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Polyolefins are the most widely used polymeric materials
worldwide, with abundant, low cost ethylene and propylene as
the principal feedstocks. The broad polyolefins applications scope
is in part due to the chemical inertness/stability of the exclusively
alkane CAC and CAH bond networks. However, this advantageous
attribute becomes a limitation when considering other important
applications requiring adhesion, toughness, surface activity, com-
patibility with other materials, dyeability, barrier properties, elec-
trical conductivity for static electricity suppression, and favorable
rheological properties [1-4]. While post-polymerization function-
alization has been used in the past to enhance polyolefin perfor-
mance [1], such modifications typically require harsh conditions,
lack selectivity, and may induce side reactions such as chain scis-
sion and/or cross-linking [3]. Thus, introducing polar functional
groups into polyolefins during the initial polymerization process
has become an atom-economical “holy grail” and a central focus
of olefin polymerization research today.

In creating polar polyolefin materials, industrially successful
early transition metal catalysis has only achieved limited success,
mainly due to high catalyst oxophilicity/Lewis acidity and typical
polar comonomer Lewis basicity [5-7]. In contrast, late transition
metal (Ni, Pd) catalysts exhibit far greater polar comonomer toler-
ance [1,2,8], which enables copolymerizations with a variety of
polar comonomers. However, due to the relatively low polymeriza-
tion activity and low product molecular weight, the real-world
applications potential remains a challenge. Thus, developing new
catalyst systems and polymerization methodologies, for both early
and late transition metals, is a topic of intense research focus.
While developing efficient catalytic systems at a low cost is a sig-
nificant challenge, another important question concerns which
polar polyolefins might deliver desirable performance to satisfy
market/customer needs. There are only few relevant studies [9]
on the wide range of polar polyolefins available via Ni/Pd catalysis
[1,2,8]. Thus, performance studies of these newly developed polar
polyolefins are at the initial stage and limited.

Recently, Prof. Changle Chen’s group [10] at the University of
Science and Technology of China reported the efficient synthesis
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of ethylene + ethylidene norbornene (ENB) + 10-undecenoic acid
(or the methyl ester thereof) polar terpolymers with tunable
amounts of carboxylic acid and cyclic comonomer via Pd-catalyzed
terpolymerization. Incisive characterization studies reveal impres-
sive performance enhancement, including significantly altered sur-
face properties, dynamic crosslinking, self-healing, and photo-
response (Fig. 1).

Chen group [10] convincingly demonstrated the greatly
expanded modularity of his polyolefins vs. the non-polar analogues
by introducing ACOOH and C@C double bond groups into the poly-
olefins. These features combined with precise control over polar
comonomer and ENB comonomer content provide a powerful tool-
box for achieving a range of enhanced performance beyond the
reach of the corresponding non-polar polyolefins. The COOH func-
tionality and the corresponding Fe3* carboxylate complexes effi-
ciently modulate polymer surface properties and provide active
sites for dynamic crosslinking, which in turn modifies the mechan-
ical/elastic properties and enables self-healing. In the presence of
citric acid, achievable Fe3*/Fe2* redox chemistry offers an efficient
way of recycling thermo-setting polymers. The ENB comonomer
content can also efficiently modulate the crystallinity and elastic
properties of the polyolefin. Moreover, the enchained ENB unit
C@C double bonds enable efficient sulfur-induced vulcanization,
leading to permanent cross-linking. These transformations are
both versatile and modular, and thus potentially applicable to
other polyolefins.

In summary, Chen group [10] reported a well-designed polymer-
ization system illustrating how precise control of polar polyolefin
microstructure through a well-developed coordination polymeriza-
tion, which enables the creation of new high-performance poly-
olefin materials. However, it is not a trivial goal to proceed from
elegant fundamental university research to commercializable poly-
mers. This requires team efforts from academic labs, chemical com-
panies, downstream customers, etc. Ideally, recent -catalyst
advances and polar polyolefin structure-performance relationship
studies as described here can play an important role.
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Fig. 1. Modulation of polyolefin properties through ethylidene norbornene (ENB) incorporation, hydrogen bonding, Fe3*-induced crosslinking, and sulfur vulcanization.

Reproduced with permission from Ref. [10]. Copyright 2019 John Wiley & Sons, Inc.
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