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Faults can slip episodically during earthquakes, but also during transient aseismic slip
events'”’, often called Slow Slip Events (SSEs). Previous studies based on observations
compiled from various tectonic settings®'° have suggested that the moment of SSEs is
proportional to their duration, T, instead of the M, x T3scaling found for earthquakes''-*2.
This finding has spurred efforts to unravel the cause for this difference of scaling 8317,
Thanks to a new catalog of SSEs on the Cascadia megathrust based on the inversion of
surface deformation measurements between 2007 and 2017'%, we find that a cubic
moment-duration scaling law is more likely. Like regular earthquakes, SSEs also obey M, «
A3/2, where A is the rupture area, and the Gutenberg-Richter frequency-magnitude

relationship. Finally, these SSE slip models show pulse-like ruptures similar to seismic
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ruptures. The dynamic and scaling properties of SSEs are thus strikingly similar to those of

regular earthquakes.

Geodetic monitoring of strain accumulation and release along various subduction zones has
revealed episodic events of aseismic slip along different megathrusts'. These Slow Slip
Events (SSEs) are typically accompanied by a burst of weak low-frequency seismic signals
called tremors'®?°, The characteristics of these slow earthquakes compiled from different
subduction zones® suggest that their moment, M, (defined as the integral of slip over the fault
area multiplied by the shear modulus), is proportional to their duration, T. It has therefore
been inferred that SSEs and earthquakes, which obey'? M, « T3, correspond to distinct modes
of slip®. The cubic scaling is expected for circular ruptures with constant stress drop expanding
at a constant rate'?, a kinematic model close to the dynamic circular crack model®! which fits
most properties of earthquakes to first order. The Moment-duration scaling should however
transition to M, o T for the larger ‘bounded’ ruptures that saturate the seismogenic zone?3.
This transition is hardly seen in seismicity catalogs as they are dominated by smaller,
unbounded events'3?2, By contrast, only the larger SSEs are generally detected with geodetic
techniques and they generally show large aspect ratios suggesting bounded ruptures. This
consideration lead to the suggestion®3 that the different scaling between regular earthquakes
and SSEs arises because earthquakes catalogs are dominated by unbounded ruptures while
SSEs mostly represent bounded ruptures. An alternative view is that the difference of scaling

between earthquakes and SSEs reflects a fundamentally different dynamics®?’.

In this study we take advantage of a recent catalog of SSEs from Cascadia® which was

obtained from the inversion of geodetic position time series recorded at 352 continuous GPS
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stations between 2007.000 and 2017.632. After extracting a secular trend average through
the SSEs from the time series, and deducing from it the pattern of locking along the plate
interface (Fig. 1), the data were corrected for the effect of surface loads as well as of co- and
post-seismic slip. These corrected time series were used to image spatio-temporal variations
of slip along the megathrust (Fig. 1). The catalog of SSEs extracted from the slip model history
on the whole megathrust contains 64 events which were found to coincide with the spatio-
temporal distribution of tremors (Fig. 2), as was found in previous similar studies?324,
Individual events show unidirectional or bidirectional ruptures with a rupture front velocity
between ~5.5 km/day and ~11 km/day®. The larger ones show pulse-like behavior very
similar to large earthquake ruptures? but with a much lower propagation and slip rates.
Figure 1 shows the cumulated distribution of slip resulting from all 64 SSEs. As shown by Gao
and Wang?®, the zone of episodic slow slip and tremors follows closely the intersection of the
forearc Moho with the megathrust, and is separated from the shallower locked zone by a 40
km wide band of steady creep (Fig. 1). The catalog contains SSEs with a relatively wide range
of sizes spanning moment magnitudes between ~M,, 5.3 and M,, 6.8 (Fig. 2), allowing for the
investigation of the scaling properties of a population of SSEs which all happened in relatively

narrow range of conditions.

The moment-duration data of this catalog falls in the slow-slip domain identified by Ide et al.®
(red shading in Fig. 3 and S1). However they don’t follow the linear scaling proposed in that
study, and align better along the M, « T3 scaling of earthquakes. This dataset suffers
however from a bias since a low-pass temporal filter with a cut-off period of ~30 days was
applied to the time series. To refine the analysis and alleviate the possibility of a bias
introduced by the automatic picking of the onset and end of the SSEs, we carried out manual

measurements using time series filtered with a shorter cut-off period of ~9 days, (see
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Supplements for details). For sanity we removed 17 events which we considered
guestionable, and combined 7 pairs of events, due to their closeness in time and space. The
final revised catalog consists of 40 events. For each event we estimate minimum and
maximum durations and find the same trend as the original catalog. We next use the revised
dataset to search for the best fitting scaling law, taking into account duration and magnitude
uncertainties and the effect of the filter (see Methods for details). For example we show in
Figure 3a where filtered data should plot if M, « T (yellow dots) and M, « T3 (green dots) were
the true relationships to generate the observations. The RMSE for c=3 is about half the value
obtained for c=1 and varies little for c23. So we conclude that SSEs occurring under a narrow
range of conditions (e.g., temperature and pressure), as is the case in the deep SSEs from
Cascadia analyzed here, follow a near cubic moment-duration scaling like regular
earthquakes. This finding is all the more unexpected since most of the SSEs in our catalog
ruptured the entire width of the zone of episodic slow slip and tremors defined from the
cumulated slip (Figs. 1&S4) and have large aspect ratios (Fig. 4). They would therefore be
expected to follow a linear scaling®3. It is noteworthy that, while the cubic scaling of regular
earthquake is generally justified based on the circular crack model?’, the same scaling is
observed in our dataset where most ruptures are very elongated with aspect ratios of 2 to 12

(Fig 4b).

The original catalog as well as our manual measurement also define a tightly constrained
moment-rupture area scaling following approximately the M, « A3/? scaling of regular
earthquakes (the best fitting scaling law exponent is actually 1.25, see Supplements for
details) (Fig. 3f). The ratio M,/A3/2 is however three orders of magnitude smaller, implying a
stress drop of ~4.312.0 kPa, based on the same circular crack model generally used to

quantify seismic ruptures??, vs 1-10MPa for regular earthquakes. This means stress drop is
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however questionable as the rupture areas are quite elongated (Fig. 4b). We therefore
estimated the average stress drop for each of our SSE based on our slip model using the
approach of Noda et al.?8 and using Meade’s analytical solution?® for triangular sub-faults. The
values range between 0.9 and 18.0 kPa, with a mean of ~5.8 kPa and a standard deviation of
2.0 kPa. Our mean stress drop is about 10 times lower than the value proposed by Schmidt
and Gao*° based on the slip model of 16 M,, 6.2-6-7 events between 1998 and 2008. Given
that the slip-distributions are similar (the three common events are compared in the
Supplements), we suspect that this difference is due to the way rupture area were measured
by Schmidt and Gao®°, the fact that our slip models do not account for the slip that would be
needed to balance interseismic loading during SSE, and the possibility that our slip models are

smoother due to stronger regularization.

We also examined the SSEs frequency-magnitude scaling (Fig. 4a). We show the distributions
obtained from both the original catalog and the revised catalog. The data selection in the
revised catalog results in a roll-over at lower magnitudes, but in any case we find that the
SSEs approximately obey the Gutenberg-Richter relationship with a b-value of the order of
~0.8. The abrupt drop in the frequency of events larger than M,, 6.4 suggests a truncation
effect. The truncation cannot be explained by the transition from unbounded ruptures to
bounded ruptures in width (this transition would occur at a much lower magnitude ~M,, 5.7
given the aspect ratio of the ruptures), but it could alternatively be due to the along-strike
segmentation discussed below. With only 11 events with M,,>6.4, this observation should
however be considered with caution. A previous study had also argued for SSEs obeying the
Gutenberg-Richter law®' but used moment inferred from duration assuming linear
proportionality. It seems that the conclusion holds in spite of this probably incorrect scaling

assumption.
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Finally, we note that the zone of SSEs can be divided into a discrete number of segments that
slip systematically as a whole, either independently or jointly (Fig. 2). From the rupture
patterns, cumulative slip distribution, and number of time a sub-fault has slipped (Fig. S4), we
defined 13 segments (Fig. 2). Segments 1 and 2 are extremely coupled. They mostly rupture
together expect for a rupture in July 2014 (2014.612) which was restricted to segment 2.
Segment 7 ruptured in combination with segments 6 and 8 in 2014, but never by itself. The
segmentation of the Cascadia SSE zone had already been noticed?®, and a similar segmentation
is observed in Japan32. This segmentation is qualitatively similar to the segmentation defined

by regular megathrust earthquakes3334,

In conclusion, the M,, o T scaling proposed in the seminal study of Ide et al.8, probably arises
from the assembling of slow slip events occurring under different conditions. We suspect that,
as described here for the particular case of the SSEs in Cascadia, any subset of SSEs under
similar conditions would yield a cubic scaling law as we found here. The along-strike
segmentation, frequency-magnitude distribution, and scaling properties of SSEs on the
Cascadia subduction zone are thus found to be remarkably similar to those of regular
earthquakes. The pulse-like propagation of individual events also looks very similar to the
seismic ruptures as inferred for large SSEs in the context of the Mexican subduction®. We
infer that the dynamics governing aseismic SSEs is not that different from the dynamics
governing seismic ruptures, a surprising result given that seismic ruptures are commonly
thought to be governed by inertial effects which should not play any role in the case for SSEs.
Unexpectedly, our results also call for reexamination of the cause of the M, o« A3/2 scaling as
it seems that, at least in the case of SSEs, the explanation based on the circular crack model
would not hold. It also calls for a reexamination of the effect of geometric bounding on scaling

properties of regular earthquakes as well as SSEs. The similar scaling properties of SSEs and
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regular earthquakes suggest that SSEs might help develop and test dynamic models of
earthquake sequences which are difficult to constrain from observations due in particular to

the long return period of large earthquakes.
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Figure 1 | Comparison of interseismic coupling with cumulated slip due to episodic slow slip
between 2007 and 20178, The analysis is based on GPS time series between 2007.000 and
2017.632 from 352 cGPS stations from the Pacific Geodetic Array (PANGA) and the Plate
Boundary Observatory (PBO). SSEs were determined from the temporal variations of geodetic
displacement, corrected for hydrological effects and other tectonic sources (co- and post-
seismic deformations). The cumulated slip due to all the 64 SSEs in our catalog forms a band
that follows the intersection of the forearc Moho with the megathrust and is disconnected
from the shallower locked portion of the megathrust. Interseismic coupling is defined as the
rate of slip deficit due to locking of the Megathrust in the interseismic period divided by the
long term slip rate. Interseismic coupling and the long term forearc motion was determined
from the secular GPS velocities (best fitting linear trend to the GPS time series). The model
shown here assumes locking at the trench. Alternative models assuming no locking at the
trench can fit the data equally well but, in any case, the locked zone is clearly disconnected
from the zones of episodic slow slip and tremors?®.
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Figure 2 | Spatio-temporal distribution of slip and SSEs segmentation. a) Time line with
magnitudes, labeled by event number, of all 64 SSEs of our original catalog'®. b) Timing and
rupture extent of the SSEs. The black dots indicate tremors. The catalogue from Ide3® is used
until 2009.595, the catalogue from PNSN (https://pnsn.org/tremor) is used thereafter. The
vertical green line marks the separation between the two catalogs. The dashed pink lines
indicate the segment boundaries defined as the rupture ends (see also Supplementary Fig.
S3).
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Figure 3 | Moment-Duration and Moment-Area scaling laws. (a) Relationship between the
moment, M,, released by SSEs and their duration, T. The black dashed line indicates the slope
of the scaling law for regular earthquakes. The green and yellow dots (as in Fig. 3c) show the
expected moment-duration distribution for catalogs following M, « T3

and M, T,
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respectively, affected by the temporal filter in the case of the best-fitting value of the
intercept. (b) Comparison with the scaling laws for slow (red shading) and regular
earthquakes (green shading) proposed by Ide et al.8. (c) Data fit assuming M, « T¢, taking into
account the magnitude and duration uncertainties and the effect of the temporal filter (see
Methods). The RMSE for c=3 (green dot) is half that for c=1 (yellow dot), and only 10% larger
than the best fitting value which is obtained for ¢=5.09 (blue dot). (d) Relationship between
the moment released by SSEs and their rupture area, A. The black dashed line indicates the
scaling law for regular earthquakes. (e) Comparison with the scaling law of regular
earthquakes (green shading). Stress drop iso-lines are estimated based on the circular crack
model'2: M, = C~'AtA3/?, At the stress drop, A the rupture area and C=2.44. See
supplement for details about the measurements. (f) Data fit assuming M, < 49, taking into
account the uncertainty on moment (see Methods). The best fitting value is d=1.25.
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Figure 4 | Frequency-Magnitude distribution and aspect ratio of SSEs in Cascadia. (a)
Logarithm of the number of SSEs with moment magnitude larger than the value in abscissa
using the original catalog’® (blue dots) and the revised catalog (red dots). Like regular
earthquakes, SSEs are observed to follow approximately a linear trend, i.e. the Gutenberg-
Richter relationship (see Methods for the b-value estimate). The apparent larger b-value at
M,,>6.4 is defined by only 11 events and could suggest that the distribution is truncated
possibly as result of the along-strike segmentation. (b) Aspect ratio of rupture areas. See
supplements for details about area and aspect ratio measurements.
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METHODS

Moment-duration scaling

We determine the best fitting moment-duration scaling law, Log10(T) = (%) Log10(M,) +

b, taking into account the uncertainties on SSEs duration and moment (see supplement) and
the effect of the temporal filter. We grid search for the best exponent, ¢, and intercept, b, of
the scaling law. For each pair of exponent and intercept values, 1500 random catalogs of 40
SSEs are created assuming a uniform probability between the minimum and maximum
moment and duration values. We then compare these catalogs with the moment-duration of
synthetic catalogues. The events in the synthetic catalogs have the same magnitudes as in the
random catalog, thus the same final moment released, Mg, but a duration, Dy, prescribed by
the tested scaling law. To account for the filter we generate synthetic time series assuming
boxcar moment rate function with a moment rate equal to Mg/D; during the event (and 0
N.m/day otherwise). We apply the same filter as to the real data, (a zero-phase digital filtering
using a 5-day window), and estimate durations from the filtered moment rate functions (we
take a moment rate threshold of My 1,-.sn = 6.63 N.m/day equivalent to the case of the fault
smallest patch slipping at 40 mm/yr with a shear modulus 4 = 30GPa). Finally, for the tested
exponent and intercept, the RMSE is calculated between the durations of the 40 x 1500
produced events and their associated smoothed synthetics. The range of values explored for
the intercept and exponent spans from -35 to 7 log10[sec] and 0.5 to 9 log10[N.m]/log10[sec],
respectively, using a step of 0.01 for both. The minimum RMSE for each tested exponent is
shown in Fig. 3c and the best fitting corresponds to c= 5.09 but is only ~8% smaller than the

RMSE obtained for c=3 .

Moment-area scaling
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We use a similar procedure to search for the best fitting moment-area scaling law,
Log10(A) = G) Log10(M,) + r, taking into account SSE’s moment uncertainties. We grid

search for the best exponent, d, and intercept, r. For each pair of tested exponent and
intercept, 1500 random catalogs of 40 SSEs are created, assuming a uniform probability
distribution between the estimated minimum and maximum moments and areas. For each of
these catalogs, an associated synthetic catalogue was created with areas prescribed to follow
the tested scaling law. For each tested exponent and intercept, a RMSE is then calculated
between the areas of the 40 x 1500 produced events and their associated synthetics. The
tested values of the intercept and exponent range from -15 to -1.5 log10[km?] and from 1 to
2.5 10og10[N.m/km?], respectively, using a step equal to 0.01 for both. The minimum RMSE for
each exponent tested is shown in Fig. 3f and the best fit corresponds to an exponent equal to

1.25.
Measurement of SSE rupture area and aspect ratio.

The SSEs rupture areas are defined as the sum of the sub-faults areas which
experienced 8deficit < Vinresn ', extended to their neighboring sub-faults, based on the ~30
days filtered Sdefia-t. We thus estimate the SSEs length and width relative to a mean strike
line that follows approximately the curved geometry of the Megathrust and runs through the
middle of cumulated slip distribution of SSEs (Fig. S4). For each SSE, the rupture length is
defined as the distance between the northern and southern intersections between the
rupture’s outline and the mean strike line. The width is defined as twice the mean distance
between the rupture’s outline and the mean strike line. Because some SSE ruptures are not
centred over it or might not even cut it, we shift the mean strike line along dip for each SSE,

forcing it to pass through its slipping area where the measured length is maximum.
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Note that the SSEs spatio-temporal extension is sensitive to the inversion regularisation, the

temporal filter applied to 84.5;ci¢, and the chosen value for Vipyesh.
Determination of Magnitude-Frequency distribution

The magnitude frequency distribution for the revised catalog in Figure 4a is calculated taking
into account the SSEs magnitude uncertainties calculated in the supplementary section
‘Measurements of SSE duration and moment release’. We assume that each event has a
uniform distribution within its moment uncertainty and sum all of those distributions. The
resulting Probability Density Function (PDF), P.yents, gives the number of events per
magnitude. We then calculate for each magnitude tested, M., the number of events over

M;.q: per year:

N=["

Mtest

Poyents(M,,) dM,, .The b-value of the Gutenberg-Richter distribution that best fits
the original catalog (64 events) is estimated to 0.78 using the maximum likelihood method?”.

We do not estimate the b-value for the revised catalog due to the rollover at lower

magnitudes due to the data selection.

SUPPLEMENTS
Measurements of SSE duration and moment release

In our original study'8 we applied an equiripple low-pass filter to the slip deficit, Saeficit, With
passband frequency of 1/21 days™, stopband of 1/35 days™?, passband ripple of 1dB with 60dB
of stopband attenuation. Calling Sdeﬁcit the slip rate deficit on the megathrust with respect
to the long-term creep, SSEs are detected when Sdeﬁcit(p, t) < Vinresh, Where Vipresn

corresponds to a slip deficit rate threshold set to -40 mm/yr. The applied filter removes any
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SSE with a duration under 3 weeks and bias the estimation of the start and end of moderate

SSEs, thus their duration.

To attenuate the duration estimation bias of the SSEs detected by the method described
above, we proceed as follows. For each SSE, we focus only in the area as defined by the
previous filter. Starting from the first automatic detection [t'start, t'ena], We consider an
enlarged time span [tstart, tend] = [t'start — 35 days, t’end + 35 days]. Instead of applying a low-
pass filter, which truncates all events with frequency higher than the specified passband
frequency, we perform a zero-phase digital filtering on the rough &4.ficir Using a 5-day
window. The filter is an averaging sliding window which passes through the data in the
forward and reverse direction. As a result, the time shift is zero and periods shorter than 9
days are filtered out. We then convert 64.5;c;c into moment deficit, Mogericie, taking a shear
modulus ¢ = 30 GPa and calculate the moment deficit rate, MOdeﬂcit, by taking the derivative
in time. The derivative is taken using 1 day time steps. Note that, even by focusing directly on
a specified SSE area, it is not possible to detect the onset and end of a SSE by looking at its
global moment rate function obtained as the integral of the moment rate over all the selected
sub-faults. Indeed, the onset of a SSE can be masked by neighbouring sub-faults with positive
MOdeﬂcit (associated with loading). It is thus important to look at sub-faults individually to

detect the onset and end of a SSE.

The complex MOdeﬂcit signal of each sub-fault makes it very difficult to establish an automated
detection of the SSEs' time-boundaries, and we thus base ourselves on two manual methods
to estimate the onset and end of SSEs, the two methods providing a minimum and maximum
duration estimation. 1) The first method, which provides the minimum duration estimation,

consists in a) taking a slip deficit rate threshold, V;j,esn, St to -40 mm/yr, b) calculating for
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each sub-fault its equivalent moment rate, M, ;4,0sn, Since the sub-faults have different areas,
and c) determining the timing of the first and last sub-fault with My < M ¢yesn. This method
is generally straight forward but provides a SSE duration underestimation since the event
could well be continuing but with moment rates under Mg 1,55, In several cases the sub-faults
moment rates present several peaks oscillating around My, (€.8., SSEs #33,
supplementary document). In such cases we generally pick the duration on the most plausible
peak related to the SSE (even if the other peaks might be part of the SSE) aiming in doing so
to provide an absolute lower limit of the duration. 2) The second method, which provides the
maximum duration estimation, is an estimation of the timing of the first and last subfault
when M, < 0. However, due to the noise in the slip time series, there is no simple way to
determine this timing. We choose to consistently take the onsets and end of SSEs that
determine their maximum duration possible regarding the data available, at the risk
sometimes to add noise within the time-boundaries. The two described methods serve as
guidelines and provide a bracket on SSEs’ duration. An example of duration estimation is
shown in Fig. S3 for SSE 34. The SSEs estimated onset and end times are provided in Table S1
and shown in the supplementary document, which contains also the explanation of each

events picking.

The bracket on SSEs’ duration also provides a bracket on their moment release. The total

moment release, MI°t@ of a SSE is defined as:
Mg‘otal = Z;Q)=1 Mg (Tena) — Zg=1 M(Z)g (Tstart),

where Q is the total number of sub-faults involved in the SSE, Mg(t) is the cumulative

moment released by patch p at time t, and T4+ and T,,,4 are the SSE onset and end times
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as determined by the 2 methods mentioned above. An example of the procedure is shown

for SSE 34 in Fig. S3b.

Moment, duration and area biases, and comparison with SSEs from the literature.

Various sources of bias were affecting our initial catalog'®. Biases in the duration estimation
due to automatic picking of the onset and end of each SSE and to the temporal filtering were
alleviated with the manual picking method described above and by accounting for the filtering
effect in the determination of the best fitting scaling law (Methods). The duration estimations
depend also on the initial slip rate detection threshold of SSEs'® which determines the SSEs

areas.

Biases on SSEs areas might originate from both the slip inversion regularization'® and the SSEs
slip rate detection threshold, Vi, .5 (s€e supplement Measurements of SSE duration and
moment release and Measurements of SSE rupture area and aspect ratio). The detection
threshold method tends to underestimate areas since sub-faults could well be part of a SSE
but have slip rates under Viesn. LOwering  Vipresn Would enlarge the rupture areas and
increase the noise level. Note that the detection threshold bias is also dependent on the
temporal filter applied on the initial slip deficit for the SSEs detection?® (filter with a passband
frequency of 1/21 days™, stopband of 1/35 days™, passband ripple of 1dB with 60dB of

stopband attenuation).

Moment estimation biases are also linked to the biases mentioned above since they are
estimated based on the SSEs onset and end time (see supplement Measurements of SSE

duration and moment release), and depend on the SSEs area estimation too.
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There are three common events in the SSE catalogs of Michel et al.'® and Schmidt and Gao*°.
These three events have similar magnitudes and similar distributions (Fig. S5). The peak slip
estimated by Michel et al. *® are half those of Schmidt and Gao® though. This is probably
because the solutions of Michel et al.'® are more strongly regularized (resulting in smoother
slip distributions) and do not include inter-SSE-loading. The slip potencies (the integral of slip
over rupture area) agree within 30% between the two studies. Note also that Michel et al. 2
uses an elastic modulus of 30GPa instead of 50GPa in Schmidt and Gao3°, and that the SSE

areas are determined differently in the two studies.

Comparison of tremors durations'? and SSE durations from geodesy (this study).

We compared the SSEs duration that we measured based on the GNSS times series with the
duration derived from the tremors'3. We used revised time picks of the onset and end of the
tremors provided by Gomberg (personal communication). For these common events the
durations derived from the tremors and from geodesy are consistent given the effect of the

filtering (Fig. S6).
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Figure S1 | Moment-Duration and Moment-Area scaling laws for automatic measurements.
(a) Relationship between the moment released by SSEs and their duration. The black dashed
line shows the best linear fit. The two horizontal dotted lines indicate the filter passband and
stopband values, 21 and 35 days respectively, used on the 84 in Michel et al.'® (b)
Comparison with the scaling laws for slow (red shading) and regular earthquakes (green
shading) proposed by Ide et al.b. (c) Relationship between the moment released by SSEs and
their rupture area. The black dashed line shows the best linear fit. (d) Comparison with the
scaling laws regular earthquakes (green shading). Stress drop iso-lines estimated based on
the circular crack model.
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456  Figure S2 | Moment-Duration scaling law comparison with Gomberg et al.l? theory.
457  Comparison of the moment-duration scaling of SSEs in Cascadia with the trends proposed for
458  unbounded M, « T3 and bounded M, < T ruptures by Gomberg et al.}? for seismic slip (green
459  shading) and slow slip (red shading). Here we are plotting only our manual measurements
460  (blue dots and boxes).
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Figure S3 | SSEs duration estimations — SSE 34 example. (a) The blue lines show the SSEs sub-
faults moment rate curves after a zero-phase digital filtering on the rough 8,4, using a 5-
day window (effectively 9 days). The dotted yellow line shows the number of tremors per day
within the SSE rupture area. The solid red lines indicate the start and end times picked
manually to estimate the minimum duration. They are determined by the timing of the first
and last sub-fault with M, deficit < My thresn, (the threshold rate is represented by the
horizontal black dashed line). The dashed red lines indicate similarly the SSEs start and end
times picked to estimate the maximum duration. They are determined by the times of the
first and last sub-fault when M, aeficit < 0. The dotted green lines indicate the SSEs start and
end automatic time picks®. (b) The black dots show the cumulative moment release in excess
of the moment release that would have accumulated at the interseismic rate (since the SSE
are extracted from the time series corrected for long term interseismic strain). The blue line
is its smoothed version using the same filter as indicated in (a). The red, yellow, and green
lines are the same as in (a). To illustrate the methodology used to calculate the SSE moment
release, M,, we indicate the values taken for the calculation based on the minimum duration
by two horizontal solid black lines. (c) The blue line indicates the SSE moment rate (sum of
the SSE sub-faults moment rate). The horizontal dashed black line represents the My tnresn
sum of all the sub-faults. The red, yellow, and green lines are the same as in (a).
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Figure S4 | Segments delimitation. (a) SSEs cumulative slip. The pink line indicates a
representative line of the average along-strike location of SSEs given by Michel et al. 8 (b)
Map indicating the number of times a sub-fault has experienced a SSE. The black contours
delimit the extent of each SSE. The dashed black lines in (a) and (b) correspond to the selection
of asperities.
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493  Figure S5 | Comparison with slip models of Schmidt and Gao3°. (a), (c) and (e) are the
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Figure S6 | Comparison for tremors durations!® and SSE durations derived from geodesy.
The comparison is done for 24 common events. The uncertainties for the duration on the y-
axis are given by our minimum/maximum duration estimations. The uncertainties on the x-
axis are given by the minimum/maximum durations using entire/abbreviated tremor cluster
catalogs (see Gomberg et al.13). The lower boundary of the grey shaded area corresponds to
a perfect fit. The upper boundary takes into account the ~9 days period cut-off of the filter.
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Table S1 | SSEs duration manual estimation. The start and end time pick for the minimum
duration estimation are determined by the timing of the first and last sub-fault with Sdeﬁcit <
Vinresn- The start and end time pick for the maximum duration estimation are determined by
the timing of the first and last sub-fault when Sdeficit < 0. The SSEs durations reported here
are affected by the ~9 days filter bias (see supplement Measurements of SSE duration and
moment release).

SSE # Start _ _ Start _ _ End _ End _
(Max Duration) | (Min Duration) | (Min Duration) | (Max Duration)

3 2007.0267 2007.0294 2007.128 2007.1773
4 2007.0294 2007.0733 2007.1034 2007.1472
5&6 2007.422 2007.4264 2007.5058 2007.5579
7 2007.4576 2007.4839 2007.5397 2007.5934
8 2007.491 2007.5318 2007.5852 2007.6099
9 2008.2286 2008.2642 2008.3025 2008.3464
10 2008.316 2008.3265 2008.4477 2008.4627
12 2008.4969 2008.5298 2008.5626 2008.6174
13 2008.8939 2008.924 2008.9569 2008.9745
14 2009.1266 2009.166 2009.213 2009.2197
15 2009.1759 2009.179 2009.2135 2009.251
16 2009.3183 2009.3238 2009.436 2009.4552
18 2009.429 2009.485 2009.5325 2009.5839
19 2009.5579 2009.587 2009.6989 2009.7125
22 & 23 2010.067 2010.0921 2010.1355 2010.178
24 2010.5859 2010.5887 2010.7064 2010.7324
26 2010.9993 2011.0431 2011.069 2011.087
27 2011.347 2011.372 2011.3936 2011.4867
28 2011.3689 2011.425 2011.5031 2011.6071
29 2011.3717 2011.4275 2011.451 2011.4747
30 2011.5305 2011.555 2011.6865 2011.7276
33 2011.7345 2011.796 2011.841 2011.864
34 2012.609 2012.6684 2012.791 2012.7926
36 2012.7242 2012.7269 2012.7844 2012.843
37 2012.7445 2012.7998 2012.8429 2012.8638
38 & 39 2013.1403 2013.1814 2013.305 2013.3758
40 2013.5401 2013.562 2013.5852 2013.6934
41 2013.6769 2013.682 2013.776 2013.781
43 2014.0274 2014.1314 2014.2108 2014.216
44 2014.119 2014.1218 2014.1971 2014.2357
45 & 46 2014.333 2014.438 2014.4928 2014.5051
47 & 50 2014.5914 2014.6051 2014.7135 2014.746
48 2014.6215 2014.6516 2014.69 2014.7392
51 2014.857 2014.8597 2014.955 2014.9802
53 2015.7276 2015.7851 2015.8371 2015.8535
54 & 55 2015.9521 2015.974 2016.168 2016.1711
56 2015.9202 2015.9603 2015.999 2016.0178
59 2017.039 2017.1239 2017.279 2017.2827
62 & 63 2017.2981 2017.2991 2017.3484 2017.4086




64 2017.5428 2017.5715 2017.603 2017.606
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