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Many materials that are out of equilibrium can ‘learn’
one or more inputs that are repeatedly applied.
Yet, a common framework for understanding such
memories is lacking. Here, we construct minimal
representations of cyclic memory behaviours as
directed graphs, and we construct simple physically
motivated models that produce the same graph
structures. We show how a model of worn grass
between park benches can produce multiple transient
memories—a behaviour previously observed in dilute
suspensions of particles and charge-density-wave
conductors—and the Mullins effect. Isolating these
behaviours in our simple model allows us to
assess the necessary ingredients for these kinds
of memory, and to quantify memory capacity. We
contrast these behaviours with a simple Preisach
model that produces return-point memory. Our
analysis provides a unifiedmethod for comparing and
diagnosing cyclic memory behaviours across different
materials.

1. Introduction
Materials that are out of equilibrium can sometimes form
memories of their past. Rubber and rocks may remember
the largest loading applied to them [1–3]; glasses may
remember aspects of their relaxation [4–7]; a sheet of
plastic can remember how severely [8] or how long [9] it
was crumpled. In each of these systems, informationmay
be stored and then retrieved at a later time if there is some
established protocol for doing so. Despite the simplicity
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Figure 1. Minimal transition graph exhibiting MTM, starting from a featureless state. States are labelled with the memories
they store; arrows are labelled with the amplitude applied during a given cycle (γ = 1 or 2) and point to the resulting state.
The state {2}∗ cannot have a memory of 1written in it. (Online version in colour.)

of this idea and the many common features shared by diverse examples [10], there is presently no
overarching framework for understanding memories in materials.

One promising place to start building such a framework is in systems where the driving may
be divided into cycles. Examples include a repeatedly sheared granular material or amorphous
solid [11–14], or a set of magnetic domains in an oscillating external field [15,16]. Here we distill
the essential aspects of several cyclic memory behaviours into simple transition graphs, which
represent the different memory-encodingmacrostates and the transitions between them.We show
that this is a succinct and powerful way to compare these various behaviours, and we highlight
how this approach can help diagnose memory behaviours in experiments.

Some physical systems lend themselves naturally to a graph representation [17] because they
are clearly discrete (e.g. spin systems), while others are just beginning to be described in this way
(e.g. amorphous solids under quasi-static shear [17,18]). One question that arises in this effort
is whether a behaviour called multiple transient memory (MTM) may be captured with a small
set of discrete states. This behaviour is observed in charge-density wave conductors’ memory
of electrical pulse duration [19,20] and non-Brownian suspensions’ memory of the amplitude
of oscillatory shear [21–24]. When these systems are driven cyclically, they self-organize into
steady states that store the repeated value (i.e. the pulse duration or the strain amplitude γ0).
Moreover, when driven with multiple amplitudes on successive cycles, they display the following
properties: (1) during the transient, multiple γi may be encoded; (2) the order in which the values
are applied is not crucial—introducing a new γi during the transient may degrade the memories
of previous values but does not erase them; (3) when a steady state is reached, it can only retain
memories of the smallest and largest γi that were applied; and remarkably, (4) a small amount of
noise allows all memories to be retained indefinitely [19–23].

Our approach is to consider small sets of discrete states that obey a given memory behaviour.
Figure 1 shows five states and transitions that exhibit properties 1–3 of MTM, where the states are
labelled with the memories they store. The system starts in a memoryless state, {}. During each
cycle, an amplitude of either γ0 = 1 or 2 is applied. Hence, there are two arrows emanating from
each state, labelled with the driving amplitude for that transition. (An arrow may point to the
state where it started if the driving does not change the state.)

Consider first the driving sequence: γ0 = 2, 1, 2, 1, 2, 1, . . .. Following the transitions shown
in figure 1, this leads to a series of memory states: {2}, {1, 2}, {2}∗, {2}∗, {2}∗, {2}∗, . . ., where the
absorbing state is denoted with a ∗ to indicate that it is incapable of having a memory of
1 written in it. The state {1, 2} is obtained once, demonstrating that multiple memories may
be encoded in the transient (Property 1). To see that Property 2 holds, one may consider a
different driving sequence: γ0 = 1, 2, 1, 2, 1, 2, . . ., which also reaches the state {1, 2} during the
transient. Any repeated sequence containing γ0 = 1 and 2 eventually leads to the absorbing
state {2}∗, satisfying Property 3. (For simplicity, we do not denote the memory of the smallest
input, which for a suspension driven cyclically between γ = 0 and γi corresponds to a ‘trivial’
memory written at γ = 0 [23]; here this memory would be present in all but the featureless
state, {}.)

While this description is useful in demonstrating properties 1–3 of MTM in a minimal set of
discrete states, it is somewhat artificial; we did not provide a physical reason for this arrangement
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of states or the transitions. Thus, in this paper we also describe a novel, simple, and physically
motivated model proposed by Sidney Nagel called the ‘park bench model’, which captures the
distinctive aspects of MTM. We then show how noise may be introduced into the model to
prolong the transient period indefinitely. Our analysis of noise in this model allows us to define a
memory capacity—the number of distinct memories that can be retained simultaneously—which
has been elusive in other systems with MTM. We also demonstrate that this model’s behaviour
may reduce to a simpler type of memory (the Mullins effect) for some initial states. To show
the versatility of our approach and highlight differences from MTM, we then construct minimal
graphs of return-point memory (RPM) [16,25–27], and we describe a simple physical model that
produces this memory structure. Finally, we describe how this graph framework can help suggest
specific hypotheses and tests for experiments and simulations, which should be useful in systems
where the distinctions among the memory behaviours are not as clear [13,18,24,28,29]. These
results are a concrete step towards developing a broad organizing framework for memories in
matter.

2. Results
(a) Park bench model
Consider a lawn with several benches arranged in a straight line. As visitors walk from the end
of the park to any one of the benches, they gradually wear a path into the grass. As an observer,
what can you deduce about previous visitors by looking at the grass? If the worn path ends at
one of the benches, you may infer that many people stopped at that particular bench. On a finer
scale, if the grass is somewhat worn leading up to the second bench but more worn up to the first
bench, you might infer that some visitors walked to only the first bench and others continued
on to the second bench. Thus, any spatial variation in the wear provides information about
the past.

Perhaps counterintuitively, information may also be lost through wear. Suppose the interval
from the entrance to the second bench is so thoroughly travelled that the grass is completely worn
down to the soil. In that case, you lose any clue that the first bench was visited at all; there can be
no change in the state of the grass along an interval if it is worn to its roots. Even more behaviours
are possible if the grass is gradually growing back at all times; we consider this possibility
in §§2b.

To make these notions precise, we consider a one-dimensional model with N benches
separating N + 1 patches of grass on a line, as drawn in figure 2a. Each patch of grass has initial
height hinit. During a cycle, a visitor starts at the park entrance, walks to the nth bench (thus
passing all the benches before it) and then returns to the park entrance. As a result, the grass
height decreases by one unit on patches 1 through n. We consider cyclic driving where patrons
visit any sequence of benches in this manner. We denote the state of the system by a string of
N + 1 integers that record the grass height on each patch, including the last, inaccessible patch.
(The benches may be visualized as sitting between the integers in the string.) A valid state is thus
given by a non-decreasing string of length N + 1, of any values 0 through hinit, ending with hinit
for the last patch.

(i) Graph representation and behaviour
To show all the possible ways a systemmay evolve, we enumerate the accessible states and draw a
directed graph of the transitions between them, as shown in figure 2b for the systemN= 2, hinit =
2. Each state hasN arrows coming out of it (hereN= 2), representing theN possible amplitudes of
a park-goer’s stroll to any of the N benches and back. The state with N zeros and a single pristine
patch of height hinit represents a completely worn path up to the last bench. This is a fixed point
of the driving; all arrows from this state point back to it.
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Figure 2. Park benchmodel. (a) Arrangement of benches and patches. (b) Transition graph with N= 2, hinit = 2. The digits in
each node indicate the grass height on each patch. Each edge is labelled with a number i, representing an excursion from the
leftmost position to the ith bench and back. Shaded states encode multiple memories. (Online version in colour.)
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Figure 3. Transition graph for the park bench model with N= 3, hinit = 2. (Online version in colour.)

Except for the initial state 222, all the states store some amount of memory. States 002 and 112
are uniformly worn up to the second bench, so they store a memory of only the second bench.
(Although it is possible that trips to the first bench were also involved in reaching state 002, there
is no way to know that from these grass heights.) The state 012 stores two memories: it implies
that both the first and second benches were visited. By considering these states in terms of their
memory content, one may readily verify that this graph has the same structure as the minimal
graph for MTM shown in figure 1 (plus the additional state 022). Likewise, by considering the
driving sequences γ = 2, 1, 2, 1, . . . and γ = 1, 2, 1, 2, . . ., one can check properties 1–3 of MTM.1

Figure 3 shows the transition graph for the system with N= 3, hinit = 2. Here, three states
contain multiple memories: 0122 stores memories of 1 and 2; 0112 stores memories of 1 and 3
and 0012 stores memories of 2 and 3. The values of N and hinit set the memory capacity of the
system: in the example of figure 3, the initial grass height is not tall enough to store memories of
1, 2 and 3 simultaneously. In general, the model can store at most min(N, hinit) memories at one
time.

(ii) Cyclic memory behaviours as properties of transition graphs
Properties 1–3 of MTM may be checked on an arbitrary transition graph to diagnose its memory
behaviour. Property 1 says there should be a state with multiple memories that may be reached
from the initial state. Property 2 says this state should be reachable by applying the amplitudes

1For simplicity, we neglect the memory of the smallest input, which here corresponds to a memory written at γ = 0. One
could add benches and patches to the left of patch 1 and denote also the memories of the smallest inputs in the transition
graphs, but the basic memory behaviour would be the same.
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in any order. Property 3 says that the fixed point of any repeated driving sequence should store
just one memory. Importantly, these properties may be checked by examining the graph structure
without any reference to the physics that produced the graph.

(b) Addition of noise
We now consider Property 4 of MTM in the park bench model. Charge-density wave
conductors [20] and non-Brownian suspensions [21,22] have the remarkable property that noise
enhances memory retention by preventing the system from reaching the final absorbing state. In
the charge-density wave model, this is accomplished by resetting a few randomly chosen elastic
bonds on each cycle; in the suspension, by small random displacements of every particle. To
perturb the grass, we assign each patch a small probability of increasing its height by 1 unit.
Under sustained driving, we want the system to reach a fluctuating equilibrium state, so shorter
grass should grow faster. A simple and suitable form for the probability of a patch to grow in each
cycle is

p(hi → hi + 1)= α
hinit − hi
hinit

, (2.1)

where hi is the present height of the ith patch of grass and α controls the amount of noise.We apply
the noise at the beginning of each cycle, before driving. Because the grass may grow anywhere,
adding noise to the model leads to newly accessible states where grass heights do not necessarily
increase from left to right. The proliferation of new states and transitions leads us to distinguish
this memory behaviour as MTM with noise (MTMN).

Focusing on a single patch of grass, we can predict its steady-state height, hi(t), in the case
where there is almost always some grass to remove (hi(t)> 0 at long times). Such a steady state is
reached when the average growth rate matches the time-averaged driving:

α
hinit − hi(t)

hinit
=Di, (2.2)

where Di has value 1 if the ith patch is visited on each cycle, (1/2) if it is visited on alternate
cycles, etc.2 Thus, hi(t)= (1 − Di/α)hinit. This is a stable fixed point; a positive (or negative)
fluctuation leads to a slight decrease (or increase) in the growth rate, because of the sign of hi(t)
in equation (2.2). The existence of an equilibrium height that depends on the local driving at
each patch is what allows the system to store multiple memories in the steady state. Namely,
when driving with multiple amplitudes, Di will vary from patch to patch, and the hi observed
at each patch will encode that variation. Memories of the reversal points (i.e. the amplitudes of
the driving cycles) are thus stored as the locations of jumps in the steady-state height hi(t) as a
function of patch number, i.

To demonstrate these behaviours, we simulate a system with N= 20 and hinit = 30. Figure 4a
shows the average steady-state grass heights over 106 cycles and their fluctuations, for three
memories at different values of α. (We begin the simulation with a transient of 106 cycles that is
not recorded.) As in other systems with MTM [20,22], the noise does not require fine-tuning; we
find that for a wide range of 1! α ≪ hinit, all memories will be preserved on average. Notably,
the memory at γ = 5 is even retained when α = 0.5, despite the maximum growth rate being
smaller than the average driving rate Di at each patch i≤ 10. Nevertheless, the patches in the
interval 6≤ i≤ 10 can fluctuate up to hi = 1 or higher at times, since they have a finite probability
of gaining height on cycles with γ = 5. This stochastic case leads to hi(t)> 0, which allows the
memory to persist.

(i) Height fluctuations and memory capacity
Equation (2.2) for the mean grass height provides a basic framework for storing multiple
memories in the noisy park bench model. However, understanding fluctuations is also of crucial

2This analysis requires α >Di, otherwise the assumption hi(t)> 0 is frequently violated at patch i.
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Figure 4. Grass heights in the steady state with noise. (a) Simulations with N= 20, hinit = 30, and α = 0.5, 1.0, 2.0. The
system is driven with the repeating pattern: γ = 15, 10, 5, 15, 10, 5, . . .. Points show averages over the last 12 cycles of the
simulation. Dashed lines show averages over 106 cycles. Shaded regions show the size of fluctuations, bounded by the 5th and
95th percentiles of values. In each case, all three memories are apparent in the steady state, though with α = 1.0 they are
most distinct and there is the least chance of a momentary lapse of memory. (b) Steady-state distributions of h/hinit of a single
site simulated for 107 cycles, withα = 1.0 and hinit = 10, 100, 1000 (see legend), for Di = 1/2. Distributions are also shown for
hinit = 1000 and Di = 1/3 and 2/3 (peaked near h/hinit = 2/3 and 1/3, respectively, which are indicated with dotted vertical
lines). Each curve is normalized to have area 1. (Online version in colour.)

importance for retrieving multiple memories, since noise may mask a memory or create a
spurious one. One approach to reduce such errors when reading out the memories is to perform
many measurements and average them together. Nonetheless, in the absence of such averaging,
one wants to know the inherent limitations on storing and retrieving multiple memories.
Intuitively, the plateaus in figure 4a must be separated by vertical steps that are larger than
the characteristic size of the fluctuations. This consideration puts a sharp limit on the memory
capacity of the system, since it tells how many discernible jumps in grass height may occur in a
system with maximum height hinit.

To investigate these behaviours, we consider a single patch of grass in the steady state. We
measure the probability distribution of its height, P(h), in simulations as shown in figure 4b. Each
simulation for P(h) runs for 1.1 × 107 cycles, and we discard the initial 106 cycles as a transient.
The distribution is peaked about hi(t) and approaches a smooth Gaussian as hinit increases. These
distributions indicate how well the steady-state height between two neighbouring patches may
be distinguished with a single observation of their instantaneous state; clearly this becomes
easier with increasing hinit. Notably, the width of the distribution (characterized by its standard
deviation, σ ) does not change significantly when we vary the driving to Di = 1/3 or 2/3.
Moreover, changing the driving pattern while keeping Di fixed does not have a large effect
on σ : The training patterns γ = 2, 1, 2, 1, . . . and γ = 2, 2, 1, 1, 2, 2, 1, 1, . . . both give σ = 11.16 for
hinit = 1000, α = 1, whereas training with a 100-cycle pattern of 50 2’s followed by 50 1’s gives a
slightly larger σ = 13.30.

(ii) Markov chain analysis
We can quantitatively capture the above behaviours using discrete-time Markov chains. We focus
on the evolution of hi(t) over a repeated training pattern, which may consist of multiple cycles
of driving. We denote the probability of transitioning from height a to height b by a transition
matrix Pab. Each element of this matrix may be constructed by applying equation (2.1) to a unit
probability starting in state a and following its evolution over the entire training pattern. We
consider the steady-state probability distribution P(h) reached at long times, which we denote by
a row vector π , with πa the probability of the grass having height a. This distribution is intimately
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Figure 5. Markov chain analysis of the park bench model with noise. (a) Steady-state probability distribution of grass height
for hinit = 10, α = 1, obtained by computing the transition matrix and finding the appropriate eigenvector (solid line). The
values are in excellent agreement with the results from simulations (symbols). (b) Memory peak width,σ , versus hinit forα =
1. Solid line: Result from Markov chain analysis, equation (2.4). Dashed line: asymptotic form,

√
hinit/8α, which differs only

slightly from the solid line at small hinit. Both curves capture the simulation results extremelywell, for three values of the driving
(symbols). (Online version in colour.)

related to the transition matrix: π is an eigenvector of Pab with eigenvalue 1. For hinit = 10, α = 1,
we find exactly one such eigenvector. We show this distribution in figure 5a, which is in excellent
agreement with the steady-state probabilities observed in simulations.

To gain insight into how the width of the distribution, σ , depends on hinit and α, we consider
the behaviour near the most probable state, a= a∗. Balancing the probability flow out of and into
a∗, we have ∑

b̸=a∗

πa∗Pa∗b =
∑

b̸=a∗

πbPba∗ . (2.3)

We then model the entries of π as a Gaussian, so that πa =C exp(−(1/2)(a∗ − a)2/σ 2). This reduces
the number of degrees of freedom in modelling the vector π fromO(hinit) to 1 (i.e. the value of σ ).
Plugging this form into equation (2.3) and supplying the values for the Pab yields an equation for
σ . For the simplest case of a two-cycle training pattern with Di = 1/2, this equation may be solved
exactly to give

σ =
(

−2 log
(

hinit(hinit − α)
(hinit + α)(hinit + 2α)

))−1/2
∼

√
hinit
8α

(hinit ≫ α). (2.4)

Figure 5b compares this prediction with measurements of σ from simulations. The prediction
with no fitting parameters captures the data forDi = 1/2 extremely well. Moreover, equation (2.4)
gives a good estimate for the peak width for other training patterns, such as the three-cycle
patterns with Di = 1/3 and 2/3, where the Markov chain analysis involves significantly more
terms. Thus, we obtain a rudimentary estimate of the memory capacity of min(N,

√
hinit) for

α = 1 (as compared with min(N, hinit) for the case without noise, although in that case, multiple
memories are impossible in the steady state). We note that a different scaling for σ should
arise when Di is close to 0 or 1, which would add corrections to this estimate. These results
show how to understand the memory capacity of this system in a concrete way. Because the
fluctuations are so nearly Gaussian, there is a viable basis for predicting the error rates of readout
protocols involving multiple sites or averaging over time. This kind of precise understanding of
memory capacity has been elusive in other systems that can store multiple memories under cyclic
driving [18–24].
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Figure 6. Mullins effect. (a) Minimal schematic representation starting from a featureless state, as in figure 1. The state {2}∗
is incapable of having a memory of 1written in it. (b) Transition graph for the park bench model with N= 2, hinit = 1. A single
memory is encoded where the grass height switches from 0 to a plateau of 1. (Online version in colour.)

(c) Recovering the Mullins effect
We now return to the case without noise to show that the park bench model can capture another
distinct memory behaviour. In particular, we note that a simpler form of memory occurs for hinit =
1. Here there is no transient because a single cycle removes all the grass up to the visited bench;
onemight call this the ‘scorched earth’ version of the model. Thus, the system remembers only the
largest amplitude in its entire driving history. This is the same general behaviour as the Mullins
effect [1,3,30], which occurs in polymer networks such as rubber under cyclic loading. There, the
memory is indicated by a kink in the stress–strain curve at the largest stress that was previously
applied to the sample. Figure 6a shows the minimal transition graph for the Mullins effect, which
is equivalent to the park bench model with N= 2, hinit = 1, shown in figure 6b. One can easily
construct the corresponding park bench graph for any N, which will have the same memory
behaviour.

(d) Return-point memory
To further demonstrate the generality of our approach of describing memory behaviours as
properties of graphs of memory-encoding macrostates, we now develop a simple description of
return-point memory (RPM). For cyclic driving, the key property of return-point memory can be
described as follows. Suppose a system is driven with an amplitude γ0, thereby putting it in a
state s. The system is then subjected to further driving cycles, all having amplitude less than or
equal to γ0. The system has return-point memory if a single cycle of amplitude γ0 will then return
the system to the exact same state, s; it remembers this previous state. This generic behaviour is
observed in ferromagnets [15,16] and many other non-equilibrium systems [25–27,31]. Because
returning to s is equivalent to wiping out all hysteresis since s was last visited, the system’s
behaviour can also change noticeably as γ0 is surpassed, allowing the memory to be read out
via a macroscopic observable such as magnetization.

(i) Minimal graph of return-point memory
Figure 7a shows a schematic depiction of the minimal set of states and transitions for RPM. The
transition graph is strikingly similar to the graph of the Mullins effect in figure 6b, but with the
addition of the multiple-memory state {1, 2}. This multiple-memory state can only be reached if
the smaller amplitude is applied last.

In general, graphs with RPM have the following distinct properties: (1) the ‘maximal’ state
(e.g. {2} in figure 7a) can be reached from any other state by applying the maximum allowed
amplitude; (2) of all possible paths from the maximal state to any reachable state (here just
{1, 2}) there is a unique path that does not involve erasure of a memory; and (3) there is no
attractor with reduced memory, such as the {2}∗ state in MTM. Property 2 is a consequence
of ‘no-passing’ [32] and expresses the importance of the order in which memories are added.
Property 3 indicates that noise is not required to maintain the system’s long-term capacity for
memories.
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Figure 7. Return-point memory (RPM). (a) Minimal schematic for the case of two driving amplitudes and starting from a
featureless state, as in figure 1. The order in which memories are written is important: to reach the multiple-memory state
{1, 2}, the last driving must have amplitude 1. (b) The smallest realization of our ferromagnet model shows RPM. The multiple
memory state 10 10may only be reached by writing the small memory (γ = 1) after the large one (γ = 3). (Online version in
colour.)

(ii) Simple model of return-point memory
Figure 7b shows a transition graph where states are represented as binary strings of length N.
Each transition represents a cycle with driving amplitude H0 <N in which the first H − 1 digits
are set to ‘0’, and digit H is set to ‘1’. We restrict the amplitudes H0 to odd integers less than
N. A memory is indicated wherever the substring ‘10’ appears. These rules reproduce the graph
structure in figure 7a.

These rules for strings are motivated by a physical system: they arise from a simplified version
of the Preisach model of a ferromagnet [15,33], which is a well-studied model for RPM. We use N
uncoupled spins (also called hysterons), indexed by j= 1, 2, . . .N, which are driven by an external
field, H. Each spin may be ‘on’ with state 1 or ‘off’ with state 0. In our model, the jth spin turns
on at H ≥Hon = j and off at H ≤Hoff =−(j+ 1). We restrict ourselves to driving cycles following
the sequence H= 0→H0 → −H0 → 0. (Note that H plays the role of γ , but we use the symbol H
for familiarity.) States are denoted by a binary string of lengthN, indicating the state of each spin.
As the field is ramped up from 0 to H0 it writes ‘1’ on the string from left to right; as it is ramped
down to −H0 it writes ‘0’ on the string from left to right. Thus, a cycle of amplitudeH0 overwrites
the first H0 − 1 characters in the string with ‘0’ and writes a single ‘1’ at position H0.

In a real ferromagnet, memories are read out by observing a discontinuity in the slope of a
graph of magnetization (the average state of the spins) versus H. Here this occurs wherever the
substring ‘10’ appears in the string—a gap in the sequence of spin flips as H is ramped up from 0.
This method of readout requires that memories be separated, which is ensured by our restricting
the driving to odd amplitudes that are less than N, so that all accessible states are sequences of
the substrings ‘00’ and ‘10’.

Figure 7b shows the smallest such model with RPM, N= 4. Starting at the state 00 00, driving
with amplitude H0 = 1 leads to 10 00, which is a fixed point under repeated driving with H0 = 1.
Driving with H0 = 3 leads to 00 10. From this state, H0 = 1 adds a memory to the first position. In
contrast to MTM, the two memories cannot be written in any order; H0 = 1 must be written last.
Figure 8 shows the transition graph for N= 6. As in the smaller system, there is a unique path
without erasure to any multiple-memory state. The graph also shows quite clearly that from any
state, a single application of H0 = 5 brings the system to the maximal state, 00 00 10, immediately
erasing any smaller memories.

To establish return-point memory for arbitrary N, consider a cycle of amplitude H0 that puts
the system in state s. Suppose a sequence of {Hi} with all Hi <H0 is then applied. We must show
that applying H0 again returns the system to the state s. This may be seen by noting that the state
s starts with H0 zeros. Each of the cycles of amplitude Hi alters only the hysterons with indices
j<H0 (since Hi <H0). A cycle of amplitude H0 thus resets the first H0 hysterons back to 0.

(e) Diagnosing memory behaviour in experiments
Althoughwe have illustrated our approach using simplemodels, we expect it should be useful for
experiments and dynamical simulations, by forming hypotheses and excluding possible memory
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Figure 9. States and transitions consistent with experimental data. Dotted states and transitions are present inmodels but not
yet observed. (a) MTM in experiments on dilute non-Brownian suspensions, following structure of figure 1 [23]. (b) Behaviour
similar to return-point memory, in experiments and simulations with two-dimensional amorphous solids, following structure
of figure 7a [24,34]. The notation ‘1111 . . .’ and ‘2222 . . .’ represents evolution over many cycles of driving until a steady state
is reached; ‘22 . . .’ represents multiple cycles that do not reach a steady state. In the case of MTM, it may be possible to write a
memory with only a single cycle, but experiments were not sensitive enough to detect this. (Online version in colour.)

behaviours. Dividing driving into cycles and reading out memories is a structured way to do
this, and it lets us focus on memory-encoding macrostates, rather than the many microstates of a
large system that occur within one cycle of driving, as in the work of Mungan & Terzi [17]. For
example, the minimal graph for MTM in figure 1 possesses a state {2}∗, which has a memory of
2 but with no capacity for writing a memory of 1. By contrast, RPM does not have such a state; a
smaller memory may always be written. A series of experiments on dilute suspensions recently
established memory behaviour consistent with MTM, which is represented in figure 9a [23]. We
point out that a small subset of those experiments—i.e. those establishing the existence of a state
{2}∗—is enough to demonstrate that the memory behaviour is distinct from RPM. Likewise, in
experiments and simulations with amorphous solids, summarized in figure 9b, we can identify
an analog of each state in figure 7a, show the absence of an absorbing state, and demonstrate that
memory content depends on which amplitude was applied last, suggesting a behaviour similar
to RPM [24,34].

Figure 9 also demonstrates the value of transition graphs in organizing experimental results.
By enumerating a complete set of transitions, one can identify which transitions have been found
experimentally. For instance, experiments on dilute suspensions have not yet shown the existence
of the {1}→ {1, 2} transition in figure 9a, despite establishing all other characteristics of multiple
transient memories [23].
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In systems with significant transients, our general approach becomes more cumbersome due
to a possibly large number of states. In this case, we may consider the effective transitions that
result from either driving the system with a large number of cycles much greater than the known
transient length, denoted as ‘1111 . . .’ or ‘2222 . . .’ in figure 9, or from driving with an intermediate
number of cycles less than the transient length, denoted as ‘11 . . .’ and ‘22 . . .’.

We note that developing a reliable readout is essential for these applications. An example of
a readout protocol is to drive the system with a series of increasing amplitudes and monitor its
response as a function of amplitude [13,23,34]. In this case, one must be careful to ensure that
the readout process does not introduce or erase memories before they are observed. One way to
test this property is to compare the results of a ‘sequential’ readout involving a series of cycles
at different amplitudes, with a ‘parallel’ readout that takes many identically prepared systems
(or copies of a single simulated system) and then drives each with a different amplitude for one
cycle [24,35]. Once a method for readout is established, mapping some or all of the states reached
by cyclic driving can be a straightforward yet powerful diagnostic test.

One may also construct even simpler tests that do not require a careful memory readout.
For instance, if one can compare states of the system observed after each cycle of driving, e.g.
by simple image subtraction, one can identify distinct states and map their transitions without
knowing their memory content. In dilute suspensions, when many cycles of a given amplitude
are applied, further driving at a smaller amplitude does not change the state (away from {2}∗) [23].
This by itself rules out RPM. The same test in amorphous solids does change the state (to
{1, 2}) [34].

3. Discussion
This work establishes a simple graph structure as a common language for comparing memories
across multiple systems. This may help to sort through the growing body of work on cyclic
memory formation and self-organization. This includes the recent findings that MTM may
occur in seemingly disparate models and physical systems [19–21,23,24], but also some less-
understood examples, such as the evolution of bandgaps in a one-dimensional array of particles
driven by acoustic waves [28], and cyclic memories observed in glassy systems like amorphous
solids [13,18,24,34]. Moreover, this approach could help to identify memory in subgraphs that
are embedded in a larger set of states, similar to the more detailed description of return-point
memory developed by Mungan & Terzi [17]. Finally, it lets us imagine new, as-yet undiscovered
cyclic memory behaviours and consider how they might be identified.

We also demonstrated the minimal set of states required for MTM, and we described a simple
physically motivated model that produces this behaviour. The park bench model of MTM can
store multiple pieces of information (i.e. locations of jumps in the grass height) in transient
states, but it forgets all but the largest repeated excursion in the steady state. This is somewhat
remarkable as the system has a dearth of complexity: there is only a small, enumerable set of
states, no disorder and the evolution is determined by the sequence of inputs with no stochastic
element.

When noise is added to the park bench model, all memories are stabilized at long times,
consistent with other systems with MTM and noise (MTMN) [19–23]. By considering the size
of noise-induced fluctuations in a steady state under repeated driving, we demonstrated a route
to assessing the memory capacity of MTMN. This led to an analytic estimate for the memory
capacity of the noisy park bench model, and a way to model the results of arbitrary readout
protocols. Memory capacity has received considerably more attention in models of associative
memory [36,37], and in more realistic models of biological neural networks [38,39]. Similar to
thesemore-complex neural networks, the noisy park benchmodel also displays plasticity: we find
that after reaching a steady state with one driving amplitude, we can switch to another amplitude
and form a new memory of that value instead. (This outcome of MTMNwas previously found in
a model of cyclically sheared suspensions with noise [22].)
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The park bench model also demonstrates that criticality is not required for MTM. In some
other forms of memory such as aging and rejuvenation in glasses [4,7,40], multiple memories
may exist simultaneously because the system has many relaxation processes across a range of
length- and timescales. Proximity to a critical point is a natural way to get this wide range of
scales, suggesting a link betweenmultiplememory formation and criticality. Indeed, sheared non-
Brownian suspensions and charge-density wave conductors both feature critical transitions in
their dynamics—a depinning transition of the charge-density wave [41,42], and an irreversibility
transition of the sheared suspension with diverging time- and length-scales [21,22,43]. But this
is just one strategy for avoiding interference of multiple memories; a simpler strategy is for
the driving to select a unique scale directly, as occurs in the park bench model and our simple
ferromagnet model.

Recent studies of memory formation in sheared non-Brownian suspensions [21–23],
amorphous solids [13,18,24,34], frustrated spin systems [18] and charge-density waves [19,20],
have raised the tantalizing possibility that systems with the same memory behaviour may
share deeper aspects of their physics, such as a critical transition. The existence of a physically
motivated model of multiple transient memory that has neither criticality nor nonlinear diffusion
suggests that this idea should be pursued with caution. On the other hand, it shows that an
extremely simple model can elucidate underlying mechanisms for memory behaviours. A similar
approach has been illuminating in the study of aging and rejuvenation in glasses, where a simple
algorithm that sorts a short list of numbers was found to capture a non-trivial set of memory
behaviours [5].
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