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State-space Model and Analysis of
Motion-induced Eddy-current based on
Distributed Current Source Method
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Abstract—This paper presents a distributed current source
method to model the motion-induced eddy-current and its
damping force. The proposed method, which relaxes two
commonly made assumptions (negligible mutual induction and
small vibration), discretizes the conductor into elemental
vibrating current-density sources as state variables. The motion-
induced eddy-current model has been formulated in state-space
representation, and validated numerically with FEA; the results
show excellent agreement. The model provides a basis to
investigate the effects of mutual induction and vibration
amplitude on the computation accuracy of the eddy-current and
its generated magnetic flux density and damping force. The
findings reveal existing methods (based on these commonly made
assumptions) overestimating the peak damping force, and failing
to capture high-order harmonic components and frequency
effects on phase-shift. Results of a parametric study that
investigates the effects of the PM aspect ratio and conductor
skin-depth on the damping force are presented, providing
essential bases for design optimization of EC damping system
control applications.

Index Terms—Eddy current, state-space, vibration control,

damping force, damper

I. INTRODUCTION

Eddy current (EC) can be induced in a moving conductor
under a stationary or alternating magnetic field. The current
will generate a Lorentz force on the conductor, which is a
repulsive, or damping, force against the motion [1]. Based on
the motion direction and types, the damping forces are widely
used in various industrial applications. For example, the eddy
current damping torque in a rotational motion can be used for
braking in automobile [2]. In vertical vibrations, the damping
force is utilized to develop various EC dampers that can be
applied to structural vibration suppression to replace traditional
tuned mass damper due to their contactless, cost-effective, and
self-powered characteristics [3]. Laborenz et al. investigated
the EC damper in mitigating the vibration of steam turbine
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blading for turbomachinery applications. to [4]. Ebrahimi et al.
designed a magnetic spring-damper system that has the
potential to be used in automobile suspension [5]. High
damping coefficient can be achieved in the damper by
optimizing the permanent magnet (PM) configuration [6].
Yang et al. developed a vibration suppression device for the
milling of thin-walled workpiece where chatter vibration
happens due to the low rigidity of workpiece [7][8]. Dampers
using PMs as magnetic sources are called passive dampers.
However, a magnetic field can also be generated by an
electromagnetic coil to achieve active damping [9]. Unlike in
the above applications, where EC and the damping force
induced in a moving conductor are used as effective tools, in
some applications, such as maglev positioning system [10] and
high-speed magnetic flux leakage testing [11], the parasitic EC
and damping force during motion are unwanted. Their
characteristics must be analyzed to achieve better control or
improved accuracy.

Models for solving the motion-induced EC, the consequent
damping forces, and the EC-generated magnetic flux density
(MFD) have been widely studied. Esposito proposed an integral
formulation for the analysis of electromagnetic fields
distributions in systems where bodies are in motion [12]. The
method is based on the subdivision of conductive regions and
can be used for modelling 3D EC problems. Peng et al
proposed a finite element-based composite grid method that
uses separate mesh grids to model a moving conductor [13],
while Muramatsu et al. analyzed the steady state EC using a
moving coordinate system [14]. Pluk et al. modeled the EC
damper on a finite rectangular conducting plate by using image
method to account for the boundary effect [15]. These models
can provide accurate solutions for EC problems, but require
solving complicated mathematical equations, and the relations
between the damping force and the motion are not intuitive,
thus hard to be incorporated into the dynamic analysis of
damping devices. Therefore, in the design and analysis of EC
dampers, simplified models derived from analytical solutions
are often used. Sodano et al. established an EC damping model
for a cantilever beam with magnetic field generated by a PM in
[16]. Similar models were used in [4] and [7] to design dampers
for steam turbine blading and milling applications. In these
models, a cylindrical PM and a conducting plate are often used
to facilitate the calculation of magnetic field and the induced
EC. Some assumptions are made to simplify the model. In
modeling magnetic fields, [4, 7, 16] used a constant MFD for a
given point on a vibrating beam, given that the vibration
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displacement is small. As for the calculation of EC, mutual
induction (MI) was neglected due to its relatively small
contribution compared to the magnetic field of the PM. By
ignoring the MI effect, the original EC problem, which is a
typical PDE problem, is converted into a problem of solving
algebra equations. However, these assumptions cannot always
be satisfied. The influences of the assumptions must be
analyzed and discussed.

In this paper, a straightforward and accurate model for
solving the EC in a vibrating conductor is proposed and
formulated in a state-space representation, which makes it
applicable to control applications such as active damping
studies. The MI effect is accounted for by using the distributed
current source (DCS) method [17], which has previously been
applied and validated in modeling the EC induced through a
time-varying magnetic field excitation. The remainder of the
paper offers the followings:

— A DCS method for modeling the motion-induced (2D
axisymmetric) EC in state-space representation is presented,
providing a basis to investigate the effects of commonly used
assumptions applied on the computation accuracy of the EC
and its generated MFD and damping force.

— The DCS model that relaxes commonly made assumptions
has been validated numerically by comparing results with
FEA simulated using commercial software.

— The parametric effects of the PM aspect ratio and conductor
skin-depth on the damping force for a forced vibration were
studied numerically.

II. MODEL

Figure 1 shows the characteristic parameters and coordinate
system of a typical EC system for deriving the damping force
due to the motion-induced EC in a conductive plate (radius 7,
and thickness /) that vibrates with displacement
z =Z,sin(et) and velocity w=dz/dt. The static magnetic field is

generated by a circular PM (radius a,, length 2a and
magnetization M=Me;) that is placed normal to the conductive
plate. The ECD J can be derived by (1) where o is the electric
conductivity, v is the plate velocity and Bm and B¢ are the MFD
contributed by the PM and EC respectively:

J=ovx(B, +B,) (1)
As shown in (1), B. that accounts for the mutual induction (MI)
in the conductor has an influence on J and hence on the Lorentz
force F acting on the conductor, which can be derived from (2)
by integrating over the volume 7 of the conductor:

F=[,JxB, dv )
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Fig. 1 Schematics of EC system in vibrating conductor

The ECD cannot be directly measured but can be
characterized by measuring the EC-generated MFD in space.
For a point at ry, Bc can be expressed as

B (r,)= [ 0y 3)

g |rs - l‘|3

In most literatures that analyze the vibration-induced EC, the
EC-generated MFD is often ignored (viz. Be = 0) for simplicity
when calculating ECD through (1), in which case the ECD, the
damping force, and the measured EC-generated MFD are
approximately proportional to the vibration velocity. To
account for the MI effects on the ECD, the conductor is
decomposed into n annular elemental current sources as
illustrated in Fig. 1 using the DCS model as follows.

A. State-space Model for a 2D-axisymmetric system

To facilitate characterizing the mutual induction among the
current sources, the magnetic vector potential (MVP) A
(definedby B=VxA andV e A =0) is introduced. Expressed
in cylindrical coordinates (assigned at the PM center as shown
in Fig. 1), the i elemental ECD source at (7, z,) is written as

0 n
3= (A + ZH Ag) (4a)
where A = f(1r;)V,d; (4b)
2z
Ho cos8d6
f V.| =— N 4
( ’) ar { \/(r‘. —r,c0s0)’ +(r,sin6)’ +(z, - z,)’ (4c)

In (4a), Am and A ; denote the MVP generated by the PM and
that by the j" element on the i element, respectively. In (4b), V;
is the element volume; and f(;;) is a kernel function.

For a 2D-axisymmetric system, J; =[0 J; 0]T has only a
circumferential component; and hence Ac;= [0 A.;0]Tand Am=
[0 A,,; 0]T. Since all elemental sources are relatively static to
each other, the time-derivative of A.; is irrelevant to the
conductor motion. In contrast, 4, is related to the vibration and
its time-derivative is given by (5):

oy A (Z) A g, () (5)

ot 0Oz, dt
where . =7 and z, = z, + z(¢) about an equilibrium position (7,
zi). Since the conductor vibrates relative to a fixed PM, B, must
be calculated for a specified z(f). For an axial-magnetized
cylindrical PM, its MFD field in space can be calculated in an
efficient way based on the approach proposed in [18], which is
originally derived for the magnetic field of EC. Using similar

derivations, the MFD generated by the PM can be obtained as
B (I’,,Z{.) __4, = B (V/A ag)ﬂl (l//krr) (1 _pwa )ey/k(aafz,) (6)
HoM Ty k=1 YWiTy [ﬂoz (V’krb):|
where S,(x) is the n' order Bessel function of the 1% kind; 7, (>
5r,) is the truncating radius [18]; ¥ = xi/r» and x; is the &
positive root of the equation fBi(x) = 0. In practical computation,

(6) can achieve high accuracy when taking only the first 500

terms.
In matrix forms, withd =[J,--- J,--- J,]", Eq. (4a) can be

written in a state-space representation

J(t)=ad(t)+Bu(t) (7)
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where a=—(cT)", =T, u(®)=bw(z) and T; =V, 1 (r;)

b(e R"™)=[---B,(r;,z,)-]". It should be noted that b is a

function of the conductor position which is time-varying.

Once J is solved, the effects of the ECD, including the
Lorentz force F on the conductor (which is in the z-direction
due to symmetry) and the EC-generated MFD Bc. at the
measurement point ry, can be easily derived from (2) and (3),
and given by (8), (9), respectively.

F.=-b'VJ ®)
B.(r,)=[B, B.] =CJ ©)
where V =diag([V,--- V;-+ V,])

C=[Veg(r,) V() Ver,)]

2z T Z 9 . 0 Td@
g(rﬂ.)—&j [(z,-z)cos0 7 —r,cosd]

47 g [(n ~rcos0) +(rsin @) +(z, —z,.)zJ

3/2

B. ECD solutions

Given z(?), Eq. (7) can be discretized with a zero-order hold
(with a sampling period of AT) resulting in (10) which can be
solved iteratively to obtain the discrete-time solutions of the
ECD J in the vibrating conductor:

T(k+1) =3 (k)+[ " e*d (k) (10)

The effects of the two commonly made assumptions in

literatures [4, 7, 16] on the solutions to the motion-induced

ECD field are discussed:

Assumption 1 (Al) neglects the effects of mutual induction
(MI). The ECD is only contributed by the PM magnetic field
and the conductor motion:

J(1) = obw(r) (11)

Assumption 2 (A2): The vibration displacement is small such
that B (r,z,) = B (7;,Z,), and hence, b is a constant vector.

— The motion-induced ECD in the vibrating conductor is
equivalent to that induced by a harmonic excitation.

— The closed-form frequency response (steady-state
solutions) to the ECD can be derived in (11) using a phaser
method which takes on the form of J = jwd, where

j=+-1, 1is nxn identity matrix.

J=woZ,(jocl+T) T'b (12)

— Eq. (12) implies that the conductivity ¢ and vibration
frequency w, both of which influence the induced ECD,
can be characterized by a single parameter: skin-depth

(= \)2/(/"0(‘)0_) )-

III. RESULTS AND DISCUSSIONS

The proposed method for modeling the motion-induced EC
in a vibrating conductor has been evaluated. Solutions that
were computed for the 2D axis-symmetric setup (Fig. 1), along
with the parametric values in Table I, are organized as follows:

1) For validation, the DCS-based solutions are compared with
FEA in Fig. 2(a, b) where the commercial (COMSOL
Multiphysics) software was used as a basis for comparisons.

In COMSOL, the moving mesh method was used to simulate
a moving PM that vibrates above the conductor, which is
equivalent to having a conductor vibrate under a static PM.

Table I (left column) is a partial view of the mesh, where the
vertical space directly above/below the PM was re-meshed
at each time step to accommodate the relative motion of the
PM. A fixed air space is included around the deformable
space and the conductor. A forced harmonic vibration is
prescribed to the PM; thus, the vibration displacement and
velocity are not influenced by the damping force. The
calculation time-step is set to 1% of the vibration period.

2) The effects of two commonly used assumptions on the
computational accuracy are numerically examined:

a. The effects of Assumption 1 on the ECD, EC-generated
MFD and damping force are presented in Fig. 2 where the
responses with and without accounting for the mutual
induction are compared.

b.The effects of Assumption 2 (small vibration) on the
accuracy of the damping force computation are illustrated
in Fig. 3 where the solutions of the DCS model and that of
the simplified model (12) are compared in time domain
(Fig. 3a) and in frequency domain (Fig. 3b).

3) To facilitate design optimization, the parametric effects of
the PM aspect ratio and conductor skin-depth (accounting
for the electrical conductivity and vibration frequency) on
the damping force are presented in Figs. 4, 5 and 6.

Table I. Parametric values used in numerical investigation

.. |pM (a5, @)=(16,3) mm
e My :1.465T
Moving " | Conductor | (7, h; d)=(40,1.5, 6) mm
Mesh (Air) | A'. EAIEE0 o =33.5MS/m
| Afr .§p.ac¢ - =50, 200Hz, Z, = lmm
] © | Mesh size | 1x0.75mm (DCS)
Conductor Max. 0.9mm (FEA)
AR RN Time step  dt=1/(100f)

A. Numerical validation

Fig. 2(a) compares the DCS-modeled ECD (1% row),
EC-generated MFD (2™ row) and damping force (3™ row) with
the FEA simulated in COMSOL and with the simplified model
that ignores mutual induction (MI) for two vibration
frequencies (f= 50 and 200Hz); all in the time domain. In the
1% row, the average ECD values at »=20mm are plotted. The
2" row plots the simulated “measured-MFD” in the 7-direction
at (6, —12) mm, while the 3 row plots the damping force
exerted on the conductor. Fig. 2(b) shows the circumferential
component of the average ECD along the conductor radius
when z(¥) reaches its positive peak position corresponding to ¢ =
30ms (f=50) and #=7.5ms (200Hz). Fig. 2(c) illustrates the MI
effects on the amplitude/phase of the damping force over a
range of vibrating frequencies, where the DCS models with and
without accounting for MI are compared with a constant
vibration amplitude of Imm.

Fig. 3 compares the damping force calculated from the DCS
model and a simplified model with small vibration assumption
(12). Vibrations of two amplitudes (Z, = 0.5mm and 2mm) for a
given frequency (f = 200Hz) are simulated to compare the
damping force in both time domain (Fig. 3a) and frequency
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domain (Fig. 3b). The first four orders of the harmonic
components are further shown in Fig. 3(c) as vibration
amplitudes varies from 0 to 2mm. The following observations
can be obtained from Figs. 2 and 3.

— As compared in Fig. 2(a, b), the DCS-modeled transient
responses of the ECD, EC-generated MFD and damping
force show excellent agreements with FEA for both 50Hz
and 200Hz vibrations, demonstrating the accuracy of the
model in the order of 1% difference relative to FEA
simulated in COMSOL. At 50Hz, the simplified model
without MI almost agree with the FEA, with a difference in
peak damping force of 2.1%. However, the model without
MI at 200Hz show a significant discrepancy from FEA and
DCS (considering MI) for both the magnitude and phase,

with a difference of 13.8%.
x10°

J (A/m?)
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f=]

x10°
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s
.~ o
0 1100
0 500 1000 0 500 1000
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Fig. 2 Results. (a) DCS and FEA at 50Hz (left) and at 200Hz (right):
ECD (1% row), EC-generated MFD (2" row) and damping force (3™
row). (b) ECD along the radius at S0Hz (left) and at 200Hz (right). (c)
Damping force with/without MI: peak (left) and phase (right).

— Fig. 2(c) illustrates the frequency effects on the peak
magnitude (left column) and phase (right column) of the
computed damping force. At a relatively low vibration
frequency (f <100Hz), the peak damping forces calculated
from the models (with or without considering MI) are almost
the same. However, the MI effects on the peak damping

force cannot be neglected as frequency increases. As shown
in the phase plot of the damping force, the phase lag is not
observed in the simplified model.

— As revealed in Fig. 3(b), the 0" order component (though
very weak) is not zero indicating that the damping force is
asymmetrical. As a result, high-order harmonic components
appear in the damping force because the PM-generated MFD
varies and is asymmetric about the equilibrium position as
the conductor vibrates to different position.

— As compared in Fig. 3(a, b) between small vibration
(Z,=0.5mm, left) and large vibration (Z,=2mm, right), the
small-amplitude assumption that yields sinusoidal responses
in all cases fails to capture the higher-order harmonics.

— As shown in Fig. 3(c) where the (0%, 1%, 2" and 3™)-order
harmonic components are plotted against the vibration
amplitude, the 1* order magnitude is linear with Z, and
closely similar to the small-vibration model characterized
solely by the 1% order. The 2" order magnitude is
approximately quadratic relative to Z, and is significantly
larger than the 0" and 3™ order magnitudes. In contrast, the
phases of all components are constant when Z, increases.

1 5
0.5
Z 0
it
-0.5
-1
(a) 0 5 £ (ms) 10 0 5 ¢ (ms) 10
1 4
Z,=0.5mm Z,=2mm
— — simplified 3
> —— original | &
€05 & Z2
K 59
!
o " gsgo= T T S '530! 000
(b) Sf(Hz) Sf(Hz)
4
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g 3| ——0 thorder _3ie
> |—e— 1 componen o0
3 )2 22
& 21
s 1 A~
VN N 0

15 b0 0.5 1 1.5 2
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Fig. 3 Effects of small vibration assumption on damping force (a)
Time-domain. (b) Frequency domain. (¢) Magnitude and phase of first
four order components over a range of vibration amplitudes.

0
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B. Parametric effects on damping force

To provide guidelines to optimize EC damping forces, a
numerical study was conducted to investigate the effects of the
PM aspect ratio (height-to-diameter ratio) and the skin depth on
the damping force generated by the motion-induced EC.

PM aspect ratio

Fig. 4 shows the effects of PM aspect ratio (p = a/a,) on the
damping force for a given PM volume (Table I). The
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magnitudes of the damping force at its 1t order frequency are
plotted for two vibration frequency values at the given vibration
amplitude, Z, = Ilmm. As shown in Fig. 4, for both frequencies,
the magnitudes of the damping force increase with the decrease
of aspect ratio and reach the maxima when p =04
(corresponding to @, = 12.5mm and a = 5mm). As the PM
becomes flatter, the damping force decreases. In general, a flat
PM can generate larger damping force than a tall and slim PM.

25— 1
|
21 I f=200Hz |

|
15} |
Z |
N |
=t |
|

f=50Hz

0.5f "r.‘..._+_ _-.-._"'""I-l---n-liii
|
|

0.2 0.4 0.6 0.8 1 12 p=aa,

Fig. 4 Effects of PM aspect ratio on damping force.

Skin-depth (conductivity and frequency)

The conductivity can greatly affect the induced ECD and
hence the damping force. Fig. 5 compares the damping force
exerted on different metals with different conductivities
(ranging from 2.98MS/m to 59.6MS/m). Among the 4 metals
selected for the study, the widely used copper (Cu) and titanium
(Ti) have the highest and lowest conductivities, respectively.
As in (4a), the material with a higher conductivity that results in
a higher induced ECD experiences a larger damping force
under the same magnetic field. The coupled effects of different
conductivity and MI not only result in magnitude differences,
but also noticeable phase difference among the damping forces
of four different conductors. With that being said, neglecting
MI will not only introduce errors in the computed magnitude,
but also in the phase of the eddy current (and damping force),
especially when ois a large value.

0 2 4 6 8

Fig. 5 Damping force on a conductor of different electric conductivity
in time-domain.

t (ms)

In Fig. 6, an in-depth study about the effects of conductivity
and frequency on damping force is conducted, which plots the

1%t order components of the damping force for three of the four
abovementioned materials (Cu, Al alloy and T1i) as the vibration
frequency varies from 100Hz to 1000Hz. The magnitude and
phase of the damping force with respect to the normalized skin
depth A (=6 /a), which accounts for frequency and conductivity
simultaneously, are plotted in Fig. 6(a) and 6(b), respectively.
The same procedure is repeated for four different conductor
thicknesses H (=h/a).

6
H Cu Alalloy Ti
51 05 —e— —A— —3—
1
2.4_ — —h— ——
by 15 —— —A— —¢
'E 3t y 2 —e— —h— —3e—
B
= 27
1-
@ g
3-
28T
226}
§2.4'
22F
2-
® o 5 10 AEs/a)ls

Fig. 6 Magnitude and phase of 1% order harmonic damping force for
different skin depths. (a) Magnitude. (b) Phase.

The following observations can be found from Fig. 6:

— For each fixed H, the magnitude and phase curves of the
three materials almost overlap at the same 6 values. In other
words, conductors of different materials experience the same
damping force so long as their skin depth are the same,
demonstrating that the skin depth & alone can characterize
the effects of fand o.

— The upper left region in Fig 6(a) shows that the lines plotted
for different A merge when A is small, which corresponds to
a high for a high o; indicating that the conductor thickness
does not have a significant impact on the damping force
when A is small. On the other hands, when A is relatively
larger, the separating lines indicate that the thickness of the
conductor has more effect on the eddy current and the
damping force.

— Fig. 6(b) shows the phase change with A. Much alike the
magnitude and A relation, with small A, the phase lag is not
heavily dependent on the conductor thickness. But when A is
large, the conductor thickness has more impact on the phase
difference, with thicker conductors having larger phase lag.
For large A (or low vibration frequency), the phase shift with
respect to the vibrating frequency is close to m (180°), that is,
the induced damping force always opposes the conductor
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vibration. However, for small A, the anti-phase relation no
longer holds, which must be taken into consideration in the
design and control of EC dampers.

IV. CONCLUSION

A distributed parameter state-space model based on DCS
method has been developed for describing the motion-induced
ECD, the EC-generated MFD, and the damping force on a
vibrating conductor under a static magnetic field. The model
shows accurate performance when compared against FEA
simulation. The difference between the two methods is between
0.04% and 1.15% for different vibration frequencies. The
model was used to study the accuracy of simplified models that
either assume no MI or regard the MFD as constant within the
range of small vibration. The results demonstrate that at low
frequencies (<100Hz), the results without considering MI is
very close to that with MI, but at high frequencies, both
magnitude and phase show discrepancies, with a peak damping
force difference of 13.8% for vibration at 200Hz, and an
increased phase difference. The study also shows that assuming
constant MFD could yield accurate results when displacement
is small, but with larger displacement, higher order harmonic
components can no longer be ignored.

Parametric study about the PM aspect ratio was conducted
and the optimal parameters can be determined to achieve
maximum damping force. A study on skin depth shows that the
damping force can be formulated such that it is solely
dependent on the skin depth, and that it becomes independent of
the conducting material so long as the skin depth is fixed.
Further study on the skin depth shows that when the skin depth
is small, i.e. high vibration frequency, the damping force and its
phase difference is not heavily dependent on the conductor
thickness. The large phase difference at small A indicates that
the damping force cannot generate a purely anti-motion effect.
However, for large A, the phase shift is almost nonexistent.

Although the system discussed in this paper is axisymmetric
and forced vibration, the same concept can be extended to
non-symmetric and more general vibration cases. Besides that,
the state-space model makes it possible for applying control
theory in active damping studies.
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