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ABSTRACT 
This paper  presents  a  distributed  current  source  (DCS) 

method  for  modeling  the  dynamic  responses  of  eddy  current 
density  (ECD)  induced  in  electrical  conductors  and  its 
corresponding magnetic flux density (MFD); both nonmagnetic 
and  weakly  magnetized  conductors  are  considered.  Unlike 
conventional numerical methods such as finite element analysis 
(FEA),  the  DCS  method,  which accounts  for  the  eddy-current 
and  magnetization  effects  by  means  of  equivalent  volume  and 
surface  current-sources,  derives closed-form  solutions  to  the 
ECD  and  MFD  fields  in  state-space  representation.    The 
model  has  been  experimentally  validated  and  verified  by 
comparing  results  from  FEA  simulations  with  both  harmonic 
and  nonharmonic  excitations.  To  gain  physical  insights  to  the 
measured  MFD  for  simultaneous  estimating  the 
material/geometrical  properties  of  a  conductor,  the  static  and 
dynamic  responses  to  rectangular  pulsed  current  excitations 
have  been  numerically  investigated,  confirming  the  feasibility 
and effectiveness of the measurement methods. 

NOMENCLATURE 
Lowercase symbols 
a, ai, ao Half-height, inner and outer radii of EM 
h, w thickness and radius of conductor 
d MFD sensor to conductor distance 
rs (rs, zs) Location and cylindrical coordinates of MFD sensor 
v̂, ŝ  Cross-section area of volume, length of surface element 
u Input/excitation current 
Uppercase symbols 
A Magnetic vector potential (MVP) 
B Magnetic flux density (MFD) 
H Magnetic field intensity 
M Magnetization vector 
J Eddy current density (ECD) 
Jm, K Equivalent magnetized volume and surface current density 
A, J, K Circumferential (θ) components of A, J, K 
Greek symbols 
μ0, μr  Vacuum permeability and relative permeability 
χm Magnetic susceptibility 
σ Electrical conductivity 
ω  Angular frequency in rad/s 

INTRODUCTION 
Eddy  current  (EC)  sensors  have  a  broad  spectrum  of 

applications  ranging  from  sensing  of  geometry  and  material 
parameters  [1,  2],  to  eddy-current-based  actuating/damping 
devices  [3],  to  induction  heating  [4],  and  more  recently  bio-
medical  applications  [5].  Among  these,  EC  is  the  most 
commonly  found  medium  in  high-precision  non-contact 
measurements  due  to  its  good  penetrability  and  workability  in 
harsh environment. It provides an excellent means in industrial 
applications  for  displacement  and  thickness  measurements, 
conductivity estimation, and defect detection.   
Many EC-based systems or devices assume the material to 

be  conductive  but  non-magnetic  metals,  in  which  case  the 
magnetization effects are neglected. As a dynamic system, the 
ECD distribution in a non-magnetic conductor is determined by 
measuring the variation in the MFD field generated by both the 
input  excitation  and  self/mutual  induction.  EC  also  influences 
the physical magnetic field, force and heat distribution.   
The EC models that describe the frequency response under 

harmonic excitation have been widely studied in applications to 
analyze EC-based sensor designs. Dodd et al. proposed a well-
known  analytical  model  [6]  which  was  later  improved  by 
Theodoros et al.
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 [7] to achieve fast solving through a truncated 
region  eigenfunction  expansion  method.  Besides,  transformer 
models were widely utilized to simplify the analytical methods 
[8].  However,  many  applications  require  transient  response 
analyses  of  the  ECD  under  more  complicated  excitation.  For 
examples,  the  pulsed-EC  technology  has  replaced  the 
sinusoidal  excitation  in  eddy  current  sensing  to  improve 
penetration in conductor and acquire more physical information 
[2] [9]. In parallel to these developments, the heat generated by 
pulsed-EC  can  be  captured  by  a  thermal  imager  to  detect 
multiple  cracks  [10].  In  actuation  applications,  transient  EC 
forces can be used in electrodynamic magnetic levitation [11]. 
To handle these problems, a state-space modeling method was 
proposed in [12] to analyze the EC response. 
Metals  like  carbon  steel  and  stainless  steel  (such  as  EOS 
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PH1)  that  have  relatively  low  permeability  are  commonly 
employed  in  manufacturing  applications  including  machining 
and  additive  manufacturing  (AM)  due  to  their  excellent 
mechanical  properties.  Improper  geometrical  dimension  and 
material properties may exist  during  the  AM  process  [13];  for 
example,  the  potential  phase  transform  (from  austenite  to 
martensite)  of  stainless  steel  that  is  highly  related  to  the 
magnetic  permeability  could  affect  the  final  mechanical 
property  [14].  Eddy  currents  which  have  been  widely  studied 
for  non-magnetic  conductors  have  the  potentials  for  sensing 
magnetic materials in monitoring AM processes. However, EC 
sensing  involving  magnetic  conductors  are  complicated 
because  the  magnetization  effects  in  the  conductor,  which 
generate  additional  MFDs,  further  influence  the  ECD 
distribution.  To  account  for  the  magnetization  effects, 
assumptions  commonly  made  in  analytically  derived  solutions 
must be relaxed.   
Originally  proposed  in  [12][15],  the  distributed  current 

source  (DCS)  method  presents  a  generalized  source  modeling 
method  to  characterize  commonly  used  magnetic  components 
for analyzing electromagnetic actuators. The DCS method can 
account for edge effects and proximity effects among adjacent 
elements,  which  are  commonly neglected  in  analytically 
derived  solutions.  As  compared  with  FEA  methods  which 
require a sufficiently large air space to enclose all the magnetic 
fields  that  generated  by  EM,  EC  and  magnetization  to  ensure 
accuracy, the DCS method requires only to mesh the conductor, 
eliminating  the  need  to  model  the  air  space.  Inspired  by  the 
DCS method [12] which offers closed-form solutions to the EC 
field  in  non-magnetic  conductors,  this  paper  extends  the 
previous  work  to  account  for  the  magnetization  effects  of  the 
magnetic  materials.  The  remainder  of  this  paper  offers  the 
following: 
1) The  DCS  model,  which  accounts  for  the  magnetization 
effects  of  the  material  due  to  an  external  time-varying 
magnetic field, is introduced. For clarity in illustration, the 
2D  axisymmetric  EC  and  equivalent  surface  current  are 
formulated  in  state-space  representation;  both  harmonic 
excitation and non-harmonic excitations are considered. 

2) The DCS model has been experimentally validated using a 
nonmagnetic  and  a  weakly  magnetized  samples.  The 
effects  of  the  magnetic  permeability  on  the  measured 
MFDs  are  examined  by  comparing  results  simulated  with 
and without magnetic properties.   

3) A numerical investigation has been conducted to verify the 
model  accuracy  by  comparing  the  DCS-based  solutions 
with  FEA  solutions;  both  harmonic  excitation  and  non-
harmonic excitations are considered. 

4) The  effectiveness  of  the  DCS  models  is  numerically 
demonstrated for simultaneous EC-based measurements of 
the  geometrical  (distance  and  thickness)  and  material 
(permeability and conductivity) properties. 

DISTRIBUTED-PARAMETER EDDY-CURRENT MODEL   

Figure 1 schematically models a typical EC-based sensing 

system  where  an  excitation  electromagnet  (EM)  generates  an 
arbitrary  time-varying  magnetic  flux  density  (MFD)  and  thus 
induces EC field in the conductor (with electrical conductivity 
σ and relative magnetic permeability μr). The parametric effect 
of the conductor (geometrical and/or material property) on the 
EC field is measured by a MFD sensor located at (rs, zs) in the 
cylindrical  coordinate  system  assigned  at  the  EM  center.   
Since  the  MFD  field  due  to  the  applied  current u(t)  following 
through  the  EM  is  known  and  can  be  subtracted  from  the 
measurement,  the  derivation  here  focuses  the  effects  of  the 
induction  and  magnetization  of  the  conductor  and  their 
corresponding MFDs generated in the space on measurements. 
For  deriving  practical  solutions,  the  conductor  is  decomposed 
into n volume elements and m surface elements as shown in Fig. 
1,  which  are  modeled  as  individual  volume  current  density 
(VCD) sources and surface current density (SCD) sources, and 
solved using the DCS method. 
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FIGURE 1. SCHEMATICS OF DCS MODEL FOR EM/CONDUCTOR SYSTEM 

Governing equations   

The  following  assumptions  are  made  in  developing  the 
state-space field model: 1) The  electromagnetic  materials  are 
isotropic  and  homogeneous  enabling  the  macroscopic 
continuum  approximation  of  the  field.    2)  The  magnetic 
material  is  soft  or  operates  within  a  linear  region  with 
negligible hysteresis effects such that the MFD B=0rH where 
H is the magnetic field intensity; 0 is the permeability of free 
space  (air).  3)  The  electric  current  in  the  conductor  obeys 
Ohm’s law.    4) The operating frequencies are low (f  1MHz) 
satisfying magneto quasi-static conditions.   
The  magnetization  effects  of  the  conductor  are  due  to 

induction by the ECD (vector J) and magnetization (vector M). 
The latter is equivalent to a VCD Jm and SCD K of the forms:   

mJ M  and  K M n (1a, b)

where n is  the  normal  vector  out  of  the  conductor  surface.   
Using  the  Maxwell  equation  ( J H)  and  the  constitutive 

equation  ( mM H)  where  1m r     is  the  magnetic 

susceptibility, Jm due to the magnetization M in the conductor 
can be expressed as 

 m m m  J H J (2a)

Then the total volume current density in the conductor is 

m r J J J

2

 (3)
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To account for the boundary effect of the magnetic material on 
the measured MFD, a conceptual SCD K [15] due to the MFD 
B is introduced for the kth surface element: 

  k k k k k K Bt t n  where 
0

12

1
r

r









 (4a, b)

In (4), t and n are the unit tangential and normal vectors of the 
kth element surface.   
The  induced  ECD  can  be  explicitly  expressed  in  terms  of 

geometry-dependent  magnetic  vector  potential  (MVPs) A(=Ae 
+ Av + Ab) where Ae and (Av, Ab) are contributed by the time-
varying  magnetic  fields  of  the  EM  and  of  the  (VCD,  SCD) 
sources  of  the  conductor  respectively.  For  a  DCS  model  that 
contains n VCD sources (each with elemental volume v) and m 
SCD sources (each with elemental surface area s), the ECD in 
the ith volume element can be expressed as   

1 1

n m

i ei vik bil
k lt


 

 
   

 
 J A A  A   (5)

Similarly, Bk (=Be + Bv + Bb) for computing the surface current 
density in (4) can be expressed as   

1 1

n m

k ek  vkl  bki
l i 

   B B B B  (6)

For clarity, the components in the right sides of (5) and (6) 
are derived for an axisymmetric system reducing to a 2D (r, z) 
problem. 3D problems, though tedious, can be solved similarly.  

2D Axisymmetric state-space eddy-current model 

For an axisymmetric system, (Ai, Ji, Ki) have zero r and z 
components  thus  are  reduced  to  scalar  (Aθi, Jθi, Kθi).  For 
simplicity, the subscript “ ” is dropped in the 2D axisymmetric 
formulation. In contrast, Bk has two components; 

  
T

k rk zkB BB . 

MVP and MFD contributed by EM 

Since  the  EM  geometry  is  known,  the  1st term in the 
parenthesis  on  the  left  side  of  (5)  can  be  derived  from  the 
integral in (7a) where C0 is the current density with unit current 
(1 Ampere) flowing through the EM: 
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

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r r

 (7a)

 
T

where  cos 0i i  i  ir zr ;  
T

cos sinr r z r ;  and 

the superscript “e” denotes the EM. The position vectors, ri and 
r,  characterize  a  point  in  the  conductor  being  evaluated  and  a 
source point in the EM, respectively. Using the Biot-Savart law, 
Be generated by the EM for computing the SCD in (4) can be 
found similarly:   
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 (7b)

MVP and MFD contributed by the magnetic conductor 

The  MVPs  (Av, Ab)  account  for  the  mutual  induction 
among  the  conductor  elements  and  boundary  effect  of  the 
magnetic material and are defined in (8a, b) respectively, where 

l̂v  and ̂ks  are  the  corresponding  cross-sectional  area  of l
th 

volume element and length of the kth surface element:   

   ,   and  ,
ˆ ˆ

v b
v bil ik
il i l ik i k

l rl kk

A A
f f

J v Ks
 rr rr  (8a,b)

The kernel function nmf
in (8a, b) calculates the MVP at rn by a 

unit current loop located at rm:  

 

     

2

0

2 2 2
0

,

cos
      
4 cos sin

nm n m

m

n m m n  m

f

r d

r r r z z

 

  

 

    


rr

 (8c)

Similarly, (Bv, Bb) for computing the SCD are given in (9a, 

b) where the kernel functionk
gis defined in (9c): 

   ,   and  ,
ˆ ˆ

v b
v bkl ki
kl k l ki k i

l rl iiJ v Ks
 

B B
g rr g rr (9a,b)
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  

     
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0
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cos cos
     
4 cos sin
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g g

r r z z rdrdzd

r r r z z

   

  

     

   

     
 



g rr   

 

   

 (9c)

State-space representation 

Collectively, the VCDs in n volume elements, SCDs in m 
surface elements and the sensor output B(rs) can be written in 
vector forms: 

   
T

1
1 2

n
i nJ J J J J    

  T1
1 2

m
k mK K K K K    

 Ts sr szB BBr  

For a given EM/conductor configuration, J, K and B(rs) can be 
derived in state-space representation using (5), (4) and (6) with 
the MVPs and MFDs for the 2D elements calculated from (7a, 
b), (8a~c) and (9a~c): 

 u J αJ β  (10a)

 u K aJ b   and  s  Br CJ DK (10b,c)

The system and input matrices in (10a) can be solved as 

      
11

v b  v

r





 α F F L G  (11a)

    f b g  β α u F Lu  (11b)

   where m b L I  G ; and   (11c)

 mI is a m×m identity matrix. 

The  elements  of  nn
v

F  ,  nm
b

F  ,  mn
v

G    and 

 mm
b

G 

3

in  11(a,  c)  can  be  computed  from  (8c)  and  (9c), 
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and  are  given  by ˆ v
lilvf , ˆ

b
k iksf, ˆv

l klvg and̂ b
i kisg respectively, 

where  the  double-subscripts  “mn” in the kernels ( f and g) 
indicate mth  row  and nth  column.    In  (11b),  the  elements  of 

 1nf
u  and  1mg

u  are given by e
ifand

e
kgrespectively. 

Since the MFD has two components, kg

  is determined by the 

surface that kth element belongs: 

 
 

(1 1) / 2

                           
r sk

k

zk

z z d hg
g

r wg






     









 

Similarly, the output matrices in (10b, c) are obtained as 

   1mn
r v

 a L G ;   (12a)

  11m
g

 b L u ; (12b)

 2
1 1 2 2
ˆ ˆ ˆ ˆv v  v  vn

r s  s  k sk  n snv v  v  v    C g g  g  g  ;(13a) 

 2
1 1 2 2
ˆ ˆ ˆ ˆand v v  v  vm
s s  k sk m sms s  s  s    D g g g g  . (13b)

The 1st and 2nd terms on the right side of the sensor output 
B(rs) in (10c) include the contributions from the VCD and the 
SCD  sources  respectively.  Since  the  MFD  due  to  EM  can  be 
predetermined  and  subtracted  from  measurements,  its  effect  is 
not  modeled  in  (10c).  By  substituting  (10b)  into  (10c),  the 
sensor  output B(rs)  can  be  explicitly  expressed  in  terms  of J 
and u  as  shown  in  (14a)  where B  depends  on  both  the 
electrical  conductivity  and  the permeability  of  the  conductor 
but B is simply influenced by the permeability and equivalent 
to B(rs) in a static magnetic field: 

 () ()s s s  Br B r B r  (14a)

   1
where  ( )s r v  


 B r C D L G J (14b)

  12and      ( )s b g
u 


B r D F u . (14c)

RESULTS AND DISCUSSION   

The objectives and results are organized as follows:   

1. The  DCS  method  for  modeling  both  nonmagnetic  and 
weakly  magnetized  samples  were  validated  experimentally. 
The  effects  of  the  magnetic  permeability  on  the  measured 
MFDs  are  examined  by  comparing  results  simulated  with 
and without magnetic properties.     

2. With  the  validated  DCS  model,  an  investigation  was 
conducted numerically to verify its accuracy by  comparing 
simulated  results  against  FEA  computed  using  a  popular 
commercial software (COMSOL Multiphysics) to provide a 
basis  for  comparison;  both  harmonic  and  pulsed  EM 
excitations are considered.     

3. The  effectiveness  of  the  DCS  models  was  numerically 
evaluated  for  simultaneous  measurements  of  the 
geometrical  (distance  and thickness)  and  material 
(permeability and conductivity) properties. 

Experimental validation 

The  experimental  setup  is  shown  in  Fig.  2  where  an  EC-
sensor  described  in  [12]  is  positioned  by  a  3D  precision 
translation stage to control its distance d from the test sample. 
Two  annular  conductive  samples  (nonmagnetic  copper  and 
bronze alloy that has a weak magnetic permeability) were used 
in the experiment; their detailed parametric values are listed in 
Table  I.  Sinusoidal  currents (with  frequency  from  100  Hz  to 
25k  Hz)  were  used  in  the  experiments.  Since J̇ jωJ  and u̇ 
jω)u, (10a) reduces to 

 
1

nj j u 


 J I α β  (15)

The z-direction  MFDs  generated  by  the  induced  eddy-current 
and  the  magnetization  effects  are  measured,  from  which  the 
magnitudes  and  phases  can  be  extracted.  The  MFD 
measurements  (with d=2,  3,  4,  5mm)  are  compared  with  the 
DCS-based simulations for the nonmagnetic (μr=1) copper and 
the weakly magnetized (μr=1.15) bronze-alloy samples in Figs. 
3 and 4 respectively, which show excellent agreements. 

(a) Experimental testbed

3-D motion platform

Laser sensor 
controller

EM/Sensor/Conductive Plate 

Current amplifier and data 
acquisition system 

(b) Test sample

24mm-
diameter
sample

 
FIGURE 2. EXPERIMENTAL SETUP. 

TABLE I. PARAMETERS OF EC‐SENSOR AND SAMPLES 

EC-sensor Samples Copper  Bronze 
(ao, ai, a) mm  (6,3.75,2)  (w, h) mm  (12, 5.38)  (12,5.5) 
(rs, zs) mm  (6, 4.5) σ MS/m  58.4  5.27 
Coil 60 turns μr 1  1.15 

Distance d (mm)  2, 3, 4, 5 
Frequency range (Hz)  100 to 25k    

Exp.d
2
3
4
5

DCS

f (kHz) f (kHz)

|
B z
| 
(
G)


 
B z
 (
°)

FIGURE 3.  MEASURED  MFD  RESPONSES  OF  EDDY‐CURRENT  INDUCED 
IN COPPER, μr= 1. 

Figure 4 illustrates the effects of the magnetic permeability 
on  the  measured  MFDs  by  comparing  simulated  results  with 
μr=  1  (nonmagnetic)  and μr=1.15  for  the  weakly  magnetized 
bronze  alloy  sample.  As  in  Fig.  3, Bz  is  independent  of  the 
distance d  for  a  specified  conductor  thickness h

4

.  The 
comparisons show that the magnetic permeability has an effect 
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on  the  measured  MFD  especially  at  low  frequencies.  For 
nonmagnetic  materials,  |Bz|  and Bz  approach  0  and 90° 

respectively  as  the  frequency  decreases.    In  contrast,  |Bz| 
approaches  a  non-zero  constant B  as  derived  in  (14b)  for  a 
magnetic  material.    Since B  is  proportional  to  the  input 
current and has only a real part, Bz approaches zero instead of 
90. 

|
B z
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G)


 
B z
 (
°)

f (KHz)

Exp.d
2

3

4

5

r = 1.15r = 1

 
FIGURE 4.  MEASURED  MFD  RESPONSES  OF  INDUCED  EDDY‐CURRENT 
MAGNETIZATION OF THE BRONZE‐ALLOY, μr= 1.15. 

Numerical investigation using harmonic excitation 

The accuracy of the DCS models is numerically verified by 
comparing  computed  results  of  the  eddy  current J  (0.25mm 
below the conductor surface), the equivalent surface current K 
(top  surface)  and  the  MFD  (measured  at d=1mm)  with  that 
simulated  using  a  2D  axis-symmetric  COMSOL  model  with 
triangular elements (minimum size of 0.5mm). Since COMSOL 
cannot  directly  obtain  the  surface  current,  the  results  were 
computed  from  the  magnetization vector  defined  in  (1b).  The 
conductor  in  DCS  model  was  divided  into  uniform  volumes 
and  surface  elements  (0.5mm  size).  The  number  of 
elements/meshes used in DCS model and COMSOL for a 2mm 
thick  conductor  are  listed  in  Table  II.  COMSOL  requires  to 
model  a  sufficiently  large  air  space,  and  thus  a  much  larger 
number of elements than the DCS method. 

TABLE II. SIMULATION PARAMETERS FOR HARMONIC EXCITATION 

Harmonic Validation  Skin-effect Analysis 

(w, h), d mm (20, 2), 1    Thickness h, mm 1, 2, 3, 4 
σ, μr  10 MS/m, 10  Range of skin-depth δ (mm)   0.110 
f = ω/2π  100 Hz    
DCS 160 volume elements; 84 surface elements   
COMSOL 1276 volume elements   

Using the same EC-sensor (Table I) excited with a 100Hz 

sinusoidal current) and parametric values listed in Table II, the 
simulation results are summarized in Figures 5 and 6.   
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(a) ECD at 0.25mm below top surface. (b) SDC at top surface.
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FIGURE 5. SIMULATION HARMONIC RESPONSES. 
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FIGURE 6. SKIN‐DEPTH EFFECTS ON CONDUCTOR GENERATED MFD 

 The following are observations drawn from the results: 

 As compared in Figure 5(a, b), both the ECD and SCD plots 
calculated  from  the  DCS  model  are  identical  to  that 
simulated in COMSOL. The MFD (generated by the EC and 
the  magnetization  effect)  was  further  compared  with  the 
COMSOL  results  in  Figures  5(c,  d).  The  agreements 
(between  DCS-computed  and  FEA  simulated  MFDs)  verify 
the accuracy of the DCS models.   

 As shown in Figures 5(a, b), the ECD is mainly contributed 
by its imaginary part. In contrast, the SCD is contributed by 
its real part. Figures 5(c, d) show that the imaginary parts of 
both Br and Bz are very small as compared to the real parts, 
implying  that  the  conductor-generated  MFD  is  mainly 
generated by the magnetization effects.   

 Figures  6(a,  b)  where  02/ r      is  the  EC  skin 

depth  simulate  the  “measured Bz”  contributed  by  the  EC 
(volume)  and  by  the  surface-current  for  four  different h 
values (1, 2, 3 and 4mm), which are denoted by Bec and Bsc

5

, 
respectively.    As  shown  in  Figures  6(a,  b),  the  MFDs 
caused by the EC and SC show similar trends; both increases 
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as  decreases.    When  << h, Bz  is  insensitive  to  the 
conductor  thickness h  for  both  magnetic  and  nonmagnetic 
materials.   

 The  only  difference  (between Bec  and Bsc)  is  that  as /h 
increases, Bec0 whereas Bsc approaches a non-zero constant 
corresponding to the measured MFD for an EM subjected to 
a constant excitation.   

Numerical investigation using pulse excitation 

The  system  response  to  a  non-harmonic  input  can  be 
analyzed  in  time  domain  by  discretizing  the  state  equation 
(10a) using Euler approximation, which leads to (16) where ΔT 
is the sampling period: 

     1 nk T k T uk   J I α J β  (16)

With known initial conditions, (16) can be solved iteratively for 
the  ECD  for  a  specified  input. A  rectangular  pulse  excitation 
commonly  used  in  geometrical  and  material  measurements  is 
described here as an illustrative non-harmonic example:   


 

0

00

1

exp /

t t
ut

t ttt 


    

  (17)

In  (17), t0  is  a  time-delay  period  for  estimating  the  magnetic 
permeability r;  and τ is  the  time  constant  to  account  for  the 
coil inductance in the circuit. The following discussions assume 
that only B=Bz is measured. The results are organized in three 
subsections: 
1) Model validation for non-harmonic excitaion. 
2) Estimation of material properties (μr, σ). 
3) Estimation of geometrical properties (d, h).   
The parametric values used in the numerical investigations are 
summarized in Table III. 

TABLE III. SIMULATION PARAMETERS FOR PULSE EXCITATION 

 (r, ) estimation (d,h) estimation 

(d, h) mm  (1, 2)  (1 to 4, 1 to 4) 
σ, MS/m  2, 4, 6, 8, 10  10 
μr  1 to 200 10 

(t0, τ) = (0.1, 0.01) ms; ΔT = 0.001ms. 

Model validation for non-harmonic excitation 

Using (11a, b) with ΔT=1 microsecond, Figure 7(a) graphs 
the  simulated  transient  response  of  the  measured Bz  for  both 
magnetic (μr10) and nonmagnetic (μr 1) conductors.   
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FIGURE 7. SIMULATION RESULTS FOR TRANSIENT EXCITATION 

To  gain  physical  insights  to  the  measured  MFD  for 

estimating the magnetic permeability μr, the MFD measurement 
is  divided  into  two  parts  in  (14a).  For  a  sensor-conductor 
configuration, the kernel functions defined in (8a~c) and (9a~c) 
are known constants. Thus, Bμ is proportional to the excitation 
current with a proportional factor that can be determined from 
the  measured  MFD  at t=0;  and Bσ  can  be  obtained  by 
subtracting Bμ  from  the  measurements.    Mathematically, Bμ 
and Bσ can be written as: 

    

0 0 0  0 0

;
Bt ut B t Bt ut

B u B B u

     (18a, b)

In  (18a)  and  (18b), B0  and u0 are the measured MFD and 
current  respectively  (at t=0).  The  computed Bμ  and Bσ are 
plotted in Figure 7(b), revealing the fact that the shape of the Bσ 
curve  is  similar  to  that  of  the  measured  MFD  assuming  the 
conductor is nonmagnetic but with a different peak value. This 
finding suggests that B is also influenced by μr.   
As compared with COMSOL simulations, all plots in Fig. 

7(a,  b)  agree  well  with  the  FEA,  demonstrating  the  DCS 
models  can  be  used  to  calculate  the J, K  and B  fields  for  any 
arbitrary  excitation.  The  calculation  time  of  DCS  method  and 
COMSOL  is  also  compared  when  running  on  a  PC  Platform 
(Intel Core i7-2600 CPU @3.40GHz, 15GB RAM, 640bit OS). 
The  DCS  method  needs  47  seconds  for  the  1ms  time  domain 
simulation,  which  is  only  about  12%  of  COMSOL  simulation 
(394  seconds),  showing  its  great  efficiency  when  simulating 
non-harmonic excitations. 

Effects of material parameters (μr, σ) 

Based  on  the  previous  analyses  in  (14a~c)  and  Figure.  7, 
the parameters (μr and ) can be determined from in  the  static 
magnetic  field Bμ  during  the  time-delay  period  (t<t0)  and  the 
transient response of the time-varying magnetic field Bσ to the 
step change: 

During the time-delay period (t<t0), only the magnetized MFD 
Bμ exists when there is no induced eddy current for a magnetic 
conductor.  Since Bμ  is  only  influenced  by  permeability,  it  can 
be utilized to estimate μr. To best illustrate the relation of Bμ to 
μr, γ  formulated  in  (4b)  is  introduced  in  the  discussion.  As 
shown  in  Fig.  8,  the  left  plot  relates Bμ to γ for a 2mm thick 
conductor  under  a  constant  excitation  of  1A  current,  which  is 
approximately  linear.  With  measured γ, the  relative 
permeability μr can be estimated from the (γμr) relationship in 
the  right  plot  of  Fig.  8.  The  relationship  between γ  and μr is 
highly  nonlinear,  as μr, γ 2/μ0; γ  reaches  90%  of  the 
asymptotic  value  when μr  increases  to  19.  Continuedly 
increasing μr  will  cause  very  small  change  in γ.  This  finding 
indicates  that  the  estimation μr  from  the  measured Bμ is 
effective  for  low μr  materials.  The  measurement  accuracy 
decreases as μr

6

 increases due to the deficient definition. 
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FIGURE  8.  RELATIONSHIPS  BETWEEN  MAGNETIZED  MFD  AND 
MATERIAL PERMEABILITY 

During the step response of the pulsed current excitation, both 
Bμ  and Bσ  are  generated.  Since Bμ  is  not  related  to  the 
conductivity,  it  is  excluded  from  the  MFD  measurement;  in 
other  words,  only Bσ  is  considered.  The Bσ  responses  at 
different  (σ, μr)  combinations  are  simulated  and  compared  in 
Figure 9(a) where the MFD responses to different specified (σ 
or μr)  are  plotted.  The  peaks  and  time  constants  increase  as σ 
increases;  in  other  words,  the area  under  the  curve  increases 
with σ.    In contrast, the curves for the smaller μr have higher 
peaks but decay to zero faster than those for a larger μr, leading 
to  similar  areas  under  the  curves.  The  findings  provide  a 
method  to  extract  the  conductivity  related  information  by 
integrating the transient responses over time as in (19): 
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FIGURE 9. RELATIONSHIPS BETWEEN MFD RESPONSE AND MATERIAL 
CONDUCTIVITY 

 
The integration values are plotted in Fig. 9(b) where two sets of 
permeability values are simulated. The left plots the responses 
of  low-μr  materials  with  (μr = 5 to 25) while the right 
corresponds to materials with relatively larger permeability (μr 
=  100  to  200).  The  left  plot  shows  that  integration  values  are 
influenced by both σ and μr for low-μr material, but insensitive 

to μr in relative large μr values. The findings indicate that the Bσ 
integral can be used to estimate the material conductivities. For 
materials  with  large μr,  the  conductivity  can  be  directly 
estimated  from  integration  of Bσ, while for low-μr  material, σ 
can be obtained with known μr. 

Effects of geometry parameters (d, h) 

For  a  given  material,  the  excitation  frequency  has  a 
significant  influence  on  very  small  skin-depths;  the  measured 
Bz is insensitive to the thickness h as illustrated in Figure 6; and 
thus can be used to determine the distance d. Once d is known, 
h can be found from large skin-depth measurements. The above 
observations  provide  the  basis  for  the  simultaneous  (d, h) 
estimation for a given sensor-conductor configuration.    
Since  the  rectangle  pulse  current  (17)  contains  an  infinite 

number  of  frequency  components,  from  which  high  and  low 
frequency  components  can  be  extracted  by  means  of  a  high-
pass and a low pass filters respectively. The filtered results can 
be  individually  integrated  over  time  leading  to  a  pair  of  high 
and low frequency indices Ch and Cl:   

 
0 0

;h h  l lt t
C BtdtC Btdt

 

 = =   (20a, b)

To illustrate the method for simultaneous (d, h) estimation 
using a single pulse current estimation, the filtered (Bl, Bh) and 
the  integrated  (Cl, Ch)  are  simulated  with  the  (low,  high)  pass 
cut-off  frequencies  (100Hz,  15kHz)  which  correspond  to  a 
(4mm,  0.4mm)  skin  depth  in  Figures  10(a,  b)  and  10(c,  d) 
respectively. From Ch, the distance can be first measured. Once 
d is known, the thickness h can be estimated from Cl. 
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FIGURE  10.  SIMULTANEOUS  ESTIMATION  OF  DISTANCE  AND 
THICKNESS USING A SINGLE PULSED‐CURRENT EXCITATION. 

CONCLUSION 

7

A state-space model for analyzing the dynamic response of 
eddy  current  in  magnetic  conductors  has  been  derived.  The 
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DCS model offers closed-form solutions to the ECD field, the 
equivalent  surface-current  due  to  the  magnetization  and  its 
corresponding generated MFD. The model was experimentally 
validated  and  further  verified  with  FEA  results,  the 
comparisons  between  the  DCS  and  the  benchmark  FEA 
solutions show excellent agreements and much less computing 
time  (12%  of  COMSOL  for  time-domain  simulation), 
demonstrating the model accuracy and its effectiveness for both 
harmonic and pulsed inputs. The feasibility of the DCS models 
for  multi-parameter  (geometrical  and  material  parameter) 
measurements  using  combined  high  and  low  frequency 
excitation  has  been  numerically  investigated.  The  results 
illustrate  that  the  high-frequency  components  of  measured 
MFD  are  thickness  insensitive.  When  combined  with  low-
frequency  measurements,  the  distance  and  thickness 
information  can  be  measured  simultaneously.  The  results 
further  suggest  that  the  MFD  responses  under  static  magnetic 
field  are  only  dependent  on  permeability,  whereas  the  pulse 
transient  MFD  response  can  be  used  to  estimate  conductivity; 
these  findings  provide  essential bases  for  material  property 
measurements. 
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