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Abstract: We examine the relationships between the differential invariants of objects and
of their images under a surjective map. We analyze both the case when the underlying
transformation group is projectable and hence induces an action on the image, and the case
when only a proper subgroup of the entire group acts projectably. In the former case, we
establish a constructible isomorphism between the algebra of differential invariants of the
images and the algebra of fiber-wise constant (gauge) differential invariants of the objects.
In the latter case, we describe residual effects of the full transformation group on the image
invariants. Our motivation comes from the problem of reconstruction of an object from
multiple-view images, with central and parallel projections of curves from three-dimensional
space to the two-dimensional plane serving as our main examples.

1 Introduction.

The subject of this paper is the behavior of invariants and, particularly, differential invariants
under surjective maps. While our theoretical results are valid for manifolds of arbitrary di-
mension, the motivating examples are central and parallel projections from three-dimensional
space onto the two-dimensional plane, as prescribed by simple cameras. We concentrate on
the effect of such projections on space curves, leaving the analysis of surfaces to subsequent
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investigations. We will, in particular, derive relatively simple formulas relating the centro-
affine invariants of a space curve, as classified in [42], to the projective curvature invariant
of its projections.

The relationship between three-dimensional objects and their two-dimensional images
under projection is a problem of major importance in image processing, and covers a broad
spectrum of fundamental issues in computer vision, including stereo vision, structure from
motion, shape from shading, projective invariants, etc.; see, for example, [2, 4, 14, 16, 20, 32,
48]. Our focus on differential invariants is motivated by the method of differential invariant
signatures, [11], used to classify objects up to group transformations, including rigid motions,
and equi-affine, affine, centro-affine, and projective maps. Our analysis is founded on the
method of equivariant moving frames, as first proposed in [17], and we will assume that the
reader is familiar with the basic techniques. See [33, 43] for recent surveys of the method and
many of its applications. In [23, 24], an algebraic interpretation of the equivariant moving
frame was developed, leading to an algorithm for constructing a generating set of rational
invariants along with a set of algebraic invariants, that exhibit the replacement property.

A key problem in mathematics, arising, for example, in geometry, invariant theory, and
symmetry analysis, and of fundamental importance for object recognition in image process-
ing, is the equivalence problem, that is, determining when two objects in a space can be
mapped to each other by a transformation belonging to a prescribed group or pseudo-group
action. Elie Cartan’s solution to the equivalence problem for submanifolds under trans-
formation groups, [13], is based on the functional interrelationships among the associated
differential invariants. Cartan’s result was reformulated through the introduction of the clas-
sifying submanifold, [39], subsequently — motivated by the extensive range of applications
in image processing — renamed the differential invariant signature, [11]. The signature of a
submanifold is parametrized by a finite number of fundamental differential invariants' and
one proves that two sufficiently regular submanifolds are locally equivalent under a group
transformation if and only if their signatures are identical. The symmetries of a submanifold
can also be classified by the dimension and, in the case of discrete symmetries, the index of
its associated signature.

Differential invariant signatures of families of curves were used in [9, 10] to establish a
novel algorithm for solving the object-image correspondence problem for curves under pro-
jections. Extensions of the method to signatures parametrized by joint invariants and joint
differential invariants, also known as semi-differential invariants, [36], can be found in [41].
A wide range of image processing applications includes jigsaw puzzle assembly, [22], recog-
nition of DNA supercoils, [49], distinguishing malignant from benign breast cancer tumors,
[19], recovering structure of three-dimensional objects from motion, [3], classification of pro-

Tdentification of the required differential invariants can be facilitated and systematized through the
equivariant moving frame calculus and, specifically, the recurrence formulae, [17, 33, 43]. The case of curves
is straightforward.



jective curves in visual recognition, [20], and construction of integral invariant signatures for
object recognition in 2D and 3D images, [18]. Further applications of the moving frame-
based signatures include classical invariant theory, [5, 27, 28, 40], symmetry and equivalence
of polygons and point configurations, [8, 25|, geometry of curves and surfaces in homoge-
neous spaces, with applications to Poisson structures and integrable systems, [34, 35|, the
design and analysis of geometric integrators and symmetry-preserving numerical schemes,
26, 37, 47|, the determination of Casimir invariants of Lie algebras and the classification of
subalgebras, with applications in quantum mechanics, [7], and many more.

In our analysis of the behavior of invariants under surjective maps, we will concentrate on
finite-dimensional Lie group actions, although our analysis can, in principle, be extended to
infinite-dimensional Lie pseudo-groups, using the techniques developed in [45, 46]. We will
distinguish between projectable group actions, in which the group transformations respect
the surjective map’s fibers, and the more general non-projectable actions. In the former case,
there is a naturally defined action of a certain quotient group on the image manifold, and
we are able to directly relate the differential invariants and, hence, the differential invariant
signatures of submanifolds and their projected images.

However, in the image processing applications we are primarily interested in the case
when only a (fairly large) subgroup of the full transformation group acts projectably, and
thus we need to extend our analysis to non-projectable group actions. In this situation, one
distinguishes a projectably acting subgroup, along with its corresponding projected action
and invariants on the image manifold. Then the full transformation group will have a residual
effect on the image invariants and signatures, which are no longer fully invariant, and hence
the comparison of the projected images must take this into account. For example, in the case
of central projection based at the origin, from three-dimensional space to the two-dimensional
plane, the “centro-affine” action of the general linear group GL(3) is projectable, and this
leads to our formulas relating centro-affine differential invariants to projective differential
invariants on the image curve. On the other hand, translations are not projectable, and thus
have a residual effect on the projective invariants that will be explicitly characterized.

2 Projectable actions:
invariants of objects and images.

In this section, we consider projectable actions of a Lie group G' on a manifold M meaning
that they respect the fibers of a surjective map II: M — N. A projectable action on
M induces a natural action on N. We establish an isomorphism between the algebra of
differential invariants for submanifolds on N and the algebra of fiber preserving (gauge)
differential invariants on M. This isomorphism allows us to express invariants of the image
of a submanifold S C M in terms of the invariants of S. Since the equivariant moving



frame method [17, 45] provides a powerful and algorithmic tool for constructing invariant
objects, we are able to explicitly determine how invariant functions and invariant differential
operators on N, obtained via this method, are related to their counterparts on M.

In this paper, all objects — manifolds, submanifolds, Lie groups, maps, differential forms,
etc. — are assumed to be smooth, meaning of class C°.

2.1 Transformation groups

Let G be a Lie group (or, more generally, a Lie pseudo-group, [46]) acting on a smooth
manifold M. In this paper, many of the actions that we consider are local actions, although
we will usually omit the word local when we describe them.

Definition 1. The isotropy subgroup of a subset S C M consists of the group elements
which fix it:
Gs={geG| g-S=8}.

The global isotropy subgroup of S consists of the group elements which fix all points in S:

G?zﬂGz:{gEG] g-z=z forall ze S}.

z€S

In particular, the global isotropy subgroup G, of M is a normal subgroup of G. The
action of G is effective if and only if GF; = {e} is trivial. More generally, the action of G
induces an equivalent effective action of the quotient group G/G%, on M, [39].

The following group actions will play a prominent role in our examples. Each matrix
A € GL(n) produces an invertible linear transformation z — A z for z € R™. More generally,
we consider the action of the affine group A(n) = GL(n) x R™ given by z — Az + b
for A € GL(n), b € R". This action forms the foundation of affine geometry, and, for
this reason, the previous linear action of GL(n) is sometimes referred to as the centro-
affine group, underlying centro-affine geometry, [15, 42]. We also consider the action of the
projective group PGL(n) = GL(n)/{AI| 0# A € R} on the projective space RP" ! along
with its local, linear fractional action on the dense open subset R"~! ¢ RP"! obtained by
omitting the points at infinity.

Warning: In many references, “affine geometry” really refers to “equi-affine geometry”
whose underlying transformation group is the special affine or equi-affine group SA(n) =
SL(n) x R™ consisting of oriented volume-preserving transformations: z — Az + b with
det A = 1. We also use the term centro-equi-affine geometry to indicate the linear volume-
preserving action, z — A z with det A = 1, of the special linear group SL(n) on R".



2.2 Projectable actions

Our principal object of study is the behavior of group actions under a surjective map I1: M —
N of constant rank from a manifold M onto a manifold N of lower dimension: n = dim N <
m = dim M. Given v € N, let F, = II"'{v} C M denote its preimage, called the fiber of II
over v. In many examples, M is, in fact, a fiber bundle over N, but we do not require this in
general. The kernel of the map’s surjective differential dIl: TM — T'N is the tangent space
to the fiber: T'F,|, = kerdll|, C TM|,, where v = II(2).

To begin with, we will consider group actions that are compatible with the surjective
map in the following sense.

Definition 2. A group action of G on M is called projectable under the surjective map
IT: M — N if, for all v € N and for all g € G, there exists v € N such that g - F, = F5.

In other words, the action of G is projectable if and only if it maps fibers to fibers. In
this case, it is clear that the induced map v — v = g - v is a well-defined action of G on N,
satisfying

g-v=1(g-F). (2.1)
As above, we define the global isotropy subgroup
Ghn={9g€eG| g-v=uv forall ve N}
={geCG| g-F,=F, forallveN}:ﬂGv, (2.2)
veN
where

Gy={9eCG| g v=vi={geCG| g-F,=F}

is the stabilizer or isotropy subgroup of the point v € N. The action of G on N induces an
equivalent, effective action of the quotient group

G =G/GY

on N. We use the notation [g] = ¢ Gx € [G] to denote the element of the quotient group
corresponding to g € G.

By a G-invariant function, we mean a real-valued function J: M — R that is unaffected
by the group action, so J(g-z) = J(z) for all g € G and all z € dom J such that g-z € dom J.
(Our notational conventions allow J to only be defined on an open subset dom J C M. Also,
if the action of GG is local, one only requires the invariance condition to hold when g - z is
defined and in the domain of J.) Clearly a function is G-invariant if and only if it is
constant on the orbits of G. In particular, when M is connected and G acts transitively,
then there are no non-constant invariants. On occasion, one relaxes the preceding definition,
by only imposing invariance for group elements sufficiently close to the identity, leading to
the concept of a local invariant. The correspondence between [G]-invariant functions on N
and G-invariant functions on M follows straightforwardly from (2.1).
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Theorem 3. Let I[1: M — N be a surjective map, and suppose that G acts projectably on
M. IfI: N — R is a [G]-invariant function on N, then T = IoIl: M — R is a G-invariant
function on M. Conversely, any G-invariant function I: M — R that is constant on the
fibers of I1 induces a |G|-invariant function I: N — R such that I =TIl

2.3 Submanifolds

Let us now investigate how a projectable group action affects submanifolds and their jets.
We will assume that the submanifolds are immersed, although in many situations one re-
stricts attention to embedded submanifolds. Throughout, we fix the dimension p of the
submanifolds under consideration, and assume that 1 < p <n =dim N < m = dim M.

Definition 4. A p-dimensional submanifold S C M is called II-regular if its projection I1(.S)
is a smooth p-dimensional submanifold of V.

Because we are allowing immersed submanifolds, the following transversality condition
is both necessary and sufficient for Il-regularity.

Proposition 5. A submanifold S C M is Il-reqular if and only if it intersects the fibers of
IT transversally:
T.5 Nkerdll|, ={0} forall =ze€S5. (2.3)

Because condition (2.3) is local, it is a necessary but not sufficient condition for the image
I1(S) of an embedded p-dimensional submanifold S C M to be an embedded p-dimensional
submanifold of N. For example, many embedded curves in R3, e.g., nontrivial knots, can
only be projected to plane curves with self-intersections.

Suppose we adopt local coordinates z = (z!,...,2™) on M and v = (v',... v") on N.

In terms of these, the surjective map v = II(z) has components
ot =112 L 2™, i=1,....n

If the submanifold S C M is (locally) parametrized by z = z2(t) = z(¢!,...,t?), then its
tangent bundle T'S is spanned by the basis tangent vectors

=329
l_a:1 ott 9z’ Tl
Since
1= S
ott 9z vk’
k=1 a=1
the transversality condition (2.3) holds if and only if the associated p x n coefficient matrix
has maximal rank:
L 920 OT1F
k , =p. 2.4
ran (al 9t D20 > p (2.4)
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Often, it will be useful to split the coordinates on M, setting z = (z', ..., 2P, ul, ... u™P),
in which the z’s will play the role of independent variables and the u’s dependent variables. A
p-dimensional submanifold S that is transverse to the vertical fibers {z = ¢}, for ¢ constant,
can be locally identified as the graph of a function: S = {(z,u(x))}. Hence, its tangent
space T'S is spanned by the tangent vectors

0 <= du™ 9

Ot ozt Ou>’
a=1

1=1,...,p. (2.5)

V;

In this case, the coefficient matrix (2.4) reduces to the p x n total derivative matriz

5] LA Ll N
oxt — oxrt Ju®

DH:(Din):< ) where i=1,....,p, k=1,...,n, (2.6)

which, to ensure Il-regularity, is again required to have maximal rank:

rank DII = p. (2.7)

2.4 Jets and differential invariants

Given 0 < k < oo, let J¥(M, p) be the k-th order extended jet bundle consisting of equivalence
classes of p-dimensional submanifolds of M under the equivalence relation of k-th order
contact, [38]. In particular JO(M,p) = M. When | > k > 0, we use 7t : J/(M,p) — J*(M, p)
to denote the standard projection.

Given a surjective map II: M — N, let J&(M,p) C J*(M,p) be the open dense subset
consisting of k-jets of II-regular submanifolds, i.e. those that satisfy the transversality con-
dition (2.3), or, equivalently, in local coordinates, condition (2.7). Note that transversality
defines an open condition on the first order jets, so that Jf (M, p) = (7¥)"1J5(M, p). Let
%) J& (M, p) — J5(N,p) denote the induced surjective map on p-dimensional submanifold
jets, that maps the k-jet of a transversal submanifold S at a point z € S to the k-jet of its
image I1(S) at v = II(2). In other words, if 2% = j.S|, then v®) = II®) () = j,TI(S)| ().
The fact that IT preserves the condition of k-th order contact between submanifolds (which
is a simple consequence of the chain rule), means that II*) is well-defined on J&(M, p).

Given the action of G on M, there is an induced action on p-dimensional submanifolds,
and hence on the jet space J¥(M,p), called the k-th order prolonged action and denoted by
G® . Namely, if 2(® = j.S|. € J*(M,p) is the jet of a submanifold at z € S C M, and
g € G, then g™ . 2 = j, (g 5)|,.. Because diffeomorphisms preserve k-th order contact,
the action is independent of the choice of representative submanifold S, [39].

The action of the quotient group [G] on N similarly induces a prolonged action, denoted
by [G]®), on its k-th order submanifold jet bundle J*(N,p). It is not hard to see that the jet



bundle projection II*) respects the prolonged group actions of G*) on J&(M,p) and [G]*
on J¥(N,p). In other words,

provided both z®), ¢®) . 2(®) ¢ JE (M p). Indeed, to verify (2.8), just set z*) = j, S|, for
some submanifold S C M and use the preceding identifications.

A real-valued function F': JF(M,p) — R is called a differential function of order k.
(As before, our conventions allow functions, differential forms, etc., to only be defined
on open subsets, so dom F C JE(M,p).) A differential invariant is a differential function
I: J¥(M,p) — R that is invariant under the prolonged group action: 1(g®) - z(®)) = T(z(®)
whenever both z*) and g . (%)) ¢ dom 7. In view of (2.8), Theorem 3 immediately es-
tablishes a correspondence between differential invariants on N and those on M under a
[I-projectable group action.

Theorem 6. Let II: M — N be a surjective map and let G act projectably on M. If
I: J¥(N,p) = R is a differential invariant for the prolonged action of [G] on N, then I =
ToTI®): JE(M, p) — R is a differential invariant for the prolonged action of G on M, with
domain dom T = I1-'(dom I).

Of course, not every differential invariant on M arises in this manner. Indeed, T=TIo11k
for some differential invariant I on N if and only if T is constant along the fibers of the jet
projection II*®) . Such differential invariants will be called gauge invariants, and we investigate
their properties in Section 2.6.

2.5 Invariant differential forms and differential operators

Turning to differential forms, we assume the reader is familiar with the basic variational
bicomplex structure on jet space, [1, 17, 29]. As usual, for certain technical reasons, it is
preferable to work on the infinite jet bundle even though all calculations are performed on
jet bundles of finite order.

As above, we introduce local coordinates z = (x,u) = (z',... 27, u',..., 4™ P) on M,
where the z’s represent independent variables. The differential one-forms on J*°(M, p) then
split into horizontal forms, spanned by dz*, ..., da?, and contact forms, which are annihilated
when restricted to a prolongation of any p-dimensional submanifold on M. The induced
splitting of the differential d = dy + dy into horizontal and vertical (contact) components
endows the space of differential forms on J*° (M, p) with the powerful variational bicomplex
structure, playing important role in geometric study of differential equations, variational
problems, conservation laws, characteristic classes, etc.

Remark: While the contact component is intrinsic, the horizontal forms, and hence the
induced splitting, depend upon the choice of independent variable local coordinates. A more
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intrinsic approach is based on filtrations and the C spectral sequence, [50, 51]; however, this
extra level of abstraction is unnecessary in what follows.

We use my to denote the projection of a one-form onto its horizontal component, so
dyF = 74(dF) for any differential function F: J°(M,p) — R. The symbol = is used to
indicate equivalence modulo the addition of contact forms, so that w = mgy(w); thus, we
mostly only display the horizontal components of the pulled-back forms.

Let II: M — N be a surjective map. Let y!,...,y? denote a subset of the local coor-
dinates v!, ..., v" that we consider as independent variables. The corresponding horizontal
forms dy',...,dy? on J*(N,p) are pulled-back by v = II(z) = II(x,u) to

P
T*(dy*) = Y (D) da',  k=1,....p. (2.9)
i=1
Thus, the pulled-back one-forms (2.9) will form a basis for the space of horizontal one-forms
on J*(M, p) provided the p X p minor consisting of the first p columns of the full p x n total
derivative matrix DII given in (2.6) is non-singular:

det DoIl #0, where Doll = (D;II*), i,k=1,...,p. (2.10)

Observe further that our Il-regularity condition (2.6) implies that some p X p minor of DII
is non-singular, and hence, locally, one can always choose a suitable set of local coordinates
on N such that the non-singularity condition (2.10) holds.

It is well known that the algebra of differential invariants of a Lie transformation group,
[17, 39], or (modulo technical hypotheses) a Lie pseudo-group, [31, 46], is generated from a
finite number of low order generating differential invariants through successive application
of the operators of invariant differentiation. The construction of the generating differential
invariants, the invariant differential operators, and the identities (syzygies and recurrence re-
lations among them) can be completely systematized through the symbolic calculus provided
by the equivariant method of moving frames, [17, 29, 33, 45]. In particular, the moving frame
invariantization process allows one to construct a contact-invariant horizontal coframe, that
is, a linearly independent set of p horizontal contact-invariant one-forms

P
wizz Qj(v(k))dyj, i=1,...,p, (2.11)

j=1

on JE(N,p), where 0 < k < oo is the order of the equivariant moving frame map. The term
“contact-invariant” means that each one-form is invariant under prolonged group transfor-
mations modulo contact forms, i.e., for each [g] € [G], each w' agrees with the horizontal
component of its pull-back:



Each w' is, in fact, the horizontal component of a fully [G]-invariant one-form, whose addi-
tional contact component, which will not be used here, can also be explicitly constructed via
the method of moving frames, [17, 29]. For instance, in the case of curves, so p = 1, under
the action of the Euclidean group, the contact-invariant one-form is the standard arc length
element w = ds, which can be identified as the horizontal component of a fully invariant
one-form.

Given the horizontal coframe (2.11), the corresponding dual invariant differential opera-
tors Dy, ..., D, are defined so that

p

dyF =) (D;F)w’ (2.12)

Jj=1

for any differential function F': J*(N,p) — R. In particular, if I is a differential invariant,
so are its derivatives D;I for i = 1, ..., p, and hence, by iteration, all higher order derivatives
Dyl =7Dj ---Dj; I, k=#J >0, are differential invariants as well. For example, in the case
of the Euclidean group acting on curves, the dual to the contact-invariant arc length one-
form w = ds is the total derivative with respect to arc length, denoted D = D,. Applying
D to the basic curvature differential invariant x produces a complete system of differential
invariants k, ks = Dk, kss = D%k, ..., meaning that any other differential invariant can be
written (locally) as a function thereof.

Using the surjective map II%®) to pull-back the horizontal one-forms (2.11) produces, by
a straightforward generalization of Theorem 6, a system

O = mp[I0* Z Pi(z®) i=1,...,p, (2.13)

of G-contact-invariant horizontal one-forms on J¥(M, p), whose coefficients Pi(2¥)) can be
readily constructed from the local coordinate formulas for II, the horizontal one-forms w?,
along with formula (2.9). Under the non-singularity condition (2.10), the resulting one-forms
are hnearly independent, and hence determine dual invariant total differential operators
D, D on J*®(M, p), satisfying

dgF =Y (D;F)&’ (2.14)

for any differential function F': J**(M,p) — R.
Summarizing the preceding discussion:

Theorem 7. Let II: M — N be a surjective map. Suppose that the action of G on M
is -projectable. Let w,... wP be a [G]-contact-invariant horizontal coframe on J*(N, p),
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and let Dy, ..., D, be the dual invariant differential operators. Fori=1,...,p, let @" be the
horizontal component of the pulled-back one-form IT*(w?®). Then, provided the non-singularity
condition (2.10) holds, @, ... &P form a G-contact-invariant horizontal coframe on an open
subset of J*°(M,p). Let 231, e ,Zsp be the dual invariant differential operators, satisfying
(2.14). If F: J*(N,p) — R is any differential function on N and F = FoII®): J¥(M, p) — R

the corresponding differential function on M, then
D.F = Dy(FolI®) = (D;F) o II*+1) = D, F. (2.15)

The proof of the final formula (2.15) follows from the fact that, since TI*)* maps contact
forms to contact forms,

T [ TP *(dyQ) ] = dg [TIW* Q]

for any differential form Q on J¥(N,p). Taking Q = F reproduces (2.15). In particular, if
I: J5(N,p) — R is a differential invariant on N and

T=1-10%: J*M,p) — R

is the induced differential invariant on M, then their invariant derivatives are directly related:

D,1 = Dy(1-11™) = (D,I) o 1T* D) = D,T. (2.16)

Thus, the prolongations of the surjective map II provide an explicit isomorphism between the
algebra of differential invariants on N and the subalgebra of fiber-wise constant differential
invariants on M.

2.6 Gauge invariants

In this section, we investigate the structure of the aforementioned subalgebra of fiber-wise
constant differential invariants on M in further detail. Although we are not necessarily
dealing with fiber bundles, we will adapt standard terminology to this situation. Define the
gauge group of the surjective map II to be the pseudo-group

Gn = { ¢ € Diffioc(M) | p(F,Ndome) C F, forall ve N}, (2.17)

consisting of all local diffeomorphisms of M that fix the fibers of II. (By a local diffeomor-
phism, we mean a smooth, locally defined, one-to-one map with smooth inverse.) Clearly
On acts transitively on each fiber. Indeed, since II is a submersion, around each point
29 € M there exist local coordinates z = (v,w) = (v',... ;v w!, ..., w™ ™) such that
[(z) = v = (v',...,0v") provide the induced local coordinates on N. We will call such
coordinates II-canonical.

In Il-canonical coordinates, the elements of Gy take the form (v,w) — (v, (v, w)),
where, for each fixed v, the map ¥, (w) = (v, w) is a local diffeomorphism of R”~". Given
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1 < p < n, any Il-regular p-dimensional submanifold S C M can be parametrized by a
subset, z!,..., 2P, of the v-coordinates; we write the remainder of v-coordinates as u =
(ul,...,u™P), so that, by suitably relabeling, v = (z,u). Then z’s will play the role of
independent variables, while u’s and w’s play the role of dependent variables on M. At
the same time, z’s and wu’s will play the roles of independent and dependent variables,
respectively, on N.

The fibers of TI®): J& (M, p) — J¥(N, p) are parametrized by the induced jet coordinates
wg, where o = 1,...,m —n, and J is a symmetric multi-index of order < k. Clearly, the
prolonged action of Ql(qk) on the jet space J¥(M,p) is also transitive on the fibers of I1(%),

We can thus identify the fiber-wise constant (differential) invariants on M with the (dif-
ferential) invariants of the semi-direct product pseudo-group G x Gr. We will call these
gauge invariants and gauge differential invariants for short.

Proposition 8. The algebra of gauge differential invariants coincides with the algebra of
differential invariants for the action of G X Gry.

In IT-canonical coordinates, a projectable action of G on M takes the form

(v,w) — (6(v), x(v,w)).

The projected action of [G] = G/Gy on N is then given by v = (z,u) — ¢(v). We
observe that the prolongation of the Gp-action leaves the jet coordinates (x,ui) invariant
and, moreover, its differential invariants are independent of the w§ coordinates. Thus, in the
canonical coordinates, the isomorphism between the fiber-wise constant differential invariants
under the prolonged action of G on M and the differential invariants under the prolonged

action of [G] on N becomes transparent.

Remark: While the general expressions simplify when written in canonical coordinates,
in examples, this may not be practical because the explicit formulas for the group action,
differential invariants, etc. may be unavailable or just too complicated to work with. Fur-
thermore, canonical coordinates may have a restricted domain of definition, and hence less
suitable for visualization and analysis of geometric objects.

Example 9. Let M = {(z,y,2) € R* | 2 # 0}. Consider the surjective map
Ty
(X,Y) =1,(z,y,2) = <;, ;) , (x,y,2) € M, (2.18)
onto N = R% Note that we can identify the map II, with central projection, centered at the
origin, from M to the plane N ~ R? defined by z = 1. The fibers of II, are the rays in M
emanating from the origin.

Observe that
X=x/z, Y=ylz, Z=z (2.19)
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form canonical coordinates for II, on M, in which Gy consists of all local diffeomorphisms
of the form (X,Y,7) — (X, Y, ¢o(X,Y, Z)) or, equivalently, in the original coordinates,

(#,9,2) — (W(2,y,2) 2, P(x,9,2)y, P(z,y,2) 2),

where ¢($7ya Z) = w(x/zu y/Z, Z)
The local? centro-affine action of GL(3) on M is II-projectable. In IT,-canonical coordi-
nates, it takes the form

an X +apY +az an X +axY + axs
CL31X+CL32Y+CL337 CL31X+CL32Y+CL33

(X,Y, Z) — ( , (CL31X—|—0J32Y—|—CL33>Z>, (220)

where A = (a;;) € GL(3). The global isotropy group
Gy={A| 0#XeR}

consists of the uniform scalings, i.e. nonzero multiples of the identity matrix, and hence the
quotient group is the projective linear group |G] = G/Gn = PGL(3). The induced action of
|G] = PGL(3) on N coincides with the usual linear fractional action

(X,Y) —

(011X+CL12Y+6113 ag1 X + agnY + a ) (2.21)

as1 X +azY +ass’ az3 X +azY + ass

on the projective plane. We regard X as the independent variable, and Y, Z as dependent
variables on M, with Y also serving as the dependent variable on V.

The algebra of fiber-wise constant G-differential invariants on J*(M, 1) coincides with
the algebra of G x Gp-differential invariants. Since Gpy leaves X, Y as well as the jet variables
Yx,Yxx, ... invariant, and does not admit any invariants depending on 7, Zx, Zxx,- . ., the
algebra of G x Gp-differential invariants on M is isomorphic to the algebra of differential
invariants for the standard projective action of PGL(3) on N. See Example 12 below for
explicit formulas.

2.7 Cross-sections and invariantization

The construction of an equivariant moving frame relies on the choice of a cross-section to
the (prolonged) group orbits, [17, 45]. In this section, we investigate what happens when we
choose cross-sections on M and N that are compatible under the surjective map II.

As before, let G be a Lie group acting on the manifold M. Let O, denote the orbit
through the point z € M.

2The action is local because of the restriction z # 0.
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Definition 10. A submanifold K C M is called a local cross-section to the group action if
there exists an open subset U C M, called the domain of the cross-section, such that, for
each z € U, the connected component O° of O, N U that contains z intersects K transversally
at a single point, so O°NK = {29} and TK|,, s TO,|,, = TM]|,,.

Let s denote the maximal orbit dimension of the G-action on M. If a point z belongs to
an orbit of dimension s, then the Frobenius Theorem, [39], implies the existence of a local
cross-section IC, of codimension s, whose domain includes z. While the definition of a cross-
section allows s < r = dim (G, the construction of a locally equivariant moving frame map
p: U — G requires that the group act locally freely, which is equivalent to the requirement
that s =r.

Let C*°(U) denote the algebra of all smooth real-valued functions F': U — R, and C>(U)“
the subalgebra of all locally G-invariant functions. Note that each locally invariant function
I € C>*(U)% is uniquely determined by its values on the cross-section, namely I | K, since,
by invariance, I is constant along each orbit. Thus, the cross-section I serves to define an
invariantization map : C®(U) — C>®(U)®, which maps a function F on U to the unique
locally invariant function ¢(F) that has the same values on the cross-section:

(F)|K=F|K.

This immediately implies that the invariantization map preserves all algebraic operations.
Moreover, if I is an invariant, then «(I) = I, which implies that to¢ = ¢. In other words,
L2 C®°(U) — C>®°(U)“ is an algebra morphism that canonically projects functions to invari-

ants.

In local coordinates z = (2!, ..., 2™), invariantization maps the coordinate function 2* to
the fundamental invariant I = +(z%). The r = dim G functions F}, ..., F, that serve to define
the cross-section, K = {Fj(z) = ¢;, j = 1,...,7}, have constant invariantizations, ¢(F;) = ¢;,

and are known as the phantom invariants. This leaves m — r functionally independent
invariants, which can be selected from among the fundamental invariants 1. In particular
if one uses a coordinate cross-section, say K = {2/ = ¢;, j = 1,...,r}, then the first r
fundamental invariants are the constant phantom invariants: I' = 1(2) = ¢y, ... | I" =
t(z") = ¢,, and the remainder form a complete system of functionally independent invariants
It = (2, ..., I™ = 1(2™), meaning that any other invariant can be expressed in terms
of them. Indeed, invariantization of a function is done by simply replacing each variable z
by the corresponding fundamental invariant:

UF (2., 2] =FU, . 1. (2.22)

In particular, if J = «(J) is any invariant, then we can immediately rewrite it in terms of
the fundamental invariants by simply replacing each variable by its invariantization:

J( 2 = J(I T, (2.23)
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This simple, but remarkably powerful result is known as the Replacement Theorem, [17].
Assuming local freeness, the invariantization process can also be applied to differential forms,
producing the corresponding invariant differential forms, their dual invariant differential
operators, and, more generally, vector fields, all of whose explicit formulae can be obtained
via the equivariant moving frame map p: U — G.

Given a surjective map II: M — N, a Il-projectable action of G on M, and the corre-
sponding action of the quotient group [G] on N, we can thus introduce cross-sections for
both actions, along with their associated moving frames and invariantization maps. Assum-
ing that the cross-sections are compatible, meaning that IT maps one to the other, we deduce
that the resulting invariantization maps are respected by the projection.

Proposition 11. Let K be a local cross-section for the I1-projectable action of G on Uc M,
and KC a local cross-section for the projected |G|-action on II(U) = U C N satisfying the
compatibility condition TI(K) = K. Let T : C®°(U) — C*U) and 1: C*U) — C=U)C be

the corresponding invariantization maps on smooth functions. Then
IT*(F) =71I"(F)  forall FeC™U). (2.24)

If, furthermore, the actions of G on J¥(M,p) and [G] on J¥(N, p) are both locally free,
then the invariantization operation can be extended to differential forms in an analogous
manner, as described in detail in [29], and formula (2.24) readily generalizes from functions
F to differential forms €.

The construction of [I-related cross-sections is especially transparent in II-canonical coor-

dinates. As above, let (z!,... 2P u!,

Lu™ P wl L w™ ™) = (x,u,w) be local coordinate
functions on M, such that II(z,u,w) = (z,u), with x serving as independent variables on
both M and N, while (u,w) and u serve as dependent variables on M and N, respectively.
Let K be a cross-section for the [G]-action on J¥(N,p) and K = (II™)~Y(K) c J*¥(M, p). The
cross-section K can be prescribed by m — dim|G] independent algebraic equations involving
only the variables x, u, u§. There is a well-defined action of the global isotropy subgroup G'x
on K. Let K C K be a cross-section for this reduced action. Since G ~ leaves the jet variables
x,u,ug fixed, the deﬁnmg equations of K do not introduce any new relations among these
variables, and thus II k)(IC) K. By construction, K is a G-cross-section.

Assume now that there is a subgroup G C G that is isomorphic with the quotient group
[G]. In this case, G factors as a product G = Gy - G , and we can use inductive construction
developed in [30] to determine the moving frame and the invariants. (More generally, one can
apply the general recursive algorithm in [44] directly to the subgroup Gy without requiring
the existence of a suitable subgroup CN}') These constructions allow one to determine the
formulae relating the invariants and invariant differential forms of the full group G to those
of the subgroups G and, when it exists, G. Tt turns out that the preceding construction
of Il-related cross-sections interacts nicely with the inductive and recursive approaches, as
described below.
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We note that the action of G on M projects to the [G]-action on N and Gy = {e}.
Let K C J¥(IN,p) be a cross-section for prolonged action of [G] = G and ¢ denote the
corresponding invariantization map. We observe that K = (II®))=1(K) is a local cross-
section for the G-action on J (M, p), and denote the corresponding invariantization map by
. Since the coordinates (z, u, u5) are transformed by G in an identical manner, whether they
are considered to be functions on J¥(N,p) or on J*(M,p), we have 7 (x,u,us) = t(z,u, u?).
(By equality here, we mean that these functions have the same formulae, although they
are defined on different spaces.) Together with 7 (w’) they comprise a fundamental set of
G-invariants on M.

Assuming that the order of prolongation k is at least the order of freeness of the G-action
on JE(N,p), we can invariantize the horizontal differential forms, 7 (dx?) = (dz?), where
equality is again understood in the symbolic sense. We denote the horizontal parts of those
forms by w!, ..., w? and the corresponding dual horizontal invariant differential operators by
Dy,...,D,. Since all of these objects are expressed in terms of x,u,u5 and dz by the same
formulae, whether they are defined on J*(N, p) or J¥(M, p), we will use the same symbols to
denote them.

The action of Gy restricts to the cross-section K. Let K C K be a cross-section for this
restricted action, and let 7 be the corresponding invariantization map. Using the inductive
method, we can express the normalized invariants of GG in terms of the normalized invariants
of G as follows:

T(2)=T("),  Tu§)=T()), (W) =T[F) (@ ui, wy)], (2.25)

where, o runs from 1 to n — p, while 8, run from 1 to m —n, and J, K range over all multi-
indices with 0 < | K| < | J|. In the final formula, the F; are algorithmically computable
functions. We also note that invariantization 7 preserves the G-invariant basis of differential
forms and differential operators: 7 (w') = w'® and 7(D;) = D;.

Example 12. Let us return to Example 9, where we introduced canonical coordinates
(X,Y, Z) for the central projection, whose expressions in terms of the Cartesian coordi-

nates are given by (2.19). In this example, G = GL(3), G = SL(3), Gy = R*, the latter
denoting the one-dimensional Lie group of non-negative real numbers under multiplication,
so that [G] = G/Gy = PGL(3).

The standard cross-section for the projective action (2.21) of [G] is

where Y; denotes the jet coordinate corresponding to D% (Y'). The lowest order normalized
differential invariant is the standard projective planar curvature, ¢(Y7) = 7, whose explicit
formula in jet coordinates can be found in entry 2.3 of Table 5 in [39]. The inductive method
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[30] enables one to express the projective curvature compactly in terms of the equi-affine
curvature as follows:

) 6 fyx o — T iy — RIS

, (2.27)
61y
where the equi-affine curvature® and arc length are
_ B 13 : B 5
M_W’ dxy =Y, dX, with B =3Y,Y, —5Y5. (2.28)
2

As usual, equi-affine invariants are not defined at the inflection points Yo = 0. Note also
that Y5 = 0 implies that the planar curve is (a part of) a straight line. The derivative of
equi-affine curvature with respect to equi-affine arc length (2.28) is given by

A
= — 2.29
ILLX 9)/24 Y ( )
where the differential function
A=9Y;Yy —45Y, Y3 Yo +40Y5 (2.30)

plays an important role in what follows. In particular, if Y (X) satisfies A = 0, then the
equi-affine curvature of the curve is constant, and hence the curve must be contained in the
orbit of a one-parameter subgroup of the equi-affine group, which means that it is (part
of) a conic section, [39]. Otherwise, the projective arc length element and dual invariant
differential operator are given by

A1/3 32/3 Y,

dé = ()" dx
Planar projective invariants are defined at the points where Y5 # 0 and A # 0, and are gen-
erated by the projective curvature invariant 7 through invariant differentiation with respect
to the projective arc length (2.31).

We now employ the cross-section K = (II®))=1(K) C M, defined by the same set of
equations (2.26) as I, to compute differential invariants for the G = SL(3)-action on M.
As above, the gauge invariants are generated by the invariant 77 = 7(Y7) and the invariant
differential operator Dg = 7(Dx), which, in the canonical coordinates, have the same sym-
bolic expressions as their planar counterparts 7 and D¢. Nonetheless, we will be using hats
to emphasize that the former are defined on M, and to be consistent with the notation of
Section 2.5.

3In Blaschke [6], as well as in some other sources, the equi-affine curvature is defined to be 1/3 of the
expression y in (2.28). Our choice, however, leads to simpler numerical factors in the subsequent expressions.
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The computation of the invariantizations 7 (Z;), i > 0, of the fiber coordinates Z; = D% Z
requires more effort. We note that the prolongation of (2.20) is given by

Z — 7 = (CL31X + a32Y + CL33> Z7 Zi+1 — HD)((ZZ), 1> O, (232)

where

(a31 X + aszo Y + (133)2

H = )
(az1a12 — arrase) XY1 + (a12a33 — arzase) Y1 + (asear; — ainaz) Y + (assa;n — a13as)

The moving frames p: J¥(N,1) — [G] and p: J¥(M, 1) — G corresponding to the respective
cross-sections K and K have the same symbolic expressions in the canonical coordinates.
Since the explicit formulas are rather involved, we will not reproduce them here, but refer
the reader to Example 5.3 in [30], where the projective moving frame is expressed in a concise
way using the inductive approach. The normalized invariants Z =1(Z) and Zz =1(Z;),1>1,
are obtained by substituting those expressions into (2.32). In particular,

C=i(2) = 2, (2.33)

Hx

where 1, given by (2.29), is now considered to be a function on J°(M, 1).

We conclude that a complete system of centro-equi-affine invariants for space curves is
generated by the seventh order gauge invariant 77, whose symbolic formula is (2.27) and the
fifth order differential invariant ¢ in (2.33), by successively applying the invariant differential
operator Dg, whose symbolic formula is given by (2.31). Remarkably, 7 is the projective
curvature and Z is z times an equi-affine invariant of the image curve. In Section 3.2, we will
express 7] and E in terms of the third and fourth order centro-equi-affine invariants derived
in [42].

Finally to compute the centro-affine differential invariants, for G = GL(3), we consider
the action of Gy ~ R on M given by

X — X, Y+—Y, Z— N
This has a simple prolongation:
Y, — Y], Zi— N, 1> 0.

The G y-action restricts to l%, and we define a cross-section K C K to the restricted action by
appending the equation Z = 1 to (2.26). Following the inductive approach, we observe that
K is a cross-section for the prolonged action on J¢(M, 1) and that the normalized G-invariants
are expressed in terms of the normalized G = SL(3) invariants as follows,

=T i>6 G=7(z) =,

k>0, (2.34)
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where we omit the constant phantom invariants.
Thus, the centro-affine differential invariants for space curves are generated by the same
seventh order gauge differential invariant 77 and the sixth order differential invariant

fLV(Zl> . Zl 1 MXX

G=1(2)=2 =2 - 2.35
Cl L( 1) L(Z) 7 (}/2/%()1/3 BMi/g ( )

through successive application of the invariant differentiation operator
Dg:?(DX) =1(Dy). (2.36)

Remark: It may be instructive to revisit the preceding example in the standard jet
coordinates: (x,vy,z,¥1,21,...), where y; = D'y and z; = D’z. The corresponding non-

coordinate cross-section K is given by
I':(), 9207 yl:o? y2:17 93:_3217
ys = 1227 — 6 2y, ys = —60 22 4602, 25 — 10 23 + 1, (2.37)
Ye = 360 27 — 54022 25 + 1202 25 + 90 25 — 24 2, — 15 2.

The cross-section K is fixed by appending the further equation z = 1 to (2.37). We note
that

dE =7 (n0<5>* dX) =7 (Z A dx) — 7(dx), (2.38)

22
where, in the middle term, dX is considered to be a form on N and, as usual, = means
equality up to a contact form. The invariant form dg is dual to the invariant differen-
tial operator (2.36). Applying the moving frame recurrence formulae and the Replacement
Theorem (2.23), we can express the projective curvature = 7(Y7) in terms of normalized
invariants I; = 7 (y;), J; =1 (%), as follows:

n=1I;+27(120J) — 240 J} Jo + 60 J7 J3 + 90 J; J;

—20J7 —10J1 Jy — 20 Jo J3 + 4 J5 + J5) (2.39)
= 3Y3(=DeJy + J; + ).

3 Non projectable actions and some applications.

We now turn our attention to the important case, arising in image processing and computer
graphics, of central and parallel projections of three-dimensional space curves to the two-
dimensional plane. Central projections model pinhole cameras, while parallel projections
provide a good approximation for a pinhole camera when the distance between a camera and
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an object is significantly greater than the object depth, [21]. The formulation of Section 2
does not entirely cover these examples, since the associated group action of the affine group
on R? is not projectable. To handle such cases, in general, we identify a subgroup H of
the entire group G that acts projectably with respect to a surjective map Ily. Usually
H is chosen to be the maximal such subgroup. We then construct a family of surjective
maps II,: M — N parameterized by elements of G and examine the relationship between
differential H-invariants of submanifolds of M and invariants of the family of projections of
these submanifolds. In Section 3.1, we describe this relationship in the general setting of
abstract manifolds and group actions. In Sections 3.2 and 3.3, we specialize to the concrete
case of the central projections of planar curves, while Sections 3.4 and 3.5 treat the case of
parallel projections.

3.1 Non-projectable actions and induced families of maps

We start, as above, with a fixed surjective map Il,: M — N, but now suppose that the group
G acts non-projectably on M. Assume further that there exists a (nontrivial) subgroup
H C G whose action is Il -projectable. In this situation, we define a family of surjective
maps and corresponding projectable subgroup actions.

Recall, first, the adjoint or conjugation action of a group on itself, denoted by

Adg(h)=ghg™?* for g,hed. (3.1)

Theorem 13. Let II,: M — N be a surjective map. Suppose that G acts on M and,
moreover, H C G 1is a proper subgroup whose action on M 1is Il -projectable. For each
g € G, define the g-transformed surjective map I, = Illyog~': M — N. Then the action of
the conjugate subgroup Hy, = Adg (H) = gHg™ C G is Il -projectable.

Proof. Assume that z,z € M belong to the same fiber of II,, namely:
I1,() = Ho(g™" - 2) = Uy(g™ - 7) = IL, (). (3.2)
Since the action of H is I, projectable, (3.2) implies
My(hg™' 2)=My(hg*-Z) forall heH.
Inserting the identity element in the form ¢~'¢ in the above equality, we obtain
y(ghg™" - 2) =T(g 'ghg™ - 2) =Iy(g 'ghg™" - Z) =Tl,(ghg™" - ),

which implies that the action of H, is Il -projectable. O
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Remark: 1If Hy is the global isotropy group of the II,-projection of the action of H on
N, then Hy, = Ad g (Hy) is the global isotropy group of the Il ,-projection of the action of
H,on N. (Keep in mind that, while Hy is a normal subgroup of H, it need not be a normal
subgroup of G.) Setting [Hy| = H;/Hn, 4, we can therefore express the [H,|-differential
invariants of the images of submanifolds under II, in terms of the Hy-differential invariants
on M.

We finally state a simple, but useful relation between the pull-backs of functions under
II, and II,:
I F(z) = (Hyeg ') F(z) =" F(g™" - 2), (3.3)

forany F: N - R and z € M.

Example 14. Let M = R? and N = R% Consider the standard orthogonal projection
Uy(z,y,2) = (x,y). Let G = R x R? be a four-dimensional semi-direct product group,
parametrized by a, b, ¢, d, that acts on M via the transformations

g'(x,y,z):(x—i—aszb, y+ec, Z+d)

Although this action is not Il -projectable, the translation subgroup H = {(0,b,¢,d)} =
R3 C G, does act IT-projectably. The global isotropy subgroup Hy is isomorphic to R, and
its fiber-preserving action is given by (z,v, z) — (z,y, z+d). If (X,Y") denote coordinates on
N, then the quotient group [H] = H/Hy acts on N by translation: (X,Y) — (X +b,Y +¢).

In accordance with our general construction, we define the family of surjective maps
II,: M — N by

Hg(w,y,z) = HO(g_l : (a:,y,z)) = (ZE —az— bay - C)'

Since H is a normal subgroup of G, its conjugate subgroups coincide, H, = H, and thus
all the surjective maps II, are H-projectable. Moreover Hy, = gHyg ' = Hy, but its
fiber-preserving action (z,y,2) — (¢ + ad,y,z + d) depends on g, or, rather, on the first
parameter a of g, since it parametrizes the cosets gH. The I, projection of the [H]-action
to N is given by

(X,)Y)— (X +b—ad,Y +¢) for (bcd) € H.

Observe that this family of [H]-actions are all translations, but parametrized by the value
of a.

We assume, for simplicity, our space curves are given as graphs C = {(z,y(x), z(x)) }.
Under the action of the translation subgroup H, the invariant differential operator is D =
D,, and the two first order differential invariants vy,, z, comprise a generating set for the
entire differential invariant algebra. On the other hand, for a plane curve parametrized by
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(X,Y (X)), the single differential invariant Yy forms a generating set. The map II, projects
the space curve (z,y(z), z(x)) to the plane curve

,(C) = (X(2),Y (2)) = (z — az(x) = by(z) = ¢). (3.4)

Moreover,

TOYV*y, — Yz
( g ) Yx 1—az,

provides the relationship between the generating differential invariants of the space curve and
its planar image evaluated at corresponding points. It can be obtained either by computing
the first prolongation of (3.4), or by using our general formula (3.3), which in this case
amounts to IV *Yy = (g71)® - y,. The appearance of the parameter a is due to the non-
projectability of the full action. We also note that the invariant one-form w = dX on N is

pulled back via II, to the H,-contact-invariant horizontal differential form
H;kw =w=1-az)dz,

again depending upon the parameter a that determines the conjugacy class of g. Theorem
7 then enables us to determine relations between the higher order differential invariants by
applying the dual total invariant differential operator

~ d 1 d
D= — = _
dX 1—az, dx’

in accordance with formula (2.16).

When the subgroup H C G is not normal, the following proposition relating moving
frames and invariants under the adjoint action of G on H will be useful.

Proposition 15. Let G act on M, and let H C G be a subgroup. Given a fized element
gE€G, let Hy=Adg(H)=gH g "' denote the conjugate subgroup.

1. If I+ M — R is an H-invariant function then I, = [og~' is an Hy-invariant function.

2. If p: M — H 1is the moving frame for the H-action corresponding to the cross-section
ICC M, then py: M — H, defined by

pe(2) =Adgop(g7'2)=g-plg~'z) g

is the moving frame for the Hg-action corresponding to the transformed cross-section

Ky=g9-K.

3. If (F)(z) = F(p(z) - z) is the H-invariantization, corresponding to the cross-section
IC, of the function F': M — R then

Ly(F)(2) = F(pg(2) - 2) = F (g plg~'2) - 97'2) = u(Feg)(g~'2) (3.5)

is the invariantization of I for the Hy-action, corresponding to the cross-section IC.
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Warning: Since equation (3.5) can be summarized by
L(F)=1(Fog)og™" or, equivalently, ty(Fog™ ') =u(F)og™*,
it is important to underscore that ¢(Fog) # ¢(F')og. Indeed,

UFeog)(z)=F(g-p(2)-2), while «(F)og(z)=F(p(g-2)-(g9-2))

3.2 Central projections from the origin

In this and the following section, we specialize the preceding results to the case of central
projections. We begin by assuming the center of the projection is at the origin. Let w =
(7,9, 2) be the standard coordinates on M = R3 and v = (X,Y) be the standard coordinates
on N = R2. Let J¥(M, 1) denote the k-th order jet space associated with space curves Cc
M. Treating x as the independent variable, the corresponding jet coordinates are denoted
by w® = (z,y, 2,91, 21, .., Yk, 2), Where y;, z; correspond to the i-th order derivatives of
y, z, respectively, with respect to . Similarly, let J¥(N, 1) denote the k-th jet space of plane
curves, with coordinates v*) = (X,Y,Y;,...,Y%), where Y; corresponds to the i-th order
derivative of Y with respect to X.

Let us first consider the case of central projection, centered at the origin, from M =
{(z,y,2)|z # 0} C R? to the plane N ~ R? defined by z = 1. We will work in the
coordinate system on the image plane provided by the first two coordinate functions on M,
ie. X(z,y,1) =2 and Y(z,y,1) = y. Asin (2.18), the central projection map II,: M —
N = R? is thus explicitly given by

(X.Y) =T(ey.2) = (3. 7). (3.6)

As we noted in Example 9, the linear action of G = GL(3) on M is Il -projectable and
induces the projective action of [G] = PGL(3) on N C RP? given by (2.5).

Remark: The centro-affine action of the linear group on M is Il -projectable, because
linear maps take central projection fibers to fibers. On the other hand, translations do
not respect the fibers, and hence, the action of the translation subgroup R?, as well as the
action of the full affine group A(3), is not Il -projectable, and does not project to a well-
defined action on N. The quotient A(3)/GL(3) parametrizes the family of central projections
considered in Section 3.3.

Our goal is to relate the projective differential invariants of the projected curve to the
centro-affine differential invariants of the originating space curve. Let A®) denote the pro-
longation of the linear map induced by A € GL(3) to the k-th jet space J¥(M,1). Similarly,
the prolonged action of [A] € PGL(3) on J¥(V, 1) will be denoted by [A]*®). Applying the
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transversality condition (2.7) to (3.6), we conclude that a jet w*) € Jlf—[ (M, 1) is II,-regular
0

if and only if the total derivative matrix

oo (0.(2). pe(9) - (= B2

has rank 1, which requires that the two numerators, z—x z,, y. 2—¥ 2., cannot simultaneously

vanish. Geometrically, this implies that the curve intersects the fibers, i.e. the rays through
the origin, transversally.
Let C' C M be a smooth space curve parametrized by (z,y(z),z(z)). Its projection

~

C =1I,(C) C N has induced parametrization

v = (5 1),

The explicit formulae for the k-th prolongation H((]k) o J ’ﬁ (M, 1) — J¥(N,1) are given induc-
0

(3.8)

tively by

o DxY o Y2 — Y2z Y, — D:cY;fl _ 22 Dvaifl

V. — _ _ _
’ ' DX 2—x 2y D, X P

x=2 y=7 P> 1,
z z

on the open subset of J’ﬁO(M ,1) where z — x z, # 0. Geometrically, the latter inequality
requires that the space curve not be tangent to any plane of the form z = cz for ¢ constant,

and hence its projection not have a vertical tangent at the corresponding point.
Theorem 6 immediately implies:

Theorem 16. If I: J¥(N,1) — R is a differential invariant for the projective action of
PGL(3) on N, then I = IoH((]k): JE(M,1) — R is a differential invariant for the centro-
affine action of GL(3) on M.

Remark: Theorem 16 remains valid if we replace 11, with any projection centered at the
origin to an arbitrary plane, because the images of a space curve under projections with the
same center are all related by projective transformations.

~

We now seek to express the projective curvature 1 of the projected curve I1,(C) in terms
of centro-affine differential invariants of C. We begin by summarizing the equivariant moving
frame calculations in [42]. We choose the cross-section to the prolonged centro-affine action
on J¥(M, 1) defined by the normalization equations

r=0, y=0, z=1, y=0, z=0, =1 2=0 y3=0, wy=3. (3.9)

(The reason for this non-minimal choice of the cross-section will be explained below.) Replac-

ing the jet coordinates w® by their transformed versions wh = A®) 5 ®) for A € GL(3),
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and solving the resulting equations for the group parameters produces the moving frame
p: J3(M,1) — GL(3). The resulting normalized differential invariants are then obtained by
invariantization of the higher order jet coordinates:

T = o(yk), Je = 1(21)- (3.10)

The invariantization of the lower order jet coordinates used to define the cross-section pro-
duces the phantom invariants whose values coincide with moving frame normalization con-
stants in (3.9):

Iy =(y) =0, Jo=1(z) =1, I = 1(yr) =0, Ji=1u(z) =0,
Iy = () = 1, Jo = 1(22) =0, I3 = u(ys) =0, Iy = u(ys) = 3.

The remaining normalized invariants, i.e. I for £ > 5 and J; for [ > 3 form a complete

(3.11)

system of functionally independent differential invariants for the centro-affine action.
To write out the explicit formulas, as found in [42], we use

[wl,w2,w3] = Wy - W2 X Ws

to denote the determinant of the 3 x 3 matrix with the indicated (row) vectors, or, equiv-
alently, their vector triple product. Suppose the space curve is parametrized by w(t) =

(£(t), y(t), 2(1)). Let
ds = AY3dt, where A = [w,w;,wy] (3.12)

denote the centro-equi-affine arc length element with corresponding invariant differentiation

1
Thus, when parametrized in terms of arc length, the curve satisfies the unimodularity con-

straint
[w, wg, wes] = 1. (3.14)

Remark: We exclude singularities where A = 0. A space curve is totally degenerate
when A = 0 at all points; this is equivalent to the curve C' C P, being contained in the plane
Py = span{w(0), w;(0)} spanned by its initial position and velocity.

The centro-equi-affine curvature and torsion differential invariants are given by
J 1 [, Wi, Wit ]
H:_iDt(M)+T:[wuwssvwsss]7

o [wtywttawttt] -
T= " "> = [wsywss;wsss]-

AQ

(3.15)
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Note that  is a fourth order differential invariant* while 7 is a third order differential invari-
ant. (This is in contrast to Euclidean curves, where torsion is the higher order differential
invariant. )

Warning: We have switched the designation of x and 7 from that used in [42], and also
deleted a factor of 3 in 7 to slightly simplify the formulas. Our choice of notation is motivated
by the fact that the condition 7 = 0 is equivalent to the curve being contained in a plane
P C R3, thus mimicking the Euclidean torsion of a space curve.

As in [42], differentiating (3.14) produces [w, wy, wyss] = 0, which, when compared with
(3.15), produces the associated Frenet equation

Wegs = TW — KWs. (3.16)

Consequently, the condition 7 = 0 is equivalent to wgss and wy being collinear, while k = 0
is equivalent to the collinearity of w,s and w.

Under uniform scaling w —— Aw the centro-equi-affine differential invariants and arc
length scale according to

K — A2k, T — AT, ds — Ads.

Assuming that® k > 0, we can therefore take

Rg T

/FE:— 7/'\:—
ﬁ3/2’ I€3/27

(3.17)

as the fundamental centro-affine differential invariants, with orders 5 and 4, respectively.
Similarly, the centro-affine arc length element is

do = \/k ds = 1(dz), (3.18)

with dual invariant derivative operator

= —— D, (3.19)

Remark: There is a second independent fourth order differential invariant, namely
B=l% 1377 (3.20)
2 2

Note that both terms of the right hand side of this formula are of order 5, and hence the
terms involving fifth order derivatives cancel. One could, alternatively, use 7, 5 as generating

4The second expression in these formulas is potentially misleading; keep in mind that the arc-length
element (3.12) involves second order derivatives of the curve’s parametrization.
°If k < 0 just replace \/k by v/— & in the formulas.
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differential invariants, although the resulting formulas become more complicated. A similar
observation applies to the pair of fourth order generating differential invariants

~ K ~ Ts

R = 77/3, T = m, (321)

which results from the minimal moving frame cross-section
r=0, y=0, z=1, y1=0, 2=0, yo=1, 20=0, y3=0, 2z3=3.

The fact that the generating invariants (3.17) lead to the simplest formulae for the projective
curvature of the projected space curve is one of the key reasons for our choice of non-minimal
cross-section (3.9).

The Replacement Theorem (2.23) implies that if I JF(M,1) — R is any centro-affine
differential invariant, then its explicit formula in terms of the normalized centro-affine in-
variants can be obtained by invariantizing each of its arguments:

o~

[(:U7 Y,2,Y1,21,Y2, 22, Y3, 23, Y4, 24, Y5, 25, - - - Yn, Zn)
= [<Oa 07 17 07 Oa 17 07 07 J37 37 J4a ISa J57 o aIna Jn)

Applying this result to the pull-back 77 = 770I1,(" of the projective curvature invariant (2.27)
produces the desired formula

3(Is 4+ 10J5) (217 + 42 J5 — 105 (I5 + 4.J3)) — 7 (Ig + 154 — 45)?
6 (15 + 10.J3)83

7= (3.22)

that expresses the projective curvature of the central projection of a nondegenerate space
curve in terms of its normalized centro-affine differential invariants (3.10). Alternatively, the
moving frame recursion formulas, [17, 42], can be employed to express the higher order nor-
malized differential invariants in terms of invariant centro-affine derivatives of K, 7. Applying
the general algorithm, we find

Js =T,

Ji=DoJs+ L 1I;J5+2J; =7, + 3R7,

Js = DoJy+ 2LJy+ 8 T3 Jy+ 905 = Tpo + R0 7 + LRT, + 3R°T + 97,

I; = 3% — 47, (3.23)
Is = Dols + 112 +215J5 — 5J, + 45 = 3R, — 97, + 3R* — L RT + 45,

It = Dol + 2 IsIs + § IgJ5 + 2115 — 6 J5 — 60 J;

= 3Roo — 15Tps + 15RR, — R, T — L2RT, + 9R® — 45R°T + 153K — 1987,

and so on. One can, of course, easily invert these formulae to write &, 7 and their derivatives
in terms of the normalized differential invariants I, J,. We note that I3 and J; generate the
differential algebra of invariants through the differential operator D, .
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The resulting formula for 7 has a particularly simple form if we set

ks + 2T

a=R+27=
13/2

=L(I;+10 7). (3.24)

Namely,
n=23"%3 (&75/3&00 — ga*8/3a§ + %@*2/3 (Ko +

7 3.25
_ 31/3 (_2a—1/2D3(a—1/6) + %a—2/3 (Ry + %22 - 1)) . (3:29)

As we discussed in Example 12, projective curvature is undefined for straight lines —
equivalently Y5, = 0 — and conics — equivalently A = 0, where A is given by (2.30). We
have

27 215 A4
(xzg —2)'2

23 A

5) %
g (E):—m

and  IIV*(A) = (ks +27) (3.26)
The first condition tells us that a space curve is projected to a line segment if and only if
A = 0 and hence, as we noted earlier, it lies on the plane passing through the origin. The
second condition tells us that a curve projects to a conic if and only if A # 0 and k,+27 = 0,
which, assuming x # 0, is equivalent to the vanishing of the differential invariant o = 0.
Recall, [39], that, in general, a nondegenerate curve has all constant differential invari-
ants if and only if it is (part of) the orbit of a one-parameter subgroup. For example, the
twisted cubic C , parametrized by (z, 2%, #®), has constant centro-affine curvature and torsion
invariants & = —4/v/3, 7 = 2/4/3, and can be identified as an orbit of the one-parameter
subgroup of diagonal matrices { diag(\, A%, A3) | \ # 0 }. Further, we note that the differ-
ential invariant (3.24) vanishes, @ = K + 27 = 0 on C, reflecting the fact that the twisted

cubic is projected to a parabola under II,.

Remark:% In Example 12, we introduced another invariant differential form, the pull-back
of the projective arc length element (2.31). We find that

d€ = II,0* d¢ = (38) P do = (3a)/* ds, (3.27)
where, as before, & = k + 27, and we set
a=ar¥? =k, +27,

while do and ds are given by (3.18) and (3.12), respectively.

6This remark is significantly changed in comparison with the version of the paper published in
Lobachevskii J. Math. 36 (2015), 260-285. Several formulae are corrected and new formulae are inserted. To
preserve the numbering in subsequent sections, we added * to the additional formula tags in the remainder
of this section.
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We showed in Example 12 that 7 and El =1(Zy), given by (2.27) and (2.35), respectively,
provide another generating set of centro-affine invariants under the invariant differentiation

D= (3a)"*D, = (3@)""° D,,

and, therefore, can be expressed in terms of & and 7. We of course, already have such an
expression for 77, given by (3.25), and can rewrite it in the alternative form using De:

Q

oG8 —G 3 (B@) R+ R (3.28)
=T 2 (3@)%3 ' |
We further find that g ~ 2/3
~ Oy + SR Q 1ag 1 33K
G=_ g 1% 1O (3.29)
34/3 54/3 3a 6 al/s

On the other hand, 7 and ¢ = ©(Z), given by (2.33), provide an alternative generating
set of centro-equi-affine invariants under the invariant differentiation DEA. We can express
these invariants in terms of x and 7 (or, rather x and «) and their derivatives with respect

to D,. We find that .

and comparing with (2.33), we observe that the expression 3z3«, evaluated at a point on a

(3.30%)

space curve C, equals ji,, the derivative of the equi-affine curvature with respect to equi-
affine arc-length evaluated at the corresponding point of its projection. The formula for 77

becomes rather simple:

7.2 3 2
Oéss()é—gaés—ilﬁa

= 32/3 ,8/3
and can be compared with formula (2.27) for the projective curvature in terms of the planar

(3.31%)

equi-affine invariants. If we replace o by i, and « by p in the above formula, we obtain

a very similar formula to (2.27) — the difference is in the overall factor and also in the

coefficient of the last term in the numerator. In part this may be explained by the fact that

py, = 3z3a, as observed above. The centro-affine invariant (3.29) has a particular simple

expression in terms of centro-equi-affine invariant z , or, equivalently, a:
~ o~ g

G=¢= “Ga® (3.32%)

We finally note that we can also write
H=—3CCu+ 32— 3k = —6¢¥2((V?)0 — 30k = =6 XD+ 1) (3.33%)
Alternatively, since

(3.34%)

Ds — :D’\,
¢ £
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we can rewrite (3.33%) as

=207 B¢G 20— r) (3.35%)

and then solve for x: _ e _

1206 +060¢e —9¢
3 I

K= (3.36%)
Formulae (3.30%), (3.31%), (3.34*), and (3.36*) give strikingly simple relationships between
two natural generating sets of the differential algebra of centro-equi-affine invariants:

(a) k and « under Dy; (b) 7 and ¢ under D

The first set is naturally expressed in terms of the position vector of a curve and its deriva-
tives, while the second set has a natural relationship with the invariants of the image of
the curve under projective and equi-affine actions on the plane. Indeed, recall that 1 and
de are the projective curvature and arc length element, respectively, of the image curve,

/3

while ¢ = 2z py ! , where p, is the derivative of the equi-affine curvature with respect to the

equi-affine arc length.

3.3 Projections centered at an arbitrary point

We now consider more general central projections of space curves. Let II; be the central
projection centered at the point € = (cy, ¢o, ¢3), mapping M = {(z,y,2) |2 # c3} C R? to
the plane N = {z = 1 + ¢3} ~ R%. Explicitly,

Xr — C — C
(XJU=H4%%Z%=< Uiy, ! 2+@), (3.30)

Z — C3 Z — C3

where I, given by (3.6) is the special case when ¢; = ¢; = ¢3 = 0.
We denote the space translation by the vector € as Ts: M — M and the plane translation
by the vector ¢ = (¢1,¢q) as T,: N — N. Clearly

I, =11, T, " (3.31)

Although the map (3.31) involves an extra transformation 7, that does not appear in the

map [I, defined in Theorem 13, an almost identical proof implies that the action of GL(3)s =

Ad T:(GL(3)) on M is Il -projectable. Explicitly:

Proposition 17. For any non-singular linear transformation A € GL(3) acting on M,
(LA T, ) T, = I (T, AT ),

C

where [A] € PGL(3) is the corresponding projective transformation on N.
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Proof. The GL(3)-action on M is Il -projectable and, moreover, satisfies
[A]Il, =1I,A forall Ae GL(3). (3.32)

We substitute II, = T, Il Ts, obtained from (3.31), to complete the proof. O
(k)

c
choose a representative smooth curve C' C M, parametrized by (x,y(z), z(x)), such that

As before, to determine the formulas for the induced projection I1.” on curve jets, we
wh) = jka|w0 at the point wy = (xo, y(z0), 2(x)). Then its central projection C' = II;(C) C
N has parametrization

(X(x),Y(2)) = (ﬁ + e, yle) =z 02) . (3.33)

At the image point vy = Ig(wp), the projected curve jet is v*) = Hék)(w(’“)) = jkG|HA(w0)'

Proposition 17 and Theorem 6 imply:

Theorem 18. If I: J¥(N,1) — R is a differential invariant for the projective action of
PGL(3) on N, then I = IoHék): JE(M, 1) — R is a differential invariant for the translational

conjugation GL(3)s := AdTe(GL(3)) of the centro-affine action.

Remark: As before, Theorem 18 remains valid if we replace II; with a projection centered
at € to an arbitrary plane, because the projected images of a space curve with the same center
are all related by projective transformations.

The pull-back 7 = II,P* 5 of the planar projective curvature (2.27) is a GL(3)s
invariant. According to (3.3), e = NoT% ', where 7] = 11,0 * 5 can be expressed in terms
of the normalized invariants for the centro-affine action on R?. In particular, formula (3.22)
expresses 7) in terms of the normalized invariants I, J; corresponding to the cross-section
K given by (3.9). Then, according to Proposition 15, the functions gy = IzoT5 ' and
Jep = Jpols ! are GL(3)¢-invariants obtained by invariantization of yy, ngl and z, ngl
relative to the cross-section:

Ke =T:(K)

(3.34)
={r=c,y=c, z2=1+c3, 1 =0, 21 =0, 920 =1, 20 =0, y3 =0, 23 = 1}.

Taking into account that translations leave jet variables of the first order and higher invariant
(i.e. ykngl = 1y, and zkngl = 2z, for k > 1) we observe that Iz, and Jg are, in fact,
normalized invariants. The projective curvature 7j¢ of the projected curve (3.33) can then
be re-expressed in terms of these invariants by simply replacing, in (3.22), each I, J;, with
the corresponding invariant Iz, Jg .
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3.4 The standard parallel projection

By the standard parallel projection, we mean the orthogonal projection from M = R3? to the
ry-plane N = R?. We use the coordinates (X,Y) on the image plane that agree with the
corresponding rectangular coordinates on R?, i.e., X (z,7,0) = z and Y (z,y,0) = y. The
resulting parallel projection map II,: M — N is explicitly given by

(X, Y) = ly(z,y,2) = (2,9). (3.35)

It is easily checked that the maximal IT-projectable subgroup H C G' = A(3) consists of the
transformations

(7,y,2) ¥ (an T +any+ci, an+any+cy, anx+apy+apsztc)  (3.36)
where agz(a11 aze — ajpas) # 0. This action projects to the affine action
(X,Y) — (an X 4apY +cp, an X +axnY +c) (3.37)
on N = R2. The global isotropy group Hy consists of the transformations
(x,y,2) > (x, y, a1z + asy + azz z + c3) (3.38)

that fix the points on the xy plane.
We now investigate the prolonged action on the curve jet spaces and the consequential
differential invariants. If C' C M is a smooth space curve parametrized by (z,y(z), z(x)),

-~

then its projection C' = II,(C') C N has parametrization

(X(2),Y(2)) = (z,y(x)) (3.39)

Applying the transversality condition (2.7) to (3.35), we see that all jets are II-regular, and
thus the prolongation H(()k): JF(M, 1) — J¥(N, 1) is globally defined by

o Da:Y o Y, — DwY;—l
T D.x U T DX

X =z, Y =y, Y1 = Yi, 1> 1.

This induces an obvious isomorphism between the algebra of fiber-wise constant differential

invariants of the action (3.36) and the algebra of affine differential invariants of planar curves.
We can use paradigm of Section 2.7 to construct a cross-section on M that projects to

the standard cross-section for the affine planar action:

K={X=0 Y=0, ¥;=0, Yo=1, Y3=0, Y, =3} (3.40)

The moving frame invariantization associated to this cross-section produces the affine cur-
vature invariant

A

V:L(Y:r,):igm,

(3.41)
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where A, B are given by formulas (2.30), (2.28), respectively, along with the contact-invariant
arc-length element and its dual invariant differential operator

1 BY/? Y
do = mpi(dX) = 37, dX, D,=3 BTZ’/Q Dy = «(Dy). (3.42)

The recurrence formulae then express the higher order normalized invariants in terms of

invariant derivatives of the affine curvature (3.41), namely:

(Ys) = vy + $1° + 45, W(Y7) = Voo + 20wy + 217 451, (3.43)
and so on. These are all defined on the A(2)-invariant open subset of the jet bundle prescribed
by the inequality B > 0.

We note that the group H acting on R? by (3.36) is a product of two groups, namely,
H = A(2) acting by
(z,y,2) = (anx+awpy+c, anz+any+c, 2) (3.44)
and Hy acting by
(z,9,2) V= (7, ¥, a1z +azpy+ a2+ c3). (3.45)
The invariants of the A(2)-action (3.44) can be obtained by lifting the cross-section (3.40)
to R3, producing
E:{.’L’:O, ’y:O, y1:07 y2:17 y3:0’ y4:3} (346)

The corresponding normalized differential invariants 7 (y;), ¢ > 5, are obtained by replacing
the capital letters Y and X with their lower case versions y and z, respectively, in (3.41),
(3.43). The invariant differential form dg = w7 (dx) and dual invariant differential operator

32

V/3Y2ys — 5Yy3

are also obtained in the same manner from (3.42).

Dy =1(Dg) =

D, (3.47)

We can also employ the recurrence formulae to determine the higher order differential
invariants

~ ~ 3y2 21
t(z) =2z, L(z1) =25= ,
’ \/3y2y4—5y32,
3y2 (Bya 20 — Y3 21)
3y2ys — Y3

() =2+ gvo=

)

27 y5 (Y2 23 — Y3 22) (3.48)
(Byays —5y3)%/2
T(24) = 2o+ vagoo+ Gva+ 2 +4) 2+ (Guge+ v+ =10 +0)2
81 ys (Y2 za —2ys23) + 2Ty Y5 22 — (2T w2 ya — 45 3) Yo ys 21
B (3y2y4—5y§)2

U(%3) = 2505 + %I/z@+ (%%4— %Vz—{—l)Z@\:

Y
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and so on. The algebra of differential invariants for the action (3.44) is generated by the
gauge invariant
9ysy3 — 45yays yo + 4043

(3 Y2 Ys — 53/?2,)3/2

and the non-gauge invariant z through invariant differentiation under Dj.

D =T(ys) = 3 (3.49)

The prolongation of the Hy-action (3.45) is given by

Yo=Y, s astapt tassz, Y Y, i aslitaszz, 1> L
(3.50)

The action restricts to the lifted cross-section (3.46) as follows:

Yi —> Yi, Z > a3z +C3, 21 k> a31t0asz21, 22 7 32 1+ A33 22, (3.51)

Z3 +—— Q33 23, z4 — 3ass + ass 24, Z; —— a32Y; + as33 z;, 1> 4. '

We can follow the inductive approach of [30] to express the invariants of the H-action
(3.36) in terms of the invariants of the A(2)-action (3.44). We choose the cross-section K C K
to the action (3.51) of Hy defined by

ZEZO, y:()a yl:oﬂ yQ:la ?/320, ?/4:3, ZZO) 21207 22207 23:17

which can be proven to also be a cross-section of the H-action on R3. The induced moving
frame normalizations are

1 29 21 z
= —_— ; f— — y f— — y f— —_—.
a33 as2 - a31 - C3 -
z3 z3 z3 zZ3

Using formulas (22) and (25) in [30], we obtain the following normalized invariants for the
H-action

0(z4) — 37 (22) 0(z) — 7 (22) T (y:)
(23) ’ (23) ’

As expected ©(D,) = ©(D,) = Dy, given by (3.47). The differential invariants of the H-
action (3.36) are generated by the gauge invariant v, given by (3.49), and the non-gauge

) =v(wi),  T(z) = T(z) = i>4. (3.52)

invariant
Y2 (3/2 24 — Y4 22) —2y3 (92 Z3 — Y3 22)

(y223 — Y3 22) \/3Yaya — 542

through invariant differentiation under Dj.

T(z4) = 3

3.5 Family of parallel projections

Using general framework of Section 3.1, we now consider the family of parallel projections
from M = R? to the zy-plane N = R? in the direction of the vectors b = (by, by, 1). We
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assume that the coordinate functions (X, Y) on the image plane agree with the corresponding
coordinates on R3, i.e. X(z,y,0) = z and Y (x,y,0) = y. The resulting projection

M,: M=R* — N =R
is explicitly given by
(X,Y) =1p(z,y,2) = (x —biz, y — ba2). (3.53)
Let Ty, € A(3) denote the linear transformation on R? given by
Tv: (z,y,2) — (v+biz, y+ bz, 2). (3.54)

Obviously I, = II,o7T; !, and the action of Hy, = Ty, HT;' C A(3) is I-projectable.
According to (3.3), the pull-back of the planar affine curvature is given by

Dp = ,O %y = Do (T,H)®, (3.55)

where v is given by (3.41) and ¥ is given by (3.49). The resulting expression is rather

complicated, involving y;, z; for 1 < i <5, and by, by, and is obtained by replacing the y; in

v with their pull-backs under the prolonged T, '-action. For instance, y» must be replaced

with

Y2 (1 = bi21) + 2 (biys — o)
( 1-— bl 21)3

Yoo (T 1) =

On the other hand, in accordance with (3.5) in Proposition 15, Dy, = 7(y5 o7} '), where 73,
is the Hyp-invariantization corresponding to the cross-section Ky, = Ty, (K) defined by

=0, y=0, 16W=0, yo=1, y3 =109, ya = bozg —4b1 +3, 2 =0, 21 =0, 20 =0, 23 = 1.

Combining (3.5) with the Replacement Theorem, we can compute explicit relations between
normalized invariants for invariantizations 7y, and 7. For example,”

T(ys) = tb(ys + 5 by 24 — by 25) OTb(5), (3.56)

while
To(ys) = T(ys — 524 by + 25 by — 10y by) o (T 1), (3.57)

Although explicit general formulae for the invariants 74, become cumbersome, (3.55)
provides a useful relation between the invariants of a space curve C and the affine curvature
of the images C}, under parallel projections in various directions, as specified by the vector
b = (b1, b, 1). These quantities are easily computable for a specific curve C and could be of
use in applications to the problem of reconstruction of an object from its various images.

"Formulae (3.56) and (3.57) do not appear in the version of the paper published in Lobachevskii J. Math.
36 (2015), 260-285.
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4 Conclusion and future work.

In this paper, we examined the relationships between the differential invariants of objects
and of their images under a surjective map II: M — N. Our analysis covers both the
case when the underlying transformation group G maps fibers of II to fibers, and therefore
projects to a group action on N, and the case when only a proper subgroup H C G acts
projectably. In the projectable case, we established an explicit, constructible isomorphism
between the algebra of differential invariants on N and the algebra of fiber-wise constant
(gauge) differential invariants on M. This isomorphism leads to explicit formulae for the
invariants of the image of a submanifold S C M in terms of invariants of S. In particular,
we expressed the projective curvature of a planar curve in terms of centro-affine invariants
of its pre-image under the standard central projection from R? to R2. In the non-projectable
case, we introduced a family of surjective maps II,, parametrized by elements of g € GG, and
then expressed the differential invariants of each Il -image of a submanifold of S C M in
terms of its Ad g (H )-invariants which, in turn, can be easily obtained from its H-invariants.

Motivations for considering both projectable and non-projectable actions comes from ba-
sic problems arising in image processing: establishing relationships between three-dimensional
objects and their two-dimensional images and reconstructing an object from its various im-
ages. In [9, 10], differential signatures of families of planar curves were used to obtain a
novel algorithm for deciding whether a given planar curve is an image of a given space curve,
obtained by a central or a parallel projection with unknown parameters. In this paper, we
establish the relationship between differential invariants of a space curve and its various pro-
jections. In this context, further analysis of the effect of a surjective map on the associated
differential invariant signatures, used in object recognition and symmetry detection, [11], is
worth pursuing. These results may also find applications in the problems of high dimensional
data analysis, by studying projections of the data to lower dimensional subspaces. Applying
the methods developed in the paper to these problems is one of the directions of future
research.
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