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Polyolefins are the most widely used polymeric materials 

worldwide, with abundant, low cost ethylene and  propylene  as 
the principal feedstocks. The broad polyolefins applications scope 

is in part due to the chemical inertness/stability of the exclusively 

alkane CAC and CAH bond networks. However, this advantageous 

attribute becomes a limitation when considering other important 

applications requiring adhesion, toughness, surface activity, com- 

patibility with other materials, dyeability, barrier properties, elec- 

trical conductivity for static electricity suppression, and favorable 

rheological properties [1–4]. While post-polymerization function- 

alization has been used in the past to enhance polyolefin perfor- 

mance [1], such modifications typically require harsh conditions, 

lack selectivity, and may induce side reactions such as chain scis- 

sion and/or cross-linking [3]. Thus, introducing polar functional 

groups into polyolefins during the initial polymerization process 

has become an atom-economical ‘‘holy grail” and a central focus   

of olefin polymerization research today. 
In creating polar polyolefin materials, industrially successful 

early transition metal catalysis has only achieved limited success, 

mainly due to high catalyst oxophilicity/Lewis acidity and typical 

polar comonomer Lewis basicity [5–7]. In contrast, late transition 

metal (Ni, Pd) catalysts exhibit far greater polar comonomer toler- 

ance [1,2,8], which enables copolymerizations with a variety of 

polar comonomers. However, due to the relatively low polymeriza- 

tion activity and low product molecular weight, the real-world 

applications potential remains a challenge. Thus, developing new 

catalyst systems and polymerization methodologies, for both early 

and late transition metals, is a topic of intense research focus. 

While developing efficient catalytic systems at a low cost is a sig- 

nificant challenge, another important question concerns which 

polar polyolefins might deliver desirable performance to satisfy 

market/customer needs. There are only few relevant studies [9]  

on the wide range of polar polyolefins available via Ni/Pd catalysis 

[1,2,8]. Thus, performance studies of these newly developed polar 

polyolefins are at the initial stage and limited. 
Recently, Prof. Changle Chen’s group [10] at the University of 

Science and  Technology  of  China reported the  efficient synthesis 
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of ethylene + ethylidene norbornene (ENB) + 10-undecenoic acid 

(or the methyl ester thereof) polar terpolymers with tunable 

amounts of carboxylic acid and cyclic comonomer via Pd-catalyzed 

terpolymerization. Incisive characterization studies reveal impres- 

sive performance enhancement, including significantly altered sur- 

face properties, dynamic crosslinking, self-healing, and photo- 

response (Fig. 1). 

Chen group [10] convincingly demonstrated the greatly 

expanded modularity of his polyolefins vs. the non-polar analogues 

by introducing ACOOH and C@C double bond groups into the poly- 

olefins. These features combined with precise control over polar 

comonomer and ENB comonomer content provide a powerful tool- 

box for achieving a range of enhanced performance beyond the 

reach of the corresponding non-polar polyolefins. The COOH func- 

tionality and the corresponding Fe3+ carboxylate complexes effi- 

ciently modulate polymer surface properties and provide active 

sites for dynamic crosslinking, which in turn modifies the mechan- 

ical/elastic properties and enables self-healing. In the presence of 

citric acid, achievable Fe3+/Fe2+ redox chemistry offers an efficient 

way of recycling thermo-setting polymers. The ENB comonomer 

content can also efficiently modulate the crystallinity and elastic 

properties  of  the  polyolefin.  Moreover,  the  enchained  ENB  unit 

C@C  double  bonds  enable  efficient  sulfur-induced vulcanization, 

leading to permanent cross-linking. These transformations are 

both versatile and modular, and thus potentially applicable to 

other polyolefins. 

In summary, Chen group [10] reported a well-designed polymer- 

ization system illustrating how precise control of polar polyolefin 

microstructure through a well-developed coordination polymeriza- 

tion, which enables the creation of new high-performance poly- 

olefin materials. However, it is not a trivial goal to proceed from 

elegant fundamental university research to commercializable poly- 

mers. This requires team efforts from academic labs, chemical com- 

panies, downstream customers, etc. Ideally, recent catalyst 

advances and polar polyolefin structure-performance relationship 

studies as described here can play an important role. 
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Fig. 1. Modulation of polyolefin properties through ethylidene norbornene (ENB) incorporation, hydrogen bonding, Fe3+-induced crosslinking, and sulfur vulcanization. 

Reproduced with permission from Ref. [10]. Copyright 2019 John Wiley & Sons, Inc. 
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