
 

  

Abstract—This paper presents a distributed current source 

method to model the motion-induced eddy-current and its 

damping force. The proposed method, which relaxes two 

commonly made assumptions (negligible mutual induction and 

small vibration), discretizes the conductor into elemental 

vibrating current-density sources as state variables. The motion- 

induced eddy-current model has been formulated in state-space 

representation, and validated numerically with FEA; the results 

show excellent agreement. The model provides a basis to 

investigate the effects of mutual induction and vibration 

amplitude on the computation accuracy of the eddy-current and 

its generated magnetic flux density and damping force. The 

findings reveal existing methods (based on these commonly made 

assumptions) overestimating the peak damping force, and failing 

to capture high-order harmonic components and frequency 

effects on phase-shift. Results of a parametric study that 

investigates the effects of the PM aspect ratio and conductor 

skin-depth on the damping force are presented, providing 

essential bases for design optimization of EC damping system 

control applications.  

Index Terms—Eddy current, state-space,  vibration control,  

damping force, damper 

I. INTRODUCTION 

Eddy current (EC) can be induced in a moving conductor 

under a stationary or alternating magnetic field. The current 

will generate a Lorentz force on the conductor, which is a 

repulsive, or damping, force against the motion [1]. Based on 

the motion direction and types, the damping forces are widely 

used in various industrial applications. For example, the eddy 

current damping torque in a rotational motion can be used for 

braking in automobile [2].  In vertical vibrations, the damping 

force is utilized to develop various EC dampers that can be 

applied to structural vibration suppression to replace traditional 

tuned mass damper due to their contactless, cost-effective, and 

self-powered characteristics [3]. Laborenz et al. investigated 

the EC damper in mitigating the vibration of steam turbine 
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blading for turbomachinery applications. to [4]. Ebrahimi et al. 

designed a magnetic spring-damper system that has the 

potential to be used in automobile suspension [5]. High 

damping coefficient can be achieved in the damper by 

optimizing the permanent magnet (PM) configuration [6]. 

Yang et al. developed a vibration suppression device for the 

milling of thin-walled workpiece where chatter vibration 

happens due to the low rigidity of workpiece [7][8].  Dampers 

using PMs as magnetic sources are called passive dampers.  

However, a magnetic field can also be generated by an 

electromagnetic coil to achieve active damping [9]. Unlike in 

the above applications, where EC and the damping force 

induced in a moving conductor are used as effective tools, in 

some applications, such as maglev positioning system [10] and 

high-speed magnetic flux leakage testing [11], the parasitic EC 

and damping force during motion are unwanted. Their 

characteristics must be analyzed to achieve better control or 

improved accuracy.  

Models for solving the motion-induced EC, the consequent 

damping forces, and the EC-generated magnetic flux density 

(MFD) have been widely studied. Esposito proposed an integral 

formulation for the analysis of electromagnetic fields 

distributions in systems where bodies are in motion [12]. The 

method is based on the subdivision of conductive regions and 

can be used for modelling 3D EC problems. Peng et al. 

proposed a finite element-based composite grid method that 

uses separate mesh grids to model a moving conductor [13], 

while Muramatsu et al. analyzed the steady state EC using a 

moving coordinate system [14]. Pluk et al. modeled the EC 

damper on a finite rectangular conducting plate by using image 

method to account for the boundary effect [15]. These models 

can provide accurate solutions for EC problems, but require 

solving complicated mathematical equations, and the relations 

between the damping force and the motion are not intuitive, 

thus hard to be incorporated into the dynamic analysis of 

damping devices. Therefore, in the design and analysis of EC 

dampers, simplified models derived from analytical solutions 

are often used. Sodano et al. established an EC damping model 

for a cantilever beam with magnetic field generated by a PM in 

[16]. Similar models were used in [4] and [7] to design dampers 

for steam turbine blading and milling applications. In these 

models, a cylindrical PM and a conducting plate are often used 

to facilitate the calculation of magnetic field and the induced 

EC. Some assumptions are made to simplify the model. In 

modeling magnetic fields, [4, 7, 16] used a constant MFD for a 

given point on a vibrating beam, given that the vibration 

State-space Model and Analysis of  

Motion-induced Eddy-current based on 

Distributed Current Source Method  

Bingjie Hao, Xiaoshu Liu, Kok-Meng Lee*, Fellow, IEEE/ASME and Kun Bai, Member, IEEE 

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 324 submitted to IEEE/ASME International Conference on
 Advanced Intelligent Mechatronics. Received March 7, 2019.



 

displacement is small. As for the calculation of EC, mutual 

induction (MI) was neglected due to its relatively small 

contribution compared to the magnetic field of the PM. By 

ignoring the MI effect, the original EC problem, which is a 

typical PDE problem, is converted into a problem of solving 

algebra equations. However, these assumptions cannot always 

be satisfied. The influences of the assumptions must be 

analyzed and discussed. 

In this paper, a straightforward and accurate model for 

solving the EC in a vibrating conductor is proposed and 

formulated in a state-space representation, which makes it 

applicable to control applications such as active damping 

studies. The MI effect is accounted for by using the distributed 

current source (DCS) method [17], which has previously been 

applied and validated in modeling the EC induced through a 

time-varying magnetic field excitation. The remainder of the 

paper offers the followings: 

 A DCS method for modeling the motion-induced (2D 

axisymmetric) EC in state-space representation is presented, 

providing a basis to investigate the effects of commonly used 

assumptions applied on the computation accuracy of the EC 

and its generated MFD and damping force. 

 The DCS model that relaxes commonly made assumptions 

has been validated numerically by comparing results with 

FEA simulated using commercial software.  

 The parametric effects of the PM aspect ratio and conductor 

skin-depth on the damping force for a forced vibration were 

studied numerically.  

II. MODEL 

Figure 1 shows the characteristic parameters and coordinate 

system of a typical EC system for deriving the damping force 

due to the motion-induced EC in a conductive plate (radius rp 

and thickness h) that vibrates with displacement 

sin( )oz Z t and velocity w=dz/dt. The static magnetic field is 

generated by a circular PM (radius ao, length 2a and 

magnetization M=M0ez) that is placed normal to the conductive 

plate. The ECD J can be derived by (1) where σ is the electric 

conductivity, v is the plate velocity and Bm and Bc are the MFD 

contributed by the PM and EC respectively: 

 =  m cJ v B B   (1) 

As shown in (1), Bc that accounts for the mutual induction (MI) 

in the conductor has an influence on J and hence on the Lorentz 

force F acting on the conductor, which can be derived from (2) 

by integrating over the volume V of the conductor: 

d  m
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Fig. 1 Schematics of EC system in vibrating conductor 

The ECD cannot be directly measured but can be 

characterized by measuring the EC-generated MFD in space. 

For a point at rs, Bc can be expressed as  

 
 

3

s
s

V
s

dV
 




c

J r r
B r

r r
 (3) 

In most literatures that analyze the vibration-induced EC, the 

EC-generated MFD is often ignored (viz. Bc  0) for simplicity 

when calculating ECD through (1), in which case the ECD, the 

damping force, and the measured EC-generated MFD are 

approximately proportional to the vibration velocity. To 

account for the MI effects on the ECD, the conductor is 

decomposed into n annular elemental current sources as 

illustrated in Fig. 1 using the DCS model as follows.  

A. State-space Model for a 2D-axisymmetric system 

To facilitate characterizing the mutual induction among the 

current sources, the magnetic vector potential (MVP) A 

(defined by  B A  and 0 A ) is introduced. Expressed 

in cylindrical coordinates (assigned at the PM center as shown 

in Fig. 1), the ith elemental ECD source at ( , )i ir z is written as 

1
( )

n

i i ijjt





  


m cJ A A  (4a) 

where ( )ij ij i jf r VcA J ; (4b) 
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r r r z z
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  


   
 . (4c) 

In (4a), Am and A cij denote the MVP generated by the PM and 

that by the jth element on the ith element, respectively. In (4b),  Vi 

is the element volume; and ( )ijf r  is a kernel function.   

For a 2D-axisymmetric system, Ji [0 Ji 0]T has only a 

circumferential component; and hence Acij = [0 Acij 0]T
 and Am  

[0 Ami 0]T. Since all elemental sources are relatively static to 

each other, the time-derivative of Acij is irrelevant to the 

conductor motion. In contrast, Ami is related to the vibration and 

its time-derivative is given by (5): 

 
   

,
,

m i imi i

r i i

i

A r zA dz
B r z w t

t z dt


  

 
 (5) 

where  and ( )i i i ir r z z z t   about an equilibrium position (r̅i, 

z̅i ). Since the conductor vibrates relative to a fixed PM, Br must 

be calculated for a specified z(t). For an axial-magnetized 

cylindrical PM, its MFD field in space can be calculated in an 

efficient way based on the approach proposed in [18], which is 

originally derived for the magnetic field of EC. Using similar 

derivations, the MFD generated by the PM can be obtained as 

     
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
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

  
  

  (6) 

where βn(x) is the nth order Bessel function of the 1st kind; rb (> 

5rp) is the truncating radius [18];  = xk/rb and xk is the kth
 

positive root of the equation β1(x)  0. In practical computation, 

(6) can achieve high accuracy when taking only the first 500 

terms. 

In matrix forms, with  
T

1 i nJ J JJ , Eq. (4a) can be 

written in a state-space representation 

     t t t J αJ βu  (7) 
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where 1( )  α T , 1β T , ( ) ( )t w tu b and ( )ij j ijV f rT , 

1 T( ) [ ( , ) ]n

ri i iB r z b . It should be noted that b is a 

function of the conductor position which is time-varying. 

Once J is solved, the effects of the ECD, including the 

Lorentz force F on the conductor (which is in the z-direction 

due to symmetry) and the EC-generated MFD Bc at the 

measurement point rs, can be easily derived from (2) and (3), 

and given by (8), (9), respectively. 
T

zF  b VJ  (8) 

   
T

s sr szB B 
c

B r CJ   (9) 

where   1 i ndiag V V VV   
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B.  ECD solutions  

Given z(t), Eq. (7) can be discretized with a zero-order hold 

(with a sampling period of ΔT) resulting in (10) which can be 

solved iteratively to obtain the discrete-time solutions of the 

ECD J in the vibrating conductor: 

     
0

1
T

Tk e k e d k 


   
α α

J J u   (10) 

The effects of the two commonly made assumptions in 

literatures [4, 7, 16] on the solutions to the motion-induced 

ECD field are discussed:  

Assumption 1 (A1) neglects the effects of mutual induction 

(MI). The ECD is only contributed by the PM magnetic field 

and the conductor motion: 

   t w tJ b  (11) 

Assumption 2 (A2): The vibration displacement is small such 

that ( , ) ( , )r i i r i iB r z B r z , and hence, b is a constant vector.  

 The motion-induced ECD in the vibrating conductor is 

equivalent to that induced by a harmonic excitation.  

 The closed-form frequency response (steady-state 

solutions) to the ECD can be derived in (11) using a phaser 

method which takes on the form of J̇ = jωJ, where 

1j   , I is n×n identity matrix. 

 
1

1 1

oZ j 


  J I T T b   (12) 

 Eq. (12) implies that the conductivity σ and vibration 

frequency ω, both of which influence the induced ECD, 

can be characterized by a single parameter: skin-depth δ 

(
02 ( )  ). 

III. RESULTS AND DISCUSSIONS 

The proposed method for modeling the motion-induced EC 

in a vibrating conductor has been evaluated.  Solutions that 

were computed for the 2D axis-symmetric setup (Fig. 1), along 

with the parametric values in Table I, are organized as follows: 

1) For validation, the DCS-based solutions are compared with 

FEA in Fig. 2(a, b) where the commercial (COMSOL 

Multiphysics) software was used as a basis for comparisons.  

In COMSOL, the moving mesh method was used to simulate 

a moving PM that vibrates above the conductor, which is 

equivalent to having a conductor vibrate under a static PM.  

Table I (left column) is a partial view of the mesh, where the 

vertical space directly above/below the PM was re-meshed 

at each time step to accommodate the relative motion of the 

PM. A fixed air space is included around the deformable 

space and the conductor. A forced harmonic vibration is 

prescribed to the PM; thus, the vibration displacement and 

velocity are not influenced by the damping force. The 

calculation time-step is set to 1% of the vibration period. 

2) The effects of two commonly used assumptions on the 

computational accuracy are numerically examined:  

a. The effects of Assumption 1 on the ECD, EC-generated 

MFD and damping force are presented in Fig. 2 where the 

responses with and without accounting for the mutual 

induction are compared.  

b. The effects of Assumption 2 (small vibration) on the 

accuracy of the damping force computation are illustrated 

in Fig. 3 where the solutions of the DCS model and that of 

the simplified model (12) are compared in time domain 

(Fig. 3a) and in frequency domain (Fig. 3b). 

3) To facilitate design optimization, the parametric effects of 

the PM aspect ratio and conductor skin-depth (accounting 

for the electrical conductivity and vibration frequency) on 

the damping force are presented in Figs. 4, 5 and 6.       

Table I. Parametric values used in numerical investigation 

PM

Air space

Conductor

Moving 

Mesh (Air)

 

PM (ao, a) = (16, 3) mm 

μ0M0 :1.465T 

Conductor (rp, h; d) = (40,1.5, 6) mm 

σ = 33.5MS/m 

 f = 50, 200Hz, Zo = 1mm 

Sensor (rs, zs) = (6, -12) mm 

Mesh size 1×0.75mm (DCS) 
Max. 0.9mm (FEA) 

Time step dt = 1/ (100 f ) 

A. Numerical validation 

Fig. 2(a) compares the DCS-modeled ECD (1st row), 

EC-generated MFD (2nd row) and damping force (3rd row) with 

the FEA simulated in COMSOL and with the simplified model 

that ignores mutual induction (MI) for two vibration 

frequencies (f = 50 and 200Hz); all in the time domain.  In the 

1st row, the average ECD values at   r = 20mm are plotted. The 

2nd row plots the simulated “measured-MFD” in the r-direction 

at (6, 12) mm, while the 3rd row plots the damping force 

exerted on the conductor. Fig. 2(b) shows the circumferential 

component of the average ECD along the conductor radius 

when z(t) reaches its positive peak position corresponding to t = 

30ms (f = 50) and t = 7.5ms (200Hz). Fig. 2(c) illustrates the MI 

effects on the amplitude/phase of the damping force over a 

range of vibrating frequencies, where the DCS models with and 

without accounting for MI are compared with a constant 

vibration amplitude  of 1mm.  

Fig. 3 compares the damping force calculated from the DCS 

model and a simplified model with small vibration assumption 

(12). Vibrations of two amplitudes (Zo = 0.5mm and 2mm) for a 

given frequency (f = 200Hz) are simulated to compare the 

damping force in both time domain (Fig. 3a) and frequency 
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domain (Fig. 3b). The first four orders of the harmonic 

components are further shown in Fig. 3(c) as vibration 

amplitudes varies from 0 to 2mm. The following observations 

can be obtained from Figs. 2 and 3. 

 As compared in Fig. 2(a, b), the DCS-modeled transient 

responses of the ECD, EC-generated MFD and damping 

force show excellent agreements with FEA for both 50Hz 

and 200Hz vibrations, demonstrating the accuracy of the 

model in the order of 1% difference relative to FEA 

simulated in COMSOL. At 50Hz, the simplified model 

without MI almost agree with the FEA, with a difference in 

peak damping force of 2.1%. However, the model without 

MI at 200Hz show a significant discrepancy from FEA and 

DCS (considering MI) for both the magnitude and phase, 

with a difference of 13.8%. 
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Fig. 2 Results. (a) DCS and FEA at 50Hz (left) and at 200Hz (right): 

ECD (1st row), EC-generated MFD (2nd row) and damping force (3rd 

row). (b) ECD along the radius at 50Hz (left) and at 200Hz (right). (c) 

Damping force with/without MI: peak (left) and phase (right). 

 Fig. 2(c) illustrates the frequency effects on the peak 

magnitude (left column) and phase (right column) of the 

computed damping force. At a relatively low vibration 

frequency (f <100Hz), the peak damping forces calculated 

from the models (with or without considering MI) are almost 

the same. However, the MI effects on the peak damping 

force cannot be neglected as frequency increases. As shown 

in the phase plot of the damping force, the phase lag is not 

observed in the simplified model.  

 As revealed in Fig. 3(b), the 0th order component (though 

very weak) is not zero indicating that the damping force is 

asymmetrical. As a result, high-order harmonic components 

appear in the damping force because the PM-generated MFD 

varies and is asymmetric about the equilibrium position as 

the conductor vibrates to different position.  

 As compared in Fig. 3(a, b) between small vibration 

(Zo=0.5mm, left) and large vibration (Zo=2mm, right), the 

small-amplitude assumption that yields sinusoidal responses 

in all cases fails to capture the higher-order harmonics.   

 As shown in Fig. 3(c) where the (0th, 1st, 2nd and 3rd)-order 

harmonic components are plotted against the vibration 

amplitude, the 1st order magnitude is linear with Zo and 

closely similar to the small-vibration model characterized 

solely by the 1st order. The 2nd order  magnitude is 

approximately quadratic relative to Zo and is significantly 

larger than the 0th and 3rd  order magnitudes.  In contrast, the 

phases of all components are constant when Zo increases. 
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Fig. 3 Effects of small vibration assumption on damping force (a) 

Time-domain.  (b) Frequency domain. (c) Magnitude and phase of first 

four order components over a range of vibration amplitudes. 

B. Parametric effects on damping force 

To provide guidelines to optimize EC damping forces, a 

numerical study was conducted to investigate the effects of the 

PM aspect ratio (height-to-diameter ratio) and the skin depth on 

the damping force generated by the motion-induced EC.  

PM aspect ratio 

Fig. 4 shows the effects of PM aspect ratio (ρ  a/ao) on the 

damping force for a given PM volume (Table I). The 
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magnitudes of the damping force at its 1st order frequency are 
plotted for two vibration frequency values at the given vibration 
amplitude, Zo = 1mm. As shown in Fig. 4, for both frequencies, 
the magnitudes of the damping force increase with the decrease 
of aspect ratio and reach the maxima when ρ 0.4 
(corresponding to ao = 12.5mm and a = 5mm). As the PM 
becomes flatter, the damping force decreases. In general, a flat 
PM can generate larger damping force than a tall and slim PM. 

r=a/ao

F
z 
(
N)

f = 200Hz

f = 50Hz

 

 
Fig. 4 Effects of PM aspect ratio on damping force. 

Skin-depth (conductivity and frequency) 

The conductivity can greatly affect the induced ECD and 
hence the damping force.  Fig. 5 compares the damping force 
exerted on different metals with different conductivities 
(ranging from 2.98MS/m to 59.6MS/m). Among the 4 metals 
selected for the study, the widely used copper (Cu) and titanium 
(Ti) have the highest and lowest conductivities, respectively. 
As in (4a), the material with a higher conductivity that results in 
a higher induced ECD experiences a larger damping force 
under the same magnetic field. The coupled effects of different 
conductivity and MI not only result in magnitude differences, 
but also noticeable phase difference among the damping forces 
of four different conductors. With that being said, neglecting 
MI will not only introduce errors in the computed magnitude, 
but also in the phase of the eddy current (and damping force), 
especially when  is a large value. 

Fz
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m/
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Cu  
Al 
Al Alloy 
Ti 

(MS/m)
59.8

17.4
37.7

2.98

w(t)

t (ms)

 

 
Fig. 5 Damping force on a conductor of different electric conductivity 
in time-domain. 

In Fig. 6, an in-depth study about the effects of conductivity 
and frequency on damping force is conducted, which plots the 

1st order components of the damping force for three of the four 
abovementioned materials (Cu, Al alloy and Ti) as the vibration 
frequency varies from 100Hz to 1000Hz. The magnitude and 
phase of the damping force with respect to the normalized skin 
depth Δ (= δ /a), which accounts for frequency and conductivity 
simultaneously, are plotted in Fig. 6(a) and 6(b), respectively. 
The same procedure is repeated for four different conductor 
thicknesses H (=h/a). 
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Fig. 6 Magnitude and phase of 1st order harmonic damping force for 
different skin depths. (a) Magnitude. (b) Phase. 

The following observations can be found from Fig. 6: 
 For each fixed H, the magnitude and phase curves of the 
three materials almost overlap at the same δ values. In other 
words, conductors of different materials experience the same 
damping force so long as their skin depth are the same, 
demonstrating that the skin depth d alone can characterize 
the effects of f and σ.  

 The upper left region in Fig 6(a) shows that the lines plotted 
for different H merge when  is small, which corresponds to 
a high f or a high , indicating that the conductor thickness 
does not have a significant impact on the damping force 
when  is small. On the other hands, when  is relatively 
larger, the separating lines indicate that the thickness of the 
conductor has more effect on the eddy current and the 
damping force.  

 Fig. 6(b) shows the phase change with . Much alike the 
magnitude and  relation, with small  the phase lag is not 
heavily dependent on the conductor thickness. But when  is 
large, the conductor thickness has more impact on the phase 
difference, with thicker conductors having larger phase lag. 
For large (or low vibration frequency), the phase shift with 
respect to the vibrating frequency is close to π (180°), that is, 
the induced damping force always opposes the conductor 
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vibration. However, for small Δ, the anti-phase relation no 

longer holds, which must be taken into consideration in the 

design and control of EC dampers. 

IV. CONCLUSION 

A distributed parameter state-space model based on DCS 

method has been developed for describing the motion-induced 

ECD, the EC-generated MFD, and the damping force on a 

vibrating conductor under a static magnetic field. The model 

shows accurate performance when compared against FEA 

simulation. The difference between the two methods is between 

0.04% and 1.15% for different vibration frequencies. The 

model was used to study the accuracy of simplified models that 

either assume no MI or regard the MFD as constant within the 

range of small vibration. The results demonstrate that at low 

frequencies (<100Hz), the results without considering MI is 

very close to that with MI, but at high frequencies, both 

magnitude and phase show discrepancies, with a peak damping 

force difference of 13.8% for vibration at 200Hz, and an 

increased phase difference. The study also shows that assuming 

constant MFD could yield accurate results when displacement 

is small, but with larger displacement, higher order harmonic 

components can no longer be ignored.  

Parametric study about the PM aspect ratio was conducted 

and the optimal parameters can be determined to achieve 

maximum damping force. A study on skin depth shows that the 

damping force can be formulated such that it is solely 

dependent on the skin depth, and that it becomes independent of 

the conducting material so long as the skin depth is fixed. 

Further study on the skin depth shows that when the skin depth 

is small, i.e. high vibration frequency, the damping force and its 

phase difference is not heavily dependent on the conductor 

thickness. The large phase difference at small Δ indicates that 

the damping force cannot generate a purely anti-motion effect. 

However, for large Δ, the phase shift is almost nonexistent. 

Although the system discussed in this paper is axisymmetric 

and forced vibration, the same concept can be extended to 

non-symmetric and more general vibration cases. Besides that, 

the state-space model makes it possible for applying control 

theory in active damping studies. 
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