
As illustrated in Table II, the k (= 1, 5, 7) current har-
monics would produce the same Tcog harmonic com-
ponents. Thus, (i, τR) can be formulated as

i =
[
i1 i5 i7

]T
(19a)

and τR =
[
τc −τ 1h(β1) −τ 2h(β2)

]
. (19b)

Step 3: formulates zc and Zc according to (14b), (14c) and
(14d), (14e)

zc =
Nph

2
[
a1 0 a5 0 a7 0

]
(19c)

Zc =

[
Z7−1 + Z5+1 Z1+5 Z1−7

02×2 Z7+5 Z5+7

]
. (19d)

B. Inverse Model Accounting for Input Saturation

Fig. 4(a) and (b) shows the maximum-voltage to operating-
speed ratio ua/ω against the specified torque and (tanα1) for
the PM motor (see Table I), respectively. Fig. 4(a) was com-
puted based on (8) and (15). To account for the input voltage
constraint for high-speed operations (where RS /ω can be ne-
glected as compared with inductive impedance), im1cosα1 and
i′k are computed as a function of (tanα1) from (17) and substi-
tuted into (15) to compute |um |/ω for knownΓ(θm ) and em (θ).
As shown in Fig. 4(b), ua/ω linearly decreases with (tanα1)
until a minimum point beyond which the effects induced by
increased α1 are cancelled by the increase of im1 . To avoid the
extremely large amplitude of im1 , only the zone of decreasing
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Fig. 4. Maximum-voltage to operating-speed ratio. (a) Function of τc.
(b) Function of (tan α1 ).

ua/ω is precomputed and stored as a look-up table; the linear re-
lationship greatly reduces the memory needed. Once (tanα1) is
determined from Fig. 4(b), the optimal i can be directly derived
from (17).
As an illustration, consider the operating conditions (τc =

9, 11N ·matω = 4, 12 kr/min; the latter corresponding to
vp/ω = 0.645 and 0.215 Vs/rad, respectively. From Fig. 4(a),
τc = 9 and 11 N·m would call for ua/ω = 0.21 and 0.246,
respectively. For τc = 9N ·matω = 4, 12 kr/min, no input sat-
uration is expected as ua/ω < vp/ω. Similarly, the case (τc =
11N ·matω = 4 kr/min) will have no input saturation since
ua/ω < vp/ω. However, ua/ω (=0.246Vs/ rad) would ex-
ceed the allowable control voltage vp of 270 V (or vp/ω =
0.215Vs/ rad) when operating at a high speed of 12 kr/min
(while maintaining the same τc of 11 N·m). As illustrated in
Fig. 4(b) where the red dashed-line indicates the allowable
vp/ω at 12 kr/min, the corresponding (tanα1) is determined to
be 0.5.

C. Validation and Evaluation of the Inverse Models

The effectiveness of the inverse models is evaluated by com-
paring computed results with published experimental data [26]
where the PM motor was operated at the speed of 4 kr/min with
average torque around 11 N·m. In addition to computation time
Tc , two other performance indexes (torque-ripple rate δτ and
copper loss rate η) defined in the following equations are used:

δτ =
τ − τ̄

τ̄
× 100% (20a)

and η =
J

τ̄ω
× 100% (20b)

1) Sinusoidal current inputs (SI): The PM motor is excited
with sinusoidal current; only im1 is supplied.

2) Back-EMF shapes (BE): (18a) where αk = 0 for k =
1, 5, 7. Results are presented in Table III and Fig. 4.

3) Time-based inverse model (TI), (6).
4) Harmonics-based inverse model (HI), (7a) and (8).
5) Harmonics-based optimization (HO), (16).
The results are summarized in Table III, Fig. 5 for SI and BE

and Fig. 6 for TI, HI, and HO.
The following are some findings drawn from the comparisons

in Table III, Figs. 5 and 6.

TABLE III
PERFORMANCE COMPARISON

(im k , αk ), k = 1, 5, 7, 11. Unit: (A, °) δτ (%) η (%) Tc (ms)

SI (−25.8, 0), (0, 0), (0, 0), (0, 0) ±4.6 6.85
BE (−26.6, 0) (1.6, 0) (0.53, 0) (0, 0) ±8.4 7.01
TI (−26, 0) (0.6, −6) (1.58, 1.5) (0.17, −12.2) 0 6.86 1.48
HI (−26.1, 0.15) (1.88, 115) (1.14, 76.8) (0,0) ±0.18 6.94 0.025
HO (−29.2, 26.5) (1.2, 130) (1.2, 79) (0,0) ±0.18 8.63 0.073

Fig. 5. Current waveforms and the resulting torque ripples. (a) Sinu-
soidal. (b) Back-EMF.

Fig. 6. Time- and harmonics-based inverse models. (a) The resulting
torque. (b) Phase 1 current. (c) Phase 1 voltage at 12 kpm.
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1) As compared with SI and BE (with ±4.6% and ±8.4%
ripples, respectively), Table III shows that the three in-
verse models are capable of compensating the torque
ripples. The time-based inverse model (6) theoretically
yields a ripple-free torque (τc = 11N·m) that provides
a basis for comparison. As compared in Fig. 6(a), the
close agreement with the time-based inversmodel (within
±0.2%of themean torque) validates the harmonics-based
inverse model. The slight discrepancy is due to the ap-
proximation in (18a) and (18b) where higher-order har-
monics were neglected.

2) From Fig. 5(a) and (b), BE contains more current har-
monics than SI but generates larger torque ripples (δτ =
±8.4%) than SI (δτ = ±4.6%). This can be explained
with the aid of Table II that shows the torque harmonic
components (24θ, 48θ) contributed by the interactions
of aj and imk (j, k = 1, 5, 7). Since the angles of cur-
rent harmonics are not considered in both SI and BE,
the adverse effects of the torque ripples increase with the
number of uncontrolled harmonic interactions (between
aj and imk ). This explains why BE ripples are more
pronounced than SI that involves only the fundamental
current component im1 .

3) Unlike BE where αk = 0, the current harmonics (both
amplitudes and angles) are identified in HI (19a) and for-
mulated (19b)–(19d) for compensating the corresponding
torque ripple harmonics. As shown in Table III where the
computation times for the inverse solutions (based on a
PC with 2.3 GHz and 16 G memory) are compared, the
harmonic-based solutions (HI and HO) requiring no ma-
trix inversions take much less time than the time-based
solutions, 2% and 5% corresponding to HI and HO, re-
spectively.

4) Except HO where the phase angle α1 is advanced to
keep the input voltage within the allowable limits, all
four current waveforms result in similar copper loss of
approximately 6.9%. Since the cost function increases
with (tanα1)2 , the larger copper loss in HO (that relaxes
the no saturation assumption made in TI and HI) can be
viewed as a cost to prevent input saturation.

IV. CONCLUSION

The methods to formulate the forward and inverse models
of multiphase PM motors for identifying the harmonic compo-
nents for eliminating torque ripples were presented in this paper.
The formulation and the physical significance of the inverse
models were illustrated with a typical PM motor. The meth-
ods were evaluated in terms of torque ripples, computational
time and copper loss by comparing published experimental data
and three other commonly used current waveforms. As com-
pared with the commonly used time-based inverse model, input-
voltage saturation causing current distortions can be overcome;
and large torque ripples can be suppressed within±0.2% of the
mean torque by the harmonics-based inverse model that takes
less than 80 μs to compute an update. These findings confirm
that the proposed inverse model and its time-efficient solutions
provide a practical means to suppress torque ripples in a PM

Fig. 7. Parameters used in subdomain model.

TABLE IV
SUBDOMAINS AND THEIR BOUNDARY CONDITIONS

Ω1 (PMs) rr i ≤ r ≤ rr o and 0 ≤ ϕ ≤ 2π
At r = rr i ∂Φ1/∂r = 0
At r = rr o Φ1 (rr o , ϕ) = Φ2 (rr o , ϕ)

and ∂Φ1/∂r = ∂Φ2 /∂r

Ω2 (air-gap): rr o ≤ r ≤ rsi and 0 ≤ ϕ ≤ 2π

Ω3 i (ith slot opening) rsi ≤r≤rst and φs−≤ϕ≤φs+
where φs± = φsi ± φso /2

At ϕ = φs± ∂Φ3 i /∂r = 0
At ϕ ∈ [φs−, φs+ ], r = rsi ∂Φ2 /∂r = ∂Φ3 i /∂r
At ϕ ∈ [φs−, φs+ ], r = rsi ∂Φ3 i /∂r = ∂Φ4 i /∂r
Ω4 i (ith slot) rst ≤r≤rsb andφb−≤ϕ≤φb+

where φb± = φsi ± φsb /2
At ϕ = φb± ∂Φ4 i /∂ϕ = 0
At ϕ ∈ [φs±, φb±], r = rst

and ϕ ∈ [φb−, φb+ ], r = rsb ∂Φ4 i /∂r = 0

motor, and can be implemented in its real-time control sys-
tems for high-speed operations. Further work will focus on ex-
tending the harmonic-based inverse models to more general
applications; for example, multiphase PM motor subjected to
unbalanced forces.

APPENDIX A

Forward Torque Model

Fig. 7 shows the parameters for solving the MFD in the air-
gap, where the stator slot/PMmodule in the 2-D plane is divided
into four subdomains (see Table IV) to account for the effects
of the slot tooth-tips on the solutions to the MFD. In Table IV,
φsi , φso , and φsb are the ith slot angular position, slot-opening
angle and slot pitch; rri , rst , and rsb are the rotor-core radius,
slot tooth-tip outer radius, and stator yoke radius. The slot and
slot-opening in Fig. 7 are fan-shaped to accommodate the polar
coordinates.
The scalar potential Ф in each subdomain is governed by the

Poisson’s equation. In polar coordinates

∇2Φ = μo

⎧⎪⎪⎨
⎪⎪⎩

(∂Mr/∂ϕ) /r − ∂Mt/∂r Ω1

0 Ω2 ,Ω3i

−Ji (i = 1, 2 . . . Ns) Ω4i

(A.1a)

where ∇2 = ∂ 2

∂r 2 + ∂
r∂r + ∂ 2

r 2 ∂ϕ2 ; Ji is the current density in
the ith slot and the components of M along the radial and
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tangential directions are written in Fourier series expansion

Mr (θ, ϕ) =
∞∑

n=1,3,5...

MrnCnNP (ϕ−θ) (A.1b)

Mt (θ, ϕ) =
∞∑

n=1,3,5...

MtnSnNP (ϕ−θ) (A.1c)

In (A.1b) and (A.1c),C(·) = cos(·) and S(·) = sin(·)for sim-
plicity. Along with the boundary conditions in Table IV, the
overall scalar potential Ф can be analytically solved using the
separation of variable method from (A.1), which takes the form

Φ(r, ϕ) =
K∑

k=1

⎡
⎢⎢⎣
(

Csk+

(
r

rs i

)k

+ Csk−
(

r
rr o

)−k
)

Skϕ

+
(

Cck+

(
r

rs i

)k

+ Cck−
(

r
rr o

)−k
)

Ckϕ

⎤
⎥⎥⎦

(A.2a)

where K is the number of harmonics being considered. The co-
efficients (Csk±, Cck±) and henceФ of the four subdomains are
simultaneously solved. Once Ф is known, the MFDs (Br , Bt)
can be derived from (A.2b)

Br (r, ϕ) =
∂Φ(r, ϕ)

r∂ϕ
and Bt (r, ϕ) = −∂Φ(r, ϕ)

∂r
. (A.2b)

Setting the source item of Ω1 and all Ω4i zero in (A.1a), re-
spectively, (BrE , BtE ) and (BrP , BtP ) can be obtained. Cog-
ging torque Tcog(θ) and then the vectors am can be calculated
from (BrP , BtP ) and (BrE , BtE ) by exciting only the mth
phase coils with a constant current im , as defined in (A.3)

am (θ) = [τ − Tcog(θ)] /im . (A.3)

APPENDIX B

Lorentz Force in Harmonic Form

From (9a) and (9b)

a(θ)x=
∞∑

j=1,3...

∞∑
k=1,3...

⎡
⎣aj imk

Np h∑
m=1

sin(jθm ) sin(kθm + αk )

⎤
⎦.

Using the product-to-sum formula in trigonometric identities

2Sjθm
Skθm −αk

= Cθ−−M− − Cθ+ −M+ (B.1)

where θ± = (j ± k)(NP θ − φ1) ± αk and M± = (2π/Nph )
(j ± k)(m − 1).
In (B.1), θ± do not depend on m. For an odd Nph

Np h∑
m=1

Cθ±−M± = Cθ± +
(Np h +1)/2∑

m=2

[
Cθ±−M± + Cθ±−(2π−M±)

]

= Cθ±

⎛
⎝cos 0 + 2

(Np h +1)/2∑
m=2

CM±

⎞
⎠

= Cθ±ξj±k

where ξj±k =
Np h∑
m=1

CM± .

For an even Nph = 2K No with integer K � 1 and odd
number No

Np h∑
m=1

Cθ±−M± =
Np h /2∑
m=1

[
Cθ±−M± + Cθ±−M±−π (j±k)

]

=
[
1 + (−1)j±k

]Np h /2∑
m=1

Cθ±−M±

=
K−1∏
k=0

[
1 + (−1)

j ±k

2 k

]
Cθ±

No∑
m=1

CM± = Cθ±ξj±k .

Hence, (B.1) for a given phase number Nph can be written as

Np h∑
m=1

Sjθm
Skθm −αk

=
Nph

2
(
ξ−Cθ− − ξ+Cθ+

)
(B.2)

ξj±k=

{
Cπ

2 + π ( j ±k )
N p h

∑Np h

m=1 C
M±+ π

2 + π ( j ±k )
N p h

=0 j ± k 
=�Nph

1 j ± k=�Nph

.

(B.3)

Equation (13a) can be rewritten as

a(θ)x =
∞∑

j=1,3..

∞∑
k=1,3...

Nphaj imk

2

× [
ξj−kC(θj −k −αk ) − ξj+kC(θj + k +αk )

]
.

REFERENCES

[1] M. Villani, M. Tursini, G. Fabri, and L. Castellini, “High reliability perma-
nent magnet brushless motor drive for aircraft application,” IEEE Trans.
Ind. Electron. vol. 59, no. 5, pp. 2073–2081, May 2012.

[2] J. A. Haylock, B. C. Mecrow, A. G. Jack, and D. J. Atkinson, “Operation
of a fault tolerant PM drive for an aerospace fuel pump application, ” IEE
Proc. Elect. Power Appl., vol. 145, no. 5, pp. 441–448, Sep. 1998.

[3] P. Zheng, Y. Sui, J. Zhao, C. Tong, T. A. Lipo, and A.Wang, “Investigation
of a novel five-phase modular permanent-magnet in-wheel motor,” IEEE
Trans. Magn. vol. 47, no. 10, pp. 4084–4087, Oct. 2011.

[4] K. Bai, K.-M. Lee, J. Cao, R. Xu, and L. Li, “Design and decoupled
compensation methods of a PM motor capable of 6D force/torque actu-
ation for minimum bearing reaction,” IEEE/ASME Trans. Mechatronics,
vol. 22, no. 5, pp. 2252–2264, Oct. 2017.

[5] F. Barrero and M. J. Duran, “Recent advances in the design, modeling,
and control of multiphase machines—Part I, ” IEEE Trans. Ind. Electron.
vol. 63, no. 1, pp. 449–458, Jan. 2016.

[6] M. R. Islam, “Cogging Torque, Torque Ripple and Radial Force Analysis
of Permanent Magnet Synchronous Machines,” Ph.D. dissertation, Dept.
Elect. Eng., Univ. Akron, Akron, OH, USA, 2009.

[7] F. Scuiller, “Magnet shape optimization to reduce pulsating torque for a
five-phase permanent-magnet low-speed machine,” IEEE Trans. Magn.
vol. 50, no. 4, pp. 1–9, Apr. 2014.

[8] K. Wang, Z. Q. Zhu, and G. Ombach, “Torque improvement of five-phase
surface-mounted permanentmagnet machine using third-order harmonic,”
IEEE Trans. Energy Convers., vol. 29 no. 3, pp. 735–747, Sep. 2014.

[9] K. Wang, Z. Y. Gu, Z. Q. Zhu, and Z. Z. Wu, “Optimum injected har-
monics into magnet shape in multiphase surface-mounted PM machine
for maximum output torque,” IEEE Trans. Ind. Electron., vol. 64, no. 6,
pp. 4434–4443, Jun. 2017.

[10] L. Zhu, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, “Analytical methods for
minimizing cogging torque in permanent-magnet machines,” IEEE Trans.
Magn., vol. 45, no. 4, pp. 2023–2031, 2009.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 01,2020 at 19:36:07 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: INVERSE MODELS AND HARMONICS COMPENSATION FOR SUPPRESSING TORQUE RIPPLES OF MULTIPHASE PERMANENT MAGNET MOTOR8739

[11] I. Petrov, P. Ponomarev, Y. Alexandrova, and J. Pyrhönen, “Unequal teeth
widths for torque ripple reduction in permanent magnet synchronous ma-
chineswith fractional-slot non-overlappingwindings,” IEEETrans.Magn.
vol. 51, no. 2, pp. 1–9, Feb. 2015.

[12] A. Kais, J. Wang, and D. Howe, “Torque-ripple minimization in modular
permanent-magnet brushless machines,” IEEE Trans. Ind. Appl. vol. 39,
no. 6, pp. 1689–1695, Nov./Dec. 2003.

[13] Y. Cho, K. B. Lee, J.-H. Song, and Y. I. Lee, “Torque-ripple minimization
and fast dynamic scheme for torque predictive control of permanent-
magnet synchronous motors,” IEEE Trans. Power Electron., vol. 30, no. 4,
pp. 2182–2190, Apr. 2015.
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