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Abstract

We present a new algorithm for computing a p-basis of the syzygy module of n polynomials
in one variable over an arbitrary field K. The algorithm is conceptually different from the
previously-developed algorithms by Cox, Sederberg, Chen, Zheng, and Wang for n = 3, and
by Song and Goldman for an arbitrary n. The algorithm involves computing a “partial” reduced
row-echelon form of a (2d + 1) X n(d + 1) matrix over K, where d is the maximum degree of
the input polynomials. The proof of the algorithm is based on standard linear algebra and is
completely self-contained. The proof includes a proof of the existence of the u-basis and as a
consequence provides an alternative proof of the freeness of the syzygy module. The theoretical
(worst case asymptotic) computational complexity of the algorithm is O(d’n + d* + n*). We have
implemented this algorithm (HHK) and the one developed by Song and Goldman (SG). Exper-
iments on random inputs indicate that SG is faster than HHK when d is sufficiently large for a
fixed n, and that HHK is faster than SG when # is sufficiently large for a fixed d.
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1. Introduction

Let a[s] = [a1(s),...,a,(s)] be a vector of univariate polynomials over a field K. It is well-
known that the syzygy module of a, consisting of linear relations over K[s] among a;(s), . . ., a,(s):

syz(a) = {h € K[s]" |ay hy + - -+ + a, h, = 0}
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is free.! This means that the syzygy module has a basis, and, in fact, infinitely many bases. A
p-basis is a basis with particularly nice properties, which we describe in more detail in the next
section.

The concept of a u-basis first appeared in Cox et al. (1998b), motivated by the search for new,
more efficient methods for solving implicitization problems for rational curves, and as a further
development of the method of moving lines (and, more generally, moving curves) proposed in
Sederberg and Chen (1995). Since then, a large body of literature on the applications of u-bases
to various problems involving vectors of univariate polynomials has appeared, such as Chen et al.
(2005); Song and Goldman (2009); Jia and Goldman (2009); Tesemma and Wang (2014).> The
variety of possible applications motivates the development of algorithms for computing p-bases.
Although a proof of the existence of a u-basis for arbitrary n appeared already in Cox et al.
(1998b), the algorithms were first developed for the n = 3 case only Cox et al. (1998b); Zheng
and Sederberg (2001); Chen and Wang (2002). The first algorithm for arbitrary n appeared in
Song and Goldman (2009), as a generalization of Chen and Wang (2002).

This paper presents an alternative algorithm for an arbitrary n. The proof of the algorithm
does not rely on previously established theorems about the freeness of the syzygy module or the
existence of a u-basis, and, therefore, as a by-product, provides an alternative, self-contained,
constructive proof of these facts. In the rest of the introduction, we informally sketch the main
idea underlying this new algorithm, compare it with previous algorithms, and briefly describe its
performance.

Main idea: It is well-known that the syzygy module of a, syz(a), is generated by the set syz,(a)
of syzygies of degree at most d = deg(a). The set syz,(a) is obviously a K-subspace of K[s]".
Using the standard monomial basis, it is easy to see that this subspace is isomorphic to the kernel
of a certain linear map A: K@D — K24+ (explicitly given by (7) below). Now we come to
the key idea: one can systematically choose a suitable finite subset of the kernel of A so that the
corresponding subset of syz,(a) forms a u-basis. We elaborate on how this is done. Recall that
a column of a matrix is called non-pivotal if it is either the first column and zero, or it is a linear
combination of the previous columns. Now we observe and prove a remarkable fact: the set of
indices of non-pivotal columns of A splits into exactly n— 1 sets of modulo-n-equivalent integers.
By taking the smallest representative in each set, we obtain n — 1 integers, which we call basic
non-pivotal indices. The set of non-pivotal indices of A is equal to the set of non-pivotal indices
of its reduced row-echelon form E. From each non-pivotal column of E, an element of ker(A) can
easily be read off, that, in turn, gives rise to an element of syz(a), which we call a row-echelon
syzygy. We prove that the row-echelon syzygies corresponding to the n — 1 basic non-pivotal
indices comprise a u-basis. Thus, a u-basis can be found by computing the reduced row-echelon
form of a single (2d + 1) x n(d + 1) matrix A over K. Actually, it is sufficient to compute only
a “partial” reduced row-echelon form containing only the basic non-pivotal columns and the
preceding pivotal columns.

Relation to the previous algorithms: Cox, Sederberg and Chen Cox et al. (1998b) implicitly
suggested an algorithm for the n = 3 case. Later, it was explicitly described in the Introduction

! Freeness of the syzygy module in the one-variable can be deduced from the Hilbert Syzygy Theorem Hilbert
(1890). In the multivariable case, the syzygy module of a polynomial vector is not always free (see, for instance, Cox
et al. (1998a))

2 A notion of a u-basis for vectors of polynomials in two variables also has been developed and applied to the study
of rational surfaces in three-dimensional projective space (see, for instance, Chen et al. (2005); Shi et al. (2012)). This
paper is devoted solely to the one-variable case.
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of Zheng and Sederberg (2001). The algorithm relies on the fact that, in the n = 3 case, there
are only two elements in a u-basis, and their degrees (denoted as y; and p,) can be determined
prior to computing the basis (see Corollary 2 on p. 811 of Cox et al. (1998b) and p. 621 of Zheng
and Sederberg (2001)). Once the degrees are determined, two syzygies are constructed from null
vectors of two linear maps A; : K3¢+D — Kru+d+l and A, : K3¢e+D 5 KRre*d+1 (similar to the
one described above). Special care is taken to ensure that these syzygies are linearly independent
over K[s]. These two syzygies comprise a u-basis. It is not clear, however, how this method can
be generalized to arbitrary n. First, as far as we are aware, there is not yet an efficient way to
determine the degrees of u-basis members a priori. Second, there is not yet an efficient way for
choosing appropriate null vectors so that the resulting syzygies are linearly independent.

Zheng and Sederberg Zheng and Sederberg (2001) gave a different algorithm for the n = 3
case, based on Buchberger-type reduction. A more efficient modification was proposed by Chen
and Wang Chen and Wang (2002), and was subsequently generalized to arbitrary n by Song and
Goldman Song and Goldman (2009). The general algorithm starts by observing that the set of
the obvious syzygies {[ —a; a; |1 <i < j < n} generates syz(a), provided gcd(a) = 1.
Then Buchberger-type reduction is used to reduce the degree of one of the syzygies at a time. It
is proved that when such reduction becomes impossible, one is left with exactly n — 1 non-zero
syzygies that comprise a u-basis. If gcd(a) is non-trivial, then the output is a u-basis multiplied
by gcd(a). We note that, in contrast, the algorithm developed in this paper outputs a u-basis even
in the case when gcd(a) is non-trivial. See Section 8 for more details.

Performance: We show that the algorithm in this paper has theoretical complexity O(d*n + d* +
n?), assuming that the arithmetic takes constant time (which is the case when the field K is finite).
We have implemented our algorithm (HHK), as well as Song and Goldman’s Song and Goldman
(2009) algorithm (SG) in Maple Bernardin et al. (2015). Experiments on random inputs indicate
that SG is faster than HHK when d is sufficiently large for a fixed n and that HHK is faster than
SG when n is sufficiently large for a fixed d.

Structure of the paper: In Section 2, we give a rigorous definition of a u-basis, describe its
characteristic properties, and formulate the problem we are considering. In Section 3, we prove
several lemmas about the vector space of syzygies of degree at most d, and the role they play in
generating the syzygy module. In Section 4, we define the notion of row-echelon syzygies and ex-
plain how they can be computed. This section contains our main theoretical result, Theorem 27,
which explicitly identifies a subset of row-echelon syzygies that comprise a u-basis. In Section 5,
we present an algorithm for computing a u-basis. In Section 6, we analyze the theoretical (worst
case asymptotic) computational complexity of this algorithm. In Section 7, we discuss imple-
mentation and experiments, and compare the performance of the algorithm presented here with
the one described in Song and Goldman (2009). We conclude the paper with a more in-depth
discussion and comparison with previous works on u-bases and related problems in Section 8.

2. p-basis of the syzygy module.

Throughout this paper, K denotes a field and K[s] denotes a ring of polynomials in one
indeterminate s. The symbol n will be reserved for the length of the polynomial vector a, whose
syzygy module we are considering, and from now on we assume n > 1, because for the n = 1
case the problem is trivial. The symbol d is reserved for the degree of a. We also will assume
that a is a non-zero vector. All vectors are implicitly assumed to be column vectors, unless
specifically stated otherwise. Superscript  denotes transposition.
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Definition 1 (Syzygy). Let a = [ay,...,a,] € K[s]" be a row n-vector of polynomials. The

syzygy set of a is
syz(a) = {h € K[s]"|ah = 0}.

We emphasize that % is by default a column vector and a is explicitly defined to be a row vector,
so that the product a & is well-defined. It is easy to check that syz(a) is a K[s]-module. To define
a u-basis, we need the following terminology:

Definition 2 (Leading vector). For h € K[s]" we define the degree and the leading vector of h as
follows:

o deg(h) = El?ax deg(h;).

..... n

o LV(h) = [coeff(h,1),...,coeff(h,,H)]" € K", where t = deg(h) and coeft(h;, t) denotes the
coefficient of s' in h;.

1-2s-2s2-§° -1
Example 3. Leth=| 2+2s+s>+s> | Thendeg(h) =3 and LV(h)=| 1 |.
-3 0

Before giving the definition of a p-basis, we state a proposition that asserts the equivalence
of several statements, each of which can be taken as a definition of a u-basis.

Proposition 4. For a subset u = {uy,...,u,—1} C syz(a), ordered so that deg(u;) < --- <
deg(u—1), the following properties are equivalent:

1. [independence of the leading vectors] The set u generates syz(a), and the leading vectors
LV(uy),...,LV(u,-1) are independent over K.

2. [minimality of the degrees] The set u generates syz(a), and if hy, ..., h,_; is any generating
set of syz(a), such that deg(h;) < --- < deg(h,-1), then deg(u;) < deg(h;) fori=1,...,n—
1.

3. [sum of the degrees] The set u generates syz(a), and deg(u;) + - - - + deg(u,-1) = deg(a) —
deg(ged(a)).

4. [reduced representation] For every h € syz(a), there exist gy,...,8:.—1 € K[s] such that

deg(g)) < deg(h) — deg(u;) and
n—1
h= Z 8ilU;. (1)
i=1

5. [outer product] There exists a non-zero constant « € K such that the outer product of
U, ..., Uy is equal to @ a/ gcd(a).

Here and below gcd(a) denotes the greatest common monic devisor of the polynomials
ai,...,a,. The above proposition is a slight rephrasing of Theorem 2 in Song and Goldman
(2009). The only notable difference is that we drop the assumption that gcd(a) = 1 and modify
Statements 3 and 5 accordingly. After making an observation that syz(a) = syz (a/gcd(a)), one
can easily check that a proof of Proposition 4 can follow the same lines as the proof of Theorem 2
in Song and Goldman (2009). We do not use Proposition 4 to derive and justify our algorithm
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for computing a u-basis, and therefore we are not including its proof. We include this proposi-
tion to underscore several important properties of a p-basis and to facilitate comparison with the
previous work on the subject.

Following Song and Goldman (2009), we base our definition of a u-basis on Statement 1
of Proposition 4. We are making this choice, because in the process of proving the existence
of a u-basis, we explicitly construct a set of n — 1 syzygies for which Statement 1 can be easily
verified, while verification of the other statements of Proposition 4 is not immediate. The original
definition of a u-basis (p. 824 of Cox et al. (1998b)) is based on the sum of the degrees property
(Statement 2 of Proposition 4). In Section 8, we discuss the advantages of the original definition.

Definition 5 (u-basis). For a non-zero row vector a € K[s]", a subset u C K[s]" of polyno-
mial vectors is called a u-basis of a, or, equivalently, a pu-basis of syz(a), if the following three
properties hold:

1. u has exactly n — 1 elements;
2. LV(wy),...,LV(u,—) are independent over K;
3. wis a basis of syz(a), the syzygy module of a.

As we show in Lemma 26 below, the K-linear independence of leading vectors of any set of
polynomial vectors immediately implies the K[s]-linear independence of the polynomial vectors
themselves. Therefore, a set u satisfying Statement 1 of Proposition 4 is a basis of syz(a). Thus,
the apparently stronger Definition 5 is, in fact, equivalent to Statement 1 of Proposition 4.

In the next two sections, through a series of lemmas culminating in Theorem 27, we give a
self-contained constructive proof of the existence of a u-basis. This, in turn, leads to an algorithm,
presented in Section 5, for solving the following problem:

Problem:

Input: a # 0 € K[s]", row vector, where n > 1 and K is a computable field.?

Output: M € K[s]™"=D, such that the columns of M form a y-basis of a.

Example 6 (Running example). We will be using the following simple example throughout the
paper to illustrate the theoretical ideas/findings and the resulting algorithm.

Input: a=[1+s2+s4 1+ + s 1+s4]€(@[s]3
-5 1 —25-2s2 =
Output: M = 1 2425+ 52+ 53
-1+ -3

In contrast to the algorithm developed by Song and Goldman in Song and Goldman (2009),
the algorithm presented in this paper produces a p-basis even when the input vector a has a
non-trivial greatest common divisor (see Section 8 for more details).

It is worthwhile emphasizing that not every basis of syz(a) is a u-basis. Indeed, let u; and
u be the columns of matrix M in Example 6. Then u; + u, and u, is a basis of syz(a), but

3 A field is computable if there are algorithms for carrying out the arithmetic (+, —, X, /) operations among the field
elements.
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not a u-basis, because LV(u; + up) = LV(up). A p-basis is not canonical: for instance, u;
and u; + up will provide another p-basis for syz(a) in Example 6. However, Statement 2 of
Proposition 4 implies that the degrees of the members of a u-basis are canonical. In Cox et al.
(1998b), these degrees were denoted by y;, . .., u,—; and the term “u-basis” was coined. A more
in-depth comparison with previous works on u-bases and discussion of some related problems
can be found in Section 8.

3. Syzygies of bounded degree.

From now on, let {((J)g stand for the K[s]-module generated by (1. It is known that syz(a)
is generated by polynomial vectors of degree at most d = deg(a). To keep our presentation
self-contained, we provide a proof of this fact (adapted from Lemma 2 of Song and Goldman
(2009)).

Lemma 7. Let a € K[s]" be of degree d. Then syz(a) is generated by polynomial vectors of
degree at most d.

Proof. Leta =a/gcd(a) = |ay,...,a,]. Foralli< j, let
]T

s

wj=1[ -aj a

with —a; in i-th position, &@; in j-th position, and all the other elements equal to zero. We claim
that the u;;’s are the desired polynomial vectors. First note that

max deg(u;;) = maxa; < dega =d.
1<i<j<n 1<i<n

It remains to show that syz(a) = <u,~ il1<i<j< n> . Obviously we have

K[s]
syz(a) = syz(a) 2)

Since u;; belongs to syz(a), we have

syz(Zz)D(uij|1 Si<j£n> (3)

K[s] *

Since ged(@) = 1, there exists a polynomial vector f = [fi,..., f,]” such that
ayfi+---+anfy, = 1.

Forany 4 = [hy, ..., h,]" € syz(@), by definition
ayhy +---+ayh, =0.

Therefore, for each A;,

hi =i fir + -+ anfudhi
=aifihi+ -+ i fiahi+ aifihi + i fivrhi + -+ anfoh

=ayfihi+ -+ a1 fioi hi — fi Z axhy + Gigy fivrhi + -+ + ap fuhy
ktik=1
6



n

= a(fihi = fih) + -+ anfuhi = fil) = ) i,

k#ik=1

where we denote f; h; — fily by [k, i]. Since [k, i] = —[i, k], it follows that
h=lh, k)" = Y Ll - a 1.

I<i<j<n
That is,
h = Z (ﬁh] —fjh,')l/tij.
1<i<j<n

Therefore

syz(@)  (uij| 1 < i< j < n>Km. (4)
Putting (2), (3) and (4) together, we have

syz(a) = (uij| 1 < i< j < n)Km .

O

Let K[s]s denote the set of polynomials of degree at most d, let K[s]; denote the set of
polynomial vectors of degree at most d, and let

syzy(a) = {h € K[s]" |ah = 0}

be the set of all syzygies of degree at most d.

It is obvious that K[s], is a (d + 1)-dimensional vector space over K. Therefore, the set K[s]
is an n (d+1)-dimensional vector space over K. Itis straightforward to check that syz,(a) is a vec-
tor subspace of ]K[s]z over K and, therefore, is finite-dimensional. The following lemma states
that a K-basis of the vector space syz,(a) generates the K[s]-module syz(a). The proof of this
lemma follows from Lemma 7 in a few trivial steps and is included for the sake of completeness.

Lemma 8. Let a € K[s]" be of degree d and hy, ... h; be a basis of the K-vector space syz,(a).
Then syz(a) = (h1, ..., h)gy)-

Proof. From Lemma 7, it follows that there exist u,...,u, € syz,(a) that generate the K[s]-
module syz(a). Therefore, for any f € syz(a), there exist g1, ..., g € K[s], such that
f= Zgi Uj. ®)
i=1
Since Ay, ... h; is a basis of the K-vector space syz,(a), there exist ;; € K such that
i
u; = Za/,»jhj. (6)
j=1

Combining (5) and (6) we get:

r i l r
f= Zgi Z%‘ hj = [Z Qijgj] hj.
=1 =l =1 izl



The next step is to show that the vector space syz,(a) is isomorphic to the kernel of a lin-

ear map A: K"@*D — K2*! defined as follows: for a = Z cjs’ € Kjlsl, where ¢; =
0<j=d
[cijs...,cnj] € K" are row vectors, define
o
A= ca ¢o c K(2d+1)><n(d+1)’ (7)
cq |

with the blank spaces filled by zeros.

For this purpose, we define an explicit isomorphism between vector spaces K[s]/" and K™(+1,
where ¢ and m are arbitrary natural numbers. Any polynomial m-vector i of degree at most ¢ can
be written as & = wy + sw; + - - - + s'w, where w; = [wy;, ..., wui]T € K. Itis clear that the map

g Ks]" — Kme+h
wo
h— b =] (8)
Wy
is linear. It is easy to check that the inverse of this map

bltn: Km(t+l) - K[S];ﬂ

is given by a linear map:
v =8my )

where
S’t" = [ L, sl, ---s1, ] € K[s]me(Hl)'

Here I, denotes the m x m identity matrix. For the sake of notational simplicity, we will often
write f, b and S instead of #, b and S* when the values of m and ¢ are clear from the context.

Example 9. For

1-2s—2s2 -3 1 -2 -2 -1
h=| 2+42s+s*+s |=| 2 |+s| 2|+ 1 [|+5 1|,
-3 -3 0 0
we have
W =11,2,-3,-2,2,0 -2,1,0, -1, 1, 0]".
Note that

h=h" =S =[ L s, L s°L ]h’i.

With respect to the isomorphisms # and b, the K-linear map a: K[s]; = K[s]24 corresponds
to the K linear map A: K"@*D — K24*! in the following sense:
8



Lemma 10. Let a = Z cjs’ € Ki[s] and A € KCHD@*D) dofined as in (7). Then for any
0<j<d
= K"(d+l).'
a’ = (Av)’. (10)

Proof. A vector v € K"9+D can be split into (d + 1) blocks

Wo

Wd

where w; € K" are column vectors. For j < 0 and j > d, let us define ¢; = 0 € K". Then Avis a
(2d + 1)-vector with (k + 1)-th entry

(AV)es1 = CEWo + CoogWi + o+ CgWa = Z Chk-iWis
O<i<d

where k =0, ...,2d. Then

a’ = aSZv:[Z CijJ[Z WiSiJZ Z cjwis”j
0<j<d O<i<d 0<i,j<d
= b = KAVt = S5, (Av) = (Av)’
= s Ch-iWi | = 5" (Av)ier = S5 (Av) = (Av)".
0<k<2d  \0<i=d 0<k<2d

O
Example 11. For the row vector a in the running example (Example 6), we have n = 3, d = 4,

Co = []’]’]]s = [09090]9 C = [19090]’ 3 = [07170]’ Cy = [1515]]

and
11 1
00 01 11
1 0000 O0T1T1'1
01 01 00 O0O0OO0ODT1 11
A=11 1 1 0 1 01 0 0 0O 0 O 1 1 1
1 1101 01 0O0O0O0O0
1 1101 01 00
1 11010
1 1 1]

Letv=11,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15]7. Then
Av = [6,15,25,39,60,33,48,47,42]"
and so

(Av)" = S1(Av) = SL(AV) = 6 + 155 + 2557 + 395° + 60s* + 335° + 485° + 4757 + 4255,
9



On the other hand, since

1 +4s+7s%+10s% + 135
V=8t =83v=| 2+55+8s>+ 115> + 145* |,
3+65+9s% + 125% + 15s*

we have

1 +4s+7s%+10s% + 13s*
avb=[1+s2+s4 1+s°+s* 1+s4] 2 +5s5+8s2+ 115 + 145*
3+65+9s2+ 1257 +15s*

=425% + 4757 + 485° + 335 + 60s* + 395 + 255 + 155 + 6.

We observe that
a’ = (Av)b.

Lemma 12. v € ker(A) if and only if V' € syz,(a).
Proof. Follows immediately from (10). O
We conclude this section by describing an explicit generating set for the syzygy module.

Lemma 13. Let by, ... b; comprise a basis of ker(A), then

syz(a) = (b?, e, b,b>K[S] .
Proof. Lemma 12 shows that the isomorphism (9) between vector spaces K"“@*" and K(s)"
induces an isomorphism between their respective subspaces ker(A) and syz,(a). Therefore,
b?, e b? is a basis of syz,(a). The conclusion then follows from Lemma 8. O

4. “Row-echelon” generators and pu-bases.

In the previous section, we proved that any basis of ker(A) gives rise to a generating set of
syz(a). In this section, we show that a particular basis of ker(A), which can be “read off” the
reduced row-echelon form of A, contains n — 1 vectors that give rise to a u-basis of syz(a). In
this and the following sections, quo(i, j) denotes the quotient and rem(i, j) denotes the remainder
generated by dividing of an integer i by an integer ;.

We start with the following important definition:

Definition 14. A column of any matrix N is called pivotal if it is either the first column and is
non-zero or it is linearly independent of all previous columns. The rest of the columns of N are
called non-pivotal. The index of a pivotal (non-pivotal) column is called a pivotal (non-pivotal)
index.

From this definition, using induction, it follows that every non-pivotal column can be written
as a linear combination of the preceding pivotal columns.

We denote the set of pivotal indices of A as p and the set of its non-pivotal indices as g. In
the following two lemmas, we show how the specific structure of the matrix A is reflected in the
structure of the set of non-pivotal indices g.
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Lemma 15 (periodicity). If j € q then j+kn € g for0 <k < I_&J)”J Moreover,
A*j = ZarA*r S A*j+kn = Za'rA*rH(m (11
r<j r<j

where A, denotes the j-th column of A.

Proof. To prove the statement, we need to examine the structure of the (2d + 1) X n(d + 1) matrix
A:
[ co1 -+ con

Cor  Con
Cd] “ e cdn : e : ‘. cOl “ee CO}’I (12)

Car ++ Cdn

Cd1 - Can |

The j-th column of A has the first quo(j — 1, n) and the last (d — quo(j — 1, n)) entries zero. For
1 < j < nd the (n + j)-th column is obtained by shifting all entries of the j-th column down by 1
and then putting an extra zero on the top. We consider two cases:

1. Integer j = 1 is in g if and only if the first column of A is zero. From the structure of
A it follows that any column indexed by 1 + kn is zero and therefore, (1 + kn) € ¢ for
|10l | =g 2 k2 0.

2. Let us embed A in an infinite matrix indexed by integers. By inspection of the structure of
A given by (12), we see immediately

Ai,r+kn = Ai—k,r~ (13)
Then, for a non pivotal index j > 1 and 0 < k < [%J we have:
A*j = Z Ay
r<j
!
<:[¥Z Ai,j = ; arAi,r
j-1
=V A = Z arAikr (by reindexing the row)
i€Z pr

j-1
=Y Aijua = ;armm (from (13))

== A*j+kn = Z r Asritns

r<j

n(d+1)—j
n

Therefore (j + kn) € g for [ J > k > 0 and equation (11) holds.

11



O

Definition 16. Let g be the set of non-pivotal indices. Let g/(n) denote the set of equivalence
classes of ¢ modulo n. Then the set § = {mingp|o € g/(n)} will be called the set of basic non-
pivotal indices.

Example 17. For the matrix A in Example 11, we have n = 3 and g = {6,9, 11, 12, 14, 15}. Then
q/(n) = {16,9,12,15}, {11, 14}}} and G = {6, 11}.

Lemma 18. There are exactly n — 1 basic non-pivotal indices: |G| = n — 1.
Proof. We prove this lemma by showing that |g| < n and |g| > n — 2.

1. Since there are at most n equivalence classes in ¢ modulo n, it follows from the definition
of g that |§| < n. Moreover, the (2d + 1)-th row of the last block of n-columns of A is
given by the row vector ¢; = (Ci4, - .., Cna) = LV(a), which is non-zero. Thus, there exists
r € {1,...,n}, such that ¢,; # 0. Suppose r is minimal such that ¢,; # 0. Then the
(nd + r)-th column of A is independent from the first nd + r — 1 columns (since each of
these columns has a zero in the (2d + 1)-th position). Hence, there exists r € {1,...,n}
such that nd + r is a pivotal index. From the periodicity Lemma 15, it follows that for
every k = 0,...d, index r+ kn is pivotal and therefore no integer from the class » modulo n
belongs to g. Thus |G| < n.

2. Assume |§| < n — 2. From the periodicity Lemma 15, it follows that the set of non-pivotal
indices is the union of the sets {j + kn|j € g, 0 < k < [;}, where [; < d is some integer.
Therefore

lgl <1gl(d+1)<(n-2)d+1)=nd+n-2d-2.

On the other hand, |g| = n(d + 1) — |p|. It is well-known (and easy to check) that |p| =
rank(A). Since rank(A) cannot exceed the number of rows of A, |p| < 2d + 1. Therefore

gl >nd+1)-2d+1)=nd+n-2d-1.

Contradiction. Hence |g| > n — 2.

O

From the matrix A we will now construct a square n (d+1)xn(d+ 1) matrix V in the following
way. For i € p, the i-th column of V has 1 in the i-th row and 0’s in all other rows. For i € g we
define the i-th column from the linear relationship

A, = Z @A, (14)
{jeplj<i}

as follows: for j € p such that j < i we set V;; = ;. All the remaining elements of the column
V.i are zero. For simplicity we will denote the i-th column of V as v;. We note two important
properties of V:

1. Matrix V has the same linear relationships among its columns as A.
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2. Vectors {b; = e; — v;|i € g}, where by e; we denote a column vector that has 1 in the i-th
position and 0’s in all others, comprise a basis of ker(A).

The corresponding syzygies {b? |i € g} will be called row-echelon syzygies because the a’s ap-
pearing in (14) can be read off the reduced row-echelon form E of A. (We remind the reader that
the (2d + 1) X n(d + 1) matrix E has the following property: for all i € g, the non-zero entries of
the i-th column consist of {a;|j € p, j < i} and a; is located in the row that corresponds to the
place of j in the increasingly ordered list p.) The reduced row-echelon form can be computed
using Gauss-Jordan elimination or some other methods.

Example 19. For the matrix A in Example 11, we have n = 3, d = 4, and

(1 0 0 0 O 0 0 O 0 0 -1 00 1 1]
o1 000-100-10 -2 -1 0 -1 1
0 0 1 00 1 0 0 1 0 3 1 0 0 -2
00 0 10 1 00 1 0 2 1 0 0 -1
0 0 0 0 1 o0 o0 -1 0 -2 -120 0 1
0O 0 0 0 O 0 0 O 0 0 0 0 0 0 0
0O 0 0 0 O 01 0 1 0 2 1 0 0 -1
V=0 0 0 0 O 0 0 1 00 -1 -1 0 -1 0
00 0 0 O 0 0 O 0 0 0 0 o0 0 0
0O 0 0 0 O 0 0 O 0 1 1 1 0 1 0
0O 0 0 0 O 0 0 O 0 0 0 0 0 0 0
00 0 0 O 0 0 O 0 0 0 00 0 0
0O 0 0 0 O 0 0 O 0 0 0 0 1 1 1
00 0 0 O 0 0 O 0 0 0 0 0 0 0
0O 0 0 0 O 0 0 O 0 0 0 0 0 0 0 |
The non-pivotal indices are g = {6,9, 11, 12, 14, 15}. We have
b6:66_V6:[Oa17_15_170a17070505050505050’0]T
by =e9—vy =1[0,1,-1,-1,1,0,-1,0,1,0,0,0,0,0,0]"
bll =e11 — Vit = [1’2’_39_232,0’_29 1909_1’ lsOsO,O,O]T
blz=612_V12=[O:l:_l»_l,1303_1»1»0»_1303I,O,O,O]T
b]4=614_V]4= [_15190909070707 1707_170705_1’ l’O]T
blS =€15 —Vi5 = [_1’_1723 13_1a09 190909090909_1,0, l]T
and the corresponding row-echelon syzygies are
-5 —s— 52
b
bp=| 1 by=| l+s
| -1+ -1+
[ 1-25—2s%—§° [ —s—s*— 53
b'{lz 2425+ 5%+ 5 b'{zz 1+ s+ s
I -3 | -1+
[ -1-5% -5 [ —1+s5+s> -5
=] 1+s>+5s blisz -1-5
0 2+ 5%

13



The following lemma shows a crucial relationship between the row-echelon syzygies. Note that,
in this lemma, we use i to denote a non-pivotal index and ¢ to denote a basic non-pivotal index.

Lemma 20. Letv,, r €{1,...,n(d + 1)} denote columns of the matrix V. Fori € g, let
b,‘ =€ —V; (15)

Then for any ¢ € g and any integer k such that 0 < k < \_%J

Buw=s5B+ > ab (16)

J+kn?
{jep|j<u, j+kneq)

where constants «; appear in the expression of the t-th column of A as a linear combination of
the previous pivotal columns:
A*L = Z CZJ'A*j.
{jeplij<d

Proof. We start by stating identities, which we use in the proof. By definition of V, we have for
any j € p:
Vi=¢€; (17)

v= ) = Y age. (18)

{jeplj<d {jeplj<d

and for any ¢ € g:

Since V has the same linear relationships among its columns as A, it inherits periodicity property
(11). Therefore, for any ¢ € § and any integer k such that 0 < k < L@J

Vivkn = Z AjVirkn- (19)
}

{jeplj<t

We also will use an obvious relationship for any r € {1,...,n(d + 1)} and 0 < k < I_@J:

e, = skeE (20)

r+kn

and the fact that the set {1,...,n(d + 1)} is a disjoint union of the sets p and gq. Then

b b _ kb b
Bt = (Evvtn = Vist)’ = sl = > et by (15), (20) and (19)
{jeplj<d
_ kb b b .. .
=s5e - Z AjVitgn ~ Z OjViin (disjoint union)
{jep|j<t, j+knep) (jep| j<t, j+kneq)
_ kb b _ b
=Se Z @) € jrkn Z @jViikn by (17)
{jep| j<t, j+knep) {jep| j<ti, j+knegq)
_ kb b b b C . .
=56 - Z i€y + Z @j (e j+kn —V j+kn) (disjoint union)
Leplj<t) {jep| j<t. j+hneq)
kb kb b
= sk — Z saje+ Z ;b by (20) and (15)
{jeplj<d {jep| j<t, j+kneq}
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b
— Kk b
=g [@L— Z ajej] + Z ajbj+kn

{jeplj<d {jep|j<u, j+kneq)

_ kb b
=s"b) + Z @b,

(18) and (15)

{jep|j<t, j+kneq)
O

Example 21. Continuing with Example 19, where ¢ = {6,9, 11,12, 14, 15} and § = {6, 11} and
p=1{1,2,3,4,5,7,8,10, 13}, we have:

by = shy+1by,

B, = §*by+1by+0b), 1)
B, = B}, +3b)+(=1)b}

by = B+ (=B, + 16}, +08,.

In the next lemma, we show that the subset of row-echelon syzygies indexed by the n — 1
basic non-pivotal indices is sufficient to generate syz(a).

Lemma 22. Let g denote the set of basic non-pivotal indices of A. Then
syz(a) = <b'; |re 51)]1([5] .

Proof. Since {b;|i € g} comprise a basis of ker(A), we know from Lemma 13 that syz(a) =
<b? lie q>Kls| . Equation (16) implies that for all i € g, there exist constant 8’s such that

B =50+ Y B, (22)
{req|r<i}

where ¢ € g is equal to i modulo n. It follows that inductively we can express b'l? as a K[s]-linear
combination of {b,|r € g} and the conclusion of the lemma follows. O

Example 23. Continuing with Example 19, we have from (21):

by = (s+1)b.,

b, = (sP+s+1)b+0b,,
b, = 3b)+(s—1b),
By = (S$+8+s+ Db +(=Db),.

We next establish linear independence of the corresponding leading vectors:
Lemma 24. The leading vectors LV(B’), r € § are linearly independent over K.

Proof. The leading vector LV(bE) is equal to the last non-zero n-block in the n(d + 1)-vector b,.
By construction, the last non-zero element of b, is equal to 1 and occurs in the r-th position. Then
LV(b';) has 1 in 7 = (» mod n) (the reminder of division of r by n) position. All elements of
LV(bE) positioned after 7 are zero. Since all integers in § are distinct (modulo n), LV(bE), reg
are linearly independent over K.
O
15



Example 25. The basic non-pivotal columns of the matrix V in Example (19) are columns 6
and 11. We previously computed

b6 =€6 — Vg = [07 1, _1’ _1707 I,O,O,O’O’O’O’O’O’O]T
by = e —viy =[1,2,-3,-2,2,0,-2,1,0,-1,1,0,0,0,0]".
The last non-zero n-blocks of bg and b;; are [-1,0, 1] and [-1, 1, 0], respectively. These blocks

coincide with LV(bg) and LV(b'il) computed in Example 19. We observe that these vectors are
linearly independent, as expected.

Lemma 26. Let polynomial vectors hy, ..., h € K[s]" be such that LV (hy), ..., LV(h) are inde-
pendent over K. Then hy, ..., h are independent over K[s].

Proof. Assume that hy,...,h; are linearly dependent over K[s], i.e. there exist polynomials
g1,...,8 € K[s], not all zero, such that

> gihi=0. 23)

i=1

achieved. Then (23) implies
D LC(g) LV(hy) = 0,

iel
where LC(g;) is the leading coefficient of g; and is non-zero for i € 7. This identity contradicts
our assumption that LV (hy), ..., LV(h;) are linearly independent over K. O

Theorem 27 (Main). The set u = {bﬁ | ¥ € g} is a pu-basis of a.
Proof. We will check that u satisfies the three conditions of a u-basis in Definition 5.

1. From Lemma 13, there are exactly n — 1 elements in g. Since b, # b,, forr; # r; € g and
since b is an isomorphism, the set u# contains exactly n — 1 elements.

2. From Lemma 24, we know that the leading vectors LV(b"), r € § are linearly independent
over K.

3. Lemma 22 asserts that the set u generates syz(a). By combining Lemmas 24 and 26, we
see that the elements of this set are independent over K[s]. Therefore u is a basis of syz(a).

O

Remark 28. We note that by construction the last non-zero entry of vector b, is in the r-th

position, and therefore
deg(b?) = [r/n] - 1.

Thus we can determine the degrees of the u-basis elements prior to computing the u-basis from
the set of basic non-pivotal indices.

16



Example 29. For the row vector a given in the running example (Example 6), we determined
that § = {6, 11}. Therefore, prior to computing a u-basis, we can determine the degrees of its
members: u; =[ 6/3]—1=1andu, =[ 11/3] -1 = 3. We now can apply Theorem 27 and the
computation we performed in Example 19 to write down a p-basis:

-5 1-2s5s-2s% =53
1 andb?lz 2425+ 52+ 57
-1+ -3

be

We observe that our degree prediction is correct.

5. Algorithm

In this section, we describe an algorithm for computing u-bases of univariate polynomials.
We assume that the reader is familiar with Gauss-Jordan elimination (for computing reduced
row-echelon forms and in turn null vectors), which can be found in any standard linear alge-
bra textbook. The theory developed in the previous sections can be recast into the following
computational steps:

1. Construct a matrix A € K@D@*D \whose null space corresponds to syz,(a).
2. Compute the reduced row-echelon form E of A.

3. Construct a matrix M € K[s]™"~D whose columns form a u-basis of a, as follows:

(a) Construct the matrix B € K"@*+Dx(=1 whogse columns are the null vectors of E cor-
responding to its basic non-pivot columns:

[ ] qu’ j = 1
e B, j=-E. forallr
e All other entries are zero

where p is the list of the pivotal indices and g is the list of the basic non-pivotal
indices of E.

(b) Translate the columns of B into polynomials.

However, steps 2 and 3 do some wasteful operations and they can be improved, as follows:

o Note that step 2 constructs the entire reduced row-echelon form of A, even though we only
need n — 1 null vectors corresponding to its basic non-pivot columns. Hence, it is natural
to optimize this step so that only the n — 1 null vectors are constructed: instead of using
Gauss-Jordan elimination to compute the entire reduced row-echelon form, one performs
operations column by column only on the pivot columns and basic non-pivot columns.
One aborts the elimination process as soon as n — 1 basic non-pivot columns are found,
resulting in a partial reduced row-echelon form of A.

o Note that step 3 constructs the entire matrix B even though many entries are zero. Hence,
it is natural to optimize this step so that we bypass constructing the matrix B, but instead
construct the matrix M directly from the matrix E. This is possible because the matrix £
contains all the information about the matrix B.

17



Below, we describe the resulting algorithm in more detail and illustrate its operation on our
running example (Example 6).
u-Basis Algorithm

Input: a # 0 € K[s]", row vector, where n > 1 and K is a computable field

Output: M e K[s]™D such that its columns form a u-basis of a
1. Construct a matrix A € K®Dxnd+D) ywhose null space corresponds to syz,(a).

(a) d «— deg(a)

(b) Identify the row vectors ¢y, ...,cq € K" such thata = co + ¢y s + - - - + cgs?.
o .
©A—1l¢ 1 ¢

Cq |
2. Construct the “partial” reduced row-echelon form E of A.

This can be done by using Gauss-Jordan elimination (forward elimination, backward elim-
ination, and normalization), with the following optimizations:
o Stop the forward elimination as soon as n — 1 basic non-pivot columns are detected.
e Skip over periodic non-pivot columns.

e Carry out the row operations only on the required columns.

3. Construct a matrix M € K[s]™"D whose columns form a u-basis of a.

Let p be the list of the pivotal indices and let g be the list of the basic non-pivotal indices
of E.

(a) Initialize an n X n — 1 matrix M with O in every entry.
(b) Forj=1,...,n—1
7 rem(qj - 1,n) +1

k « quo(cjj— 1,n)
M,; « M, +s*
(c) Fori=1,...,|p|
re—rem(p;—1,n)+1
k < quo(p; — 1,n)
Forj=1,...,n-1
Mr,j — Mr,j —E,"qjsk

Theorem 30. Let M be the output of the u-Basis Algorithm on the input a € K[s]". Then the

columns of M form a u-basis for a.
18



Proof. In step 1, we construct the matrix A whose null space corresponds to syz,(a) as has been
shown in Lemma 12. In step 2, we perform partial Gauss-Jordan operations on A to identify the
n — 1 basic non-pivot columns of its reduced row-echelon form E. In Lemma 18, we showed
that there are exactly n — 1 such columns. In step 3, we convert the basic non-pivot columns
of E into polynomial vectors, using the b-isomorphism described in Section 3, and return these
polynomial vectors as columns of the matrix M. From Theorem 27 it follows that the columns
of M indeed form a u-basis of a, because they satisfy the generating, leading vector, and linear
independence conditions of Definition 5 of a u-basis. O

Example 31. We trace the algorithm (with partial Gauss-Jordan) on the input vector from Ex-
ample 6:
a:[ l+2+s* 1+s5+s% 1+s ]e@[s]3

1. Construct a matrix A € K®4*Dx1d+D) yhose null space corresponds to syz,(a):
(@) d —4

(b) CO,C],Cz,C3,C4(—[1 1 1],[000],[1 00],[0 1 O],[l 1 1]
- | B

_—0 = O =
—_—— O O
-0 O O =

(€) A e—

—_— O = O =
—_—_ O O =
- O O O
—_— O = O =
—_—— O O
_ o O O =
—_— O = O =
—_—_— 0 O -
-_o O O =

—_ 0 = O —=
—_——_ 0 O =
-_ o O O =

A blank indicates that the entry is zero due to structural reasons.
2. Construct the “partial” reduced row-echelon form E of A:
For this step, we will maintain/update the following data structures.

e FE: the matrix initialized with A and updated by the Gauss-Jordan process.
e p: the set of the pivotal indices found.
e g: the set of the basic non-pivotal indices found.
e O: the list of the row operations, represented as follows.
@i,7") :swap E;; with E; ;
(w,i"): Eje—E;j+w-Ey;

where j is the current column index.

We will also indicate the update status of the columns of E using the following color

codings.
gray :  not yet updated
blue : pivot
red :  basic non-pivot
brown : periodic non-pivot

Now we show the trace.
19



(a) Initialize.
p—1{}
g—1{}

E

011
®) jo 1

—_0 =k O -

0 0 O
1 0 O
0 1 0

Carry out the row operations in O on column 1. (Nothing to do.)

_0 = O =

1
0
0
1
1

_o O O =

—_—_0 O
=

Identify column 1 as a pivot.

p — {1}
g—{}

I 1 1
0 0 O
1 0 O
0O 1 O

Carry out the row operations (3, -1, 1), (5,—1, 1) on column 1.

Append (3,—1,1),(5,-1,1) to O.

0 —[(3,-1,1),5,-1,1)]

(€) je=2

—_ O = O =

0
0

_o O O =

Carry out the row operations in O on column 2.

20

0 0 O
1 0 O
0O 1 O




(d

0 o 1 1 1
-1 0/ 0 0 O 1 1 1
1 ol 1 0 0ol 0 0 of 1
E — 0 11 0 1 o/ 1 0 0| o0
1 1 1] 0 1 o 1

Identify column 2 as a pivot.
p— {12}
g—1{

Carry out the row operations (3, 2), (4, 1,2) on column 2.

of 1 0 0/ 0 0 0] 1
E — 1l 0o 1L of 1 0 0| o0
1 1 1] 0 1 0] 1

1 1 1] 0

1

Append (3,2),(4,1,2) to O.

0 —[(3,-1,1),(5,-1,1),(3,2),(4,1,2)]
je—3

Carry out the row operations in O on column 3.

1 1 1
-1 -1 1 1 1
o0 0 0 o I 1 1

-1 1 0 0] 0 0 Of 1

E — o0 0 1 0o 1L O 0] O

1 1 1] 0

Identify column 3 as a pivot.

p—{1,2,3}

g —1{}

Carry out the row operation (4, 3) on column 3.
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(e)

®

—_0 =k O =

—_— O

—_ O O

0 O
1 0
0 1
1 1

0+—[@3,-1,1),5,-1,1),(3,2),(4,1,2),(4,3)]

1 1 1
-1 -1
-1
E —
Append (4,3) to O.
je—4

Carry out the row operations in O on column 4.

E «—

Identify column 4 as a pivot.

1

1 1
-1 -1
-1

p<_ {1’25354}

g —1{}

—_— O = = O

Carry out the row operation (6, —1,4) on column 4.

1

1 1
-1 -1
-1

Append (6,-1,4) to O.
0O —[(3,-1,1),(5,-1,1),(3,2),(4,1,2),(4,3), (6, -1,4)]

Jje5

1 1
0 0
1 0

Carry out the row operations in O on column 5.
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€]

-1 -1/ 0 0 1
-1 1 0 O] 1 1 1
1 1 0 0 O Oof 1 1 1
E — 1 of 1 0 O 0O O O 1 1 1
o 11 0 1 o 1 O O 0 0 O

Identify column 5 as a pivot.
p — {1’2’3’4’5}
g—{}

No row operations needed on column 5.

1 1 1
-1 -1/ 0 0 1
-1 1 0 O] 1 1 1
1 1 0 0 O Of I 1 1
E — 1 of 1 0 O 0 O O 1 1 1
Ifo 1 0 1 0 0 0 0 O
1 1 1) 0 1 Oof 1 O O

Nothing to append to O.
0 —I[G,-1,1),5,-1,1),3,2),(4,1,2),(4,3),(6,-1,4)]
Jje—06

Carry out the row operations in O on column 6.

1 1 1
-1 -1{ 0 0 0
-1 1 0 O] 1 1 1
1 1 1} 0 0 O 1 1 1
E — 1 04 1 0 O O O O 1 1 1
0 o 1. 0o, 1 0 O0f 0 0 O
1 1 1, 0 1 O 1 O O
1 1 11 0 1 0

11 1

Identify column 6 as a basic non-pivot: column 6 is non-pivotal because it does not
have non-zero entries below the 5-th row and therefore it is a linear combination of
the five previous pivotal columns: E.¢ = —E.; + E.3 + E.4. Column 6 is basic because
its index is minimal in its equivalence class g/(3).

p<«—{1,2,3,4,5}
g < {6}

No row operations needed on column 6.
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(b

@

E

Nothing to append to O.

1 1
-1 -1
-1

—_—— O O

o = O O

0+—[3,-1,1),(5,-1,1),(3,2),(4,1,2),(4,3),(6,-1,4)]

je1

Carry out the row operations in O on column 7.

E «—

1

1 1
-1 -1
-1

_—— O O

O = O O

— O = O =

0

0
0

Identify column 7 as a pivot.
p — {15253545597}

g «— {6}
Carry out the row operations (7, 6) on column 7.
11
-1 -1 0 0] 1
-1 o o 1 1 1
1 1 0 O Oof 1 1 1
E — 1 o 1 0 O 0 O O I 1 1
1 1 00 1 0 0 0 0 O
I 1 0 1 Oof 1 O O
1 1 If 0 1 O
L 1 1 1
Append (7,6) to O.

O —1[@3,-1,1),(5,-1,1),(3,2),(4,1,2),(4,3),(6,-1,4),(7,6)]
Jje—38

Carry out the row operations in O on column 8.
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1 1 1
-1 -1 0 0 0] 1 1
-1l 1 0 o 1 1 1
1 1 110 0 of 1 1 1

E — 1 ol 1 0 of 0 0 O 1 1 1
1 1 0/ 1 0 0/ 0 0 0
1 110 1 ol 1 0 o0
1 1 11 0o 1 0
11 1

Identify column 8 as a pivot.
p«—{1,2,3,4,5,7,8}

g — {6}
No row operations needed on column 8.
[ 111
-1 -1 0 O O] 1 1
-1 1 0 Of 1 1 1
1 1 1) 0 0 Of 1 1 1

E — 1 ol 1 0 0of 0 0 O 1 1 1
1 1 O 1 O Of 0 0 O
1 10 1 Oof 1 0 O
1 1 Il 0 1 O
1 1 1

Nothing to append to O.

0 —[(3,-1,1),(5,-1,1),(3,2),(4,1,2),(4,3),(6,-1,4),(7,6)]
G Jje—9

Identify column 9 as periodic non-pivot.

11 1
-1 -1 0 0 O] 1 1
-1 1 0 0O 1 1 1
11 14 0 0 O 1 1 1
E — I o1 0 O O O Of 1 1 1
1 1 0,1 0 0O 0 O O
r 10 1 0o 1 0 0
1 1 1) 0 1 0
L 11 1
(k) j—10

Carry out the row operations in O on column 10.

25




@

E

Identify column 10 as a pivot.

1 1
-1 -1
-1

_—— O O

p«—{1,2,3,4,5,7,8,10}

g «— {6}

o = O O

—_— O = =

No row operations needed on column 10.

1

E

Nothing to append to O.

1 1
-1 -1
-1

_—— O O

O = O O

_— O = =

0+—[3,-1,1),5,-1,1),(3,2),(4,1,2),(4,3),(6,-1,4),(7,6)]

je—11

Carry out the row operations in O on column 11.

1

1 1
-1 -1
-1

—_—— O O

O = O O

e = e
—_—— O O = =
—_—_- 0 O O = O

Identify column 11 as a basic non-pivot.
p«<—{1,2,3,4,5,7,8,10}

g «—1{6,11}

No row operations needed on column 11.
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1 1 1
-1 -1 0 0 0] 1 1 0 0
-1l 1 0o o 1 1 1|1 1
1 1 110 0 0ol 0 0 1
E — 1 0o/ 1 0 of 0 0 O 1 1 1
1 1 00 1 0ol 0 0 0
1 1|1 0 0o/ 1 0 0
1 1 110 1 0
11 1

Nothing to append to O.
0 — [(3’ _1’ 1)7 (57 _1’ 1)’ (3, 2)7 (49 17 2)9 (4’ 3)’ (6’ _1?4)9 (7’ 6)]
We have identified n — 1 basic non-pivot columns, so we abort forward elimination.

(m) Perform backward elimination on the pivot columns and basic non-pivot columns.

1 0 -1
-1 1 2
-1 -1 1 -3
1 1 0 2 1
E — 1 0 0 -2 ol 1 1 1
1 0 2 000 0 0

L | S
(n) Perform normalization on the pivot columns and basic non-pivot columns.

1 0 -1
1 -1 -2
1 1 1 3
1 1 0 2 1
E — 1 0 0 -2 ol 1 1 1
1 0 2 000 0 0

3. Construct a matrix M € K[~V whose columns form a u-basis of a:

[0 0
@ M—|0 O
10 0
[0 O
® M—|0 s
| s O
—s 1-25-2s% -5
(c) M «— 1 2425+ 52+ 5
| -1+ -3
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6. Theoretical Complexity Analysis

In this subsection, we analyze the theoretical (asymptotic worst case) complexity of the u-
basis algorithm given in the previous section. We will do so under the assumption that the time
for any arithmetic operation is constant.

Theorem 32. The complexity of the u-basis algorithm given in the previous section is
od*n + d* + n?).
Proof. We will trace the theoretical complexity for each step of the algorithm.

1. (a) Todetermine d, we scan through each of the n polynomials in a to identify the highest
degree term, which is always < d. Thus, the complexity for this step is O(dn).

(b) We identify n(d + 1) values to make up cy, . . ., cy. Thus, the complexity for this step
is O(dn).

(c) We construct a matrix with (2d + D)n(d + 1) entries. Thus, the complexity for this
step is O(d*n).

2. With the partial Gauss-Jordan elimination, we perform row operations only on the (at
most) 2d + 1 pivot columns of A and the n — 1 basic non-pivot columns of A. Thus, we
perform Gauss-Jordan elimination on a (2d + 1) X (2d + n) matrix. In general, for a k x [
matrix, Gauss-Jordan elimination has complexity O(k*l). Thus, the complexity for this
step is O(d*(d + n)).

3. (a) Wefill O into the entries of an n X (n — 1) matrix M. Thus, the complexity of this step
is O(n?).
(b) We update entries of the matrix n— 1 times. Thus, the complexity of this step is O(n).

(c) We update entries of the matrix |p| X (n — 1) times. Note that |p| = rank(4) < 2d + 1.
Thus the complexity of this step is O(dn).

By summing up, we have
0(dn+dn+d2n+d2(d+n) +n? +n+dn) = O(d2n+d3 +n2)
O

Remark 33. Note that the n? term in the above complexity is solely due to step 3(a), where
the matrix M is initialized with zeros. If one uses a sparse representation of the matrix (storing
only non-zero elements), then one can skip the initialization of the matrix M. As a result, the
complexity can be improved to O (d2n + d3).

Remark 34. [Comparison with Song-Goldman Algorithm] As far as we are aware, the theoret-
ical complexity of the algorithm by Song and Goldman Song and Goldman (2009) has not yet
been published. Here we roughly estimate the complexity of this algorithm to be O(dn® + d*n®).
It will require a more rigorous analysis to prove/refute this apparent complexity, which is beyond
the scope of this paper. For the readers’ convenience, we reproduce the algorithm published in
Song and Goldman (2009) on pp. 220 — 221 in our notation, before analyzing its complexity.

Input: a € K[s]" with ged(a) = 1
Output: A u-basis of a
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1. Create the r = C7 “obvious” syzygies as described in Lemma 7 and label them uy, ..., u,.
2. Setm; = LV(u;) and d; = deg(u;) fori=1,...,r.

3. Sortd; sothatd; > d, > ... > d, and re-index u;, m;.

4. Find real numbers a1, as, ..., a, such that aym; + aymy + - - - + a,m, = 0.

5. Choose the lowest integer j such that a; # 0, and update u; by setting

dj-d,

ujzajuj+aj+1sdf_d”‘uj+1+-~~+oz,s Uy.

If u; = 0, discard u; and set r = r — 1; otherwise set m; = LV(u;) and d; = deg(u;).

6. If r = n — 1, then output the n — 1 non-zero vector polynomials uj,...,u,—; and stop;
otherwise, go to Step 3.

Finding a null vector in step 4 by partial Gauss-Jordan elimination requires performing row
operations on (at most) n + 1 columns. Since each column contains » entries, we conclude that
this step has complexity O(n?). Performing the “update” operation in step 5 of the algorithm has
complexity O(dn?). Step 6 implies that, in the worst case, the algorithm repeats steps 4 and 5 at
most (d @ - d) times. The reason is as follows. Since the algorithm starts with the C7} = @
obvious syzygies and each has degree < d, the (worst case) total degree of the syzygies at the
beginning of the algorithm is d # The algorithm ends only when the total degree is d. If each

repetition of steps 4 and 5 reduces the total degree by 1, then the steps are repeated (d @ - d)
times. Thus, the total computational complexity appears to be O(dn> + d*n*).

7. Implementation, experiments, comparison

We implemented the u-basis algorithm presented in this paper and the one described in Song-
Goldman Song and Goldman (2009). For the sake of simplicity, from now on, we will call these
two algorithms HHK and SG. In Section 7.1, we discuss our implementation. In Section 7.2, we
describe the experimental performance of both algorithms. An experimental timing corresponds
to a point (d,n, t), where d is the degree, n is the length of the input polynomial vector, and ¢
is the time in seconds it took for our codes to produce the output. For each algorithm, we fit
a surface through the experimental data points. Our fitting models are based on the theoretical
complexities obtained in Section 6. In Section 7.3, we compare the performance of the two
algorithms.

7.1. Implementation

We implemented both algorithms (HHK and SG) in the computer algebra system Maple Bernardin
et al. (2015). The codes and examples are available on the web:

http://www.math.ncsu.edu/~zchough/mubasis.html
We post two versions of the code:
program_rf : over rational number field Q.

program_ff : over finite field F, where p is an arbitrary prime number.
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Now we explain how the two algorithms (HHK and SG) have been implemented.

o Although both algorithms could be written in a non-interpreted language such as the C-
language, making the running time significantly shorter, we implemented both algorithms
in Maple Bernardin et al. (2015) for the following reasons.

1. Maple allows fast prototyping of the algorithms, making it easier to write and read
the programs written in Maple.

2. Itis expected that potential applications of y-bases will often be written in computer
algebra systems such as Maple.

e Both algorithms contain a step in which null vectors are computed (step 2 of HHK and step
4 of SG). Although Maple has a built-in routine for computing a basis of the null space
for the input matrix, we did not use this built-in routine because we do not need the entire
null basis, but only a certain subset of basis vectors with desired properties, consisting of
n — 1 vectors for HHK and a single vector for SG. For this reason, we implemented partial
Gauss-Jordan elimination.

o For the rational field implementation of the SG algorithm, we produced the null vector in
step 4 with integer entries in order to avoid rational number arithmetic (which is expensive
due to integer gcd computations) in the subsequent steps of the algorithm.

o Dense representations of matrices were used for both algorithms. As shown in Remark 33,
it is easy to exploit sparse representations for HHK, but it was not clear how one could
exploit sparse representations for SG. Thus, in order to ensure fair comparison, we used
dense representations for both algorithms.

7.2. Timing and fitting
We explain the setup for our experiments so that the timings reported here can be reproduced
independently.

e The programs were executed using Maple 2015 version running on Apple iMac (Intel i
7-2600, 3.4 GHz, 16GB).

e The inputs were randomly-generated: for various values of d and n, the coefficients were
taken randomly from s, with a uniform distribution.

o In order to get reliable timings, especially when the computing time is small relative to the
clock resolution, we ran each program several times on the same input and computed the
average of the computing times.

e The execution of a program on an input was cut off if its computing time exceeded 120
seconds.

Figure 1 shows the experimental timing for the HHK algorithm, while Figure 2 shows the exper-
imental timing for the SG algorithm. The algorithms were run on randomly-generated examples
with specified d and n, and they ran in time ¢. For each figure, the axes represent the range of
values d = 3,...,200, n = 3,...,200, and ¢t = 0,..., 120, where ¢ is the timing in seconds.
Each dot (d, n, t) represents an experimental timing.
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Figure 1: HHK algorithm timing Figure 2: SG algorithm timing

The background gray surfaces are fitted to the experimental data. The fitting model is based
on the theoretical complexities from Section 6. The fitting was computed using least squares.
For HHK, based on Theorem 32, we chose a model for the timing, ¢ = a1d*n + od® + asn?,
where a’s are unknown constants to be determined. After substituting the experimental values
(d,n,t), we obtain an over-determined system of linear equations in the a’s. We find a’s that
minimize the sum of squares of errors. For SG, we used the same procedure with the timing
model t = 81dn® + ,d*n”* based on Remark 34.

We generated the following functions:

thnk ~ 1078 T4dPn+12d° +12n% (24)
ts¢ ~ 1077-(2.6dn’ +0.6 d*n*) (25)

For our experimental data, the residual standard deviation for the HHK-timing model (24) is
0.686 seconds, while the residual standard deviation for the SG-timing model (25) is 11.886
seconds.

We observe from Figures 1 and 2 that for a fixed d, the HHK algorithm’s dependence on n
is almost linear, while the SG algorithm’s dependence on # is highly nonlinear. In fact, for the
latter, the dependence is so steep that the algorithm was unable to terminate in under 120 seconds
for most values of n, thus explaining the large amount of blank space in Figure 2. For a fixed n,
the HHK algorithm’s dependence on d is nonlinear, while the SG algorithm’s dependence on d
is almost linear.

7.3. Comparison

Two pictures below represent performance comparisons.

o Figure 3 shows the fitted surfaces from Figures 1 and 2 on the same graph. The axes
represent the range of valuesn = 3,...,200,d = 3,...,200,and r = 0,..., 120, where ¢ is
the timing of the algorithms in seconds.
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Figure 3: HHK (red) and SG (blue). Figure 4: Tradeoff graph

o Figure 4 shows a tradeoft graph for the two algorithms. The curve in the figure represents
values of d and n for which the two algorithms run with the same timing. Below the curve,
the SG algorithm runs faster, while above the curve, the HHK algorithm runs faster. The
ratio of the dominant terms in the fitted formulae is d : n*. This ratio manifests itself in the
shape of the tradeoff curve presented in Figure 4.
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Figure 5: n=7 Figure 6: d = 50

From Figure 3, we observe that for a fixed d, as n increases the HHK algorithm vastly out-
performs the SG algorithm. In contrast, for a fixed value of n, as d increases the SG algorithm
outperforms the HHK algorithm. The order by which SG runs faster is less than the order by
which HHK runs faster for fixed d and increasing n. We underscore this observation by dis-
playing two-dimensional slices of Figure 3. Figure 5 represents the slice in the d-direction with
n = 7, while Figure 6 represents the slice in the n-direction with d = 50. As before, HHK is
represented by red and SG by blue.
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8. Discussion

In this section, we elaborate on some topics that were briefly discussed in the Introduction and
Section 2 and discuss a natural generalization of the u-basis computation problem — a problem
of computing minimal bases of the kernels of m X n polynomial matrices.

The original definition and proof of existence: The original definition of a u-basis appeared on
p 824 of a paper by Cox, Sederberg, and Chen Cox et al. (1998b) and is based on the “sum of
the degrees” property (Statement 2 of Proposition 4). The definition also mentions an equivalent
“reduced representation” (Statement 4 of Proposition 4). The proof of the existence theorem
(Theorem 1 on p. 824 of Cox et al. (1998b)) appeals to the celebrated Hilbert Syzygy Theorem
Hilbert (1890) and utilizes Hilbert polynomials, which first appeared in the same paper Hilbert
(1890) under the name of characteristic functions. The definition of u-basis in terms of the
degrees, given in Cox et al. (1998b), is compatible with the tools that have been chosen to show
its existence.

The homogeneous version of the problem: It is instructive to compare the inhomogeneous and
homogenous versions of the problem. In fact, in order to invoke the Hilbert Syzygy Theorem
in the proof of the existence of a u-basis, Cox, Sederberg, and Chen restated the problem in the
homogeneous setting (see pp. 824-825 of Cox et al. (1998b)).

Leta = [a;(x,y),...,a,(x,y)] be a row vector of n homogeneous polynomials over a field
K, each of which has the same degree. As before, a syzygy of a is a column vector A =
[h1(x,Y), ..., h,(x,y)]T of polynomials (not necessarily homogeneous), such that &# = 0. The
set syz(a) is a module over K[x,y], and the Hilbert Syzygy Theorem implies that it is a free
module of rank n — 1 possessing a homogeneous basis. Let n — 1 homogeneous polynomial
vectors #(x,y),...,u,—1(x,y) comprise an arbitrary homogeneous basis of syz(a). Define de-
homogenizations: a(s) = [a;(s),...,a,(s)], where a;(s) = a;(s,1) € K[s], i = 1,...,n and
uj(s) = a;(s,1) € K[s]", j=1,...,n—1. An argument, involving Hilbert polynomials on p. 825
of Cox et al. (1998b), shows that uy, ..., u,_; is a u-basis of syz(a).

Let us now start with a polynomial vector a(s) = [ai(s),...,a,(s)] € K[s]" of degree d in
the sense of Definition 2, and consider its homogenization a = [a;(x,y),...,a,(x,y)], where
ai(x,y) = yd a; (;—‘), i =1,...,n. Itis not true that homogenezation of an arbitrary basis of syz(a)

produces a basis of syz(a). Indeed, let u; and u, be the columns of matrix M in Example 6. Then
u; + up and u, is a basis of syz(a), with each vector having degree 3. Their homogenizations
mz and i; are homogeneous polynomial vectors of degree 3, and, therefore, they can not
possibly generate a homogeneous vector i) (x,y) = yu; (f) = [~x, y, x — y]” of degree 1, which
clearly belongs to syz(a). A rather simple argument that utilizes the “reduced representation”
property (Statement 4 of Proposition 4) can be used to show that for an arbitrary non-zero vector
a € K[s]", homogenization of any u-basis of syz(a) produces a homogeneous basis of syz(a).

The above discussion can be summarized in the following statement: the set of homogeneous
bases of syz(a) is in one-to-one correspondence with the set of y-bases of syz(a), where a € K[s]
is the dehomogenization of @ € K[x, y]. Therefore, the algorithm developed in this paper can be
used to compute homogeneous bases of syz(a).

u-basis algorithms and gcd computation: In contrast to the algorithm developed by Song and
Goldman in Song and Goldman (2009), the algorithm presented in this paper produces a u-basis
even when the input vector a has a non-trivial greatest common divisor. Moreover, once a p-basis
is computed, one can immediately find gcd(a) using Statement 5 of Proposition 4. Indeed, let &
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denote the outer product of a u-basis uy, ..., u,—1. If M is the matrix generated by the algorithm,
then ; = (—1)'|M;|, where M; is an (n — 1) X (n — 1) submatrix of M constructed by removing
the i-th row. By Statement 5 of Proposition 4, there exists a non-zero « € K such that

a = a ged(a) h.

Leti € {1,...,n} be such that a; is a non-zero polynomial. Then gcd(a) is computed by long
division of a; by h; and then dividing the quotient by its leading coefficient to make it monic.
In comparison, the algorithm developed in Song and Goldman (2009) produces a u-basis of a
multiplied by gecd(a). From the output of this algorithm and Statement 5 of Proposition 4, one
finds gcd(a)"~2. Song and Goldman discuss how to recover ged(a) itself by repeatedly running
their algorithm. They also run computational experiments to compare the efficiency of computing
gcd by iterating the SG u-basis algorithm versus the standard Euclidean algorithm. Investigation
of the efficiency of computing gcd by using the HHK u-basis algorithm and a long division can
be a subject of a future work.

Kernels of mxn polynomial matrices: A natural generalization of the u-basis problem is obtained
by considering kernels, or nullspaces, of m X n polynomial matrices of rank m. A basis of the
nullspace is called minimal if the “minimal degree” Statement 2 of Proposition 4 is satisfied
(with n — 1 replaced by n — m). One can easily adapt the argument in the proof of Theorem 2 in
Song and Goldman (2009) to show that, in this more general setting, Statement 2 is equivalent
to the “independence of the leading vectors” Statement 1 and to the “reduced representation”
Statement 4 of Proposition 4. One can also show with an example that the “sum of the degrees”
Statement 3 (with the degree of a polynomial matrix defined to be the maximum of the degrees
of its entries) is no longer equivalent to Statements 1 and 4. There is a large body of work on
computing minimal bases (see for instance Beelen (1987), Antoniou et al. (2005), Zhou et al.
(2012) and references therein). This research direction seems to be developing independently of
the body of work devoted to u-bases. The algorithm presented in this paper can be generalized to
compute minimal bases of the kernels of m X n polynomial matrices. The details and comparison
with existing algorithms will be the subject of a forthcoming work.
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computation of minimal nullspaces of m X n polynomial matrices. We are grateful to the anony-
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