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Abstract: We examine the relationships between the differential invariants of objects and

of their images under a surjective map. We analyze both the case when the underlying

transformation group is projectable and hence induces an action on the image, and the case

when only a proper subgroup of the entire group acts projectably. In the former case, we

establish a constructible isomorphism between the algebra of differential invariants of the

images and the algebra of fiber-wise constant (gauge) differential invariants of the objects.

In the latter case, we describe residual effects of the full transformation group on the image

invariants. Our motivation comes from the problem of reconstruction of an object from

multiple-view images, with central and parallel projections of curves from three-dimensional

space to the two-dimensional plane serving as our main examples.

1 Introduction.

The subject of this paper is the behavior of invariants and, particularly, differential invariants

under surjective maps. While our theoretical results are valid for manifolds of arbitrary di-

mension, the motivating examples are central and parallel projections from three-dimensional

space onto the two-dimensional plane, as prescribed by simple cameras. We concentrate on

the effect of such projections on space curves, leaving the analysis of surfaces to subsequent
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investigations. We will, in particular, derive relatively simple formulas relating the centro-

affine invariants of a space curve, as classified in [42], to the projective curvature invariant

of its projections.

The relationship between three-dimensional objects and their two-dimensional images

under projection is a problem of major importance in image processing, and covers a broad

spectrum of fundamental issues in computer vision, including stereo vision, structure from

motion, shape from shading, projective invariants, etc.; see, for example, [2, 4, 14, 16, 20, 32,

48]. Our focus on differential invariants is motivated by the method of differential invariant

signatures, [11], used to classify objects up to group transformations, including rigid motions,

and equi-affine, affine, centro-affine, and projective maps. Our analysis is founded on the

method of equivariant moving frames, as first proposed in [17], and we will assume that the

reader is familiar with the basic techniques. See [33, 43] for recent surveys of the method and

many of its applications. In [23, 24], an algebraic interpretation of the equivariant moving

frame was developed, leading to an algorithm for constructing a generating set of rational

invariants along with a set of algebraic invariants, that exhibit the replacement property.

A key problem in mathematics, arising, for example, in geometry, invariant theory, and

symmetry analysis, and of fundamental importance for object recognition in image process-

ing, is the equivalence problem, that is, determining when two objects in a space can be

mapped to each other by a transformation belonging to a prescribed group or pseudo-group

action. Élie Cartan’s solution to the equivalence problem for submanifolds under trans-

formation groups, [13], is based on the functional interrelationships among the associated

differential invariants. Cartan’s result was reformulated through the introduction of the clas-

sifying submanifold, [39], subsequently — motivated by the extensive range of applications

in image processing — renamed the differential invariant signature, [11]. The signature of a

submanifold is parametrized by a finite number of fundamental differential invariants1 and

one proves that two sufficiently regular submanifolds are locally equivalent under a group

transformation if and only if their signatures are identical. The symmetries of a submanifold

can also be classified by the dimension and, in the case of discrete symmetries, the index of

its associated signature.

Differential invariant signatures of families of curves were used in [9, 10] to establish a

novel algorithm for solving the object-image correspondence problem for curves under pro-

jections. Extensions of the method to signatures parametrized by joint invariants and joint

differential invariants, also known as semi-differential invariants, [36], can be found in [41].

A wide range of image processing applications includes jigsaw puzzle assembly, [22], recog-

nition of DNA supercoils, [49], distinguishing malignant from benign breast cancer tumors,

[19], recovering structure of three-dimensional objects from motion, [3], classification of pro-

1Identification of the required differential invariants can be facilitated and systematized through the
equivariant moving frame calculus and, specifically, the recurrence formulae, [17, 33, 43]. The case of curves
is straightforward.
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jective curves in visual recognition, [20], and construction of integral invariant signatures for

object recognition in 2D and 3D images, [18]. Further applications of the moving frame-

based signatures include classical invariant theory, [5, 27, 28, 40], symmetry and equivalence

of polygons and point configurations, [8, 25], geometry of curves and surfaces in homoge-

neous spaces, with applications to Poisson structures and integrable systems, [34, 35], the

design and analysis of geometric integrators and symmetry-preserving numerical schemes,

[26, 37, 47], the determination of Casimir invariants of Lie algebras and the classification of

subalgebras, with applications in quantum mechanics, [7], and many more.

In our analysis of the behavior of invariants under surjective maps, we will concentrate on

finite-dimensional Lie group actions, although our analysis can, in principle, be extended to

infinite-dimensional Lie pseudo-groups, using the techniques developed in [45, 46]. We will

distinguish between projectable group actions, in which the group transformations respect

the surjective map’s fibers, and the more general non-projectable actions. In the former case,

there is a naturally defined action of a certain quotient group on the image manifold, and

we are able to directly relate the differential invariants and, hence, the differential invariant

signatures of submanifolds and their projected images.

However, in the image processing applications we are primarily interested in the case

when only a (fairly large) subgroup of the full transformation group acts projectably, and

thus we need to extend our analysis to non-projectable group actions. In this situation, one

distinguishes a projectably acting subgroup, along with its corresponding projected action

and invariants on the image manifold. Then the full transformation group will have a residual

effect on the image invariants and signatures, which are no longer fully invariant, and hence

the comparison of the projected images must take this into account. For example, in the case

of central projection based at the origin, from three-dimensional space to the two-dimensional

plane, the “centro-affine” action of the general linear group GL(3) is projectable, and this

leads to our formulas relating centro-affine differential invariants to projective differential

invariants on the image curve. On the other hand, translations are not projectable, and thus

have a residual effect on the projective invariants that will be explicitly characterized.

2 Projectable actions:

invariants of objects and images.

In this section, we consider projectable actions of a Lie group G on a manifold M meaning

that they respect the fibers of a surjective map Π: M → N . A projectable action on

M induces a natural action on N . We establish an isomorphism between the algebra of

differential invariants for submanifolds on N and the algebra of fiber preserving (gauge)

differential invariants on M . This isomorphism allows us to express invariants of the image

of a submanifold S ⊂ M in terms of the invariants of S. Since the equivariant moving
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frame method [17, 45] provides a powerful and algorithmic tool for constructing invariant

objects, we are able to explicitly determine how invariant functions and invariant differential

operators on N , obtained via this method, are related to their counterparts on M .

In this paper, all objects — manifolds, submanifolds, Lie groups, maps, differential forms,

etc. — are assumed to be smooth, meaning of class C∞.

2.1 Transformation groups

Let G be a Lie group (or, more generally, a Lie pseudo-group, [46]) acting on a smooth

manifold M . In this paper, many of the actions that we consider are local actions, although

we will usually omit the word local when we describe them.

Definition 1. The isotropy subgroup of a subset S ⊂ M consists of the group elements

which fix it:

GS = { g ∈ G | g · S = S } .

The global isotropy subgroup of S consists of the group elements which fix all points in S:

G∗S =
⋂
z∈S

Gz = { g ∈ G | g · z = z for all z ∈ S } .

In particular, the global isotropy subgroup G∗M of M is a normal subgroup of G. The

action of G is effective if and only if G∗M = {e} is trivial. More generally, the action of G

induces an equivalent effective action of the quotient group G/G∗M on M , [39].

The following group actions will play a prominent role in our examples. Each matrix

A ∈ GL(n) produces an invertible linear transformation z 7→ Az for z ∈ Rn. More generally,

we consider the action of the affine group A(n) = GL(n) n Rn given by z 7→ Az + b

for A ∈ GL(n), b ∈ Rn. This action forms the foundation of affine geometry, and, for

this reason, the previous linear action of GL(n) is sometimes referred to as the centro-

affine group, underlying centro-affine geometry, [15, 42]. We also consider the action of the

projective group PGL(n) = GL(n)/ {λ I | 0 6= λ ∈ R } on the projective space RPn−1 along

with its local, linear fractional action on the dense open subset Rn−1 ⊂ RPn−1 obtained by

omitting the points at infinity.

Warning : In many references, “affine geometry” really refers to “equi-affine geometry”

whose underlying transformation group is the special affine or equi-affine group SA(n) =

SL(n) n Rn consisting of oriented volume-preserving transformations: z 7→ Az + b with

detA = 1. We also use the term centro-equi-affine geometry to indicate the linear volume-

preserving action, z 7→ Az with detA = 1, of the special linear group SL(n) on Rn.
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2.2 Projectable actions

Our principal object of study is the behavior of group actions under a surjective map Π: M →
N of constant rank from a manifold M onto a manifold N of lower dimension: n = dimN <

m = dimM . Given v ∈ N , let Fv = Π−1{v} ⊂M denote its preimage, called the fiber of Π

over v. In many examples, M is, in fact, a fiber bundle over N , but we do not require this in

general. The kernel of the map’s surjective differential dΠ: TM → TN is the tangent space

to the fiber: TFv|z = ker dΠ|z ⊂ TM |z, where v = Π(z).

To begin with, we will consider group actions that are compatible with the surjective

map in the following sense.

Definition 2. A group action of G on M is called projectable under the surjective map

Π: M → N if, for all v ∈ N and for all g ∈ G, there exists v ∈ N such that g · Fv = Fv.

In other words, the action of G is projectable if and only if it maps fibers to fibers. In

this case, it is clear that the induced map v 7→ v = g · v is a well-defined action of G on N ,

satisfying

g · v = Π(g · Fv). (2.1)

As above, we define the global isotropy subgroup

G∗N = { g ∈ G | g · v = v for all v ∈ N }
= { g ∈ G | g · Fv = Fv for all v ∈ N } =

⋂
v∈N

Gv, (2.2)

where

Gv = { g ∈ G | g · v = v } = { g ∈ G | g · Fv = Fv }
is the stabilizer or isotropy subgroup of the point v ∈ N . The action of G on N induces an

equivalent, effective action of the quotient group

[G] = G/G∗N
on N . We use the notation [g] = g G∗N ∈ [G] to denote the element of the quotient group

corresponding to g ∈ G.

By a G-invariant function, we mean a real-valued function J : M → R that is unaffected

by the group action, so J(g ·z) = J(z) for all g ∈ G and all z ∈ dom J such that g ·z ∈ dom J .

(Our notational conventions allow J to only be defined on an open subset dom J ⊂M . Also,

if the action of G is local, one only requires the invariance condition to hold when g · z is

defined and in the domain of J .) Clearly a function is G-invariant if and only if it is

constant on the orbits of G. In particular, when M is connected and G acts transitively,

then there are no non-constant invariants. On occasion, one relaxes the preceding definition,

by only imposing invariance for group elements sufficiently close to the identity, leading to

the concept of a local invariant. The correspondence between [G]-invariant functions on N

and G-invariant functions on M follows straightforwardly from (2.1).
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Theorem 3. Let Π: M → N be a surjective map, and suppose that G acts projectably on

M . If I : N → R is a [G]-invariant function on N , then Î = I ◦Π: M → R is a G-invariant

function on M . Conversely, any G-invariant function Î : M → R that is constant on the

fibers of Π induces a [G]-invariant function I : N → R such that Î = I ◦Π.

2.3 Submanifolds

Let us now investigate how a projectable group action affects submanifolds and their jets.

We will assume that the submanifolds are immersed, although in many situations one re-

stricts attention to embedded submanifolds. Throughout, we fix the dimension p of the

submanifolds under consideration, and assume that 1 ≤ p < n = dimN < m = dimM .

Definition 4. A p-dimensional submanifold S ⊂M is called Π-regular if its projection Π(S)

is a smooth p-dimensional submanifold of N .

Because we are allowing immersed submanifolds, the following transversality condition

is both necessary and sufficient for Π-regularity.

Proposition 5. A submanifold S ⊂ M is Π-regular if and only if it intersects the fibers of

Π transversally :

TzS ∩ ker dΠ |z = {0} for all z ∈ S. (2.3)

Because condition (2.3) is local, it is a necessary but not sufficient condition for the image

Π(S) of an embedded p-dimensional submanifold S ⊂ M to be an embedded p-dimensional

submanifold of N . For example, many embedded curves in R3, e.g., nontrivial knots, can

only be projected to plane curves with self-intersections.

Suppose we adopt local coordinates z = (z1, . . . , zm) on M and v = (v1, . . . , vn) on N .

In terms of these, the surjective map v = Π(z) has components

vi = Πi(z1, . . . , zm), i = 1, . . . , n.

If the submanifold S ⊂ M is (locally) parametrized by z = z(t) = z(t1, . . . , tp), then its

tangent bundle TS is spanned by the basis tangent vectors

vi =
m∑
a=1

∂za

∂ti
∂

∂za
, i = 1, . . . , p.

Since

dΠ(vi) =
n∑

k=1

m∑
a=1

∂za

∂ti
∂Πk

∂za
∂

∂vk
,

the transversality condition (2.3) holds if and only if the associated p× n coefficient matrix

has maximal rank:

rank

(
m∑
a=1

∂za

∂tj
∂Πk

∂za

)
= p. (2.4)
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Often, it will be useful to split the coordinates on M , setting z = (x1, . . . , xp, u1, . . . , um−p),

in which the x’s will play the role of independent variables and the u’s dependent variables. A

p-dimensional submanifold S that is transverse to the vertical fibers {x = c}, for c constant,

can be locally identified as the graph of a function: S = {(x, u(x))}. Hence, its tangent

space TS is spanned by the tangent vectors

vi =
∂

∂xi
+

m−p∑
α=1

∂uα

∂xi
∂

∂uα
, i = 1, . . . , p. (2.5)

In this case, the coefficient matrix (2.4) reduces to the p× n total derivative matrix

DΠ =
(
DiΠ

k
)

=

(
∂Πk

∂xi
+

m−p∑
α=1

∂uα

∂xi
∂Πk

∂uα

)
where i = 1, . . . , p, k = 1, . . . , n, (2.6)

which, to ensure Π-regularity, is again required to have maximal rank:

rankDΠ = p. (2.7)

2.4 Jets and differential invariants

Given 0 ≤ k ≤ ∞, let Jk(M, p) be the k-th order extended jet bundle consisting of equivalence

classes of p-dimensional submanifolds of M under the equivalence relation of k-th order

contact, [38]. In particular J0(M, p) = M . When l ≥ k ≥ 0, we use πlk : Jl(M, p)→ Jk(M, p)

to denote the standard projection.

Given a surjective map Π: M → N , let JkΠ(M, p) ⊂ Jk(M, p) be the open dense subset

consisting of k-jets of Π-regular submanifolds, i.e. those that satisfy the transversality con-

dition (2.3), or, equivalently, in local coordinates, condition (2.7). Note that transversality

defines an open condition on the first order jets, so that JkΠ(M, p) = (πk1)−1J1
Π(M, p). Let

Π(k) : JkΠ(M, p)→ Jk(N, p) denote the induced surjective map on p-dimensional submanifold

jets, that maps the k-jet of a transversal submanifold S at a point z ∈ S to the k-jet of its

image Π(S) at v = Π(z). In other words, if z(k) = jkS|z then v(k) = Π(k)(z(k)) = jkΠ(S)|Π(z).

The fact that Π preserves the condition of k-th order contact between submanifolds (which

is a simple consequence of the chain rule), means that Π(k) is well-defined on JkΠ(M, p).

Given the action of G on M , there is an induced action on p-dimensional submanifolds,

and hence on the jet space Jk(M, p), called the k-th order prolonged action and denoted by

G(k). Namely, if z(k) = jkS |z ∈ Jk(M, p) is the jet of a submanifold at z ∈ S ⊂ M , and

g ∈ G, then g(k) · z(k) = jk(g · S)|g·z. Because diffeomorphisms preserve k-th order contact,

the action is independent of the choice of representative submanifold S, [39].

The action of the quotient group [G] on N similarly induces a prolonged action, denoted

by [G](k), on its k-th order submanifold jet bundle Jk(N, p). It is not hard to see that the jet
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bundle projection Π(k) respects the prolonged group actions of G(k) on JkΠ(M, p) and [G](k)

on Jk(N, p). In other words,

[g](k) · Π(k)(z(k)) = Π(k)(g(k) · z(k)), (2.8)

provided both z(k), g(k) · z(k) ∈ JkΠ(M, p). Indeed, to verify (2.8), just set z(k) = jkS|z for

some submanifold S ⊂M and use the preceding identifications.

A real-valued function F̂ : Jk(M, p) → R is called a differential function of order k.

(As before, our conventions allow functions, differential forms, etc., to only be defined

on open subsets, so dom F̂ ⊂ Jk(M, p).) A differential invariant is a differential function

Î : Jk(M, p) → R that is invariant under the prolonged group action: Î(g(k) · z(k)) = Î(z(k))

whenever both z(k) and g(k) · z(k) ∈ dom Î. In view of (2.8), Theorem 3 immediately es-

tablishes a correspondence between differential invariants on N and those on M under a

Π-projectable group action.

Theorem 6. Let Π: M → N be a surjective map and let G act projectably on M . If

I : Jk(N, p) → R is a differential invariant for the prolonged action of [G] on N , then Î =

I ◦Π(k) : JkΠ(M, p) → R is a differential invariant for the prolonged action of G on M , with

domain dom Î = Π−1(dom I).

Of course, not every differential invariant on M arises in this manner. Indeed, Î = I ◦Π(k)

for some differential invariant I on N if and only if Î is constant along the fibers of the jet

projection Π(k). Such differential invariants will be called gauge invariants, and we investigate

their properties in Section 2.6.

2.5 Invariant differential forms and differential operators

Turning to differential forms, we assume the reader is familiar with the basic variational

bicomplex structure on jet space, [1, 17, 29]. As usual, for certain technical reasons, it is

preferable to work on the infinite jet bundle even though all calculations are performed on

jet bundles of finite order.

As above, we introduce local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , um−p) on M ,

where the x’s represent independent variables. The differential one-forms on J∞(M, p) then

split into horizontal forms, spanned by dx1, . . . , dxp, and contact forms, which are annihilated

when restricted to a prolongation of any p-dimensional submanifold on M . The induced

splitting of the differential d = dH + dV into horizontal and vertical (contact) components

endows the space of differential forms on J∞(M, p) with the powerful variational bicomplex

structure, playing important role in geometric study of differential equations, variational

problems, conservation laws, characteristic classes, etc.

Remark : While the contact component is intrinsic, the horizontal forms, and hence the

induced splitting, depend upon the choice of independent variable local coordinates. A more
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intrinsic approach is based on filtrations and the C spectral sequence, [50, 51]; however, this

extra level of abstraction is unnecessary in what follows.

We use πH to denote the projection of a one-form onto its horizontal component, so

dHF̂ = πH(dF̂ ) for any differential function F̂ : J∞(M, p) → R. The symbol ≡ is used to

indicate equivalence modulo the addition of contact forms, so that ω ≡ πH(ω); thus, we

mostly only display the horizontal components of the pulled-back forms.

Let Π: M → N be a surjective map. Let y1, . . . , yp denote a subset of the local coor-

dinates v1, . . . , vn that we consider as independent variables. The corresponding horizontal

forms dy1, . . . , dyp on J∞(N, p) are pulled-back by v = Π(z) = Π(x, u) to

Π∗(dyk) ≡
p∑

i=1

(DiΠ
k) dxi, k = 1, . . . , p. (2.9)

Thus, the pulled-back one-forms (2.9) will form a basis for the space of horizontal one-forms

on J∞(M, p) provided the p× p minor consisting of the first p columns of the full p×n total

derivative matrix DΠ given in (2.6) is non-singular:

detD0Π 6= 0, where D0Π =
(
DiΠ

k
)
, i, k = 1, . . . , p. (2.10)

Observe further that our Π-regularity condition (2.6) implies that some p× p minor of DΠ

is non-singular, and hence, locally, one can always choose a suitable set of local coordinates

on N such that the non-singularity condition (2.10) holds.

It is well known that the algebra of differential invariants of a Lie transformation group,

[17, 39], or (modulo technical hypotheses) a Lie pseudo-group, [31, 46], is generated from a

finite number of low order generating differential invariants through successive application

of the operators of invariant differentiation. The construction of the generating differential

invariants, the invariant differential operators, and the identities (syzygies and recurrence re-

lations among them) can be completely systematized through the symbolic calculus provided

by the equivariant method of moving frames, [17, 29, 33, 45]. In particular, the moving frame

invariantization process allows one to construct a contact-invariant horizontal coframe, that

is, a linearly independent set of p horizontal contact-invariant one-forms

ωi =

p∑
j=1

Qi
j(v

(k)) dyj, i = 1, . . . , p, (2.11)

on Jk(N, p), where 0 ≤ k <∞ is the order of the equivariant moving frame map. The term

“contact-invariant” means that each one-form is invariant under prolonged group transfor-

mations modulo contact forms, i.e., for each [g] ∈ [G], each ωi agrees with the horizontal

component of its pull-back:

[g](k) ∗ ωi ≡ ωi, i = 1, . . . , p.
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Each ωi is, in fact, the horizontal component of a fully [G]-invariant one-form, whose addi-

tional contact component, which will not be used here, can also be explicitly constructed via

the method of moving frames, [17, 29]. For instance, in the case of curves, so p = 1, under

the action of the Euclidean group, the contact-invariant one-form is the standard arc length

element ω = ds, which can be identified as the horizontal component of a fully invariant

one-form.

Given the horizontal coframe (2.11), the corresponding dual invariant differential opera-

tors D1, . . . ,Dp are defined so that

dHF =

p∑
j=1

(DjF )ωj (2.12)

for any differential function F : J∞(N, p) → R. In particular, if I is a differential invariant,

so are its derivatives DjI for i = 1, . . . , p, and hence, by iteration, all higher order derivatives

DJI = Dj1 · · · DjkI, k = #J ≥ 0, are differential invariants as well. For example, in the case

of the Euclidean group acting on curves, the dual to the contact-invariant arc length one-

form ω = ds is the total derivative with respect to arc length, denoted D = Ds. Applying

D to the basic curvature differential invariant κ produces a complete system of differential

invariants κ, κs = Dκ, κss = D2κ, . . . , meaning that any other differential invariant can be

written (locally) as a function thereof.

Using the surjective map Π(k) to pull-back the horizontal one-forms (2.11) produces, by

a straightforward generalization of Theorem 6, a system

ω̂i = πH
[

Π(k)∗ ωi
]

=

p∑
k=1

P i
k(z

(k)) dxk, i = 1, . . . , p, (2.13)

of G-contact-invariant horizontal one-forms on Jk(M, p), whose coefficients P i
k(z

(k)) can be

readily constructed from the local coordinate formulas for Π, the horizontal one-forms ωi,

along with formula (2.9). Under the non-singularity condition (2.10), the resulting one-forms

are linearly independent, and hence determine dual invariant total differential operators

D̂1, . . . , D̂p on J∞(M, p), satisfying

dHF̂ =

p∑
j=1

(D̂jF̂ ) ω̂j (2.14)

for any differential function F̂ : J∞(M, p)→ R.

Summarizing the preceding discussion:

Theorem 7. Let Π: M → N be a surjective map. Suppose that the action of G on M

is Π-projectable. Let ω1, . . . , ωp be a [G]-contact-invariant horizontal coframe on J∞(N, p),
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and let D1, . . . ,Dp be the dual invariant differential operators. For i = 1, . . . , p, let ω̂i be the

horizontal component of the pulled-back one-form Π∗(ωi). Then, provided the non-singularity

condition (2.10) holds, ω̂1, . . . , ω̂p form a G-contact-invariant horizontal coframe on an open

subset of J∞(M, p). Let D̂1, . . . , D̂p be the dual invariant differential operators, satisfying

(2.14). If F : Jk(N, p)→ R is any differential function on N and F̂ = F ◦Π(k) : Jk(M, p)→ R
the corresponding differential function on M , then

D̂iF̂ = D̂i(F ◦Π(k)) = (DiF ) ◦Π(k+1) = D̂iF . (2.15)

The proof of the final formula (2.15) follows from the fact that, since Π(k)∗ maps contact

forms to contact forms,

πH
[

Π(k)∗(dHΩ)
]

= dH
[

Π(k)∗Ω
]

for any differential form Ω on Jk(N, p). Taking Ω = F reproduces (2.15). In particular, if

I : Jk(N, p)→ R is a differential invariant on N and

Î = I ◦Π(k) : Jk(M, p) −→ R

is the induced differential invariant on M , then their invariant derivatives are directly related:

D̂iÎ = D̂i(I ◦Π(k)) = (DiI) ◦Π(k+1) = D̂iI. (2.16)

Thus, the prolongations of the surjective map Π provide an explicit isomorphism between the

algebra of differential invariants on N and the subalgebra of fiber-wise constant differential

invariants on M .

2.6 Gauge invariants

In this section, we investigate the structure of the aforementioned subalgebra of fiber-wise

constant differential invariants on M in further detail. Although we are not necessarily

dealing with fiber bundles, we will adapt standard terminology to this situation. Define the

gauge group of the surjective map Π to be the pseudo-group

GΠ = {ϕ ∈ Diff loc(M) | ϕ(Fv ∩ domϕ) ⊂ Fv for all v ∈ N } , (2.17)

consisting of all local diffeomorphisms of M that fix the fibers of Π. (By a local diffeomor-

phism, we mean a smooth, locally defined, one-to-one map with smooth inverse.) Clearly

GΠ acts transitively on each fiber. Indeed, since Π is a submersion, around each point

z0 ∈ M there exist local coordinates z = (v, w) = (v1, . . . , vn, w1, . . . , wm−n) such that

Π(z) = v = (v1, . . . , vn) provide the induced local coordinates on N . We will call such

coordinates Π-canonical.

In Π-canonical coordinates, the elements of GΠ take the form (v, w) 7−→ (v, ψ(v, w)),

where, for each fixed v, the map ψv(w) = ψ(v, w) is a local diffeomorphism of Rm−n. Given
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1 ≤ p < n, any Π-regular p-dimensional submanifold S ⊂ M can be parametrized by a

subset, x1, . . . , xp, of the v-coordinates; we write the remainder of v-coordinates as u =

(u1, . . . , un−p), so that, by suitably relabeling, v = (x, u). Then x’s will play the role of

independent variables, while u’s and w’s play the role of dependent variables on M . At

the same time, x’s and u’s will play the roles of independent and dependent variables,

respectively, on N .

The fibers of Π(k) : JkΠ(M, p)→ Jk(N, p) are parametrized by the induced jet coordinates

wαJ , where α = 1, . . . ,m − n, and J is a symmetric multi-index of order ≤ k. Clearly, the

prolonged action of G(k)
Π on the jet space Jk(M, p) is also transitive on the fibers of Π(k).

We can thus identify the fiber-wise constant (differential) invariants on M with the (dif-

ferential) invariants of the semi-direct product pseudo-group G n GΠ. We will call these

gauge invariants and gauge differential invariants for short.

Proposition 8. The algebra of gauge differential invariants coincides with the algebra of

differential invariants for the action of Gn GΠ.

In Π-canonical coordinates, a projectable action of G on M takes the form

(v, w) 7−→ (φ(v), χ(v, w)).

The projected action of [G] = G/GN on N is then given by v = (x, u) 7→ φ(v). We

observe that the prolongation of the GΠ-action leaves the jet coordinates (x, uβK) invariant

and, moreover, its differential invariants are independent of the wαJ coordinates. Thus, in the

canonical coordinates, the isomorphism between the fiber-wise constant differential invariants

under the prolonged action of G on M and the differential invariants under the prolonged

action of [G] on N becomes transparent.

Remark : While the general expressions simplify when written in canonical coordinates,

in examples, this may not be practical because the explicit formulas for the group action,

differential invariants, etc. may be unavailable or just too complicated to work with. Fur-

thermore, canonical coordinates may have a restricted domain of definition, and hence less

suitable for visualization and analysis of geometric objects.

Example 9. Let M = { (x, y, z) ∈ R3 | z 6= 0
}

. Consider the surjective map

(X, Y ) = Π0(x, y, z) =
(x
z
,
y

z

)
, (x, y, z) ∈M, (2.18)

onto N = R2. Note that we can identify the map Π0 with central projection, centered at the

origin, from M to the plane N ' R2 defined by z = 1. The fibers of Π0 are the rays in M

emanating from the origin.

Observe that

X = x/z, Y = y/z, Z = z, (2.19)

12



form canonical coordinates for Π0 on M , in which GΠ consists of all local diffeomorphisms

of the form (X, Y, Z) 7−→ (X, Y, ϕ(X, Y, Z)) or, equivalently, in the original coordinates,

(x, y, z) 7−→ (ψ(x, y, z) x, ψ(x, y, z) y, ψ(x, y, z) z),

where ψ(x, y, z) = ϕ(x/z, y/z, z).

The local2 centro-affine action of GL(3) on M is Π0-projectable. In Π0-canonical coordi-

nates, it takes the form

(X, Y, Z) 7−→
(
a11 X + a12 Y + a13

a31 X + a32 Y + a33

,
a21 X + a22 Y + a23

a31 X + a32 Y + a33

, (a31 X + a32 Y + a33)Z

)
, (2.20)

where A = (aij) ∈ GL(3). The global isotropy group

GN = {λ I | 0 6= λ ∈ R }

consists of the uniform scalings, i.e. nonzero multiples of the identity matrix, and hence the

quotient group is the projective linear group [G] = G/GN = PGL(3). The induced action of

[G] = PGL(3) on N coincides with the usual linear fractional action

(X, Y ) 7−→
(
a11 X + a12 Y + a13

a31 X + a32 Y + a33

,
a21 X + a22 Y + a23

a31 X + a32 Y + a33

)
(2.21)

on the projective plane. We regard X as the independent variable, and Y, Z as dependent

variables on M , with Y also serving as the dependent variable on N .

The algebra of fiber-wise constant G-differential invariants on Jk(M, 1) coincides with

the algebra of GnGΠ-differential invariants. Since GΠ leaves X, Y as well as the jet variables

YX , YXX , . . . invariant, and does not admit any invariants depending on Z,ZX , ZXX , . . ., the

algebra of G n GΠ-differential invariants on M is isomorphic to the algebra of differential

invariants for the standard projective action of PGL(3) on N . See Example 12 below for

explicit formulas.

2.7 Cross-sections and invariantization

The construction of an equivariant moving frame relies on the choice of a cross-section to

the (prolonged) group orbits, [17, 45]. In this section, we investigate what happens when we

choose cross-sections on M and N that are compatible under the surjective map Π.

As before, let G be a Lie group acting on the manifold M . Let Oz denote the orbit

through the point z ∈M .

2The action is local because of the restriction z 6= 0.
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Definition 10. A submanifold K ⊂ M is called a local cross-section to the group action if

there exists an open subset U ⊂ M , called the domain of the cross-section, such that, for

each z ∈ U , the connected component O0
z of Oz∩ U that contains z intersects K transversally

at a single point, so O0
z ∩ K = {z0 } and TK|z0 ⊕TOz|z0 = TM |z0 .

Let s denote the maximal orbit dimension of the G-action on M . If a point z belongs to

an orbit of dimension s, then the Frobenius Theorem, [39], implies the existence of a local

cross-section K, of codimension s, whose domain includes z. While the definition of a cross-

section allows s < r = dimG, the construction of a locally equivariant moving frame map

ρ : U → G requires that the group act locally freely, which is equivalent to the requirement

that s = r.

Let C∞(U) denote the algebra of all smooth real-valued functions F : U → R, and C∞(U)G

the subalgebra of all locally G-invariant functions. Note that each locally invariant function

I ∈ C∞(U)G is uniquely determined by its values on the cross-section, namely I | K, since,

by invariance, I is constant along each orbit. Thus, the cross-section K serves to define an

invariantization map ι : C∞(U) → C∞(U)G, which maps a function F on U to the unique

locally invariant function ι(F ) that has the same values on the cross-section:

ι(F ) | K = F | K.

This immediately implies that the invariantization map preserves all algebraic operations.

Moreover, if I is an invariant, then ι(I) = I, which implies that ι ◦ ι = ι. In other words,

ι : C∞(U) → C∞(U)G is an algebra morphism that canonically projects functions to invari-

ants.

In local coordinates z = (z1, . . . , zm), invariantization maps the coordinate function zi to

the fundamental invariant I i = ι(zi). The r = dimG functions F1, . . . , Fr that serve to define

the cross-section, K = {Fj(z) = cj, j = 1, . . . , r}, have constant invariantizations, ι(Fj) = cj,

and are known as the phantom invariants. This leaves m − r functionally independent

invariants, which can be selected from among the fundamental invariants I i. In particular

if one uses a coordinate cross-section, say K = {zj = cj, j = 1, . . . , r}, then the first r

fundamental invariants are the constant phantom invariants: I1 = ι(z1) = c1, . . . , I
r =

ι(zr) = cr, and the remainder form a complete system of functionally independent invariants

Ir+1 = ι(zr+1), . . . , Im = ι(zm), meaning that any other invariant can be expressed in terms

of them. Indeed, invariantization of a function is done by simply replacing each variable zi

by the corresponding fundamental invariant:

ι
[
F (z1, . . . , zm)

]
= F (I1, . . . , Im). (2.22)

In particular, if J = ι(J) is any invariant, then we can immediately rewrite it in terms of

the fundamental invariants by simply replacing each variable by its invariantization:

J(z1, . . . , zm) = J(I1, . . . , Im). (2.23)
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This simple, but remarkably powerful result is known as the Replacement Theorem, [17].

Assuming local freeness, the invariantization process can also be applied to differential forms,

producing the corresponding invariant differential forms, their dual invariant differential

operators, and, more generally, vector fields, all of whose explicit formulae can be obtained

via the equivariant moving frame map ρ : U → G.

Given a surjective map Π: M → N , a Π-projectable action of G on M , and the corre-

sponding action of the quotient group [G] on N , we can thus introduce cross-sections for

both actions, along with their associated moving frames and invariantization maps. Assum-

ing that the cross-sections are compatible, meaning that Π maps one to the other, we deduce

that the resulting invariantization maps are respected by the projection.

Proposition 11. Let K̂ be a local cross-section for the Π-projectable action of G on Û ⊂M ,

and K a local cross-section for the projected [G]-action on Π(Û) = U ⊂ N satisfying the

compatibility condition Π(K̂) = K. Let ι̂ : C∞(Û)→ C∞(Û)G and ι : C∞(U)→ C∞(U)[G] be

the corresponding invariantization maps on smooth functions. Then

Π∗ι(F ) = ι̂ Π∗(F ) for all F ∈ C∞(U). (2.24)

If, furthermore, the actions of G on Jk(M, p) and [G] on Jk(N, p) are both locally free,

then the invariantization operation can be extended to differential forms in an analogous

manner, as described in detail in [29], and formula (2.24) readily generalizes from functions

F to differential forms Ω.

The construction of Π-related cross-sections is especially transparent in Π-canonical coor-

dinates. As above, let (x1, . . . , xp, u1, . . . , un−p, w1, . . . , wm−n) = (x, u, w) be local coordinate

functions on M , such that Π(x, u, w) = (x, u), with x serving as independent variables on

both M and N , while (u,w) and u serve as dependent variables on M and N , respectively.

Let K be a cross-section for the [G]-action on Jk(N, p) and K̃ = (Π(k))−1(K) ⊂ Jk(M, p). The

cross-section K̃ can be prescribed by m− dim[G] independent algebraic equations involving

only the variables x, u, uαJ . There is a well-defined action of the global isotropy subgroup GN

on K̃. Let K̂ ⊂ K̃ be a cross-section for this reduced action. Since GN leaves the jet variables

x, u, uαJ fixed, the defining equations of K̂ do not introduce any new relations among these

variables, and thus Π(k)(K̂) = K. By construction, K̂ is a G-cross-section.

Assume now that there is a subgroup G̃ ⊂ G that is isomorphic with the quotient group

[G]. In this case, G factors as a product G = GN · G̃, and we can use inductive construction

developed in [30] to determine the moving frame and the invariants. (More generally, one can

apply the general recursive algorithm in [44] directly to the subgroup GN without requiring

the existence of a suitable subgroup G̃.) These constructions allow one to determine the

formulae relating the invariants and invariant differential forms of the full group G to those

of the subgroups GN and, when it exists, G̃. It turns out that the preceding construction

of Π-related cross-sections interacts nicely with the inductive and recursive approaches, as

described below.
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We note that the action of G̃ on M projects to the [G]-action on N and G̃N = {e}.
Let K ⊂ Jk(N, p) be a cross-section for prolonged action of [G] ∼= G̃ and ι denote the

corresponding invariantization map. We observe that K̃ = (Π(k))−1(K) is a local cross-

section for the G̃-action on Jk(M, p), and denote the corresponding invariantization map by

ι̃ . Since the coordinates (x, u, uαJ) are transformed by G̃ in an identical manner, whether they

are considered to be functions on Jk(N, p) or on Jk(M, p), we have ι̃ (x, u, uαJ) = ι(x, u, uαJ).

(By equality here, we mean that these functions have the same formulae, although they

are defined on different spaces.) Together with ι̃ (wβJ) they comprise a fundamental set of

G̃-invariants on M .

Assuming that the order of prolongation k is at least the order of freeness of the G̃-action

on Jk(N, p), we can invariantize the horizontal differential forms, ι̃ (dxi) = ι(dxi), where

equality is again understood in the symbolic sense. We denote the horizontal parts of those

forms by ω1, . . . , ωp and the corresponding dual horizontal invariant differential operators by

D1, . . . ,Dp. Since all of these objects are expressed in terms of x, u, uαJ and dx by the same

formulae, whether they are defined on Jk(N, p) or Jk(M, p), we will use the same symbols to

denote them.

The action of GN restricts to the cross-section K̃. Let K̂ ⊂ K̃ be a cross-section for this

restricted action, and let ι̂ be the corresponding invariantization map. Using the inductive

method, we can express the normalized invariants of G in terms of the normalized invariants

of G̃ as follows:

ι̂ (xi) = ι̃ (xi), ι̂ (uαJ) = ι̃ (uαJ), ι̂ (wβJ) = ι̃
[
F β
J (x, uαK , w

γ
K)
]
, (2.25)

where, α runs from 1 to n−p, while β, γ run from 1 to m−n, and J,K range over all multi-

indices with 0 ≤ |K | ≤ | J |. In the final formula, the F β
J are algorithmically computable

functions. We also note that invariantization ι̂ preserves the G̃-invariant basis of differential

forms and differential operators: ι̂ (ωi) = ωi and ι̂ (Di) = Di.

Example 12. Let us return to Example 9, where we introduced canonical coordinates

(X, Y, Z) for the central projection, whose expressions in terms of the Cartesian coordi-

nates are given by (2.19). In this example, G = GL(3), G̃ = SL(3), GN = R∗, the latter

denoting the one-dimensional Lie group of non-negative real numbers under multiplication,

so that [G] = G/GN = PGL(3).

The standard cross-section for the projective action (2.21) of [G] is

K =
{
X = Y = Y1 = 0, Y2 = 1, Y3 = Y4 = 0, Y5 = 1, Y6 = 0

}
⊂ N, (2.26)

where Yi denotes the jet coordinate corresponding to Di
X(Y ). The lowest order normalized

differential invariant is the standard projective planar curvature, ι(Y7) = η, whose explicit

formula in jet coordinates can be found in entry 2.3 of Table 5 in [39]. The inductive method
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[30] enables one to express the projective curvature compactly in terms of the equi-affine

curvature as follows:

η =
6µχχχ µχ − 7µ2

χχ − 3µµ2
χ

6µ
8/3
χ

, (2.27)

where the equi-affine curvature3 and arc length are

µ =
B

3Y
8/3

2

, dχ = Y
1/3

2 dX, with B = 3Y2Y4 − 5Y 2
3 . (2.28)

As usual, equi-affine invariants are not defined at the inflection points Y2 = 0. Note also

that Y2 ≡ 0 implies that the planar curve is (a part of) a straight line. The derivative of

equi-affine curvature with respect to equi-affine arc length (2.28) is given by

µχ =
A

9Y 4
2

, (2.29)

where the differential function

A = 9Y5 Y
2

2 − 45Y4 Y3 Y2 + 40Y 3
3 (2.30)

plays an important role in what follows. In particular, if Y (X) satisfies A ≡ 0, then the

equi-affine curvature of the curve is constant, and hence the curve must be contained in the

orbit of a one-parameter subgroup of the equi-affine group, which means that it is (part

of) a conic section, [39]. Otherwise, the projective arc length element and dual invariant

differential operator are given by

dξ = (µχ)1/3 dχ =
A1/3

32/3 Y2

dX, Dξ =
32/3 Y2

A1/3
DX , (2.31)

Planar projective invariants are defined at the points where Y2 6= 0 and A 6= 0, and are gen-

erated by the projective curvature invariant η through invariant differentiation with respect

to the projective arc length (2.31).

We now employ the cross-section K̃ = (Π(k))−1(K) ⊂ M , defined by the same set of

equations (2.26) as K, to compute differential invariants for the G̃ = SL(3)-action on M .

As above, the gauge invariants are generated by the invariant η̂ = ι̃ (Y7) and the invariant

differential operator Dξ̂ = ι̃ (DX), which, in the canonical coordinates, have the same sym-

bolic expressions as their planar counterparts η and Dξ. Nonetheless, we will be using hats

to emphasize that the former are defined on M , and to be consistent with the notation of

Section 2.5.

3In Blaschke [6], as well as in some other sources, the equi-affine curvature is defined to be 1/3 of the
expression µ in (2.28). Our choice, however, leads to simpler numerical factors in the subsequent expressions.
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The computation of the invariantizations ι̃ (Zi), i ≥ 0, of the fiber coordinates Zi = Di
X Z

requires more effort. We note that the prolongation of (2.20) is given by

Z 7−→ Z̄ = (a31 X + a32 Y + a33)Z, Zi+1 7−→ H DX(Z̄i), i ≥ 0, (2.32)

where

H =
(a31 X + a32 Y + a33)2

(a31a12 − a11a32)XY1 + (a12a33 − a13a32)Y1 + (a32a11 − a12a31)Y + (a33a11 − a13a31)
.

The moving frames ρ : Jk(N, 1)→ [G] and ρ̃ : Jk(M, 1)→ G̃ corresponding to the respective

cross-sections K̃ and K have the same symbolic expressions in the canonical coordinates.

Since the explicit formulas are rather involved, we will not reproduce them here, but refer

the reader to Example 5.3 in [30], where the projective moving frame is expressed in a concise

way using the inductive approach. The normalized invariants ζ̃ = ι̃ (Z) and ζ̃i = ι̃ (Zi), i ≥ 1,

are obtained by substituting those expressions into (2.32). In particular,

ζ̃ = ι̃ (Z) =
Z

µ
1/3
χ

, (2.33)

where µχ, given by (2.29), is now considered to be a function on J5(M, 1).

We conclude that a complete system of centro-equi-affine invariants for space curves is

generated by the seventh order gauge invariant η̂, whose symbolic formula is (2.27) and the

fifth order differential invariant ζ̃ in (2.33), by successively applying the invariant differential

operator Dξ̂, whose symbolic formula is given by (2.31). Remarkably, η̂ is the projective

curvature and ζ̃ is z times an equi-affine invariant of the image curve. In Section 3.2, we will

express η̂ and ζ̃ in terms of the third and fourth order centro-equi-affine invariants derived

in [42].

Finally to compute the centro-affine differential invariants, for G = GL(3), we consider

the action of GN ' R on M given by

X 7−→ X, Y 7−→ Y, Z 7−→ λZ.

This has a simple prolongation:

Yi 7−→ Yi, Zi 7−→ λZi, i > 0.

The GN -action restricts to K̃, and we define a cross-section K̂ ⊂ K̃ to the restricted action by

appending the equation Z = 1 to (2.26). Following the inductive approach, we observe that

K̂ is a cross-section for the prolonged action on J6(M, 1) and that the normalized G-invariants

are expressed in terms of the normalized G̃ = SL(3) invariants as follows,

ι̂ (Yi) = ι̃ (Yi), i > 6, ζ̂i = ι̂ (Zk) =
ι̃ (Zk)

ι̃ (Z)
, k > 0, (2.34)
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where we omit the constant phantom invariants.

Thus, the centro-affine differential invariants for space curves are generated by the same

seventh order gauge differential invariant η̂ and the sixth order differential invariant

ζ̂1 = ι̂ (Z1) =
ι̃ (Z1)

ι̃ (Z)
=
Z1

Z

1

(Y2 µχ)1/3
− µχχ

3µ
4/3
χ

(2.35)

through successive application of the invariant differentiation operator

Dξ̂ = ι̂ (DX) = ι̃ (DX). (2.36)

Remark : It may be instructive to revisit the preceding example in the standard jet

coordinates: (x, y, z, y1, z1, . . . ), where yi = Di
xy and zi = Di

xz. The corresponding non-

coordinate cross-section K̃ is given by

x = 0, y = 0, y1 = 0, y2 = 1, y3 = −3 z1,

y4 = 12 z2
1 − 6 z2, y5 = −60 z3

1 + 60 z1 z2 − 10 z3 + 1,

y6 = 360 z4
1 − 540 z2

1 z2 + 120 z1 z3 + 90 z2
2 − 24 z1 − 15 z4.

(2.37)

The cross-section K̂ is fixed by appending the further equation z = 1 to (2.37). We note

that

dξ̂ = ι̂
(

Π0
(5)∗ dX

)
≡ ι̂

(
z − z1x

z2
dx

)
= ι̂ (dx), (2.38)

where, in the middle term, dX is considered to be a form on N and, as usual, ≡ means

equality up to a contact form. The invariant form dξ̂ is dual to the invariant differen-

tial operator (2.36). Applying the moving frame recurrence formulae and the Replacement

Theorem (2.23), we can express the projective curvature η̂ = ι̂ (Y7) in terms of normalized

invariants Ii = ι̂ (yi), Ji = ι̂ (zi), as follows:

η̂ = I7 + 27
(
120 J5

1 − 240 J3
1 J2 + 60 J2

1 J3 + 90 J1 J
2
2

− 20 J2
1 − 10 J1 J4 − 20 J2 J3 + 4 J2 + J5

)
= 31/3(−Dξ̂J1 + J2

1 + J2).

(2.39)

3 Non projectable actions and some applications.

We now turn our attention to the important case, arising in image processing and computer

graphics, of central and parallel projections of three-dimensional space curves to the two-

dimensional plane. Central projections model pinhole cameras, while parallel projections

provide a good approximation for a pinhole camera when the distance between a camera and
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an object is significantly greater than the object depth, [21]. The formulation of Section 2

does not entirely cover these examples, since the associated group action of the affine group

on R3 is not projectable. To handle such cases, in general, we identify a subgroup H of

the entire group G that acts projectably with respect to a surjective map Π0. Usually

H is chosen to be the maximal such subgroup. We then construct a family of surjective

maps Πg : M → N parameterized by elements of G and examine the relationship between

differential H-invariants of submanifolds of M and invariants of the family of projections of

these submanifolds. In Section 3.1, we describe this relationship in the general setting of

abstract manifolds and group actions. In Sections 3.2 and 3.3, we specialize to the concrete

case of the central projections of planar curves, while Sections 3.4 and 3.5 treat the case of

parallel projections.

3.1 Non-projectable actions and induced families of maps

We start, as above, with a fixed surjective map Π0 : M → N , but now suppose that the group

G acts non-projectably on M . Assume further that there exists a (nontrivial) subgroup

H ⊂ G whose action is Π0-projectable. In this situation, we define a family of surjective

maps and corresponding projectable subgroup actions.

Recall, first, the adjoint or conjugation action of a group on itself, denoted by

Ad g (h) = g h g−1 for g, h ∈ G. (3.1)

Theorem 13. Let Π0 : M → N be a surjective map. Suppose that G acts on M and,

moreover, H ⊂ G is a proper subgroup whose action on M is Π0-projectable. For each

g ∈ G, define the g-transformed surjective map Πg = Π0 ◦g
−1 : M → N . Then the action of

the conjugate subgroup Hg = Ad g (H) = gHg−1 ⊂ G is Πg-projectable.

Proof. Assume that z, z̃ ∈M belong to the same fiber of Πg, namely:

Πg(z) = Π0(g−1 · z) = Π0(g−1 · z̃ ) = Πg(z̃ ). (3.2)

Since the action of H is Π0 projectable, (3.2) implies

Π0(hg−1 · z) = Π0(hg−1 · z̃ ) for all h ∈ H.

Inserting the identity element in the form g−1g in the above equality, we obtain

Πg(ghg
−1 · z) = Π0(g−1ghg−1 · z) = Π0(g−1ghg−1 · z̃ ) = Πg(ghg

−1 · z̃ ),

which implies that the action of Hg is Πg-projectable.
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Remark : If HN is the global isotropy group of the Π0-projection of the action of H on

N , then HN,g = Ad g (HN) is the global isotropy group of the Πg-projection of the action of

Hg on N . (Keep in mind that, while HN is a normal subgroup of H, it need not be a normal

subgroup of G.) Setting [Hg] = Hg/HN,g, we can therefore express the [Hg]-differential

invariants of the images of submanifolds under Πg in terms of the Hg-differential invariants

on M .

We finally state a simple, but useful relation between the pull-backs of functions under

Π0 and Πg:

Π∗g F (z) = (Π0 ◦g
−1)∗F (z) = Π0

∗ F (g−1 · z), (3.3)

for any F : N → R and z ∈M .

Example 14. Let M = R3 and N = R2. Consider the standard orthogonal projection

Π0(x, y, z) = (x, y). Let G = R n R3 be a four-dimensional semi-direct product group,

parametrized by a, b, c, d, that acts on M via the transformations

g · (x, y, z) = (x+ az + b, y + c, z + d).

Although this action is not Π0-projectable, the translation subgroup H = {(0, b, c, d)} ∼=
R3 ⊂ G, does act Π0-projectably. The global isotropy subgroup HN is isomorphic to R, and

its fiber-preserving action is given by (x, y, z) 7→ (x, y, z+d). If (X, Y ) denote coordinates on

N , then the quotient group [H] = H/HN acts on N by translation: (X, Y ) 7→ (X+ b, Y + c).

In accordance with our general construction, we define the family of surjective maps

Πg : M → N by

Πg(x, y, z) = Π0(g−1 · (x, y, z)) = (x− az − b, y − c).

Since H is a normal subgroup of G, its conjugate subgroups coincide, Hg = H, and thus

all the surjective maps Πg are H-projectable. Moreover HN,g = gHNg
−1 = HN , but its

fiber-preserving action (x, y, z) 7→ (x + ad, y, z + d) depends on g, or, rather, on the first

parameter a of g, since it parametrizes the cosets gH. The Πg projection of the [H]-action

to N is given by

(X, Y ) 7−→ (X + b− ad, Y + c) for (b, c, d) ∈ H.

Observe that this family of [H]-actions are all translations, but parametrized by the value

of a.

We assume, for simplicity, our space curves are given as graphs Ĉ = {(x, y(x), z(x))}.
Under the action of the translation subgroup H, the invariant differential operator is D =

Dx, and the two first order differential invariants yx, zx comprise a generating set for the

entire differential invariant algebra. On the other hand, for a plane curve parametrized by
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(X, Y (X)), the single differential invariant YX forms a generating set. The map Πg projects

the space curve (x, y(x), z(x)) to the plane curve

Πg(Ĉ) = (X(x), Y (x)) = (x− a z(x)− b, y(x)− c) . (3.4)

Moreover,

(Π(1)
g )∗YX =

yx
1− a zx

provides the relationship between the generating differential invariants of the space curve and

its planar image evaluated at corresponding points. It can be obtained either by computing

the first prolongation of (3.4), or by using our general formula (3.3), which in this case

amounts to Π
(1)
g
∗YX = (g−1)(1) · yx. The appearance of the parameter a is due to the non-

projectability of the full action. We also note that the invariant one-form ω = dX on N is

pulled back via Πg to the Hg-contact-invariant horizontal differential form

Π∗g ω ≡ ω̂ = (1− a zx) dx,

again depending upon the parameter a that determines the conjugacy class of g. Theorem

7 then enables us to determine relations between the higher order differential invariants by

applying the dual total invariant differential operator

D̂ =
d

dX
=

1

1− a zx
d

dx
,

in accordance with formula (2.16).

When the subgroup H ⊂ G is not normal, the following proposition relating moving

frames and invariants under the adjoint action of G on H will be useful.

Proposition 15. Let G act on M , and let H ⊂ G be a subgroup. Given a fixed element

g ∈ G, let Hg = Ad g (H) = g H g−1 denote the conjugate subgroup.

1. If I : M → R is an H-invariant function then Ig = I ◦g−1 is an Hg-invariant function.

2. If ρ : M → H is the moving frame for the H-action corresponding to the cross-section

K ⊂M , then ρg : M → Hg defined by

ρg(z) = Ad g ◦ρ(g−1z) = g · ρ(g−1z) · g−1

is the moving frame for the Hg-action corresponding to the transformed cross-section

Kg = g · K.

3. If ι(F )(z) = F (ρ(z) · z) is the H-invariantization, corresponding to the cross-section

K, of the function F : M → R then

ιg(F )(z) = F (ρg(z) · z) = F
(
g · ρ(g−1z) · g−1z

)
= ι(F ◦g)(g−1z) (3.5)

is the invariantization of F for the Hg-action, corresponding to the cross-section Kg.
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Warning : Since equation (3.5) can be summarized by

ιg(F ) = ι(F ◦g) ◦g−1 or, equivalently, ιg(F ◦g
−1) = ι(F ) ◦g−1,

it is important to underscore that ι(F ◦g) 6= ι(F ) ◦g. Indeed,

ι(F ◦g)(z) = F (g · ρ(z) · z), while ι(F ) ◦g(z) = F (ρ(g · z) · (g · z)).

3.2 Central projections from the origin

In this and the following section, we specialize the preceding results to the case of central

projections. We begin by assuming the center of the projection is at the origin. Let w =

(x, y, z) be the standard coordinates on M = R3 and v = (X, Y ) be the standard coordinates

on N = R2. Let Jk(M, 1) denote the k-th order jet space associated with space curves Ĉ ⊂
M . Treating x as the independent variable, the corresponding jet coordinates are denoted

by w(k) = (x, y, z, y1, z1, . . . , yk, zk), where yi, zi correspond to the i-th order derivatives of

y, z, respectively, with respect to x. Similarly, let Jk(N, 1) denote the k-th jet space of plane

curves, with coordinates v(k) = (X, Y, Y1, . . . , Yk), where Yi corresponds to the i-th order

derivative of Y with respect to X.

Let us first consider the case of central projection, centered at the origin, from M =

{(x, y, z) | z 6= 0} ⊂ R3 to the plane N ' R2 defined by z = 1. We will work in the

coordinate system on the image plane provided by the first two coordinate functions on M ,

i.e. X(x, y, 1) = x and Y (x, y, 1) = y. As in (2.18), the central projection map Π0 : M →
N = R2 is thus explicitly given by

(X, Y ) = Π0(x, y, z) =
(x
z
,
y

z

)
. (3.6)

As we noted in Example 9, the linear action of G = GL(3) on M is Π0-projectable and

induces the projective action of [G] = PGL(3) on N ⊂ RP2 given by (2.5).

Remark : The centro-affine action of the linear group on M is Π0-projectable, because

linear maps take central projection fibers to fibers. On the other hand, translations do

not respect the fibers, and hence, the action of the translation subgroup R3, as well as the

action of the full affine group A(3), is not Π0-projectable, and does not project to a well-

defined action on N . The quotient A(3)/GL(3) parametrizes the family of central projections

considered in Section 3.3.

Our goal is to relate the projective differential invariants of the projected curve to the

centro-affine differential invariants of the originating space curve. Let A(k) denote the pro-

longation of the linear map induced by A ∈ GL(3) to the k-th jet space Jk(M, 1). Similarly,

the prolonged action of [A] ∈ PGL(3) on Jk(N, 1) will be denoted by [A](k). Applying the
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transversality condition (2.7) to (3.6), we conclude that a jet w(k) ∈ JkΠ0
(M, 1) is Π0-regular

if and only if the total derivative matrix

DΠ0 =
(
Dx

(x
z

)
, Dx

(y
z

))
=

(
z − x zx
z2

,
yx z − y zx

z2

)
(3.7)

has rank 1, which requires that the two numerators, z−x zx, yx z−y zx, cannot simultaneously

vanish. Geometrically, this implies that the curve intersects the fibers, i.e. the rays through

the origin, transversally.

Let Ĉ ⊂ M be a smooth space curve parametrized by (x, y(x), z(x)). Its projection

C = Π0(Ĉ) ⊂ N has induced parametrization

(X(x), Y (x)) =

(
x

z(x)
,
y(x)

z(x)

)
. (3.8)

The explicit formulae for the k-th prolongation Π
(k)
0 : JkΠ0

(M, 1)→ Jk(N, 1) are given induc-

tively by

X =
x

z
, Y =

y

z
, Y1 =

DxY

DxX
=
yx z − y zx
z − x zx

, Yi =
DxYi−1

DxX
=
z2 DxYi−1

z − x zx
, i > 1,

on the open subset of JkΠ0
(M, 1) where z − x zx 6= 0. Geometrically, the latter inequality

requires that the space curve not be tangent to any plane of the form z = c x for c constant,

and hence its projection not have a vertical tangent at the corresponding point.

Theorem 6 immediately implies:

Theorem 16. If I : Jk(N, 1) → R is a differential invariant for the projective action of

PGL(3) on N , then Î = I ◦Π
(k)
0 : Jk(M, 1) → R is a differential invariant for the centro-

affine action of GL(3) on M .

Remark : Theorem 16 remains valid if we replace Π0 with any projection centered at the

origin to an arbitrary plane, because the images of a space curve under projections with the

same center are all related by projective transformations.

We now seek to express the projective curvature η of the projected curve Π0(Ĉ) in terms

of centro-affine differential invariants of Ĉ. We begin by summarizing the equivariant moving

frame calculations in [42]. We choose the cross-section to the prolonged centro-affine action

on Jk(M, 1) defined by the normalization equations

x = 0, y = 0, z = 1, y1 = 0, z1 = 0, y2 = 1, z2 = 0, y3 = 0, y4 = 3. (3.9)

(The reason for this non-minimal choice of the cross-section will be explained below.) Replac-

ing the jet coordinates w(k) by their transformed versions w̃(k) = A(k) · w(k) for A ∈ GL(3),
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and solving the resulting equations for the group parameters produces the moving frame

ρ : J3(M, 1)→ GL(3). The resulting normalized differential invariants are then obtained by

invariantization of the higher order jet coordinates:

Ik = ι(yk), Jk = ι(zk). (3.10)

The invariantization of the lower order jet coordinates used to define the cross-section pro-

duces the phantom invariants whose values coincide with moving frame normalization con-

stants in (3.9):

I0 = ι(y) = 0, J0 = ι(z) = 1, I1 = ι(y1) = 0, J1 = ι(z1) = 0,

I2 = ι(y2) = 1, J2 = ι(z2) = 0, I3 = ι(y3) = 0, I4 = ι(y4) = 3.
(3.11)

The remaining normalized invariants, i.e. Ik for k ≥ 5 and Jl for l ≥ 3 form a complete

system of functionally independent differential invariants for the centro-affine action.

To write out the explicit formulas, as found in [42], we use

[w1, w2, w3 ] = w1 · w2 × w3

to denote the determinant of the 3 × 3 matrix with the indicated (row) vectors, or, equiv-

alently, their vector triple product. Suppose the space curve is parametrized by w(t) =

(x(t), y(t), z(t)). Let

ds = ∆1/3 dt, where ∆ = [w,wt, wtt ] (3.12)

denote the centro-equi-affine arc length element with corresponding invariant differentiation

Ds =
1

∆1/3
Dt. (3.13)

Thus, when parametrized in terms of arc length, the curve satisfies the unimodularity con-

straint

[w,ws, wss] = 1. (3.14)

Remark : We exclude singularities where ∆ = 0. A space curve is totally degenerate

when ∆ ≡ 0 at all points; this is equivalent to the curve Ĉ ⊂ P0 being contained in the plane

P0 = span{w(0), wt(0)} spanned by its initial position and velocity.

The centro-equi-affine curvature and torsion differential invariants are given by

κ = − 1

2
D2
t

(
1

∆2/3

)
+

[w,wtt, wttt ]

∆5/3
= [w,wss, wsss ],

τ =
[wt, wtt, wttt ]

∆2
= [ws, wss, wsss ].

(3.15)
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Note that κ is a fourth order differential invariant4 while τ is a third order differential invari-

ant. (This is in contrast to Euclidean curves, where torsion is the higher order differential

invariant.)

Warning : We have switched the designation of κ and τ from that used in [42], and also

deleted a factor of 3 in τ to slightly simplify the formulas. Our choice of notation is motivated

by the fact that the condition τ = 0 is equivalent to the curve being contained in a plane

P ⊂ R3, thus mimicking the Euclidean torsion of a space curve.

As in [42], differentiating (3.14) produces [w,ws, wsss] = 0, which, when compared with

(3.15), produces the associated Frenet equation

wsss = τ w − κws. (3.16)

Consequently, the condition τ = 0 is equivalent to wsss and ws being collinear, while κ = 0

is equivalent to the collinearity of wsss and w.

Under uniform scaling w 7−→ λw the centro-equi-affine differential invariants and arc

length scale according to

κ 7−→ λ−2κ, τ 7−→ λ−3 τ, ds 7−→ λ ds.

Assuming that5 κ > 0, we can therefore take

κ̂ =
κs
κ3/2

, τ̂ =
τ

κ3/2
, (3.17)

as the fundamental centro-affine differential invariants, with orders 5 and 4, respectively.

Similarly, the centro-affine arc length element is

dσ =
√
κ ds = ι(dx), (3.18)

with dual invariant derivative operator

Dσ = κ−1/2Ds =
1

∆1/3
√
κ
Dt. (3.19)

Remark : There is a second independent fourth order differential invariant, namely

β̂ =
τs
κ2

= τ̂σ + 3
2
κ̂ τ̂ . (3.20)

Note that both terms of the right hand side of this formula are of order 5, and hence the

terms involving fifth order derivatives cancel. One could, alternatively, use τ̂ , β̂ as generating

4The second expression in these formulas is potentially misleading; keep in mind that the arc-length
element (3.12) involves second order derivatives of the curve’s parametrization.

5If κ < 0 just replace
√
κ by

√
−κ in the formulas.
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differential invariants, although the resulting formulas become more complicated. A similar

observation applies to the pair of fourth order generating differential invariants

κ̃ =
κ

τ 2/3
, τ̃ =

τs
τ 4/3

, (3.21)

which results from the minimal moving frame cross-section

x = 0, y = 0, z = 1, y1 = 0, z1 = 0, y2 = 1, z2 = 0, y3 = 0, z3 = 3.

The fact that the generating invariants (3.17) lead to the simplest formulae for the projective

curvature of the projected space curve is one of the key reasons for our choice of non-minimal

cross-section (3.9).

The Replacement Theorem (2.23) implies that if Î : Jk(M, 1) → R is any centro-affine

differential invariant, then its explicit formula in terms of the normalized centro-affine in-

variants can be obtained by invariantizing each of its arguments:

Î(x, y, z, y1, z1, y2, z2, y3, z3, y4, z4, y5, z5, . . . yn, zn)

= I(0, 0, 1, 0, 0, 1, 0, 0, J3, 3, J4, I5, J5, . . . , In, Jn).

Applying this result to the pull-back η̂ = η ◦Π0
(7) of the projective curvature invariant (2.27)

produces the desired formula

η̂ =
3(I5 + 10J3)(2I7 + 42J5 − 105(I5 + 4J3))− 7(I6 + 15J4 − 45)2

6 (I5 + 10J3)8/3
(3.22)

that expresses the projective curvature of the central projection of a nondegenerate space

curve in terms of its normalized centro-affine differential invariants (3.10). Alternatively, the

moving frame recursion formulas, [17, 42], can be employed to express the higher order nor-

malized differential invariants in terms of invariant centro-affine derivatives of κ̂, τ̂ . Applying

the general algorithm, we find

J3 = τ̂ ,

J4 = DσJ3 + 1
2
I5J3 + 2J2

3 = τ̂σ + 3
2
κ̂ τ̂ ,

J5 = DσJ4 + 2
3
I5J4 + 8

3
J3J4 + 9J3 = τ̂σσ + 3

2
κ̂σ τ̂ + 7

2
κ̂ τ̂σ + 3 κ̂2τ̂ + 9 τ̂ ,

I5 = 3 κ̂− 4 τ̂ ,

I6 = DσI5 + 1
2
I2

5 + 2I5J3 − 5J4 + 45 = 3 κ̂σ − 9 τ̂σ + 9
2
κ̂2 − 27

2
κ̂ τ̂ + 45,

I7 = DσI6 + 2
3
I5I6 + 8

3
I6J3 + 21I5 − 6J5 − 60J3

= 3 κ̂σσ − 15 τ̂σσ + 15 κ̂ κ̂σ − 45
2
κ̂σ τ̂ − 105

2
κ̂ τ̂σ + 9 κ̂3 − 45 κ̂2τ̂ + 153 κ̂− 198 τ̂ ,

(3.23)

and so on. One can, of course, easily invert these formulae to write κ̂, τ̂ and their derivatives

in terms of the normalized differential invariants Ik, Jk. We note that I3 and J5 generate the

differential algebra of invariants through the differential operator Dσ.
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The resulting formula for η̂ has a particularly simple form if we set

α̂ = κ̂+ 2 τ̂ =
κs + 2τ

κ3/2
= 1

3
(I5 + 10 J3) . (3.24)

Namely,
η̂ = 3−2/3

(
α̂−5/3 α̂σσ − 7

6
α̂−8/3 α̂2

σ + 3
2
α̂−2/3 (κ̂σ + 1

4
κ̂2 − 1)

)
= 31/3

(
−2 α̂−1/2D2

σ(α̂−1/6) + 1
2
α̂−2/3 (κ̂σ + 1

4
κ̂2 − 1)

)
.

(3.25)

As we discussed in Example 12, projective curvature is undefined for straight lines —

equivalently Y2 ≡ 0 — and conics — equivalently A ≡ 0, where A is given by (2.30). We

have

Π
(5)∗
0 (Y2) = − z3 ∆

(x z1 − z)3
and Π

(5)∗
0 (A) =

27 z15 ∆4

(x z1 − z)12
(κs + 2τ) (3.26)

The first condition tells us that a space curve is projected to a line segment if and only if

∆ ≡ 0 and hence, as we noted earlier, it lies on the plane passing through the origin. The

second condition tells us that a curve projects to a conic if and only if ∆ 6= 0 and κs+2τ ≡ 0,

which, assuming κ 6= 0, is equivalent to the vanishing of the differential invariant α̂ ≡ 0.

Recall, [39], that, in general, a nondegenerate curve has all constant differential invari-

ants if and only if it is (part of) the orbit of a one-parameter subgroup. For example, the

twisted cubic Ĉ, parametrized by (x, x2, x3), has constant centro-affine curvature and torsion

invariants κ̂ = −4/
√

3, τ̂ = 2/
√

3, and can be identified as an orbit of the one-parameter

subgroup of diagonal matrices { diag(λ, λ2, λ3) | λ 6= 0
}

. Further, we note that the differ-

ential invariant (3.24) vanishes, α̂ = κ̂ + 2 τ̂ = 0 on Ĉ, reflecting the fact that the twisted

cubic is projected to a parabola under Π0.

Remark : 6 In Example 12, we introduced another invariant differential form, the pull-back

of the projective arc length element (2.31). We find that

dξ̂ = Π0
(5)∗ dξ ≡ (3 α̂)1/3 dσ = (3α)1/3 ds, (3.27)

where, as before, α̂ = κ̂+ 2 τ̂ , and we set

α = α̂ κ3/2 = κs + 2 τ,

while dσ and ds are given by (3.18) and (3.12), respectively.

6This remark is significantly changed in comparison with the version of the paper published in
Lobachevskii J. Math. 36 (2015), 260–285. Several formulae are corrected and new formulae are inserted. To
preserve the numbering in subsequent sections, we added * to the additional formula tags in the remainder
of this section.
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We showed in Example 12 that η̂ and ζ̂1 = ι̂ (Z1), given by (2.27) and (2.35), respectively,

provide another generating set of centro-affine invariants under the invariant differentiation

Dξ̂ = (3α)−1/3Ds = (3 α̂)−1/3 Dσ,

and, therefore, can be expressed in terms of κ̂ and τ̂ . We of course, already have such an

expression for η̂, given by (3.25), and can rewrite it in the alternative form using Dξ̂ :

η̂ =
α̂ α̂ξ̂ξ̂ −

5
6
α̂2
ξ̂

α̂2
+

3

2

(3 α̂)1/3 κ̂ξ̂ + 1
4
κ̂2 − 1

(3 α̂)2/3
. (3.28)

We further find that

ζ̂1 = −
α̂σ + 3

2
κ̂ α̂

34/3 α̂4/3
= −1

3

α̂ξ̂
α̂
− 1

6

32/3 κ̂

α̂1/3
. (3.29)

On the other hand, η̂ and ζ̃ = ι̃ (Z), given by (2.33), provide an alternative generating

set of centro-equi-affine invariants under the invariant differentiation Dξ̂. We can express

these invariants in terms of κ and τ (or, rather κ and α) and their derivatives with respect

to Ds. We find that

ζ̃ =
1

(3α)1/3
(3.30*)

and comparing with (2.33), we observe that the expression 3z3α, evaluated at a point on a

space curve Ĉ, equals µχ, the derivative of the equi-affine curvature with respect to equi-

affine arc-length evaluated at the corresponding point of its projection. The formula for η̂

becomes rather simple:

η̂ =
αss α− 7

6
α2
s − 3

2
κα2

32/3 α8/3
(3.31*)

and can be compared with formula (2.27) for the projective curvature in terms of the planar

equi-affine invariants. If we replace α by µχ and κ by µ in the above formula, we obtain

a very similar formula to (2.27) — the difference is in the overall factor and also in the

coefficient of the last term in the numerator. In part this may be explained by the fact that

µχ = 3z3α, as observed above. The centro-affine invariant (3.29) has a particular simple

expression in terms of centro-equi-affine invariant ζ̃, or, equivalently, α:

ζ̂1 = ζ̃s = − αs

(3α)4/3
(3.32*)

We finally note that we can also write

η̂ = −3ζ̃ ζ̃ss + 3
2
ζ̃2
s − 3

2
ζ̃2κ = −6 ζ̃3/2(ζ̃1/2)ss − 3

2
ζ̃2κ = −6 ζ̃3/2(D2

s + 1
4
κ)ζ̃1/2. (3.33*)

Alternatively, since

Ds =
1

ζ̃
Dξ̂, (3.34*)
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we can rewrite (3.33*) as

η̂ = 3
2
ζ̃−2 (3 ζ̃2

ξ̂
− 2 ζ̃ ζ̃ξ̂ξ̂ − ζ̃

4 κ) (3.35*)

and then solve for κ:

κ = −1

3

2 η̂ ζ̃2 + 6 ζ̃ ζ̃ξ̂ξ̂ − 9 ζ̃2
ξ̂

ζ̃4
(3.36*)

Formulae (3.30*), (3.31*), (3.34*), and (3.36*) give strikingly simple relationships between

two natural generating sets of the differential algebra of centro-equi-affine invariants:

(a) κ and α under Ds; (b) η̂ and ζ̃ under Dξ̂.

The first set is naturally expressed in terms of the position vector of a curve and its deriva-

tives, while the second set has a natural relationship with the invariants of the image of

the curve under projective and equi-affine actions on the plane. Indeed, recall that η̂ and

dξ̂ are the projective curvature and arc length element, respectively, of the image curve,

while ζ̃ = z µ
−1/3
χ , where µχ is the derivative of the equi-affine curvature with respect to the

equi-affine arc length.

3.3 Projections centered at an arbitrary point

We now consider more general central projections of space curves. Let Πĉ be the central

projection centered at the point ĉ = (c1, c2, c3), mapping M = {(x, y, z) | z 6= c3} ⊂ R3 to

the plane N = {z = 1 + c3} ' R2. Explicitly,

(X, Y ) = Πĉ(x, y, z) =

(
x− c1

z − c3

+ c1,
y − c2

z − c3

+ c2

)
, (3.30)

where Π0 given by (3.6) is the special case when c1 = c2 = c3 = 0.

We denote the space translation by the vector ĉ as Tĉ : M →M and the plane translation

by the vector c = (c1, c2) as Tc : N → N . Clearly

Πĉ = Tc Π0 T
−1
ĉ . (3.31)

Although the map (3.31) involves an extra transformation Tc that does not appear in the

map Πg defined in Theorem 13, an almost identical proof implies that the action of GL(3)ĉ =

AdTĉ(GL(3)) on M is Πĉ-projectable. Explicitly:

Proposition 17. For any non-singular linear transformation A ∈ GL(3) acting on M ,

(Tc [A]Tc
−1) Πĉ = Πĉ (TĉAT

−1
ĉ ),

where [A] ∈ PGL(3) is the corresponding projective transformation on N .
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Proof. The GL(3)-action on M is Π0-projectable and, moreover, satisfies

[A] Π0 = Π0 A for all A ∈ GL(3). (3.32)

We substitute Π0 = Tc
−1 Πĉ Tĉ, obtained from (3.31), to complete the proof.

As before, to determine the formulas for the induced projection Π
(k)
ĉ on curve jets, we

choose a representative smooth curve Ĉ ⊂ M , parametrized by (x, y(x), z(x)), such that

w(k) = jkĈ|w0 at the point w0 = (x0, y(x0), z(x0)). Then its central projection C = Πĉ(Ĉ) ⊂
N has parametrization

(X(x), Y (x)) =

(
x− c1

z(x)− c3

+ c1,
y(x)− c2

z(x)− c3

+ c2

)
. (3.33)

At the image point v0 = Πĉ(w0), the projected curve jet is v(k) = Π
(k)
ĉ (w(k)) = jkC|Πĉ(w0)

.

Proposition 17 and Theorem 6 imply:

Theorem 18. If I : Jk(N, 1) → R is a differential invariant for the projective action of

PGL(3) on N , then Î = I ◦Π
(k)
ĉ : Jk(M, 1)→ R is a differential invariant for the translational

conjugation GL(3)ĉ := AdTĉ(GL(3)) of the centro-affine action.

Remark : As before, Theorem 18 remains valid if we replace Πĉ with a projection centered

at ĉ to an arbitrary plane, because the projected images of a space curve with the same center

are all related by projective transformations.

The pull-back η̂ ĉ = Πĉ
(7)∗ η of the planar projective curvature (2.27) is a GL(3)ĉ –

invariant. According to (3.3), η̂ ĉ = η̂ ◦T−1
ĉ , where η̂ = Π0

(7)∗ η can be expressed in terms

of the normalized invariants for the centro-affine action on R3. In particular, formula (3.22)

expresses η̂ in terms of the normalized invariants Ik, Jk corresponding to the cross-section

K given by (3.9). Then, according to Proposition 15, the functions Iĉ,k = Ik ◦T
−1
ĉ and

Jĉ,k = Jk ◦T
−1
ĉ are GL(3)ĉ -invariants obtained by invariantization of yk ◦T

−1
ĉ and zk ◦T

−1
ĉ

relative to the cross-section:

Kĉ = Tĉ (K)

= {x = c1, y = c2, z = 1 + c3, y1 = 0, z1 = 0, y2 = 1, z2 = 0, y3 = 0, z3 = 1}.
(3.34)

Taking into account that translations leave jet variables of the first order and higher invariant

(i.e. yk ◦T
−1
ĉ = yk and zk ◦T

−1
ĉ = zk, for k ≥ 1) we observe that Iĉ,k and Jĉ,k are, in fact,

normalized invariants. The projective curvature η̂ ĉ of the projected curve (3.33) can then

be re-expressed in terms of these invariants by simply replacing, in (3.22), each Ik, Jk with

the corresponding invariant Iĉ,k, Jĉ,k.
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3.4 The standard parallel projection

By the standard parallel projection, we mean the orthogonal projection from M = R3 to the

xy-plane N = R2. We use the coordinates (X, Y ) on the image plane that agree with the

corresponding rectangular coordinates on R3, i.e., X(x, y, 0) = x and Y (x, y, 0) = y. The

resulting parallel projection map Π0 : M → N is explicitly given by

(X, Y ) = Π0(x, y, z) = (x, y) . (3.35)

It is easily checked that the maximal Π0-projectable subgroup H ⊂ G = A(3) consists of the

transformations

(x, y, z) 7−→ (a11 x+ a12 y + c1, a21 x+ a22 y + c2, a31 x+ a32 y + a33 z + c3) (3.36)

where a33(a11 a22 − a12a21) 6= 0. This action projects to the affine action

(X, Y ) 7−→ (a11 X + a12 Y + c1, a21 X + a22 Y + c2) (3.37)

on N = R2. The global isotropy group HN consists of the transformations

(x, y, z) 7−→ (x, y, a31 x+ a32 y + a33 z + c3) (3.38)

that fix the points on the xy plane.

We now investigate the prolonged action on the curve jet spaces and the consequential

differential invariants. If Ĉ ⊂ M is a smooth space curve parametrized by (x, y(x), z(x)),

then its projection C = Π0(Ĉ) ⊂ N has parametrization

(X(x), Y (x)) = (x, y(x)) . (3.39)

Applying the transversality condition (2.7) to (3.35), we see that all jets are Π0-regular, and

thus the prolongation Π
(k)
0 : Jk(M, 1)→ Jk(N, 1) is globally defined by

X = x, Y = y, Y1 =
DxY

DxX
= yx, Yi =

DxYi−1

DxX
= yi, i > 1.

This induces an obvious isomorphism between the algebra of fiber-wise constant differential

invariants of the action (3.36) and the algebra of affine differential invariants of planar curves.

We can use paradigm of Section 2.7 to construct a cross-section on M that projects to

the standard cross-section for the affine planar action:

K = {X = 0, Y = 0, Y1 = 0, Y2 = 1, Y3 = 0, Y4 = 3}. (3.40)

The moving frame invariantization associated to this cross-section produces the affine cur-

vature invariant

ν = ι(Y5) = 3
A

B3/2
, (3.41)
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where A,B are given by formulas (2.30), (2.28), respectively, along with the contact-invariant

arc-length element and its dual invariant differential operator

d% = πHι(dX) =
1

3

B1/2

Y2

dX, D% = 3
Y2

B1/2
DX = ι(DX). (3.42)

The recurrence formulae then express the higher order normalized invariants in terms of

invariant derivatives of the affine curvature (3.41), namely:

ι(Y6) = νσ + 1
2
ν2 + 45, ι(Y7) = νσσ + 5

3
ν νσ + 1

3
ν3 + 51ν, (3.43)

and so on. These are all defined on the A(2)-invariant open subset of the jet bundle prescribed

by the inequality B > 0.

We note that the group H acting on R3 by (3.36) is a product of two groups, namely,

H̃ = A(2) acting by

(x, y, z) 7−→ (a11 x+ a12 y + c1, a21 x+ a22 y + c2, z) (3.44)

and HN acting by

(x, y, z) 7−→ (x, y, a31 x+ a32 y + a33 z + c3). (3.45)

The invariants of the A(2)-action (3.44) can be obtained by lifting the cross-section (3.40)

to R3, producing

K̃ = {x = 0, y = 0, y1 = 0, y2 = 1, y3 = 0, y4 = 3}. (3.46)

The corresponding normalized differential invariants ι̃ (yi), i ≥ 5, are obtained by replacing

the capital letters Y and X with their lower case versions y and x, respectively, in (3.41),

(3.43). The invariant differential form d%̂ = πH ι̃ (dx) and dual invariant differential operator

D%̂ = ι̃ (Dx) =
3 y2√

3 y2 y4 − 5 y2
3

Dx (3.47)

are also obtained in the same manner from (3.42).

We can also employ the recurrence formulae to determine the higher order differential

invariants

ι̃ (z) = z, ι̃ (z1) = z%̂ =
3 y2 z1√

3 y2 y4 − 5 y2
3

,

ι̃ (z2) = z%̂%̂ + 1
6
ν z%̂ =

3 y2 (3 y2 z2 − y3 z1)

3 y2 y4 − 5 y2
3

,

ι̃ (z3) = z%̂%̂%̂ + 1
2
ν z%̂%̂ +

(
1
6
ν%̂ + 1

18
ν2 + 1

)
z%̂ =

27 y2
2 (y2 z3 − y3 z2)

(3 y2 y4 − 5 y2
3)3/2

,

ι̃ (z4) = z%̂%̂%̂%̂ + ν z%̂%̂%̂ +
(

2
3
ν%̂ + 11

36
ν2 + 4

)
z%̂%̂ +

(
1
6
ν%̂%̂ + 7

36
ν ν%̂ + 1

36
ν3 + ν

)
z%̂

=
81 y3

2 (y2 z4 − 2 y3 z3) + 27 y2
2 y

2
3 z2 − (27 y2 y4 − 45 y2

3) y2 y3 z1

(3 y2 y4 − 5 y2
3)2

,

(3.48)
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and so on. The algebra of differential invariants for the action (3.44) is generated by the

gauge invariant

ν̂ = ι̂ (y5) = 3
9 y5 y

2
2 − 45 y4 y3 y2 + 40 y3

3

(3 y2 y4 − 5 y2
3)3/2

(3.49)

and the non-gauge invariant z through invariant differentiation under D%̂.
The prolongation of the HN -action (3.45) is given by

y1 7−→ y1, z1 7−→ a31 + a32 y1 + a33 z1, yi 7−→ yi, zi 7−→ a32 yi + a33 zi, i > 1.

(3.50)

The action restricts to the lifted cross-section (3.46) as follows:

yi 7−→ yi, z 7−→ a33 z + c3, z1 7−→ a31 + a33 z1, z2 7−→ a32 + a33 z2,

z3 7−→ a33 z3, z4 7−→ 3 a32 + a33 z4, zi 7−→ a32yi + a33 zi, i > 4.
(3.51)

We can follow the inductive approach of [30] to express the invariants of the H-action

(3.36) in terms of the invariants of the A(2)-action (3.44). We choose the cross-section K̂ ⊂ K̃
to the action (3.51) of HN defined by

x = 0, y = 0, y1 = 0, y2 = 1, y3 = 0, y4 = 3, z = 0, z1 = 0, z2 = 0, z3 = 1,

which can be proven to also be a cross-section of the H-action on R3. The induced moving

frame normalizations are

a33 =
1

z3

, a32 = −z2

z3

, a31 = −z1

z3

, c3 = − z

z3

.

Using formulas (22) and (25) in [30], we obtain the following normalized invariants for the

H-action

ι̂ (yi) = ι̃ (yi), ι̂ (z4) =
ι̃ (z4)− 3 ι̃ (z2)

ι̃ (z3)
, ι̂ (zi) =

ι̃ (zi)− ι̃ (z2) ι̃ (yi)

ι̃ (z3)
, i > 4. (3.52)

As expected ι̂ (Dx) = ι̃ (Dx) = D%̂, given by (3.47). The differential invariants of the H-

action (3.36) are generated by the gauge invariant ν̂, given by (3.49), and the non-gauge

invariant

ι̂ (z4) = 3
y2 (y2 z4 − y4 z2)− 2 y3 (y2 z3 − y3 z2)

(y2 z3 − y3 z2)
√

3 y2 y4 − 5 y2
3

,

through invariant differentiation under D%̂.

3.5 Family of parallel projections

Using general framework of Section 3.1, we now consider the family of parallel projections

from M = R3 to the x y-plane N = R2 in the direction of the vectors b = (b1, b2, 1). We
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assume that the coordinate functions (X, Y ) on the image plane agree with the corresponding

coordinates on R3, i.e. X(x, y, 0) = x and Y (x, y, 0) = y. The resulting projection

Πb : M = R3 −→ N = R2

is explicitly given by

(X, Y ) = Πb(x, y, z) = (x− b1z, y − b2z) . (3.53)

Let Tb ∈ A(3) denote the linear transformation on R3 given by

Tb : (x, y, z) 7−→ (x+ b1z, y + b2z, z). (3.54)

Obviously Πb = Π0 ◦T
−1
b , and the action of Hb = TbH T−1

b ⊂ A(3) is Πb-projectable.

According to (3.3), the pull-back of the planar affine curvature is given by

ν̂b = Πb
(5)∗ ν = ν̂ ◦ (T−1

b )(5), (3.55)

where ν is given by (3.41) and ν̂ is given by (3.49). The resulting expression is rather

complicated, involving yi, zi for 1 ≤ i ≤ 5, and b1, b2, and is obtained by replacing the yi in

ν̂ with their pull-backs under the prolonged T−1
b -action. For instance, y2 must be replaced

with

y2 ◦ (T
−1
b )(2) =

y2 (1− b1z1) + z2 (b1y1 − b2)

(1− b1z1)3
.

On the other hand, in accordance with (3.5) in Proposition 15, ν̂b = ι̂b(y5 ◦T
−1
b ), where ι̂b

is the Hb-invariantization corresponding to the cross-section K̂b = Tb(K̂) defined by

x = 0, y = 0, y1 = 0, y2 = 1, y3 = b2, y4 = b2z4 − 4b1 + 3, z = 0, z1 = 0, z2 = 0, z3 = 1.

Combining (3.5) with the Replacement Theorem, we can compute explicit relations between

normalized invariants for invariantizations ι̂b and ι̂ . For example,7

ι̂ (y5) = ι̂b(y5 + 5 b1 z4 − b2 z5) ◦Tb
(5), (3.56)

while

ι̂b(y5) = ι̂ (y5 − 5 z4 b1 + z5 b2 − 10 b1 b2) ◦ (T−1
b )(5). (3.57)

Although explicit general formulae for the invariants ν̂b become cumbersome, (3.55)

provides a useful relation between the invariants of a space curve Ĉ and the affine curvature

of the images Cb under parallel projections in various directions, as specified by the vector

b = (b1, b2, 1). These quantities are easily computable for a specific curve Ĉ and could be of

use in applications to the problem of reconstruction of an object from its various images.

7Formulae (3.56) and (3.57) do not appear in the version of the paper published in Lobachevskii J. Math.
36 (2015), 260–285.
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4 Conclusion and future work.

In this paper, we examined the relationships between the differential invariants of objects

and of their images under a surjective map Π: M → N . Our analysis covers both the

case when the underlying transformation group G maps fibers of Π to fibers, and therefore

projects to a group action on N , and the case when only a proper subgroup H ⊂ G acts

projectably. In the projectable case, we established an explicit, constructible isomorphism

between the algebra of differential invariants on N and the algebra of fiber-wise constant

(gauge) differential invariants on M . This isomorphism leads to explicit formulae for the

invariants of the image of a submanifold S ⊂ M in terms of invariants of S. In particular,

we expressed the projective curvature of a planar curve in terms of centro-affine invariants

of its pre-image under the standard central projection from R3 to R2. In the non-projectable

case, we introduced a family of surjective maps Πg, parametrized by elements of g ∈ G, and

then expressed the differential invariants of each Πg-image of a submanifold of S ⊂ M in

terms of its Ad g (H)-invariants which, in turn, can be easily obtained from its H-invariants.

Motivations for considering both projectable and non-projectable actions comes from ba-

sic problems arising in image processing: establishing relationships between three-dimensional

objects and their two-dimensional images and reconstructing an object from its various im-

ages. In [9, 10], differential signatures of families of planar curves were used to obtain a

novel algorithm for deciding whether a given planar curve is an image of a given space curve,

obtained by a central or a parallel projection with unknown parameters. In this paper, we

establish the relationship between differential invariants of a space curve and its various pro-

jections. In this context, further analysis of the effect of a surjective map on the associated

differential invariant signatures, used in object recognition and symmetry detection, [11], is

worth pursuing. These results may also find applications in the problems of high dimensional

data analysis, by studying projections of the data to lower dimensional subspaces. Applying

the methods developed in the paper to these problems is one of the directions of future

research.
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