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Abstract

In this paper, we adapt the differential signature construction to the equivalence problem
for complex plane algebraic curves under the actions of the projective group and its subgroups.
Given an action of a group G, a signature map assigns to a plane algebraic curve another
plane algebraic curve (a signature curve) in such a way that two generic curves have the same
signatures if and only if they are G-equivalent. We prove that for any G-action, there exists a
pair of rational differential invariants, called classifying invariants, that can be used to construct
signatures. We derive a formula for the degree of a signature curve in terms of the degree of
the original curve, the size of its symmetry group and some quantities depending on a choice
of classifying invariants. We show that all generic curves have signatures of the same degree
and this degree is the sharp upper bound. For the full projective group, as well as for its
affine, special affine and special Euclidean subgroups, we give explicit sets of rational classifying
invariants and derive a formula for the degree of the signature curve of a generic curve as a
quadratic function of the degree of the original curve.
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1 Introduction

In the most general terms the group equivalence problem can be stated as follows: given an
action of a group G on a set of objects, decide whether or not one object can be transformed to
another by a group element. An elementary geometry problem of deciding whether or not two
triangles are congruent under the action of the group of rigid motions (the Euclidean group) is an
example. Many problems in mathematics and applications can be reformulated in this manner,
and equivalence problems are closely related to many important classification problems.

In this paper we consider the problem of equivalence of algebraic plane curves under the
action of the projective group and its subgroups. This problem plays an important role in
algebraic geometry, in particular, in the classical invariant theory [1, 15, 19, 39] [50, Chapter
9] and in the problem of describing moduli spaces of curves [21]. The equivalence problem
under the full projective group as well as its classical subgroups, such as (special) Euclidean and
(special) affine subgroups naturally arises in computer vision and shape analysis. For a detailed
exposition on how each of these groups appear in image processing and analysis, see, for instance,
[11, 22]. The variety of applications include medical imaging, automated object and handwriting
recognition, and automated assembly. In many of such applications differential signatures of
smooth curves and their numerical approximations has been used [4, 6, 26, 16]. Since the
differential signature construction originated in differential geometry, much less attention has
been given to differential signatures of algebraic curves. However, since algebraic curves such
as Bézier curves can be used to represent shapes [17, 46] differential signatures of algebraic



curves can be of interest in applications. One benefit of the algebraic setting is that we can
take advantage of well-developed computational algebra algorithms to compute, compare and
analyze signature curves.

The differential signature construction originated from Cartan’s method for solving equiv-
alence problems for smooth manifolds under Lie group actions [8]. For a modern exposition
see [38, Chapter 8], in particular, the notion of classifying manifolds. The differential signature
construction for curves consists of the following steps: (1) an action of a group on a plane
is prolonged to the jet space of curves of sufficiently high order; (2) on this jet space, a pair
of independent differential invariants is constructed; (3) the restriction of this pair to a given
curve parametrizes a signature curve. Since the signature is based on invariants, two equivalent
curves have the same signature. The challenge lies in finding a pair of invariants so that (most)
non-equivalent curves have different signatures. In principle, such a pair of invariants can be
found either by the classical moving frame method formulated by Cartan [7] or by its modern
generalization given by Fels and Olver [12], although in practice this may be challenging for
large groups. The invariants obtained by the moving frame method are, in general, only locally
defined and are designed to solve local equivalence problems, i.e. a problem of deciding whether
or not there exist segments of two smooth curves that are G-equivalent. The challenges arising
when using these signatures for solving global equivalence problems for smooth curves, even in
the case of the well-studied Euclidean action, are underscored in the works [24], [25] and [36]. In
contrast with the smooth case, any two irreducible algebraic curves that are locally equivalent
are also globally equivalent.

In order to take full advantage of the computational algebra algorithms, we need to build
a signature from rational invariants, in which case the signature of an algebraic curve is again
algebraic. The differential invariants obtained by the classical Cartan moving frame method
(called normalized invariants) or their counterparts obtained by Fels-Olver generalization (called
replacement invariants) are not rational in general. In fact, an algebraic adaptation of the Fels-
Olver method given in [28] shows that local replacement invariants, in general, are algebraic
over the field of global rational invariants.

As the first main result of this paper, we prove existence of two rational differential invariants
that can be used to construct signatures with good separation properties:

Result 1. Let G C PGL(3) be any closed algebraic subgroup of the projective group of pos-
itive dimension. Then there exists a pair of rational differential invariants, called classifying
invariants, of differential order at most equal to the dim GG, such that the signatures based on
these invariants characterize equivalence classes of generic algebraic curves of degree d for all d
such that (d;r2) — 2> dimG. See Theorem 2.37.

Here and throughout the paper we formulate several results for a generic curve of degree d.
This means that there exists a nonempty Zariski-open subset Py of the vector space Clz, y]<q
of all polynomials of degree at most d, such that a result is valid for all curves whose defining
polynomials lie in Pg.

The result above can be compared with [34, Theorem 2] by Kruglikov and Lychagin, which
asserts that, under appropriated conditions, the differential algebra of invariants with respect
to an algebraic action of a Lie pseudogroup is generated by a finite set of rational differential
invariants and rational differential operators. We note, however, that [34, Theorem 2| does not
directly imply the existence of a pair of classifying invariants stated above. In addition, in the
case of algebraic subgroups of the projective group considered in this paper, we are able to relax
some of the assumptions of [34, Theorem 2], such as a transitivity assumption.

Given a pair of rational classifying invariants, the signature of a curve X C C? is constructed
as follows. The restriction of classifying invariants to an algebraic curve X C C? defines a
rational map ox : X --» C? called the signature map. Its image Sy = ox(X) is called the
signature of X, and it is a Zariski-dense! subset of its closure Sx, called the signature curve of
X. The defining polynomial for the signature curve can be explicitly computed using elimination

!The density statement is not valid over R. See, for instance, [5, Example 1].



algorithms, as was studied in [5]. However this computation is not always practically feasible
and it is natural to ask what properties of signature curves can be determined a priori. As the
first step in this direction, we obtain a formula for the degree of the signature curve.

Result 2. For a fixed algebraic group and a fixed set of classifying invariants, we derive a
formula for the degree of the signature curve of an algebraic curve in terms of the degree of the
original curve, the size of its symmetry group, and some quantities that depend on a choice of
classifying invariants. See Theorem 3.8. We show that signatures of generic curves all have the
same degree and this degree provides the strict upper abound. See Theorem 3.13

Additionally, one may construct a numerical “witness set” for the signature curve. A witness
set for a variety encodes information, such as dimension and degree, and allows one to perform
numerical procedures on the variety including component sampling and membership tests [2].
Prior knowledge of the degree provides a stopping criterion when using monodromy solvers to
construct a witness set for the signature curve.

One of the consequences of Theorem 2.20 is that, over C, a classifying set of differential
invariants can be computed by an algorithm for computing generators for the field of rational
invariants, such as algorithms presented in [9] and [27]. In fact by computing the graph-section
ideal, as presented [27] (using classical geometric cross-sections), we were able to produce the
classifying pairs of invariants for the special Euclidean SE(2), the special affine SA(2), and the
affine A(2) subgroups of the projective PGL(3). For the full projective group, however, even the
preprocessing step of computing the prolongation? of the action to a sufficiently high order was
not computational feasible. Fortunately, for the actions of the full projective group PGL(3) and
its classical subgroups one can easily build rational classifying invariants from the classical (non-
rational) differential invariants. We give explicit formulas for the classifying pairs for the special
Euclidean S€(2), the special affine SA(2), the affine A(2) and projective PGL(3) groups. These
groups are especially relevant in computer vision and image processing. We derive formulas for
the degrees of signatures of generic curves based on these pairs of invariants and show that these
degrees are sharp upper bounds.

Result 3. For the actions of the full projective group PGL(3), and its subgroups such as the
special Euclidean SE(2), the special affine S.A(2), the affine A(2) and the classifying pairs of
invariants given by (21), we find an upper bound for the degree of the algebraic signature of
a plane curve of degree d. See Theorem 4.13. From Result 2 we know this bound is tight for
generic curves.

While the results are proved for complex curves under the action of complex algebraic groups,
for many practical applications solving equivalence problems over the real field is important.
For this reason, throughout the paper we often compare and contrast with the real case. In
particular, we would like to note that the pairs of classifying invariants (21) can be proved to
be classifying over R (see [5]). Therefore, the signature of the real part of a complex curve X
is contained in the real part of the signature curve Sx. As shown in [5, Example 1] and [42,
Example 3.2.12], the real part of the signature curve can contain signatures of two non-equivalent
(over the reals) curves, and so utilization of the signature curves for solving equivalence problems
over reals becomes more subtle. Nonetheless, the degree results obtained in Theorem 4.13 are
also applicable in the real case.

The paper is structured as follows. In Section 2 we review known results about actions
and invariants of algebraic groups, as well as the results about the jet spaces and differential
invariants. We then prove our first main result about the existence of a pair of classifying
invariants. Additionally we establish some basic facts about the relationship of the symmetry
group of a curve and the curve’s signature map, which play an important role in the degree
formulas. In Section 3 we review some necessary definitions and theorems of algebraic geometry
and prove our second main result, which is a formula for the degree of the signature polynomial.
We also show that signatures of generic curves all have the same degree and this degree provides

2We used MAPLE “DifferentialGeometry” package on Apple iMac, Intel Core i7, 3.4 GHz, 8 GB 1600 MHz DDR3.



the strict upper abound. In Section 4 we examine the signature polynomial for some specific
examples of subgroups of the projective group and prove our third main result about the degree
of signatures of the generic curves for these groups. We also consider the family of Fermat curves,
defined by polynomials Fy(z,y) = ¢ + y% + 1, to show that the degree of a signature curve
may be significantly lower than the generic degree. For this family, we give explicit formulas for
signatures polynomials for all d under the actions of the projective and affine group.

Although the paper contains only few examples and computational details, the Maple code
and a large selection of examples are available on an online supplementary material page https:
//mgruddy .wixsite.com/home/dsag-supplementarymaterials.

Acknowledgements. We would like to thank Bojko Bakalov, Peter Olver, Kristian Ranes-
tad, and Dmitry Zenkov for helpful discussions and suggestions regarding this project. This
work was supported in part by the National Science Foundation grants DMS-1620014 and CCF-
1319632.

2 Differential invariants and signatures of algebraic curves

In this section, we prove our main structural results about the field of rational differential
invariants and signatures of algebraic curves. We start by reviewing, in Section 2.1, known
results about actions and invariants of algebraic groups. In Section 2.2, we consider the action
of the projective group and its subgroups on algebraic curves, give definitions of equivalence
and symmetry for algebraic curves, and prove some useful results about the symmetry groups of
curves (Propositions 2.9-2.11). In Section 2.3 we prolong the action to the jet space of curves and
define the notion of rational classifying differential invariants. We prove an important structural
result about the field of rational differential invariants (Theorem 2.17), as well the existence of a
classifying set (Theorem 2.20). In Section 2.4, we show how differential invariants are evaluated
on an algebraic curve. We define the notion of exceptional curves and show that generic curves
are non-exceptional (Theorem 2.27). Section 2.5, we define the signature map and the signature
curve of a non-exceptional algebraic curve. We show that signatures characterize the equivalence
classes of generic algebraic curves (Theorem 2.37) and prove that the signature map of a curve
X is generically n to one where n is the cardinality of the symmetry group of X (Theorem 2.38).

2.1 Actions and invariants of algebraic groups

In this section, we review common definitions and known results about actions and invariants
of algebraic groups on algebraic varieties. The exposition follows [50], and we refer to this
publication for details, proofs, and further references.

Throughout the section the ground field is C and the terms “open” and “closed” refer to
Zariski topology. An algebraic group is an algebraic variety equipped with a group structure.

Definition 2.1. Let ) be an affine or a projective variety. A rational action of an algebraic
group G on ) is a rational map ®: G x ) --+ ) that satisfies the following two properties:

1. ®(e,p) =p, Vp € Y, where e is the identity in G, and

2. ®(h,®(g,p)) = ®(hg,p), for all h,g € G and p € Y, such that both sides are defined.

If the domain of @ is all of G x ) then ® is a morphism and the action is called regular.

From now on, when the word “action” is used without an adjective, a rational action is
assumed. We use the standard abbreviation ®(g,p) = ¢ - p and state the following known
definitions and results used in our paper.

Definition 2.2. For an action of G on a variety ) and a point p € ), the stabilizer of p is the
set
Gp={9€Glg-p=n}
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while the orbit of p is the set
Gp={qe)Y|3gecCG,g-p=yq},

We recall some basic properties of algebraic group actions. The following proposition is
condensed from the results stated in Sections 1.3 and 1.4 in [50].

Proposition 2.3. Let G be an algebraic group acting on an affine (or projective) variety ). For
any p € Y, the stabilizer G, is a closed algebraic subgroup of G. The orbit Gp is a quasi-affine
(or quasi-projective) variety and

dim Gp = dim G — dim G,,.

If Y is irreducible then the set of all points whose orbit dimension is less than maximal (equiv-
alently the dimension of the stabilizer group is greater than minimum) lies in a closed, proper
subset of ). Finally, if G is irreducible, then for all p € ) the closure of the orbit Gp is ir-
reducible. This follows from the fact that the image of an irreducible variety under a rational
map is in turn irreducible.

Definition 2.4. A rational function K on ) is G-invariant if
K(g-p) = K(p), whenever both sides are defined.

The set of all rational G-invariant functions is denoted by C())¢. It is easy to see that it is
a subfield of the field C(Y) of all rational functions on ).

Definition 2.5. A subset Z C C())Y is called separating if there exists a nonempty open subset
W C Y such that for all p,q € W,

g€ Gp & K(p)=K(q) for all K € T.

The set W is called a domain of separation for I, and we say Z separates orbits on W.
Due to the Noetherian property, there exists a mazimal (with respect to inclusions) domain of
separation. Since the invariants are constant on orbits, if p belongs to the maximal domain of
separation, then so does the entire orbit Gp. Thus the maximal domain of separation is a union
of orbits, and therefore is a G-invariant set.

In the following proposition, we summarize several important and non-trivial results about
the structure of C())¢ stated in [50].3

Proposition 2.6.
1. The field C())% is finitely generated over C. (See Lemma 2.1 and Theorem 2.3 in [50].)
2. A subset T C C())€ is generating if and only if it is separating.

3. The transcendence degree of C()))¢ over C equals to dim ) — ma;}( dim Gp.
J4S

4. If the field C()) is rational* and the transcendence degree of C())¢ over C equals to 1 or
2, then C(Y)¢ is rational over C.

Remark 2.7. It is worthwhile mentioning that the second part of the proposition is not valid
over real numbers. For example, the field of rational invariants for the action of the group R*
(non-zero real numbers under multiplication) on R? defined by (z,y) — (A\2z, \2y) is generated
by K = %, but K is not separating. Conversely, for the translation action of R on R? defined

by (z,y) + (2 + a,y), the invariant K = y3 is separating but not generating.

3 The first two bullets are direct consequences of Lemma 2.1 and Theorem 2.3 in [50]. The third bullet is the
unnumbered Corollary stated on p.156 of [50] after Lemma 2.4. The fourth bullet is the result stated at the beginning
of Section 2.9 on p.162 of [50] and attributed to Liiroth and Castelnuovo.

“i.e. isomorphic to a field of rational functions of a finite number of independent variables.



2.2 Equivalence classes and symmetries of algebraic curves

We now restrict our attention to regular actions of algebraic groups on the complex projective
plane CP2. Such an action induces a homomorphism from G to Aut(CP?) = PGL(3), see [23,
Example I1.7.1.1]. Thus we view an algebraic group G acting on CP? as a closed subgroup of
the projective linear group PGL(3)°. An element g € G can be represented by a 3 x 3 non-
singular complex matrix A4, which is defined up to scaling. We use homogeneous coordinates
[0 : 71 : 23] to represent a point p € CP2. Then the action of G' on CP? is defined by:

b0(g,P) T
9P =[¢0(9:P) : 61(9,P) : #2(9,p)], where | ¢1(g9,p) | =44 | 21 |. (1)
¢2(g7p) T2

On C?, we use coordinates (z,y). For an affine point p = (z,y) € C2, we use an abbreviation
[1:p] =[1:x:y] to denote the corresponding projective point. The action (1) induces a
rational action ® : G x C? --» C? given by

o (¢lg, [1:p]) P2(g,[1:p])
gr= <¢o<g, [1:p)) o, [1:p}>>'

We are interested in the characterization of the equivalence classes of algebraic curves under
this action. Given a curve X C C?, let g- X denote the the image of X under g, namely ®(g, X).
As this is a rational action, the image may not be an algebraic curve, and so we will consider
its Zariski closure ¢ - X.

(2)

Definition 2.8. We say that an algebraic curve X C C? is G-equivalent to an algebraic curve
Y C C? if there exists g € G such that X =g -Y.

Clearly G-equivalence satisfies all properties of an equivalence relation, and we use the no-
tation X % Y to denote the G-equivalence of curves X and Y. Elements ¢ € G defining

self-equivalences of X are called symmetries of X in GG. The set of all symmetries
Sym(X,G)={9€G| X =g-X}

form a closed algebraic subgroup of G, called the symmetry group of X with respect to G.
Note that the symmetries of X that fix every point of the curve form a normal subgroup of
Sym(X,G), called the stabilizer group of X with respect to G:

Stab(X,G) = (1) Gp.

peX
We show that for a natural class of curves, Stab(X, G) only consists of the identity element.
Proposition 2.9. For an irreducible curve X C C? of degree greater than one, the stabilizer

group Stab(X, G) consists of only the identity.

Proof. For g € G let A, € GL(3) be any of its representatives. Let C2 denote the set of points
in C? fixed by a particular element g, i.e.

Co={peC®:g-p=p}
A point p € C? is fixed by g if and only if (1,p) is an eigenvector of A,. Therefore, the set
(Cf] is the intersection of the affine plane {x¢p = 1} with the union of the eigenspaces of the
matrix A;. There are three possibilities: (1) A, has three linearly independent eigenvectors,
then (Cg consists of at mostS three distinct points, (2) A, has an eigenspace of dimension 2 and

®From now on we will refer to PGL(3) as the projective group.
5«At most” because an eigenspace may be parallel to the {xzo = 1} plane.



an eigenspace of dimension 1, then (Cg consists of at most a line and a point, (3) Ay has an
eigenspace of dimension 3, then (C?7 =2

If g € Stab(X,G), then X C C2. Since X is irreducible of degree > 1, it follows that
C? = C*. This implies that A, is a scalar multiple of the identity matrix and g is the identity
element of PGL(3). O

We finish this section by proving two useful propositions concerning the orbits of Sym (X, G).

Proposition 2.10. If X is irreducible of degree greater than one, then | Sym (X, G)| is infinite
if and only if there exists a point p € X whose orbit under Sym(X, G) is dense in X.

Proof. Let H = Sym(X,G). This is an algebraic group acting on X.

(=) Assume |H| is infinite. Then since H is algebraic, dim H > 0. Let H° denote the
connected component of H containing e. By [48, Prop. 2.2.1], this is a closed normal subgroup
of H of finite index and so dim H° > 0. By Proposition 2.3, for any p € X the orbit Hp is an
irreducible quasi-affine subvariety of X. Since dim X = 1, the dimension of Hp is either zero
or one. If for all p € X, dim H% = 0, then H = {p} for all p € X. In this case, Stab(X,G)
contains HY, contradicting the statement of Proposition 2.9. Therefore, there exists p € X such
that dim H%p = 1. Since X is irreducible of dimension 1, this implies Hop = X.

(<) Assume there exists a point p € X whose orbit under H is dense in X. Then dim Hp = 1.
By Proposition 2.3, dim Hp < dim H. Therefore dim H > 0 and so |H| is infinite. O

Proposition 2.11. If X is irreducible of degree greater than one and |Sym(X,G)| =n < oo,
then for all but finitely many points p € X the orbit under Sym(X, G) consists of exactly n
distinct points.

Proof. Let H = Sym(X,G). For g € H, define X, = {p € X |g-p = p}. From the proof of
Proposition 2.9 it follows that if g # e, then X, is either empty or finite. Consider the set
E;, = {p € X|g - pis undefined}, which is also empty or finite. Since |H]| is finite, the set
A =Uger(Ey U X,) is empty or finite. For all p € X\A, g - p is defined for all g € H and the
stabilizer is H,, = {e}. Then |Hp| = |H|/|H,| = n. O

It is important to note that under the action G C PGL(3) described by (2) the degree and
the irreducibility property are preserved. From now on and throughout the paper we will make
the following assumptions:

Assumption 2.12.
1. A group G is a closed subgroup of PGL(3) with dim G > 0.
2. The rational action of G on C? is defined by (1) and (2).

3. X C C? is an irreducible algebraic curve of degree greater than one.

2.3 Classifying differential invariants

To define differential invariants, we prolong the action of G to the jet space J™ of planar
curves. For our purposes, we can ignore the points where the curve has vertical tangent” and
identify J™ with C"*2. The coordinate functions on J™ are denoted by (z,y,y™,...,y™).
Although formally, y*) is viewed as an independent coordinate function, we define the prolon-
gation formulas keeping in mind that y*) is the “place holder” for the k-th derivative of y with
respect to x.

" By ignoring these points we restrict ourselves to a dense open subset of what in [37] is called an extended jet
bundle. See Chapter 3 of [37] and in particular Definition 3.27 and Example 3.29 for a detailed discussion of the
relationship between a local jet space and a global jet bundle of curves.



Definition 2.13. Let G act on C2. For g € G, let (Z,%) = g - (z,y). The prolongation of the
G-action from C? to J" is a rational action defined by

g. (x’y?y(l)""’y(n)) = (f7g7y(1)7""g(n))

where
- _ @Beeyl G+ = A g (g, 2, y,9, .y R fork=1,....n—1.
L 12(g,2,y)] L 12(g,2,y)]

The operator % is the total derivative operator. This is the unique C-linear operator mapping
C(J™) — C(J™*) for n > 0 satisfying the product rule, £ (z) = 1, and £ (y®)) = yk+1 for
k > 0. Here we use the convention that y = y(°) and coordinate functions of g are considered
to be constant with respect to x.

This is illustrated for the prolongation of the action of S€(2) to J? in Example 2.39.

Definition 2.14. A rational function K (z,y,y™"),...,y™) on J" is called a rational differential
function. The differential order of K is the maximal k, such that K explicitly depends on y*):

ord(K) :max{i‘aalf) 750}
i y\

If K is invariant under the prolonged action it is called a rational differential invariant.

Note that if ord(K) = k, then K € C(J") for all n > k. In Theorem 2.17, we show that the
field C(J")¢ of rational invariants of the order at most r = dim G’ has a very simple structure.
We start by formulating (in our context) an important result originally due to Ovsiannikov [41]
(see also [38, Theorem 5.11]).8

Proposition 2.15. Let a group G of dimension r act on C2. Then there is k > 0 such that,
for all n > k, the maximal orbit dimension of the prolonged action on J" is 7.

We use the following lemma to prove Theorem 2.17. Under an assumption of functional
independence it is proven in [38, Prop. 5.15].

Lemma 2.16. Assume K; and K> are two algebraically independent rational differential in-
variants, such that max {ord(K7),ord(K3)} = k. Then

dK, 4
T dK,
dE, 4

is a rational differential invariant of order k + 1.

Proof. Consider the rational map ¢ : J* --» C2 defined by ¢ = (K1, K3). Since K; and K3 are
algebraically independent, the image of ¢ is dense in C2. The map ¢ is regular on a Zariski-open
subset of J*, and hence by [45, Ch. 2, Sec. 6, Lem. 2.4], the differential d,¢ is of full rank on
a Zariski-open subset of J¥. It follows that two rational functions are functionally independent
(see page 85 of [37]) and the result follows from [38, Prop. 5.15].

O

The proof of the next theorem invokes the line of the argument in the proof of Theorem 5.24
in [38] in combination with Proposition 2.6 stated above.

8We stated this result under Assumptions 2.12 given at the beginning of the section. For general actions of
algebraic groups on algebraic varieties one needs to assume local effectiveness of the action (the set of elements in G
with a trivial action is finite). The theorem was originally stated for Lie groups acting on smooth (non-algebraic) real
manifolds, and in this setting, as was shown in [40], a stronger assumption of local effectiveness on all open subsets
is required. The proof remains valid over C.



Theorem 2.17. Let dimG = 7, then the field of C(J")Y of rational invariants on J” is a
rational field of transcendence degree two over C. In other words, there exists two rational
invariants K7 and K5 such that

C(J")¢ = C(Ky, K>). (3)

Moreover K1 and K5 can be chosen so that K is of differential order k, strictly less than r,
and K> is of differential order r. In addition, the field C(J*) of rational invariants on J* is a
rational field of transcendence degree one and

C(IME = C(KY). (4)

Proof. The dimension of an orbit can not exceed the dimension of the group. Therefore, since
dim J"~! = r+1, the transcendence degree of C(J"~1)% is at least 1 by Part 3. of Proposition 2.6.
Thus there exists a rational invariant K; such that ord(K;) = k; < r. We may assume that
the order k; of Kj is minimal among all such invariants. Similarly, since dim J" = r + 2,
the transcendence degree of C(J"1) is at least 2, and there exists a rational invariant Ky,
algebraically independent from K, such that ord(K3) = k2 < r. By the minimality assumption

on k1, we have k1 < ko. Assume that ko < r. By Lemma 2.16, invariant H; = %gf is of order
ko + 1. For i > 1, we define invariants H; = i1 The p + 2 invariants Ki,Ky,H\,Hs,...,H,

dK; °
are of orders ki, ko, ko + 1,... ko + n, respectiveiy. Since K7 and K5 are independent, and each

subsequent invariant contains a new jet variable, the gradients of these invariants as functions
on J*2t" are independent, and hence the invariants are independent. Therefore the maximal
orbit dimension on J*2*" does not exceed dim J*2*" — (n + 2) = ky. Since n can be arbitrary
large, it follows from Proposition 2.15 that k3 = r. In summary, we proved so far

ki <ko=r

and that there are no differential invariants of orders strictly less than ki, or strictly between
k1 and r.

Assume that there is an invariant K3 of order r, independent of K7 and K5. Then by similar
argument as in the above paragraph, the n + 3 invariants Ky, Ko, K3, Hy, Ho, ..., H, of orders
ki,7,r,7+1,...7 4+ n, respectively, are independent for all n. It follows that the maximal orbit
dimension on J"™" does not exceed dim J"*™ — (n 4+ 3) = r — 1 for all n. This contradicts
Proposition 2.15.

We conclude that the transcendence degree of C(J*)% is 1 and the transcendence degree of
C(J")% is 2. Then (3) and (4) follow from Part 4 of Proposition 2.6. O

Remark 2.18. In fact, from Theorem 5.24 in [38] and Sophus Lie’s classification of all infinites-
imal group actions on the plane (see Table 5 in [38]) it follows that there are only three possi-
bilities for the differential order k of the lower order classifying invariant K7, namely k =r —1,
k=r—2and k = 0. For most of the actions (and all actions considered in Section 4 of
this paper) k = r — 1. The case k = 0 occurs if and only if the action G is intransitive on
C2. An example of such action is the action of a 2-dimensional subgroup of PGL(3), given by
(z,y) — (Ax + a,y), where A € C* is non-zero and a € C. Among subgroups of PGL(3), the
third possibility, kK = r — 2 # 0, occurs only for two actions: (1) a three-dimensional subgroup
acting by (z,y) = (Ax + a, Ay +b), where A € C* and a,b € C and (2) a four-dimensional
subgroup acting by (z,y) — (A\x + a,cx + A2y + b), where A € C* and a,b,c € C

We can use the same definition of the classifying invariants as was given in [5, Definition 7]
in the real case.

Definition 2.19. Let an r-dimensional algebraic group G act on C2. Let K; and K, be
rational differential invariants of orders k < r and r, respectively. The set T = {K;, K>} is
called classifying if K| separates orbits on a nonempty Zariski-open subset W* C J and T
separates orbits on a nonempty Zariski-open subset W™ C J".

Over C we can prove existence of a classifying set of invariants of any group action:



Theorem 2.20. For any action of G C PGL(3) on C? there exists a classifying set Z = {K1, K}
of differential invariants. Moreover the set Z is classifying if and only if Z generates the field
C(J™) of rational differential invariants of order at most » = dim G and K; generates the field
C(J"=1)% of rational invariants of order at most r — 1 .

Proof. This result follows immediately from Theorem 2.17 and Part 2 of Proposition 2.6. [

Remark 2.7 underscores that over R the above proof of Theorem 2.20 is not valid. It is an in-
teresting question, whether or not the statement of this theorem (or possibly some modification)
is valid over R. In Section 2.5 we show that signatures based on classifying invariants charac-
terize the equivalence classes of generic algebraic curves. In Section 4.1 we list classifying sets
of invariants for the full projective group and several of its classical subgroups. The following
propositions asserts a simple relationship between any two classifying sets of invariants.

Proposition 2.21. Let Z = {K;, K2} be a classifying sets of differential invariants for the
action of G on C2. Let Z = {K,, K5} be another pair of differential invariants. Then Z is a
classifying set if and only if there exist constants a, b, ¢, d € C, such that ad —bc # 0 and rational
functions «, 8,7, € C(k), such that ad — 8 # 0 such that

= aK;+b = a(K)Ky + B(K)
= e = R + 0Ky )

T K t+d™

Proof. By Theorems 2.17 and 2.20, we know that C(J*)¢ = C(K;) and C(J")¢ = C(K1, K2)
are rational fields of transcendence degrees 1 and 2 respectively for r = dim G and some integer
k < r. Moreover, from the proof of Theorem 2.17, we know that there are no differential
invariants of order strictly greater than k and strictly less than r.

Assume first that 7 is a classifying set. Then for r = dim G and some integer k < r, we have
ord(K3) = r and ord(K;) = k and C(J*)¢ = C(K;) and C(J")¢ = C(K, K). Now we have
two sets of generators for each of the fields C(J*)¢ and C(J")% and so there exist invertible
rational functions ® € C(k;) and ¥ € C(k1, k2) such that K; = ®(K;) and Ky = U(K;, K>).
The function ® induces an automorphism of C(J*)€ fixing C. It is known (see, for instance, [29,
Exercise 6, Sec. V.2]) that the only automorphisms of a rational field K(z) fixing the ground
field K are given by linear fractional maps over K. The first formula in (5) follows with K = C.
Similarly ¥ induces an automorphism of C(J")¢ = C(J*)%(K,) fixing C(J*)¢ = C(K;). By
the same argument, with K = C(K7), the second formula in (5) follows.

Now assume that K; and K, are given by (5). Then since these formulas are invertible,
ord(Ky) = k, ord(Ky) = 7, and C(J*)¢ = C(K,), while C(J")¢ = C(K;,K3). By Theo-
rem 2.20, 7 = {K, K>} is a classifying set. O

2.4 Restriction to algebraic curves

To evaluate differential functions on an affine curve, we lift the curve into the jet space as
follows. Let F(x,y) € Clx,y] be irreducible and X = V(F) C C?. For any point p = (p1,p2) € X
with F,(p) # 0 the curve X agrees in some neighborhood of p with the graph of an analytic
function y = f(z). Then for a positive integer n, we can define yg?) (p) = ™ (p1) to be the n-th
derivative of f(z) at £ = p;. One can show that for each n € Z, yg?) is a rational function
on X that, using the implicit differentiation, can be written as a rational function of partial
derivatives of F. For example,

2 2
e @) —FmFy +2F Fo By — Fy F;
Yx = ny and Yx = Fj . (6)

Definition 2.22. The n-th jet of a curve X € C?, denoted X (™), is the algebraic closure of the
image of X under the rational map j% : X --» J", where for p € X,

om0y (1) (n)

i%x () = ((p),y(p),yx"(p),---,yx (p))-
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Note that the prolongation of the action of G to J" (Definition 2.13) is defined so that the
following fundamental property holds:

Jgx(g-p) = g-jx(p) forall g€ G and p € X where g - p is defined. (7)

In particular, the n-th jet of the image of X under the action of g € G coincides with the image
of the n-th jet of X under the prolonged action of g:

Definition 2.23. For a curve X, the restriction of a differential function K to X is denoted
K|x and defined by the composition, K|x = K o j%.

If K is a rational differential function on J”, then K|x is a rational function on X, and we

can obtain the explicit formula for K|x as a rational function of x and y by substituting the
expressions yg), .. ,y‘(,? in (6) for coordinates y(*), ... ¢y,
Definition 2.24. Let 7 = {K1, K2} be a classifying set of rational differential invariants for a
group G of dimension 7. Let ord(K;) = k and let W; C J* be a maximal domain of separation
for {K;} and Wy C J” be a maximal domain of separation for Z. Then, for X C C?, a point
p € X is called Z-regular if

(a) j%(p) is defined;
(b) 7% (p) € Wi and j (p) € Wa;
(c) %—Z(,Hj?((p) # 0 if K, is constant on X, and %b&(p) # 0 otherwise.

The condition that j% (p) is defined can equivalently be stated as Fy(p) # 0 where F(z,y)
is the polynomial whose zero set equals X. Thus singular points of X are not Z-regular.

Definition 2.25. A complex algebraic curve X C C2 is called non-exceptional with respect to
a classifying set of differential invariants, Z, if all but a finite number of its points are Z-regular.

We will need the following lemma to show that generic curves are non-exceptional.

Lemma 2.26. Let d,n be positive integers satisfying n < (‘”2 — 2. For a generic point

a = (ag,...,a,) € C"! there exists an algebraic curve X C C? of degree d for which (0, ag) € X
and j{"(0,a0) = (0,aq,...,an).

Proof. Consider the subset J of P(Clz,y]<q) x C"™! consisting of pairs ([F],a) for which F is

irreducible of degree d, F'(0,a9) = 0, Fy(0,a0) # 0, and j‘(,n()F) (0,a0) = (0,ap,...,a,). Since
(n)

Jv(r) is a rational function of both the points of V(F) and the coefficients of F, as seen in

(6), this is a quasi-projective variety. The conditions F(0,ap) = 0 and ay = ygf) (0,a0) are

algebraically independent, since each involves a new variable, ax. From this, it follows that Y
has codimension n + 1 in P(C[z, y]<4) x C"*! and thus dimension (‘“2'2) — 1. The projection of
Y onto C"*! is therefore a quasi-affine variety. It either contains a nonempty Zariski-open set
or is contained in a hypersurface in C**'. We need to rule out the latter when n < (d42'2) — 2.
Suppose for the sake of contradiction that for some n < (‘“2'2) — 2, there is a polynomial

.(n)

relation P(y,y™),...,y(™) = 0 that holds for every point on the image of X NV (z) under jg(
for every irreducible curve X of degree d. Without loss of generality, we can assume that n is
the minimal integer for which this holds and that the polynomial P is irreducible. Then, by
Bertini’s theorem, for generic ag,...,a,—1 € C, P(ag,..., an_l,y(")) is a non-zero polynomial
in y™ with simple roots, around which ™ is an analytic function of ag,...,an_1. Due to
the uniqueness theorem for the solutions of complex ODEs [30], for any such ao,...,a,—1 and
a, with P(ag,...,a,) = 0, there exists a unique solution y = f(z) to the differential equation
P(y,y™,...,y™) = 0 satisfying the initial conditions 2 = 0, f(0) = ag, and f*)(0) = ay for
k=1,...,n.
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If there exists an irreducible polynomial F € C[z,y] of degree d for which F(x, f(z)) is
identically zero, then F' is unique up to scaling. This means that every point in the projection
of Y onto C™*! has at most one preimage. Since the projection has dimension < n, this implies
that the dimension of Y is also at most n, which contradicts the calculation that dim())) equals

(d'f) — 1 > n. Therefore the projection of ) onto C**! must be Zariski-dense. O

Theorem 2.27. Let Z be a G-classifying set of rational differential invariants for the action
of a group G. Then for d € Z; with (d-gz) — 2 > dim G, a generic plane curve of degree d is
non-exceptional with respect to Z.

Proof. For an irreducible curve X, the Z-regular points form a Zariski-open subset of X, as
seen in Definition 2.24. Either this is all but finitely-many points of X, in which case X is
non-exceptional, or empty, meaning that no points of X are Z-regular. In particular, if all
intersection points of X with V(x) are Z-regular, then X is non-exceptional.

Indeed, the condition that a point p is Z-regular on X is equivalent to the jet jg) (p) belonging
to a Zariski-open subset U of J" = C"2, where r = dim(G). Consider the quasi-projective
variety ) defined in the proof of Lemma 2.26 with n = r. Its intersection with P(Clz, y]<q) x U
is an open subset of ), which is nonempty by Lemma 2.26.

Furthermore, the projection of Y onto P(C[z,y]<q4) is dominant (i.e. the image in Zariski-
dense). Specifically, consider the open dense set of irreducible polynomials F € Clz,y]<q
for which F'(0,y) has a simple root y = ag at which F,(0,a¢) is nonzero. For any such F,

([F],a) belongs to Y, where j‘(/r()F)(O,ao) = (0,a). Tt follows that the projection of the set

YN (P(Clz, y]<q) x U) onto P(Clx,y]<aq) is also dominant. Therefore, for a generic plane curve
of degree d, the points X NV (z) are Z-regular in X, and thus X is non-exceptional. O

We will also make use of the G-invariance of the set of non-exceptional curves.

Lemma 2.28. If X is non-exceptional then sois Y = ¢ - X for all g € G.

Proof. We check that if conditions (a) — (c¢) in Definition 2.24 are satisfied by all but finitely
many points on X, then the same is true for Y.

(a) Assume that there are at most finitely many points p € X, such that j% (p) is undefined
(equivalently Fy(p) = 0, where F' is a defining polynomial of X). This is, in fact, true for any
irreducible curve of degree greater than 1. Since the action of G preserves these properties,
there are at most finitely many points p € Y, such that j} (p) is undefined.

(b) Assume that there are at most finitely many points p € X, such that j%(p) ¢ Wi
and j% (p) ¢ Wa. From the G-invariance of Wy and Ws and (7), combined with the fact that
Y\(g-X) is a finite set, it follows that there are at most finitely many points p € Y such that
J¥(p) & W and j3(p) ¢ Wo.

(¢) We start by showing that if K is a differential invariant of order n, then the set of points

p(™ € J" where 8250 (p™) # 0 is G-invariant. Since K is invariant, K(p(™) = K(g - p(™),

whenever both sides are defined, and the differentiation with respect y(™ using the chain rule
yields:

e ()

_ %{@ o) aii) () + %{(g ) aj&) (p™) +...+ a‘;{i) (-5 ZZEZ; (»)

(™)
- o) )

The last equality follows from the fact that the functions Z,7, and ¥, given in Definition 2.13,
do not depend on 3™ for i =1,...,n — 1. Thus if 25 (p(™)) # 0, so does every point in the

Dy
orbit of p(™.
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Condition (c) states that, if K is constant on X, then for all but finitely many p € X,
%{’HJ"}(@) # 0, otherwise for all but finitely many p € X, %—gﬂj; (») 7 0, where k = ord(K;) and
r = ord(K3). Due to (7), and G-invariance property showed above, the same is true for Y. O

2.5 Differential signatures of algebraic curves

In this section, we define the signature map and signature curve and show that signatures
characterize the equivalence classes of generic algebraic curves. Throughout this section, we
assume G is an algebraic group with dim(G) = r and that {K;7, Ky} are a classifying set of
differential invariants with ord(K;) = k < r = ord(K>), as described above.

Definition 2.29. Let Z = {K;, K3} be a classifying set of rational differential invariants with
respect to the action G, and let X C C? be a non-exceptional curve. Then the rational map
ox : X --» C? with coordinates (Ki|x,K2|x) is called the signature map. The image of
Sx = ox(X) is called the signature of X.

Note that since X is irreducible, the closure Sy is also an irreducible variety of dimension
0 or 1. If dim(Sx) = 0, then it is a single point and, therefore, ox is a constant map. If
dim(Sx) = 1, then it is an irreducible planar curve, which we call the signature curve of X. An
irreducible polynomial vanishing on Sx is called a signature polynomial and is denoted by Sx
and it is unique up to scaling by a non-zero constant.

Proposition 2.30. Assume that X,Y C C? are G-equivalent and non-exceptional with respect
to a classifying set of rational differential invariants 7 = {K7, K5}. Then Sx = Sy.

Proof. If X and Y are G-equivalent, then there exists ¢ € G such that Y = ¢g- X. Due to
the fundamental property of prolongation (7), we have ji-(¢) = g - j% (p), for any p € X where
q = g - p is defined. Since K; and K, are invariant, we have

K1(jx (p)) = K1(jy (q)) and K3(jx (p)) = K2(jy(9))-

This implies ox (p) = oy (q). Since g-p is defined for all but finitely many points in X and g- X
is dense in Y, this implies that Sx = Sy. O

We will gradually work towards proving the converse of the above statement, and thus show
that the signature polynomials characterize the equivalence classes of curves. We will also show
the relationship between the cardinality of the preimage of a generic point under a signature
map and the cardinality of the symmetry group. For both of these results we need several
lemmas.

Lemma 2.31. Let Z = {Kj, Ky} be a classifying set of rational differential invariants with
respect to the action G, and let X,Z C C? be two non-exceptional curves, such that the
restrictions of K7 to both curves equal to the same constant function:

K1|X :K1|Z = C.

If there exists p € X N Z such that
1. j%(p) = j&(p), where k = ord(K7),
2. p is not exceptional for X,

then X = Z.

Proof. Since p is non-singular for both X and Z, in some neighborhood of p, curves X and
Z coincide with the graphs of analytic functions y = f(z) and y = g(x), respectively. Both
y = f(x) and y = g(x) are solutions of the differential equation

K1<x7y7y(1)a"'7y(k)>:ca (9>
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with the same initial condition described by the point j% (p) = j%(p). Since p is non-exceptional,

%{’HJ"}(@) # 0, and so using the implicit function theorem, (9) can be rewritten as yk) =

H(z,y,y™W,...,y*=D) in a neighborhood of j% (p), where H is an analytic function of the jet
coordinates. We can now invoke the uniqueness theorem for the solutions of complex ODEs [30]
to conclude that f(z) = g(x). Therefore X and Z coincide on a positive dimensional subset.
Since they are irreducible X = Z. O

Lemma 2.32. Let Z = {Kj, Ky} be a classifying set of rational differential invariants with
respect to the action Ci and let X,Z C C? be two non-exceptional curves with the same
signature curves, Sx = Sz. If there exists p € X N Z such that

L j%(p) = jz(p),

2. p is not exceptional for X

3. if dimSx > 0 and Sx(k1, k2) is a signature polynomial, then gTi"’X@) #0,
then X = Z.

Proof. If ox (and, therefore, oz) is a constant map, then there exists ¢ € C, such that Ki|x = ¢
and Ki|z = ¢. Then we are in the situation of Lemma 2.31 and the conclusion follows. Other-
wise, ox and, oz define the same signature polynomial Sx (k1,k2) = Sz(k1,k2) := S(Kk1, K2).
Since p is non-singular for both X and Z, in some neighborhood of p, curves X and Z coincide
with the graphs of analytic functions y = f(x) and y = g(x), respectively. Both y = f(z) and
y = g(z) are solutions of the differential equation

S (Kl(%y,y(”, oy ™), Koz, g,y ™, ,y(”)) =0 (10)
with the same initial condition described by the point j% (p) = j7%(p). By assumption, 59—52 lorx (p)
and % |j= (») are both nonzero. Then using the implicit function theorem, (10) can be rewritten

as y") = H(z,y,y1,...,y"=1) in a neighborhood of J%(p), where H is an analytic function
of the jet coordinates. As in the previous lemma, we invoke the uniqueness theorem for the
solutions of ODEs, to conclude X = Z. O

Lemma 2.33. Let Z = {Kj, K3} be a classifying set of rational differential invariants with
respect to the action G, and let X be a non-exceptional curve. Let p,g € X be two non-
exceptional points, such that

L ox(p) = ox(q)

2. if dimSx > 0 and Sx(k1, k2) is the signature polynomial, then g—i|gx » # 0.

Then there exists g € Sym(X, G), such that ¢ = gp.

Proof. Since, ox (p) = ox(q) we have

K1(jx (p)) = K1(jx (q)) and K>(jx (p)) = K2(j% ().

Since 7 is a separating set, and p and ¢ are non-exceptional, there exists g € G, such that
J% () = g-7%(q). Consider a curve Z = g - X. By Lemma 2.28, Z is non-exceptional. Condition
Sx = Sz holds due to Proposition 2.30. Due to the fundamental property of prolongation (7)
we have j7,(p) = ¢g-7%(¢). This implies p = g-q € Z and j%(p) = j% (p). We verified that X and
7 satisty all conditions of Lemma 2.32. Then X = Z = g - X and, therefore g € Sym(X,G). O

Lemma 2.34. Suppose that X is a non-exceptional curve with respect to a classifying set of
rational differential invariants Z = { K7, Ko}. Then the following are equivalent:

(1) Ki|x is a constant function on X,
(2) H =Sym(X,G) is infinite,
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(3) the signature Sx consists of a single point.

Proof. (1) = (2) Assume Ki|x = c¢ is a constant function on X. Fix a non-exceptional point
p. We will show that any non-exceptional point on X belongs to the orbit Hp. Since non-
exceptional points are dense in X, the conclusion would follow from Proposition 2.10.

Let ¢ be a non-exceptional point on X. Then K;(j%(p)) = K1(j%(q)) = ¢ where k equals
ord(Ky). Since K is separating on J¥, there exists ¢ € G, such that j%(p) = g - j%(q).
Consider a curve Z = g - X. By Lemma 2.28, Z is non-exceptional. Condition Sy = Sz holds
due to Proposition 2.30. Therefore K|z is the same constant function as Kp|x. Due to the
fundamental property of prolongation (7) we have j%(p) = g - j%(¢). This impliesp=g-q€ Z
and j%(p) = j%(p). We verified that X and Z satisfy all conditions of Lemma 2.31. Then
X = Z = g- X and, therefore g € H and so ¢ € Hp.

(2) = (3) Let p be a non-exceptional point. For any ¢ € Hp, there exists g € H, such that
p=g-qgand X = g- X. If ¢ is non-exceptional, it follows from (7) that j% (p) = g- % (q). Since
K is a differential invariant, Ki|x(g-7%(q)) = Ki|x(j%(g)). Then

Ki|x (7% (»)) = K1|x (5% (¢)) for all non-exceptional ¢ € H,.

Since H is infinite, from Proposition 2.10, it follows the orbit Hp is dense in X. The set of
non-exceptional points is also dense in X. Thus K;|x is a constant rational function on a dense
subset of X and, therefore, is constant on X.

(3) = (1) Obvious from the definition of Sx. O

We are now ready to prove the converse of the Proposition 2.30.

Proposition 2.35. If algebraic curves X,Y C C? are non-exceptional with respect to a classi-
fying set of rational differential invariants Z = {K, K>} under an action of G on C* and their
signature curves are equal, Sy = Sy, then X and Y are G-equivalent.

Proof. Then S := Sx = Sy is an irreducible curve, and let S(k1, x2) be its defining polynomial.
If g—é were identically zero, then K;|x would be constant and Lemma 2.34 would imply that S

is a single point. Therefore Bf%ls is nonzero for all but finitely many points s € S. Moreover,

since X and Y are non-exceptional, for all but finitely many such points s € S, none of the
points in the preimage a;(l(s) are exceptional in X and none of the points in the preimage
oy ' (s) are exceptional in Y. By Chevalley’s Theorem (see e.g. [20, Thm. 3.16]), the images
Sx and Sy are constructible sets and thus all but at most finitely many points of their Zariski
closure S. We fix a point s € S with these desired properties, a point p € a)_(l(s) and a point
q € cr{,l(s). Otherwise Sx (and, therefore, Sy) is a single point, and we let p and ¢ be any
non-exceptional points on X and Y, respectively.
In both cases, ox(p) = oy (q), meaning that

K1(x(p)) = K1(jy (¢)) and K>(jx(p)) = K2(jy(9))-

Since 7 is separating and p and g are non-exceptional, there exists a group element g € G for
which j% (p) equals g - 53 (q).

Consider a curve Z = g-Y. By Lemma 2.28, Z is non-exceptional. Condition Sx = Sz
holds due to Proposition 2.30. Due to the fundamental property of prolongation (7), we have
Jj%(p) = g-j%(q). Therefore, p=g-q € Z and j%(p) = j% (p). We verified that X and Z satisfy

all conditions of Lemma 2.32. Then X =Z =g Y. O

Combining Lemma 2.34 with Propositions 2.30 and 2.35 we get the following corollary.

Corollary 2.36. If X and Y have a finite symmetry group, then X and Y are G-equivalent if
and only if their signature polynomials Sx, Sy are equal up to a non-zero constant factor.

We are finally ready to state the first main result of the paper about the existence of a pair
of classifying invariants characterizing the equivalence classes of generic irreducible algebraic
curves:
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Theorem 2.37. Let an r-dimensional group G C PGL(3) act on C2. Then there exists a pair
of differential invariants Z = { K7, K5} of differential order at most r, such that for all integers
d, where (dJQrZ) — 2 > r, there exists a Zariski open subset Py C C[z,y]<4 such that any curves
X,Y whose defining polynomials lie in P, satisfy:

X2Y Sx =Sy, (11)

where Sx and Sy are signatures of X and Y based on invariants Z, as given by Definition 2.29.

Proof. From Theorem 2.20 we know that there exists a classifying set Z of rational differential
invariants of order at most 7. By Propositions 2.30 and 2.35, the statement (11) is valid for all
Z-non-exceptional curves. By Theorem 2.27, for any d, such that (df) — 2 > r, there exists a
Zariski open subset Py C Clx,y]<q, such that all curves whose defining polynomials lie in Py

are non-exceptional. O

The next theorem establishes an important relationship between the size of the symmetry
group of an algebraic curve and some properties of its signature map. This result plays a crucial
role in our degree formula derived in the next sections.

Theorem 2.38. Suppose that X is a non-exceptional curve with respect to a classifying set of
rational differential invariants Z = { Ky, K2} for action G. Then | Sym(X, G)| = n if and only if
the map ox is generically n : 1.

Proof. (=) We need to show that there exists a dense subset Sy C Sx, such that |o5*(s)| = n
for all s € Sp. Denote H := Sym(X,G). Since H is finite, from Lemma 2.34, it follows that
Sx is an irreducible curve and its defining polynomial S(k1,k2) depends non-trivially on ks.
Therefore the set S; = {s € Sx ’ g—i #+ O} is dense in Sx. Due to Proposition 2.11 for all but

maybe finitely many points p € X, the orbit Hp consists of exactly n distinct points. Moreover,
since X has only finitely many exceptional points, the set of points

Xo = {p € X | Hp consists of exactly n non-exceptional points}

is dense in X. Then its image Sy = ox(Xo) is dense in Sx. It follows that the intersection
Sp =81 NS, is dense in Sx. For any s € Sp, let p € J)_(l(s). By Lemma 2.33, J)_(l(s) = Hp
and so |oy!(s)] = n.

(<) Suppose that the map ox is generically n : 1. Then, by Lemma 2.34, Sym(X,G) is
finite. By the forward implication, n = Sym(X, G). O

Example 2.39. Counsider the special Euclidean group SE(2) of complex translations and rota-
tions of C2. The action of SE(2) is given by g - (z,y) = (Z,¥) = (cx + sy + a, —sx + cy + b),
where ¢ + s2 = 1 and ¢, s,a,b € C (see Definition 4.3). From this, using the recursive formula
in Definition 2.13, one can compute the prolonged action of S€(2) on J2. For instance, 7 is
given by

7V = (st +ey+b)  —s+cy®

%(cx—l—sy—i—a) 4 sy

and the full prolonged action on .J? is

st @ >

. 1) @) = _
g (x,y,y Y ) (cz+sy+a, s+ cy + b, e+ sy sy ¥ o3

The set Z5¢ = {K,, K>}, where K; = k2, the square of Euclidean curvature, and Ko = &
its derivative with respect to Euclidean arc-length, explicitly given in (20) is classifying. Indeed,
one can check directly that ZS¢ separates orbits on the SE-invariant open subset

2
Wy = {(:c7y,y(”7y(2)7y(3)) | (y(”) +1# 0}
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and K, separates orbits on an open set Wy = 7(W3) C J? under the standard projection
7. J® — J%. Thus the conditions of Definition (2.19) are satisfied. According to Theorem 2.20
we conclude that

C(J?)%¢@) = C(K,,K,) and C(J?)%¢® = C(K),).

By Theorem 2.27, a generic curve of degree > 2 is non-exceptional with respect to ZS¢.
In fact, a careful consideration of the conditions in Definition 2.24 shows that there are no
irreducible curves of degree greater than one that are Z°¢-exceptional.

We will now compute the signature polynomial for the ellipse X defined by the zero set of

F(x,y) =2 +y* + oy — 1.
The signature map ox = (Ki|x, K2|x) : X — C2 is explicitly defined by

y' —at +ay’ — 2ty
(522 4 8zy + 5y?)3

(2? +xy +y?)?

(5 D) ] 5y2)3 al Z‘X(-ray) -

KI‘X(‘T’y) =36

Under the SE(2)-action the ellipse has a symmetry group of cardinality two generated by
the 180°-degree rotation. We observe that in agreement with Theorem 2.38, ox is generically
a 2: 1 map on X. One can use a Grobner basis elimination algorithm to compute a signature
polynomial of X, that is an irreducible polynomial vanishing on the image of the rational map
gx:

Sx (K1, ka) = 2916K5 + 97261 K3 + 108K7T K5 + 4k5 — 136087 + 1944k K3 + 2187x].

Any curve SE(2)-equivalent to X will have the same signature polynomial. For most degree
three algebraic curves, it takes much longer to compute their signature polynomials under SE(2)
actions, and for higher degree curves it is rarely possible in practice. For this reason, it is of
interest to determine properties, such as the degree, of signature polynomials for curves without
their explicit computation.

3 The degree of the signature of algebraic curves

This section is devoted to the degree formula for the signature polynomial. In Section 3.1
we give the necessary algebraic geometry background. In Section 3.2 we give a formula for
the degree of the signature polynomial for a non-exceptional curve with finite symmetry group.
(Theorem 3.8) and some easily computable bounds for this degree (Corollary 3.9).

3.1 Multiplicity, plane curves, and rational maps

Here we review and establish some fundamental properties of plane curves, their intersections,
and their images under rational maps. See, for example, [14] or [45] for more background.

Definition 3.1. Given a point p € C?, the local ring of C? at p, denoted O,, is the ring of
rational functions in C(z,y) that are defined at p. A polynomial ideal I C C[z,y] defines an
ideal I - O, of the local ring, and the multiplicity of I at p is defined to be the dimension (as a
C-vector space) of the quotient:

mp(I) = dimg (Op/1-Op)

In particular, my,(I) is positive if and only if p belongs to the variety V(I). For a homogeneous
ideal J C Clxg, 1, 2] and a point p = [po : p1 : p2] € CP? with p; # 0 for some i = 0,1,2, we
define the multiplicity of J at p, denoted mp(J), to be m,(I), where p € C? and I are obtained
from p and J by restricting p; and z; to equal 1, respectively. On can check that this definition
is independent of the choice of non-zero coordinate p;.
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In an important special case when the ideal I is generated by two polynomials, I = (F,G),
we call m,(I) = m,(F, G) the intersection multiplicity of F,G at p. In this case, m,(F,G) =1
if and only if p € V(F,G) and V,F and V,G are linearly independent.

An equivalent definition of multiplicity uses power series. After a change of coordinates, we
can take p = (0,0). Then m,(I) equals the dimension as a C-vector space of the quotient of the
power series ring C[[x, y]] by the image of I in this ring:

mp(I) = dime (Cllz,y]}/1 - Cllz, yl]) -

To precisely compute intersection multiplicities at a non-singular point p, one can parametrize
a neighborhood of p in V(F') using Laurent series, C((t)). The ring of Laurent series consists
of formal sums E;’;k a;jt/ for some integer k € Z. The series we consider will converge for
t € C* of sufficiently small modulus. We define the wvaluation, denoted val(a), of a Laurent
series a = Z;}ik a;t’ to be the smallest power of ¢ with nonzero coefficient. Since p is non-

singular, ‘g—i(p) # 0 or %—5(]9) # 0. Assume %—Z(p) # 0, then in a neighborhood of p, V(F') can

be parametrized by a(t) = (p1+t,a(t)), otherwise it can be parametrized by a(t) = (a(t), p2+t),
where in both cases a(t) is some Maclaurin series. Then according to [13, §8.4]:

my(F,G) = val(G(a)). (12)

We now establish some basic facts and notation about rational maps on CP2. A vector
¢ = [y, D1, Ps], whose entries ¢, 1, Py € Clxg, x1,22] are homogeneous polynomials of the
same degree d, defines a rational map ¢ : CP? --» CP? (denoted by the same symbol). For any
non-zero homogeneous polynomial h € C[zg, 21, x2], a polynomial vector h¢p = [hepy, hepy, hedy]
defines an equivalent rational map, i.e. the values of the maps ¢ and h¢ are equal, whenever
both are defined. In what follows we do not assume that ged(¢y, 1, ¢,) = 1 and the following
definition clearly depends on the choice of a polynomial vector.

Definition 3.2. A vector ¢ = [¢, ¢;, ¢5] whose entries ¢y, ¢, Py € Clxg, x1, 2] are homo-
geneous polynomials of the same degree d, is called a homogeneous vector of degree d and the
notation deg(¢) = d is used. The base locus of ¢ is the set of points at which all its components
are zero

Bl(¢’) = V(¢07¢1»¢2)~

We say that ¢ is defined on an algebraic curve X if X is not contained in Bl(¢). We say that
¢ is non-constant on an algebraic curve X, if the corresponding rational map ¢ : CP? --» CP?
is non-constant when restricted to X.

Proposition 3.3. Let F € C[z, x1, x2] be irreducible and homogeneous, and let ¢ = (¢, @1, 5]
be a homogeneous vector that is both defined and non-constant on V(F). For a = [ag, a1, az] €
CP?, consider an equivalence class (up to scaling by a constant) of a linear form L, = agyo +
ary1 + azy2 € Clyo, y1, 2] and its pullback ¢*La = aggpy + a1¢, + az¢p, € Clxg, 1, x2]. Then
for all a € CP?%:

(a) V(¢"La) = ¢~ (V(La)) U Bl(e).
In addition, if a € CPP? is generic:
(b) F and ¢*L, have no common factors,
(c) if pe V(F)NV (¢ La) with p & Bl(¢), then mp(F, ¢"L,) = 1.

Proof. (a) If p & Bl(¢), then ¢ is defined at p. Then ¢(p) belongs to V(L,) if and only if p
belongs to V(¢*La). If p belongs to Bl(¢), then it clearly also belongs to V(¢*La).

(b) Since F is irreducible, ¢*L, and F have a common factor if and only if F divides ¢* Ly,
if and only if ¢*Ls, is identically zero on V(F). Consider a map ¥: CP? x V(F) — C, defined
by ¥(a,p) = apdy(p) + a1¢,(p) + azds(p). Since ¢ is defined on V(F), there exists & € CP?
such that ag¢p, + d1¢; + d2¢p is not identically zero on V(F) (otherwise with an appropriate
choice of a’s we can show that ¢; = 0 on V(F) for j = 0,1,2). Then ¥(4,p) # 0 for some
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p € V(F). By continuity, ¥(a, p) # 0 in some open neighborhood of (a,p) in ¥: CP?. Thus
¢*L, is non-zero 1 on V(F) for all a in some open subset of CP?2.

(c) It is sufficient to show that VF|, and V,¢"La|(p,a) are linearly dependent, for a generic
a € C? and p € V(F) such that p &€ Bl(¢), where, for a moment, we consider V(F), Bl(¢) to
be varieties in C3. Consider

Y = {(pa) e C*|p e V(F.¢'La), p & BU$) UV (F)uing}

where V(F)gng denotes the variety V(g—;;, gTFlv %). Let m: Y — C3 denote the regular map
defined by projection 7(p,a) = a. Note that restricting to p € Bl(¢) U V(F)sing makes Y
nonsingular.

Bertini’s generic smoothness theorem [45, Ch. 2, Sec. 6, Thm 2.27]° then guarantees the
existences of a nonempty Zariski-open set U C C? so that for all a € U and all preimages

p,a) € 7~ 1(a), the induced map on tangent spaces d(p o7 : T a) — 13 4 1S surjective.
(p,a) Y,(p,a) ,
For (p,a) € Y,

VF|p 0 0 0

Dpa) =5 | G o Lolom d0®) 61(D) 62(D)

The map dp ) maps (ug, u1, Uz, wo, wy,ws) T € Ty (p,a) tO (wo, w1, we)T € Tps o = C3. If
VF|, and V,¢"La|p,a) are linearly dependent as vectors in C3, then (ug, u1, Uz, wo, wi,ws)’
belongs to Ty (p.a) if and only if (ug,u1,uz)? € ker VF|, and agwp + ajwy + asws = 0. The
latter gives a non-trivial linear condition on the vectors in the image of d(p )7 and, therefore,
if VF|p and Vw¢*La|(p7a) are linearly dependent, d(, 4)7 is not surjective.

Combining the results of the previous two paragraphs, we conclude that for a € U and
p € V(F)NV(¢"La), such that p ¢ Bl(¢) U V(F)sing, VF|p and V,¢"La|(pa) are linearly
independent. Observing that for a generic a, V(¢*La) N V(F)ging = 0, we finish the proof. [

Lemma 3.4. Let F € C|xg, x1, z2] be homogeneous and irreducible, and let ¢ be a homogeneous
vector. For p € V(F) N Bl(¢), the minimum of my,(F, agep, + a1¢, + az¢,) over all a € CP? is
achieved generically.

Proof. If p is a non-singular point of V(F), then for any j € Z>( the collection of G for which
mp(F,G) > j is linear subspace of Clzg, 21, z2]p, where D = deg(G) (This claim easily follows
from (12). See also [14, Prob. 3.20]). It follows that my(F, ag¢y + a1¢; + as¢py) > j is a linear
condition on a € CP?.

Now suppose p is a singular point of X = V(F) and consider a non-singular model Y of this
curve with birational morphism f:Y — X (see [14, Ch. 7]). This induces an embedding of the
fields of rational functions f*: C(X) < C(Y). Choose some linear form ¢ € Clzg, z1,x2]; with
{(p) #0. Let G’ = G/¢4°¢(S) in C(X). Using [14, Ch. 7, Prop. 2]:

mp(F,G) = Z mq(Y,G'),
aef~1(p)

where mq (Y, G') is the order of vanishing of G’ at the smooth point q € Y.
This reduces to the non-singular case. O

The minimum multiplicity in Lemma 3.4 will reappear frequently and we denote it by

multp (F, @) = a?é%z mp(F,a0p, + a1p; + azy). (13)

The following bounds can be useful for computing this multiplicity:

9 Bertini’s generic smoothness theorem is an algebraic analogue of Sard’s theorem in differential geometry.
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Proposition 3.5. Let F € C[xzg, 21, z2] be an irreducible homogeneous polynomial and ¢ be a
homogeneous vector defined on V(F). For p € Bl(¢) and for any a = [ag : a; : as] € CP?,

mp((F, g, @1, ¢5)) < multpy(F, @) < mp(F,a0dy + a1y + a2y),
where the right inequality is tight for generic a € CP2.

Proof. For the first inequality, note that for any a € CP?, ¢*L, = ag, + a1, + a2, belongs
to the ideal (¢, @1, ¢5). It follows immediately from Definition 3.1 that for any pair of nested
homogeneous ideals I C J C Clxg, z1,22] and any point p € CP?, we have that mp(I) > mp(J).
Therefore, for every point p € CP2, my(F,¢*L) > my((F, ¢y, 1, ¢5)). The inequality then
follows from a generic choice of a € CP? and equation (14).

The second inequality follows directly from the definition of mult,(F, ¢), and tightness
follows from Lemma 3.4. O

Theorem 3.6. Let F € C[xzg, 21, 2] be irreducible and homogeneous and ¢ be a homogeneous
vector, such that the rational map ¢ : CP? --» CP? is defined and generically n : 1 on V(F).
Let P € Clyo, y1,y2] denote the minimal polynomial vanishing on the image ¢(V (F)). Then

n-deg(P) = deg(F) - deg(¢ Z multy (14)
peBl(¢)

Proof. For a linear form L, = aoyo + a1y1 + asy2 € Clyo, y1,y2], by Bezout’s Theorem ([14,
§5.3]) and Proposition 3.3(a) give that

deg(F) - deg(¢p"La) E:Ww = Y mp(F.¢'La)+ Y. mp(F,¢°La).

p€d 1 (V(La)) pEBI(¢)

By Lemma 3.4, mp(F,¢*La) = multy,(F, ¢) for a generic a € CP? and every p. Also, for
a generic a, ¢*L, is nonzero and its degree equals deg(¢). By Proposition 3.3(c), for each
point p € V(F)N ¢ '(V(La)), the intersection multiplicity mp(F, ¢*Ls) equals one. Since ¢ is
generically n : 1, there are at most finitely many points p € V(F) for which ¢~ (¢(p))NV (F)| #
n, implying that for a generic a, the line V(L,) does not contain the image ¢(p) of any of these
points. Therefore, for every point p € ¢~ '(La) N V(F), there are exactly n points of V(F) in
the set ¢ *(¢(p)). Putting this all together gives that

Y. mpF¢'La) = [V(E)Ng V(L) = n-[o(V(F)NV(La)l|
ped~ 1 (V(La))
By Chevalley’s Theorem (see e.g. [20, Thm. 3.16]), the image ¢(V(F)) is all but finitely many
points of its Zariski closure V(P). For a generic a, every point in V(L,) N V(P) belongs to

V(La) N ¢(V(F)) and that the number of these points equals to deg(P). This proves equality
in (14). O

3.2 The degree of the signature polynomial

Definition 3.7. Let X C C? be an algebraic plane curve and let ¢ : X --» C? be a rational
map. We say that a rational map ¢ : CP? --s CP? is a projective extension of 1 if

_ ¢1(17p) ({152(17]9)
v = (%OmV%OmQ

for a Zariski-dense set of points p € X at which ¢ is defined and ¢ (1, p) # 0.

Recall from Section 2.5, that a classifying set of rational differential invariants of the action
of a group G on C? define a signature map ox on a non-exceptional, irreducible curve X C C2.
As in Definition 2.29, we fix a classifying set of rational differential invariants Z with respect
to the action G and suppose that the signature map ox : X --» C? is non-constant on X. We
will consider a projective extension o : CP? --» CP2. Note that while we will drop X from the
notation, the map o still heavily depends on the original curve X.

20



Theorem 3.8. Let X C C? be a non-exceptional algebraic curve defined by an irreducible
polynomial F, and let n = |Sym(X,G)|. Then for any homogeneous vector o, defining a
projective extension o : CP? --s» CP? of the signature map oy, the degree of the signature
polynomial Sy satisfies

n-deg(Sx) = deg(F)-deg(o)— Z mult, (F, o). (15)
pEBI(o)

Here F € Clxg, 21, x2] denotes the homogenization of F.

Proof. From Theorem 2.38 we know that ox : X --» C2 is generically n : 1 map. Then o
is defined and generically n : 1 on V(F), which is the Zariski-closure of X in CP2. Since F,
and thus F, are irreducible, the minimal polynomial P vanishing on the image o (V(F)) is also
irreducible. Its dehomogenezation is exactly the signature polynomial Sx. The result then
follows from Theorem 3.6. O

At first glance the last term in the degree formula (15) appears to be difficult to obtain as we
recall from (13), mult,(F, @) is defined as the minimal multiplicity over a € CP2. The following
corollary shows that a generic choice of a € CP? gives the desired minimal multiplicity, and thus
the degree of the signature can be computed by randomized algorithms. It also establishes the
degree bounds, that can also help in determining the degree of a signature curve.

Corollary 3.9. Under the hypotheses of Theorem 3.8, for any a € CP?, we have

n-deg(Sx) > deg(F) - deg(o) — Z mp(F,a000 + a101 + a202), (16)
pPEBI(o)

with equality holding for a generic a. In addition:

n-deg(Sx) < deg(F) - deg(o) — Z mp(F,00,01,02), (17)
pEBI(0o)
Proof. This is a direct corollary of Proposition 3.5 and Theorem 3.8. O

In the following example we show how one can use the bounds in Corollary 3.9 to predict
the degree of the signature polynomial and what problems can arise.

Example 3.10. We will illustrate Theorem 3.8 and Corollary 3.9 by studying the signature of
the curve X defined by the zero set of the irreducible cubic

F(z,y) :w2y+y2+y+%
for the action of the affine group A(2) consisting of linear transformations and translations on
C2%. We will use classifying invariants (21) introduced in Section 4.1 below. If we restrict these
invariants to X and cancel common factors, then we can construct a projective extension o of
ox where deg(o) = 26.

In Figure 1 in red, on the left, the real affine points of X are shown, while on the right, the
real affine points of its signature curve Sx. In blue, on the right, is the line V(L,) defined by
a=[5:1:1] and on the left its pullback V(o*L,). Under the action of the affine group of
transformations on the plane, X has a symmetry group of size two. Then by Theorem 2.38, the
map o is generically 2: 1 on X.

A direct computation of the rightmost terms in (16) and (17) give that

Z mp(F,500+ 01+ 02) = Z mp(F,00,01,02) = 30
pEBI(o) pEBI(o)

This allows us to conclude that }_  p) () multp(F, o) = 30. Thus by Theorem 3.8 the degree
of the signature curve equals deg(Sx) = (3-26 — 30)/2 = 24.
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Figure 1: X and Sy intersected with V(o*L,) and V (L,) respectively.

We now show that a line Ly defined by & = [1 : —6 : 1] does not provide us with ex-
act degree count (the corresponding pictures are given by Figure 2). For this choice of line,
> pesi(e)Mp(F,00 — 601 + 02) = 32 and Corollary 3.9 tells us only that 23 < deg(Sx) < 24
and that a is non-generic. Indeed, V(Lj) intersects Sx at the point [0 : 6 : 1] which is not in
Sx, a property that must be avoided by generic lines.

Figure 2: X and Sy intersected with with V(o*Lz) and V (Lz) respectively.

3.3 Super signature and the generic degree

Let F. = Z cijxiyj be a polynomial of degree < d with unspecialized coeflicients c;; € C,
0<i,j<d

where 0 < 4,5 < d and ¢ = (cop : 10 ¢ ... : coq). It is natural to ask if we could compute a
signature polynomial S (1, k2) for a curve defined by a polynomial with unspecified coefficients
c and what information it encodes. In theory, such super-signature polynomial can be defined
in the same way as signature polynomials for specific curves were defined in Section 2.5 and
computed by elimination. In practice, the explicit computation seems to only be feasible for
small groups and small d, such as, for instance, quadratics under the special Euclidean action.
We also know that specialization does not always commute with elimination and, therefore, we
can not expect that substitution of a specific value ¢ = ¢¢ into the super-signature polynomial
will produce a signature of an algebraic curve X, defined by F¢, even if X, happens to be an
irreducible, non-exceptional curve. However, we can show that this is the case generically.
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To give a rigorous definition of the super-signature polynomial, we view

F(ec,z,y) = Z Cijxiyj
0<i,j<d

as a polynomial of degree d + 1 in C|c,z,y], while Fo € Clz,y]<q denotes its specialization.

Then Y = V(F) is a variety in C¥ x C2, where N = (d N 2).

Y ={(c.z,y)|c e CY, (,y) € V(Ec)}. (18)

Let j°(F) : Y --» C""2 be the rational map defined by the rational functions of the partials of
F.(z,y) as in (6), with c treated as parameters. For a differential function K, let

Klp=Koj"(F):Y --»C.

For a classifying pair of invariants Z = { K1, K5}, consider the rational map o : Y --» C x C?
defined by

O’(C,l‘7y) = (C>K1|F(C7x>y)7K2|F(C7‘T7y))' (19)

Denote the minimal polynomial vanishing on the image o()) as S(c, k1, k2) € C[c, k1, k2] and
let & = V(S) C CV x C? be its variety. We call S a super-signature polynomial and & the
super-signature variety.

The following theorem asserts that for a generic curve X = V(F) of degree fixed d, one can
substitute the coefficients of F' into the super signature polynomial S to obtain Sx of X.

Theorem 3.11. Let S(c, k1, k2) be the super-signature polynomial for polynomials of a degree
d, sufficiently large so that non-exceptional curves are generic!®, under the action of a group G
with a chosen set of classifying invariants Z = {Kj, K2}. For ¢ € CV, let X, = V(F¢) be the
corresponding algebraic curve in C2. For a generic point ¢ € CV,

{c e CN | S(c, k1, ko) = ch(m,ﬁg)} ,
where Sy, is a signature polynomial of the curve X,.!

Proof. The variety Y defined by (18) is irreducible and so is its image o()) under the rational
map (19). Thus the super-signature polynomial S(c,k1,k2) € Clz,y,c], which is a minimal
polynomial vanishing on o(})), is irreducible. The variety & = V(S) is the Zariski-closure of
o(Y) and, by Chevalley’s Theorem, there is some subvariety H C & of codimenision > 1 so that
G\H C o()Y) € &. Note that dim& = N + 1 and so dimH < N.

Consider a regular map 7 : & — CV given by 7(c, k1, k2) = c¢. From the definition of &, it
is clear that 7 is surjective. We claim that, for a generic ¢ € CV, the set 7= 1(c) N H is either
empty or finite. Indeed, if 7(#H) # C¥, then for a generic c lying in the Zariski open non-empty
subset CN\7(H), the set 7=%(c) NH is empty. If 7(H) = C¥, then, for a generic choice of c,
the dimension of 7=1(c) N H is given by dim#H — N = 0 [45, Ch. 1, Sec. 5, Theorem 1.25],
implying that 7= (c) N H is either empty or finite.

By our assumption on d, for a generic point ¢ € CV, the curve X, is irreducible and
non-exceptional (reducible curves have codimension d — 1). Let us fix such generic ¢ that
also satisfies the generic condition in the previous paragraph and for which the restriction
S(co, k1, k2) € Clk1, k2] is irreducible. As before, let OXeyt Xeg = C? denote the signature
map of X¢,, as given in Definition 2.29, and let Sx,, denote the image of this map. Consider the
intersection Ve, of the varieties ) with the linear space give by ¢ = ¢g. This equals {co} x X¢,.
Its image under the map o agrees with {co} x S X., Note that the signature polynomial S Xep
is the unique minimal polynomial in C[x1, 2] that vanished on this set o(Ve,)-

10T heorem 2.27 guarantees that for a sufficiently large d a generic curve is non-exceptional.
' Recall that for an irreducible curve the signature polynomial is uniquely defined up to multiplication by a non-zero
constant.
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This set is contained in the intersection of the super signature variety & and and the linear
space given by ¢ = ¢y, which we denote S,,. The minimal polynomial in C[x1, 2] vanishing on
this set is the restriction of the super polynomial S(cq, k1, k2) and is irreducible by our genericity
assumption on cg.

Recall that the set of points in & that are not in o()) belong to a hypersurface H, and so
the set of points in 0()e,) that are not in &, is a subset of 77 1(cy) N H. To summarize,

0(Veo) C6¢, and ¢ \o(Ve,) C 7 co) NH.

By the argument above, m~1(co) N H is either empty or finite. This implies that the Zariski-
closure of (e, ) equals &,. Therefore the minimal polynomials in C[k1, k2] vanishing on these
sets, Sx,, and S(co, K1, K2), must be equal. O

An immediate corollary of the above theorem is that the signature polynomials of generic
curves of fixed degree d share the same monomial support in k1, k2, and hence have the same
degree. Since signature polynomials (up to overall scaling) characterize equivalence classes of
generic curves of degree d, it follows that if we consider the super-signature polynomial as
an element of C(c)[k1, k2] and divide it by one of its non-zero coefficients h(c) € C|c], the
coefficients of the resulting polynomial generate the ring of rational invariants for the action of
G on the space of polynomials Clz, y]<g4.

Since explicit computation of such generating sets is known to be a very challenging problem,
it is not surprising that computing super-signature polynomials is also very challenging. Conics
under SE(2) is one of the few examples where the super-signature polynomial can be computed
explicitly.

Example 3.12. Consider an arbitrary quadratic curve

Fe = coo + 107 + co1y + c207” + e117y + coay®.

Let T1 = coa+ca0, T2 = deaocoa—ciy, and T3 = 4 coo1¢20—CooC11> —Co1° C20+Co1€10€11—Co1¢10%.
These are known polynomial invariants for conics under the SE(2)-action. For the action of
the special Euclidean group SE(2), using the classifying pair of invariants (21) introduced in
Section 4.1, the super-signature for conics computed by an elimination algorithm is:

S(c, k1, f2) = 2016 (T5)% K& + 2916 (nrl (4 (T1)? — 3T2)) K2+ 972 (T3)? kth2
+729 (Y2)® K — 972 (Y3 T1) kK3 + 108 (T3)? kK2 + 4 (T3)? KS.

Dividing through by (T3)? produces three distinct non-constant coefficients listed below with
constant multiples omitted:

. 1 (4(11)2 _ 3T2)’ e

(T2)* T,
Ty '

A
(T?,)Q’ 3 Tg

This is a generating set for the field of rational invariants for the action of SE(2) on the space

3
of quadratic polynomials, but it is not a minimal generating set since A; = 4% — 3 As.

Although computing a super-signature is very challenging, we can use super-signatures to
establish theoretical results. Below we use Theorem 3.11 to show that the generic degree is the
sharp upper bound for the degrees of signature polynomial. Discussion and further implications
of Theorem 3.11 are explored in [42].

Theorem 3.13. Under the assumptions of Theorem 3.11, for a generic curve of degree d,
the degree of its signature polynomial equals to the (k1, ke)-degree D of the super-signature
polynomial. Moreover, for any non-exceptional curve X of degree less then or equal to d, the
degree of its signature polynomial is less than or equal to D.
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Proof. For a generic point ¢ € CV, the restriction of the super signature polynomial S(cg, #1, ko)
has degree D and, by Theorem 3.11, equals the signature polynomial of the curve X.,. Thus
for a generic curve the degree of its signature polynomial equals to D.

Now let Xy be an arbitrary non-exceptional curve of degree < d, with defining equation
F(co,x,y) corresponding to cg € CV. It will be helpful to consider a pencil of curves containing
Xo. Let ¢c; € CV be a point satisfying the genericity conditions above, so that the signature of
the curve X; defined by F(cy,z,y) equals the restriction of S(cy, k1, K2) of the super signature
polynomial and has degree D. Then the open, dense set of points ¢ for which the signature
polynomial of the curve defined by F(c, z,y) is the restriction of the super signature polynomial
S(c, k1, k2) has nontrivial intersection with the line joining ¢¢ and c¢;. Thus, for a generic A € C,
the signature polynomial of the curve defined by F'((1—A)co+Acy, z, y) will equal the restriction
of the super signature polynomial to ¢ = (1 — A)cg + Acy.

Analogously to the proof of Theorem 3.11, consider the polynomial

P<t7xay> = F((l - t)CO +tc17x’y) = (1 - t)F(Co,.’L"y) +tF(C17$,y) € (C[t“’l?,y]

Since Xy and X; are irreducible, so are their defining equations. From this, it follows that P
is irreducible in C[t,z,y]. Let Z = V(P) C C x C? be the irreducible variety it defines. Let
j"(P) : Z --» C™*2 be the rational map defined by the rational functions of the partials of
P(t,z,y) as in (6), with ¢ treated as a parameter. For a differential function K, we can define
Klp=Koj"(P): Z--»C

Similarly to the definition of a super-signature, for a classifying pair of invariants Z =
{K;, Ky}, we define a rational map 7: Z --» C x C? by

T(taxay) = (t,K1|P(t,$,y),K2|P(t,$,y)) .

Denote the minimal polynomial vanishing on the image 7(Z) as Q(¢t, K1, k2) € C[t, K1, ko). Since
7(Z2) is the image of an irreducible variety under a rational map, Q(t, k1, k2) is irreducible. For
A € C, let Z) denote the intersection of Z with the plane t = A. This equals {A\} x X where
X C C? is the curve defined by P(\,x,y) = 0. The image of Z) equals {\} x Sx, .

It follows that the variety of @ in C x C? is irreducible of dimension 2 and contains {\} x Sx,
for every A € C. Using the same argument as in the the proof of Theorem 3.11, one can show
that for generic A € C, the signature polynomial of X equals the restriction of Q(\, k1, ka). It
also equals the restriction of the super signature polynomial to ¢ = (1 — A)cg + Acy. Therefore
@ has degree D in (K1, k2). Since the variety of @ is irreducible, has dimension 2, and contains
points with ¢ = X for every A € C, the specialized polynomial Q(\, k1, k2) is non-zero for every
A € C. In particular, Q(0, k1, k2) is non-zero and vanishes on Sx,. The signature polynomial
Sx, must divide Q(0, k1, K2), giving

deg SX() < deg Q(Oa K1, ‘%2) < deg(ﬁl,ng) Q =D.

4 Classical subgroups of the projective groups

In this section, we apply our general results to the actions of the full projective group and its
affine, special affine, and special Euclidean subgroups. In Section 4.1 we explicitly list classifying
pairs and exceptional curves for each of these groups. In Section 4.2, we derive the degree formula
for signatures of generic curves under these actions as a function of the degree of the original
curve (Theorem 4.13), observe that this dependence is quadratic and show that these generic
degrees are sharp upper bounds. Finally, in Section 4.3, we use Fermat curves to illustrate that
non-generic curves, in particular curves with a large symmetry group, may have much lower
degree than generic curves. For arbitrary degree curves in this family, we give formulas of their
projective and affine signature polynomials and observe that the degrees of these signatures do
not depend on the degrees of the original curves.
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4.1 Classifying invariants

Here we introduce rational classifying pairs of invariants for the actions of PGL(3) and some
of its of well-known subgroups: the affine group .A(2), the special affine group S.A(2), and the
special Euclidean group SE(2). For the treatment of the full Euclidean and the similarity groups
see [42].

As we discussed at the beginning of Section 2.2, PGL(3) is the group of automorphisms of
CP? and is isomorphic to the quotient group GL(3)/{AI}, where GL(3) denotes the group of
3 X 3 non-singular matrices, A € C is non-zero and [ is the identity matrix. The actions of
PGL(3) and its subgroups on CP? and C? are given by (1) and (2).

Definition 4.1. The affine group, denoted A(2), is the subgroup of PGL(3) that fixes the line
of points [xg : z1 : x2] with 2o = 0.

The affine group is isomorphic to a subgroup of GL(3) of matrices with the first row equal
to [1,0,0]. It is a group of linear transformations and translations on C2.

Definition 4.2. The special affine group, denoted S.A(2), is the subgroup of .A(2) that preserves
area under the action (2).

The special affine group is isomorphic to a subgroup of G£(3) of matrices with the first row
equal to [1,0,0] and the determinant equal to 1.

Definition 4.3. The special Euclidean group, denoted SE(2), is the subgroup of PGL(3) iso-
morphic to the group of matrices

1 0 0
a ¢ S|, with ¢ + 5% = 1.
b —s ¢

The real subset of SE(2) is the well-known special Euclidean group of rotations and trans-
lations on R2.

In [5], the authors used classical non-rational differential invariants to build two lowest order
rational invariants for the projective and affine groups and directly proved that they satisfy the
Definition 2.19 of classifying invariants over R (see Theorem 4 in [5]). Using the same line of
argument, we can show that these invariants are classifying over C, and also produce classifying
pairs for the actions of the special affine and the special Euclidean groups over C. The following
inductive expressions [10, 32] for classical differential invariants are useful for expressing these
pairs in a concise manner. We start with the classical Euclidean curvature and arc-length:

— L ds =+/1+ [ (1)}261 (20)

" poppe T VTR

Restriction of k to a curve given as a graph y = u(z) produces its Euclidean curvature, while
restrictions of ds to such curve produces a differential one-form, whose integration along a curve
equals to its Euclidean length. As a differential form on the jet space, ds is contact-invariant
under prolonged Euclidean transformations. There are well known counterparts of the lowest
order differential invariants (curvatures) and the lowest order contact-invariant one-forms (arc-
length forms) for other classical group actions. The special affine curvature and arc-length can
be expressed in terms of the Euclidean invariants:

 3k(kss + 3k%) — K2

_ .1/3
0r8/3 , da = k'ds,

here ¢ — — 1 d
where ds /1+[y(1)]2 dx’

is described after Definition 2.13. In a similar manner, the projective curvature and arc-length
are

Kg = 3—’; etc, and the action of operator % on differential functions

 Bftanalta — T2, — pip
’r} - 8/3 I

dp = ,u(lx/?’doz.
6110
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0 = u% +1 Oy = us O3 = u30; — 3u1®%
04 = 3ugqus — 5u§ 05 = Qusul — 45usuzuy + 40u3
O = Yugus — 63usuzul — 45uiud + 255usuius — 160u;
O7 = (9/2) [18u7u3(05) — 189ugus + 126ugus(Jususus + 15ujus — 25uqu3)
— 189uuj (4us + 15uuy) + 210ususus (63uiul — 60usuiug + 32uj)
—525uqus (uiul + 15uiuius — 60ususus + 64us) + 11200us]
Os = (243/2)(u3) [2usua(O5)? — 8ur(O5)(Jusui — 36usuzuj — 45ujuj
+ 120uguiuy — 40us) + 504ugus — 504uiud(Yususug + 15uiuy — 25u4u?)
+ 28u6(432u u3u2 + 243u5U4u2 — 18OOU5U4U§’LL2 24Ou5u3u2 + 540u5u4u;3u§’
+ 6600'LL4U3U2 — 2000uqul — 5175ujuzus + 1350ujus) — 2835u5u2
+ 252uuzud (Yugus — 136u3) — 35840uZul — 630uiusus (69uius — 160us — 153uqusus)
+210()U5u4u?,(72u3 + 63u4u2 — 193U4u3u2) 7875u4(8u4u2 22U4u3u2 + 9u3)]

Table 1: Differential functions used in (21). Here uy, denotes y*).

Theorem 4.4. The following are pairs of classifying invariants for the actions of SE(2), S.A(2),
A(2), and PGL(3) on C2:

Group SE(2) SA(2) A(2) PGL(3)
(0% | 4 (0 | B2 (8 | 4 (87)°

KW =lay | "= | w =@ |7 = @ (21)
I - O3 65 faa _ Os Os
S R (T R (C S N e (W el R (G S T

The explicit formulas for ©’s in terms of jet coordinates are given in Table 1.

We use Z5¢, 754, T4, and I% to denote the respective pairs of classifying invariants in (21).

Proof. In [5, Theorem 4], ZA, and Z7 are shown to be classifying in the real case. The proof
for the complex case follows similarly and an analogous argument can be applied to Z5¢ and
T4, See [33] for details. O

Proposition 4.5. The exceptional curves with respect to Z7, T4, and 754 are lines and conics.
The TS¢-exceptional curves are lines. In particular, if X = V(F) is a curve exceptional with
respect to the classifying invariants in (21) then F' has degree at most two.

Proof. Propositions 2 and 3 from Section 4.3 in [5] show that Z4- and Z”-exceptional curves
are lines and conics and an analogous argument shows that this is the case for Z54-exceptional
curves as well. A curve X = V(F) being Z5¢-exceptional is equivalent to the curve satisfying
either F;, =0, ©; =0, or O3 = 0, all of which imply X is degree one or two. O

4.2 The generic signature degree

We derive formulas for the degrees of signatures of generic'? curves for the four actions

discussed in Section 4.1 with signature maps based on the classifying sets Z5¢, 754 A 77

12 A5 stated in the introduction, we say that a property holds for a generic curve of degree d, if there exists a
nonempty Zariski-open subset Py of Clz, y]<a, such that for all F' € P4 the property holds for V(F).
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given in (21). To do so we analyze each term in the degree formula (15) of Theorem 3.8. We
start by taking a closer look at the rational functions defining invariants (21).

Lemma 4.6. For a generic polynomial F' € C[z, y] of degree d > 3, the restrictions of the differ-
ential functions ©; to the curve V(F) are equal to rational functions of the form T;(z,y)/(F,)%
with deg(7;) < 7; where 7;,d; are given as follows:

i

1

2

3

4

5

6

7

8

Ti

2d —2

3d—4

6d — 8

8d — 12

12d — 18

16d — 24

32d — 48

48d — 72

di

2

3

6

8

12

16

32

48

Proof. One can check that each derivative function restricted to X = V(F') can be written

OtiF
where P, € Q T
Y

P (z,y)

1 Citgsn
(Fy)

y"x =

and P,(z,y) is a polynomial of degree (2n — 1)d — (3n — 2). One can evaluate the formulas
for ©4,...,0g given in Table 1. For example, plugging in the rational expressions for y(”)| X
to the differential formula for ©4 gives ©4 = (3P,P2 — 5(P3)?) /F}°. See [33] for explicit
computations. The numerator has degree 10d — 14, but it is also divisible by Fy2 . This gives
an expression ©4 = Ty(z,y)/(Fy)® where T; has degree less than or equal to 8¢ — 12. The
arguments for the other differential functions follow similarly. O

Explicit formulas for the polynomials T; are quite long. A code to compute them can be
found in [33]. Note that for cach of the classifying invariants, the partial derivative function F),
cancels out and leaves each invariant as a rational function of the polynomials T7,...,Ts. In
the following lemma, we use homogenizations of 17,...,Ts to write down projective extensions
o of the signature maps for each pair of invariants (21).

Lemma 4.7. Fix an irreducible polynomial F' € C[z, y] of degree d > 3 and let X = V(F). For
G =8E,SA AP, let 0§ denote the signature map given by the invariants Z¢ in (21). Then

SE =T 22Ty : 22 T3], oS = [T : 23T 22T, ],

o
ot =[T}: T3 : T,Te, and of =TS : T2 : TsT. (22)

are projective extensions of the maps U)‘Sf, 039(“4, 0342, and U}jo respectively, where for each i, T}
equals the homogenization, xSTZ(%, i—i) € Clxo, x1,x2], of the polynomial T; from Lemma 4.6.
Moreover,

deg(o5¢) = 6d — 6, deg(o°*) = 24d — 32, deg(o*) = 24d — 36, and deg(o”) = 96d — 144.

Proof. First, we note that by Lemma 4.6, the coordinates of ¢ are homogeneous of the stated
degrees and that by Proposition 4.5, X is non-exceptional with respect to each of the classifying
sets of invariants in (21). Moreover, with G = A, for a point p € X we see that,

A0p) = (@5(17)2 @s(p)) _ (Ta(p)2 T6(p)> _ (Uf(l,p) Gé“(Lp)).

©4(p)?’ O4(p)? Ty(p)*’ Tu(p)? op'(1,p)" og'(1,p)

Here the middle equality follows from the fact that the factors of F, given by the degrees d;
in Lemma 4.6 all cancel out in the above expressions. If a(p) is not defined then ©4(p) = 0,
meaning p is not Z-regular. Thus o*4(p) is defined at all but finitely many points of X. Analogous
arguments show that oS¢, 54 SE oA

, and o” are projective extensions of 6$¢, o§A, and 0% . O

We are now ready to analyze the last term in the degree formula (15) where the sum of
multiplicities is taken over the base locus of a projective extension o of the signature map. We
first show that, for our choices of projective extensions, all base locus points belonging to a
generic curve are “at infinity.”

28



Lemma 4.8. For a generic polynomial F € C[z,y]<q, d > 4, the base locii of the maps oS¢,

054, 64 and a¥ in (22) contain no points of the form [1 : p] € CP? where F(p) = 0.

Proof. We will provide a detailed proof for the affine group and then show how this argument
can be adapted to other groups. For any point p € C?, consider the set

V;“ = {F € C[z,y]<q| F(p) = 0 and [1 : p] belongs to the base locus of O"A} .

Our goal is to show that the set
A _ A
vi= J v
peC?

has codimension at least 1 in the linear space of polynomials Clz, y]<4.

For a polynomial F' € Clxz,y]<q, a point [1 : p] belongs to the base locus of the map
o if and only if Ty(p) = Ts(p) = 0. Polynomials T; were introduced in Lemma 4.6, and
they can be expressed as polynomials function of the partial derivatives of F. Therefore, for
F(z,y) =>4 i<d cijz'y’ with undetermined coefficients and a fixed point p, expressions Ty (p)
and T5(p) can be viewed as polynomials in the coefficients ¢;;. This allows us to express V;“ as
the variety of three polynomial expressions F(p), Tu(p), and T5(p) in the coefficients ¢;; where
i+ <d.

For p = (0,0), we can use computational algebra techniques to find the codimension of this
set. The condition F(0,0) = 0 is equivalent to c¢go = 0. The highest order partial derivative
appearing in the expressions for Ty and T is 5. Therefore T(0,0) and T5(0,0) can be written as
polynomials of ¢;; where i+ 7 < 5. Moreover, for d > 5, these polynomials are independent of d.
For d = 4, all monomials involving ¢;;,i+j = 5 will disappear. For d > 4, one can check (see [33])
that three polynomials cg o, T4(0,0) and 75(0,0) impose algebraically independent conditions,
implying that V(é,o) has codimension 3 in Clx, y]<4 (the case d = 4 has to be checked separately).

Now we claim that for any point p € C2, a polynomial F belongs to V134 if and only if its image
under translation F(z,y) = F(x +p1,y +p2) belongs to V(“g 0)- Note that the partial derivatives

of F' are invariant under translations: %;;If (z,y) = %:J; (x4 p1,y +p2) for all i,j. Let Ty, Ts
denote the polynomials obtained from Lemma 4.6 from F'. Since these are functions of the partial
derivatives of F, they are also invariant under translations: T;(z,y) = T;(z+p1,y+p2). Then F
belongs to V! if and only if F(p) = F(0,0) =0, Ty(p) = T4(0,0) = 0, and T5(p) = T5(0,0) = 0,
which occurs if and only if F € V(Aé),oy This shows that the set of polynomials not satisfying the
condition in the statement of Lemma 4.8 can be written as

VA = {FGC{x,y]SdIF(ﬂchm,erpz)GV(AE),m}-

Then the dimension of VA is at most dim(V(“‘O1 0y) +2. Since V(“g o) has codimension 3 in the

space of polynomials C[z, y]<4, this means that VA has codimension > 1.
A similar argument, based on translation of an affine point p to the origin, goes through for
other groups, and the proof of the lemma boils down to showing that

V(%,o) = {F € Clz,y]<a| F(p) = 0 and [1 : p] belongs to the base locus of 0},

where o is the projective extension of the signature map for an appropriate group G, has a
codimension of at least 3 in C[z, y]<4.

In the SE(2) case and d > 2, the variety VE%‘?O) is defined by four polynomials ¢ ¢, 71(0,0) =
(601)2 + (610)2, TQ(O, O) = 72620(601)2 + 2611610601 — 2(610)2602 and T3(0, 0) iIl C[Cij : Z+] S 3]
Clearly, T1(0,0), T2(0,0) and cop impose algebraically independent conditions on Clz,y]<q.
Thus, by the above argument, ngo) must be of codimension at least 3 in Clx, y]<4 for all d > 2.

In the SA(2) case, the variety VE%“"(‘)) is defined by three polynomials ¢ o, T2(0,0) and 74(0,0)
in Cleg; @+ j < 4], where for d > 4, T5(0,0) and T4(0,0) are independent of d. Algebraic
independence of these polynomials is checked in [33]. Finally, for the full projective group
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PGL(3), the variety VE%“"(‘)) is defined by three polynomials cg g, 75(0,0) and 77(0,0) in Clc;; :
i+j < 7], where T5(0,0) and 77(0, 0) are independent of d for d > 7. The algebraic independence
of these three polynomials is checked in [33]. When d = 4,5, or 6 some monomials disappear
and so algebraic independence has to be checked separately. O

As a side remark, we point out that under the SE(2)-action, a generic curves does not have
any base locus points (even at infinity) as shown in Lemma 4.12 below.

Lemma 4.9. Let F € Clxg, 1, 2|4 be a generic homogeneous polynomial of degree d satisfying
two generic conditions:

(i) F(0,0,1) #0,
(ii) the discriminant of the univariate polynomial F'(0, 1, z2) is nonzero.

Then neighborhood of any point p = [0 : p; : p2] in V(F) can be parametrized by t — [a(t)]
where

a(t) = t,1,§:ajtj e C[P. (23)
=0

Moreover, for any homogeneous polynomial G € C|xg, 1, x2], the intersection multiplicity of F
and G at p is given by val(G(«)).

Proof. Consider a point p = [0 : p1 : po] in V(F). From the first assumption it follows that
p1 # 0 and thus we can take p; = 1. From the second assumption it follows the restriction
H =F(v,1,w) € Clv,w] satisfies H,(0,p2) = g—;(p) # 0. Therefore, in some neighborhood of
(0,p2), the curve V(H) C C? agrees with the graph w = f(v) of an analytic function f. We
obtain o as a power series expansion of this function with a; = ! (J?I(O). For the claim that the
intersection multiplicity of F and G is given by val(G(«)), see [13, §8.4]. O

Lemma 4.10. For d > 3, a generic point (ag, ...,ag) € C? can be extended to the coefficients
of the parametrization (23) for some F € C[zg, z1, x2]q satisfying conditions of Lemma 4.9.

Proof. Note that n = 8 and d > 3 satisfy the assumptions of Lemma 2.26, implying that for a
generic point a € C?, there exists an irreducible algebraic curve X C C? of degree d, such that
(0,a9) € X and jgf)(O,ao) = (0,a9,1'a;y...,8'ag). Let F(z,y) € C[z,y] be an irreducible
polynomial of degree d whose variety is X. It is easy to check that for the homogenization

F(z0,71,72) = 2{F i—?, % , the projective curve V(F) has the desired parametrization (23)
in a neighborhood of [0: 1 : ay]. O

Lemma 4.11. Let F € Clz,y]<q be a generic polynomial with degree d > 3 and let a =
(g, 1, 2) denote the parametrization given by Lemma 4.9 for its homogenization F. For
sufficiently small ¢ € C*, the Laurent series

parametrizes the curve V(F'). The differential functions ©; along this parametrization satisfy:

i 1[2[3[4]5]67]38
val(©;(8)) |0 3[4 815 19 | 40 | 60
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Proof. First let us calculate the image of 3 in the jet space. For (z(t),y(t)) = (t~1,#/) with
j > 1, the derivative of y with respect to = equals —jt/t!. Repeated applications of % then

yields that y®)(z) equals (—1)Ft/+* Hf;ol (i + 7). Then for (z(t),y(t)) = B(t) and k > 2,
o) k—1
y @) = (D0 et TG+ ).
j=1 i=0

We can then evaluate the differential functions ©1,...,Og on truncations of these formulas,
where a; are indeterminates. (See [33].) For example, evaluating ©4 and ©5 give

04(8) = —36-ay - t® + higher order terms, and

O5(8) = —4320 - (2a3 — 3asaszay + a3as) - t'° + higher order terms.
In each case, the leading coefficients are polynomials of ay,...,as. Therefore, by Lemma 4.10
and the genericity of F', we may assume that these leading coefficients do not vanish. O

Lemma 4.12. For a generic homogeneous polynomial F € Clzg, 21, x2]q with d > 3 and a point
p=1[0:p;:ps] in V(F), we have

mult, (F,0%¢) =0, multy(F,o54) =16, multy(F,0?) =12, and mult,(F,o”) =72,

where 05¢, 54, 0 and o are the polynomial vectors given by Lemma 4.7 for F = F(1, z,%)

and the corresponding multiplicities are defined by (13).

Proof. Let a € C[[t]]® be the local parametrization of V (F) guaranteed by Lemma 4.9. For each
index i = 1,...,8, let v; denote the valuation of T;(«). By the same lemma and the formulas
in Lemma 4.7, the desired multiplicities are

mult, (F, 0%) = min{3v1,2 + 2v9,2 + v3}, multy(F,054) = min{8uvs, 4 + 3v4,2 + 4va + vs},
multy, (F, O"A> = min{3vy, 2v5,v4 + v6}, and multy(F, o) = min{8uvs, 3v7, 4vs + vs}. (24)

Let 8 € C((t))? be the tuple of Laurent series given by Lemma 4.11. Since T; is homogeneous
of degree 7; and o =t - (1, 3), we see that

Ti(r) = Ti(t,t8) =t Ti(1, B) = t7T;(B).

By genericity, the coefficient of 2¢~1 in F, is nonzero, meaning that the valuation of F,(f3) is
—(d —1). This and the formulas T7; = ©; - (F,)% from Lemma 4.6 give that

v; = val(T;(a)) = 7 + val(T;(8)) = 7 + val(0,(8)) + d; val(Fy(5))
=T; + val(@l(ﬁ)) — dl(d — ].)

Then combining the data from Lemmas 4.6 and 4.11 gives that
v1=0, va=2, v3=2, va=4, v5=9, vs =11, vy =24, and vg = 36.
Substitution of this value in (24) finishes the proof. O

Theorem 4.13. Fix an irreducible polynomial F' € C[z, y|<q of degree d > 4 and let X = V(F).
Let S5¢, S, S$A, and S¥ denote the signature polynomials defined by the invariants in (21).
Then, when the symmetry group of X is finite,

deg(SF) < 6d° — 6d, deg(S5™), deg(S%) < 24d® —48d, and deg(S¥) < 964> — 216d.

Furthermore, these bounds are tight for generic F' € C[z, y]<q.
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Proof. First we show that the bounds above are achieved for generic F' € Clx, y|<q4. By Proposi-
tion 4.5, the curve X is non-exceptional for Z9¢, ZA, 784, and Z% and we can apply Theorem 3.8.
Since X is a general curve of degree > 4, its symmetry group is trivial and so n = 1 [47]. Let
F € C[zo, 21, ¥2] denote the homogenization of F and X = V(F) € CP?. Then by Theorem 3.8,
for a projective extension of a signature map o,

deg(Sx) = deg(F) - deg(o) — Z mult, (F, o).

pEBI(o)

For a generic F, the variety V(F) contains exactly d points with xqg = 0. The multiplicities at
each of these points is given by Lemma 4.12 for every group under consideration. By Lemma 4.8,
these are the only points of V(F) in the base locii of the projective extensions o°¢, o4, 54,

and o”. All together, this gives

deg(S% d-(6d—6)—d-(0) = 6d* — 6d,
deg(SFA) = d-(24d —32) —d - (16) = 24d* — 484,
deg(S%) d-(24d —36) —d - (12) = 24d? — 48d, and
deg(S%) = d-(96d —144) —d - (72) = 96d*> — 216d.

From Theorem 3.13, these degrees are upper bounds. O

We note that for all groups we consider, for generic curves, the degree of the signature curve
has a quadratic dependence on the degree of the original curve. The symmetry group of a
generic curve is trivial, but many interesting and important curves have non-trivial symmetry
groups. In accordance with the degree formula (15), these curves have lower degree signature.
The next subsection is devoted to the Fermat curves family. For this family, in the case of the
projective and affine action, the growth of the signature curve degree is completely suppressed
by the increase in the symmetry group size.

4.3 The Fermat curves

The d-th degree Fermat curve, denoted in this section by Xy, is the zero set over C? of the
polynomial Fjy(z,y) = ¢ + y? + 1, whose homogenization is Fy(xo, z1,72) = 28 + 2¢ + 24.

Theorem 4.14. The symmetry group of the d-th degree Fermat curve with respect to full
projective, affine and special Euclidean groups are:

o Sym(Xg, PGL(3)) = S5 x (Zgq x Zq) of cardinality 6d?,
o Sym(Xg, A(2)) = S2 x (Zg x Zg) of cardinality 2d?, and

- 7 of cardinality 1, when d is odd
o Sym(Xq,SE(2)) = { Zo X Lo of cardinality 4, when d is even.

Here S}, is the permutation group over k-elements and Zj, is the cyclic groups of k-elements.

Proof. In [49] it has been shown that Sym (X4, PGL(3)) consists of compositions of permutations
of the homogeneous coordinates [zg : 1 : @] and transformations scaling the coordinates by
d-th roots of unity, i.e. [xg : x1 : k2] — [xo : w1z : waws], where wy and we are d-th roots of
1. This shows the first result. Since Sym(Xg4,.A(2)) is the subgroup of Sym(Xg4, PGL(3)) that
fixes the homogenous coordinate g, in the second result S3 must be replaced with S5. Finally,
in the case of the special Euclidean group for odd d there are no non-trivial symmetries, while
for even d the symmetry group is generated by two independent elements, each of order two,
namely [xg: @1 : 2] = [To : —22 : 1] and [xg : x1 : x2] = [xo 1 —x1 : —22). O
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For the projective and for the affine groups, the cardinality of the symmetry groups depend
quadratically on d. At the same time Theorem 4.13 shows that the degrees of generic signature
curves depend quadratically on d. In fact, these quadratic dependencies cancel, and the degrees
of signatures of the Fermat curves for these actions are independent of d.

Theorem 4.15. The signature of the Fermat curve V (z?¢ 4 y? + 1) C C? has
e degree four for all d > 3 for the PGL(3)-action.
e degree two for d = 3 and degree three for all d > 4 for the A(2)-action.

We remind the reader that the signatures of lines and conics are undefined under the pro-
jective and affine actions. The above result can be proven by computing all quantities involved
n (15) (see [33] for details) or by explicit computation of signature polynomials. We present
here the explicit formulas for signatures polynomials and observe that their coefficients (but not
their degrees) depend on d. For the projective group the signature polynomial of the Fermat
curve of degree d > 2 is:

SX,(k1,k2) = 49392(d — 2) dS(d +1)*(2d — 1)*k3 + 602112(d — 2)*d®(d + 1)*(2d — 1)* k153
+10584(d — 2)°d*(d + 1)*(2d — 1)* (10d® — 3d + 3) (34d® — 27d + 27) K3
+ 1835008(d — 2)*d*(d + 1) (2d —1)1k? — 9289728(d — 2)°d?(d + 1)°(2d — 1) (&> — d + 1) k1 k2
+61236(d — 2)%d(d + 1)° )2 (4 — d + 1) (10d* — 3d + 3) (164> — 9d + 9) x3
—23328(d — 2)%d(d + 1)? )% (11792d° — 17376d" + 28152d° — 24424d° + 19473d" — 8940d°
+3358d% — 324d + 81) k1 + 118098(d 2)(d+ 1)(2d — 1) (d* — d +1)” (104> — 3d + 3)" 2
+531441d (d* — d+1)° (104> — 3d +3)" .

The signature polynomial of the Fermat curve of degree d > 2 under the affine action is:

S%,(k1,k2) = (d—3)%(d —2)d*(d +1)(2d — 1)°k3 — (d — 5)%d(2d — 1)k}
+3(d — 5)(d — 2)d(d + 1)(2d — 1)*(5d — 11)k1k2 + 6(d — 2)°d(d + 1)*(2d — 1)* (d* — 4d + 6) K3
+2(d - 2)*(d+1)*(2d — 1) (15d° — 10d + 18) k1 + 12(d — 2)*(d + 1)*(2d — 1) (d* — 2d + 3) k2
+8(d —2)*d(d + 1)*.

For d = 3, the coefficient of x3 vanishes and the degree of the signature polynomial drops to
two.

5 Discussion and future directions

The problem of equivalence and symmetry of algebraic curves under the action of the pro-
jective group and its subgroups is intimately related to the problem of the equivalence and sym-
metries of ternary forms under the action of the general linear group and its subgroups. Such
problems and their generalizations were at the heart of classical 19th century invariant theory.
Linear changes of variables induce linear transformations of the coefficients of polynomials. The
latter serve as coordinates on the (‘”2) dimensional vector space Clzg, z1,2z2]q. The classical
problem was to find generators of the rings of polynomial invariants and generators of the fields
of rational invariants under such actions. Actions on the product space C|xg, z1, z2]q X C* were
also considered, and the invariants with respect to these actions were called covariants in the
classical literature. An overview of the classical methods for constructing invariants and covari-
ants as well their application to the classification of polynomials can be found in [15], [19], [39].
Due to Hilbert’s finite basis theorem, the generating sets for such actions are finite [1], but their
cardinality and the complexity of the invariants grow dramatically with the degree. In fact, the
complete set of the generators remains unknown except for the ternary forms of low degrees.

Applications of differential invariants to the problems in classical invariant theory was first
proposed by Sophus Lie [35]. One of the main advantages of using differential invariants in com-
parison with classical algebraic invariants and covariants is that the same set of invariants can
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be used for all ternary forms independently of their degrees. Differential signature constructions
for homogeneous polynomials in two variables (binary forms) were first introduced by Olver
[39] and applied to their symmetry groups computation in [3]. For the case of ternary forms, a
fundamental set of differential invariants was first computed in [31] and it has been shown in [18]
that the differential algebra of invariants can be generated by a single differential invariant and
two invariant differential operators. In his thesis, Wears [51], considered differential signatures
of polynomials in an arbitrary number of variables. In the above literature, one extends the ac-
tion to the jets of the graphs of homogeneous polynomials u = F(xg, x1, z2) or in-homogeneous
polynomials u = F'(x,y), computes the set of fundamental invariants of a sufficiently high order,
and uses these invariants to construct signatures. In contrast to the signatures developed in this
paper, the signatures of these graphs are surfaces rather than curves.

Gaining an understanding of the relationship between signatures surfaces of the defining poly-
nomials, considered in the above literature, and signatures curves of their zero sets, considered
in this paper, is an interesting problem for future research. In particular, signature surfaces of
the graphs of the Fermat polynomials with respect to the projective groups computed in [31]
can be compared with the signatures of Fermat curves obtained here.

Proposition 2.21, provides a simple relationship between pairs of classifying invariants for a
given group. The signatures curves and their degrees depend on a choice of classifying invariants,
but a careful study of this dependence is outside of the scope of the current paper.

Since explicit computation of signature polynomials is challenging, it is helpful to identify
their properties that can be computed a priori. In this paper we derived the degree formula of
signature polynomials. One natural step is to determine their Newton polytope, which gives a
more detailed information about the monomials of the signature polynomial.

It is immediate that the signatures curves of rational curves are rational. However, the
signatures of non-rational curves may be also rational, as happens for instance in the case of
all Fermat curves under the affine and the projective actions. It is an interesting problem to
identify classes of curves with rational signatures and, more generally, to understand if we can
predict the genus of a signature curve.
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