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ABSTRACT: The direct, efficient copolymerization of ethyl-
ene with polar monomers represents a “holy grail” for the
synthesis of polar polyethylenes; however, developing effective
catalysts for such copolymerizations remains a largely
unsolved challenge. Very recently, organoscandium catalysts
were shown to be very active for ethylene + polar monomer
[H2CCH(CH2)nCH2FG, FG = polar functional group]
copolymerization. Interestingly, comonomer enchainment
selectivity decreases with increasing linker length (n), while
overall polymerization activity is largely unaffected, and the
intriguing mechanistic origins are not yet understood. In this
study, density functional theory (DFT) methods are employed
to investigate the mechanism of organoscandium-catalyzed
ethylene + amino olefin (AO) copolymerization, using (C5Me4SiMe3)Sc(CH2CH2CH3)

+B(C6F5)4
− (Sc-1) as the model active

species and N-(1-butenyl)nPr2 and N-(1-octenyl)nPr2 as model comonomers. Among conceivable scenarios in monomer
coordination, activation, and insertion, it is found that copolymerization activity is largely governed by intermolecular amino
olefin N-coordination. Amino olefin n-dependent enchainment patterns arise from chain-length regulation of the energy barrier
for an amino olefin chelating “self-assisted” enchainment pathway. Short-chain N-(1-butenyl)nPr2 enchains via a self-assisted
insertion pathway (6.0 kcal/mol energy barrier), while long-chain N-(1-octenyl)nPr2 enchains via unassisted 1,2-insertion with
exogenous amine coordination (7.2 kcal/mol energy barrier). These findings explain the experimental results, showcase the
characteristic reactivity of Sc catalysts in polar monomer copolymerization, and highlight the potential and challenges in
developing catalysts for polar monomer copolymerization.
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■ INTRODUCTION

Polyethylenes represent some of the most versatile and
extensively manufactured polymeric materials worldwide.1,2

Introducing polar functional groups into polyethylenes offers
greatly improved chemical, physical, mechanical, and surface
properties and, thus, has the potential to significantly expand
polyethylene applications scope.3,4 However, the efficient
catalytic synthesis of polar polyethylenes remains a largely
unsolved challenge.5 Direct coordinative copolymerization of
polar monomers with ethylene would seem to be the most
atom- and energy-efficient strategy for producing polar
polyethylenes.6 For this reason the development of transition
metal catalysts for efficient polar monomer copolymerization
has become a central topic of intense research activity.7

The challenge associated with polar monomer copolymer-
ization originates from the strong interaction between typical
Lewis-acidic cationic metal catalyst centers and Lewis-basic
polar functional groups (Scheme 1). To address this issue,

several strategies have been employed. Less oxophilic late
transition metal (Ni, Pd) catalysts are generally more tolerant
of polar functionality and have demonstrated progress in
tackling this challenge.8,9 However, major limitations toward
industrial application remain, including overall modest activity,
a lack of control over the regio- and stereochemistry of polar
monomer insertion, and low Mn due to rapid competing β-H
elimination.10,11 Group 4 catalysts have also been reported in
polar monomer copolymerizations.12−17 However, direct
masking reagent-free copolymerizations are limited to certain
amino olefin comonomers;12 for most of the reported catalyst
systems, large excesses of Al cocatalyst and/or sacrificial
masking reagents such as trialkylaluminum (AlR3) are often
used, thus compromising the atom economy and increasing the
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cost and complexity of the processes.14−17 Furthermore, the
comonomer scope is usually limited to comonomers with
relatively long (−CH2)n− linkers between the olefin and the
polar group.12,18

Rare earth metal catalysts recently emerged as an intriguing
and promising alternative. Their tolerance toward polar
functionality has been demonstrated in Ln-catalyzed chain-
transfer polymerization19 and unprotected polar styrene
polymerization.20−25 Scandium is unique as it represents the
smallest ion in the rare earth series with covalency in between
group 4 metals and lanthanides.26−28 Recently, this labo-
ratory29 and Hou and co-workers30,31 reported that organo-
scandium complexes are active catalysts for ethylene +
functionalized α-olefin copolymerization upon activation with
trityl perfluoroaryl borate, Ph3C

+B(C6F5)4
−. Both the activity

and comonomer enchainment level are remarkable. Amino
olefins (CH2CH(CH2)nCH2NR2, AO, Scheme 2) are

particularly attractive comonomer candidates because pendent
dialkyl amino groups in polyolefins enhance their surface
properties,32 serve as a scaffold for nanoparticle catalysts,33,34

increase polyolefin thermal stability,35 and form ionic polymers
upon additional modification.36 In Sc-catalyzed ethylene + AO
copolymerizations (Scheme 2), a positive correlation between
shorter chain length (n) and higher AO incorporation levels
was discovered, whereas the overall polymerization activities
are not significantly correlated with AO chain length (n).29

Such results are very different from those of previously
reported group 412,17 and late transition metal catalysts,32,37

suggesting a unique operating mechanism in which the
functional group plays a pivotal role (Scheme 1).

A detailed mechanistic understanding of polar comonomer
enchainment processes in this emerging field has therefore
become imperative for further polar monomer copolymeriza-
tion methodology development. Previously, DFT and/or
quantum mechanics/molecular mechanics (QM/MM) studies
were successfully employed to probe mechanistic details in Sc-
catalyzed olefin polymerization such as the origin of regio- and
stereoselectivity,38−40 evaluation of chain initiation efficiency
of various Sc-alkyl precursors,41 and elucidation of the roles of
ancillary ligand, metal, and solvation on the structure and
stability of the active species.42,43 In Sc-catalyzed function-
alized monomer homopolymerization, DFT calculations have
been used to understand the syndioselectivity in functionalized
α-olefin homopolymerizations30 and step growth versus chain
growth pathways in functionalized styrene homopolymeriza-
tions.44 A recent study by Cui, Maron, and co-workers
highlighted the importance of Sc···phenyl interactions in
regulating monomer insertion in ethylene + polar styrene
copolymerizations.20 While these studies focused on polar
monomer homopolymerizations or ethylene + polar styrene
copolymerizations, interesting mechanistic questions in ethyl-
ene + polar α-olefin copolymerization remain currently
unaddressed. Thus, the mechanistic origins of copolymeriza-
tion activity and polar monomer enchainment pattern are
intriguing targets for investigation. Understanding these
mechanisms will fuel and guide the development of future
rare-earth catalyst systems. Here we employ DFT computation
to investigate ethylene + amino olefin copolymerization
mechanisms by examining the energetics of coordination,
activation, and insertion pathways.

■ COMPUTATIONAL DETAILS
Calculations were performed adopting the M06 hybrid meta-
GGA functional.45 M06 considers medium-range correlation
energy (e.g., medium-range dispersion forces) that can play a
significant role when bimolecular steps are involved in the
catalytic cycle. Moreover, the meta-hybrid functional provides
a generally better performance compared to the GGA (such as
PBE) and the hybrid (such as B3LYP) functionals.46 Previous
investigation of different functional types (GGA, hybrid, and
meta-hybrid) for homogeneous group 3 catalysis suggests that
M06 is a reliable choice.47 The effective core potential of Hay
and Wadt48 (LANL2DZ) and the relevant basis sets were used
for the scandium and silicon atoms. The standard all-electron
6-31G** basis49 was used for all the other atoms. Molecular
geometry optimization of stationary points was carried out
without symmetry constraints and used analytical gradient
techniques. Default values in the Gaussian 16 code were used
for the geometry optimization. In particular, the Berny
algorithm using GEDIIS50 was adopted. Convergence criteria
are based on a maximum force and displacement of 4.5 × 10−4

Ha/Å and 1.8 × 10−3 Å, respectively, and a relative RMS of 3.0
× 10−4 Ha/Å and 1.2 × 10−3 Å, respectively. The transition
states were searched with the “distinguished reaction
coordinate procedure” along the emerging C−C bonds.51,52

This procedure starts by choosing a particular internal
coordinate (distance, angle, and torsion) as the reaction
coordinate and then performs an energy scan along this
reaction coordinate. The goal is to determine the maximum
energy value and the minimum force value along the selected
internal coordinate, which should correspond to a saddle point
of the potential energy surface (PES). Saddle points are then
verified by the presence of only one negative frequency along

Scheme 1. Mechanistic Scenarios for Metal-Catalyzed
Copolymerization of Ethylene with a Functional Group
(FG)-Containing α-Olefin; Counteranions Omitted for
Clarity

Scheme 2. Catalytic Ethylene + Amino Olefin
Copolymerization at a Cationic Organoscandium Center
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the direction of the reaction coordinate. Frequency analysis
was also performed to obtain thermochemical information
about the reaction pathways at 298.15 K and 1 atm using the
harmonic approximation.
Solvation effects were modeled using the polarized

continuum model (PCM).53 The PCM models the solvent
as a continuum of uniform dielectric constant, and the solute is
placed in a cavity within the solvent. In this case the modeled
solvent is toluene (ε = 2.3741 D). A single-point energy
calculation on the optimized geometries is then performed to
take into account the solvent effects.54 Moreover, the
differences of translational and rotational entropy when
moving from ideal gas phase to a real solvent are taken into
account by adding an energy contribution of 8RT (4.74 kcal/
mol at room temperature) to the Gibbs free energy of each
species.55−57 In fact, it is well-known that the Gibbs energy
profile shifts upward compared to the SCF or EZPE profile
when associative processes are involved, mainly due to the
translational/rotational entropy loss. However, the transla-
tional/rotational entropy loss computed as an ideal gas is
known to be overestimated in a solvent and the real free energy
is known to lie somewhere in between the SCF and the Gibbs
free energy profiles.58,59 The correction employed here reduces
the effect of the translational/rotational entropy loss evaluated
for a bimolecular process at the ideal gas level to better mimic
the Gibbs free energy profile in solution. This correction is
important mainly when processes with different molecularity
are compared. In the present case, this effect is taken into
account to better compare insertion pathway C with insertion
pathways A and B. The effect of concentration when moving
from 1 atm to 1 M is taken into account by adding an energy
contribution of 1.89 kcal/mol (RT ln(P1M/P1atm)) to each
species. All calculations were performed using the G16 code60

on Linux cluster systems.
The counteranion was modeled exactly as the B(C6F5)4

−

species, and the growing polymer chain was modeled by an n-
propyl group. The n-propyl group was chosen because no
AO−AO (amino olefin−amino olefin) diads are observed in
the polymerization process. Thus, AO coordination/insertion
processes follow an ethylene molecule insertion. The model
active species used in these calculations is (C5Me4SiMe3)Sc-
(CH2CH2CH3)

+B(C6F5)4
− (Sc-1, Figure 1). The tetrahydro-

furan (THF) coordinated to Sc in the precatalyst
(C5Me4SiMe3)Sc(CH2SiMe3)2(THF) (Scheme 2) was not
included in the model structure because a previous study on
the same catalyst suggests that the THF-free species is the true
active catalyst during the chain propagation.61 Two amino
olefins were considered to probe linker-length (n) effects: the

short-chain N-(1-butenyl)nPr2 and the long-chain N-(1-
octenyl)nPr2. Note that the counteranion B(C6F5)4

− is
included in all calculations described here unless otherwise
noted.
In some representative cases, a conformational analysis was

conducted to obtain the most stable configurations. In
particular, different arrangements of the ligands and other
groups (Cp, olefin, counteranion, and growing chain) around
the Sc were examined. The effect of the conformation of the
growing chain as well as the effect of the conformation of the
Si(Me3)Cp ligand were evaluated (see Supporting Information
for details). Moreover, for a better comparison between the
short- versus long-chain AO insertions, we used analogous
starting geometries for both of them. For insertion pathways A
and C, for example, we assumed a standard linear arrangement
of the AO chain for both butenyl and octenyl cases.

■ RESULTS AND DISCUSSION

To understand the polymerization mechanism and differences
between short-chain and long-chain amino olefins, DFT
studies were carried out on key processes in ethylene + AO
copolymerization including AO coordination, AO insertion,
intramolecular coordination between amine (from inserted
amino olefin) and Sc, and ethylene activation/insertion in the
presence of AO.

Molecular Structure of the Ion Pair. It is well-
documented that cation−anion pairs represent the active
species in Sc-catalyzed olefin polymerizations from both
experimental62 and computational evidence.42 In the opti-
mized structure of the model ion pair Sc-1, the B(C6F5)4

−

anion coordinates to the Sc center via interactions with the aryl
o- and m-F atoms (Figure 1). This coordination manner has
previously been observed in computational models42 and in
the solid-state structures62 of similar ion pairs.

Amino Olefin Coordination/Activation. When the
amino olefin approaches the cationic Sc center, there are
three different coordination modes available: amine σ-
coordination, olefin π-coordination, or simultaneous intra-
molecular coordination of both amine and olefin. For N-(1-
butenyl)nPr2 (Figure 2), the most stable configuration involves
simultaneous coordination of both amine and olefin function-
alities (ΔG = −11.0 kcal/mol). The contribution of both
interactions can be evaluated by modeling the dissociation of
either the amine coordination or the olefin coordination. The
energy required to dissociate the olefin or amine coordination
is 1.2 or 5.5 kcal/mol, respectively.
In contrast, in the case of N-(1-octenyl)nPr2, the most stable

configuration involves only the amine σ-coordination mode
(Figure 3). Shifting from the amine σ-coordination to olefin π-
coordination requires 6.1 kcal/mol. Unlike N-(1-butenyl)nPr2,
simultaneous coordination of both amine and olefin requires
9.6 kcal/mol in the case of N-(1-octenyl)nPr2, likely reflecting
the greater strain and steric interactions of the long alkyl chain
compared to the short one.
Note that the B(C6F5)4

− counteranion coordinates to Sc in
different modes in these coordination complexes. B(C6F5)4

−

coordinates to the Sc center via o- and m-F atoms in the olefin
coordinated species. However, in the amine coordinated
complexes, a single p-F atom in B(C6F5)4

− coordinates to Sc.
In contrast, for the simultaneous amine and olefin coordina-
tion, there are no close B(C6F5)4

− contacts to the cationic Sc
center (see Figures S1 and S2 for metrical details).

Figure 1. Model active species (C5Me4SiMe3)Sc(CH2CH2CH3)
+B-

(C6F5)4
− (Sc-1) (left) and its optimized structure (right) with H

atoms omitted for clarity.
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The calculations for AO coordination suggest that N-(1-
butenyl)nPr2 adopts simultaneous olefin + amine coordination,
which is likely to be favorable for subsequent intramolecular
olefin activation and insertion. In contrast, N-(1-octenyl)nPr2
adopts amine-only coordination as the energetically favored
conformation, making subsequent olefin activation/insertion
less favorable.
Amino Olefin Insertion Pathways. Plausible amino

olefin insertion pathways are shown in Scheme 3 and Figures
4 and 5 and are categorized by olefin insertion regiochemistry,
as well as whether and how the amine group is involved. Olefin
undergoes 1,2- or 2,1-insertion, and olefin insertion occurs
either without amine coordination (Scheme 3A), with amine
coordination from the same amino olefin (amine-assisted
insertion, Scheme 3B), or with amine coordination by another
amino olefin molecule (unassisted insertion with amine
coordination, Scheme 3C).
For N-(1-butenyl)nPr2 with 1,2-insertion, the self-assisted

pathway (ΔG⧧ = 6.0 kcal/mol) is the kinetically preferred
pathway but only by a narrow margin (Table 1). The
unassisted pathway in the presence of amine coordination

from another amino olefin molecule lies at 1.7 kcal/mol higher
in energy (ΔG⧧ = 7.7 kcal/mol, Figure 6C). In contrast, the
insertion without amine coordination is not favorable in the
present system, having a much higher energy barrier (ΔG⧧ =
12.9 kcal/mol, Figure 6A). Regarding olefin insertion
regiochemistry, the preference between 1,2-insertion and 2,1-
insertion is also analyzed. Our results suggest that 1,2-insertion
(ΔG⧧ = 6.0 kcal/mol, Figure 6B) has an almost identical
energy barrier compared to 2,1-insertion (ΔG⧧ = 6.1 kcal/
mol) in the self-assisted enchainment pathway (Scheme 3B).
For the insertion pathway without amine coordination
(Scheme 3A), the 1,2-insertion is preferred over 2,1-insertion
(12.9 vs 20.0 kcal/mol). A similar scenario is found for
unassisted insertion with amine coordination (Scheme 3C) in
which the transition state (TS) for 1,2-insertion lies 4.4 kcal/
mol below that for 2,1-insertion (Table 1).
Note that Hou, Luo, and co-workers reported that 2,1-

insertion is preferred in Sc-catalyzed homopolymerization of 4-
phenylthio-1-butene, supported by DFT evidence.30 The
difference is likely attributable to the different model
complexes used, (C5Me4SiMe3)Sc-CH2CH2CH3

+B(C6F5)4
−

Figure 2. Cationic Sc-1 coordination complexes with N-(1-butenyl)nPr2 and their relative free energies. The most stable coordination complex is
used as a 0.0 kcal/mol reference. Counteranion and H atoms omitted for clarity. Atom···atom distances in Å. Comonomer coordination mode:
olefin-only coordination (A), simultaneous amine + olefin coordination (B), and amine-only coordination (C). For ease of visualizing the catalytic
centers, the B(C6F5)4

−counteranion is not shown.

Figure 3. Cationic Sc-1 coordination complexes with N-(1-octenyl)nPr2 and their relative free energies. The most stable coordination complex is
used as a 0.0 kcal/mol reference. Counteranion and H atoms omitted for clarity. Atom···atom distances in Å. Comonomer coordination mode:
olefin-only coordination (A), simultaneous amine + olefin coordination (B), and amine-only coordination (C). For ease of visualizing the catalytic
centers, the B(C6F5)4

−counteranion is not shown.
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here versus (C5Me4H)Sc-(CH2C6H4NMe2-o)
+ in ref 30. The

counteranion B(C6F5)4
− introduces new steric bulk, which will

likely affect the TS energetic profiles in different manners for
the 1,2- and 2,1-insertion pathways. Comparing the present
calculation results from naked cation to the ion-pairing
approach, the energy barrier for 2,1-insertion remains similar
(6.9 kcal/mol for the naked cation versus 6.1 kcal/mol for the
ion pair). In marked contrast, the energy barrier for the 1,2-
insertion pathway clearly decreases from 9.5 kcal/mol for the
naked cation to 6.0 kcal/mol for the ion pair. Therefore, the
preferred insertion pathway switches from a 2,1- to 1,2-
insertion when the more complete ion pair approach is
employed instead of a simple naked ion. Note that 1,2- or 2,1-
AO insertion cannot be distinguished from the NMR spectra

of ethylene + AO copolymers because no AO−AO diads are
formed.12,29

As for the long-chain AO N-(1-octenyl)nPr2 (Figure 5), the
amine-coordinated, self-assisted pathway is significantly dis-
favored (ΔG⧧ = 25.0 kcal/mol versus 6.0 kcal/mol for N(1-
butenyl)nPr2) (Table 1). The increased energetic barrier
mainly reflects geometrical penalties for forcing the octenyl
chain to adopt an unfavored cyclic conformation that requires
more distorted sp3 carbons.7,12,63 Chain length has a less
profound but still significant effect on the other pathways,
namely, insertion without amine coordination and amine-
coordinated unassisted insertion pathways, because the linker
between olefin and amine moieties is not directly involved in
these pathways. Compared to N-(1-butenyl)nPr2, the energetic
barriers for N-(1-octenyl)nPr2 are higher. The Gibbs free
energy for N-(1-octenyl)nPr2 1,2-insertion without amine
coordination is 13.1 versus 12.9 kcal/mol for N-(1-
butenyl)nPr2. The Gibbs free energy for N(1-octenyl)nPr2
1,2-insertion with amine coordination is 7.2 versus 7.7 kcal/
mol for N-(1-butenyl)nPr2 (Table 1 and Figure 5).
Taking all the enchainment pathways investigated here

together, N-(1-butenyl)nPr2 enchainment proceeds via a
unique self-assisted 1,2-insertion pathway with a 6.0 kcal/mol
energy barrier. In contrast, N-(1-octenyl)nPr2 undergoes
insertion via an unassisted pathway with amine coordination
and has a 7.2 kcal/mol barrier. Importantly, these results are
well-tuned with the experimental ethylene + AO copolymer-
ization data revealing the more efficient insertion of short-

Scheme 3. Possible Scenarios for Amino Olefin Insertion at
a Cationic Organoscandium Center; Counteranion and
C5Me4SiMe3 Ligand Omitted for Ease of Viewing

Figure 4. Gibbs free energy profiles (kcal/mol) for the N-(1-
butenyl)nPr2 incorporation (1,2-insertion) step evaluated along three
pathways. Pathway A, no amine coordination; pathway B, self-assisted
with amine coordination; pathway C, unassisted with amine
coordination.

Figure 5. Gibbs free energy profiles (kcal/mol) for the long AO
incorporation (1,2 insertion) step evaluated along three pathways.
Pathway A, no amine coordination; pathway B, self-assisted with
amine coordination; pathway C, unassisted with amine coordination.

Table 1. Energetic Barriers (kcal/mol) for 1,2- and 2,1-
Insertion Pathways for N-(1-Butenyl)nPr2 and N-(1-
Octenyl)nPr2

no amine
coordination (A)

self-assisted with
amine

coordination (B)

unassisted with
amine

coordination (C)

N-(1-butenyl)nPr2
1,2-insertion 12.9 6.0 7.7
2,1-insertion 20.0 6.1 12.1

N-(1-octenyl)nPr2
1,2-insertion 13.1 25.0 7.2
2,1-insertion 23.2 25.1 10.0
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chain N-(1-butenyl)nPr2 compared to long-chain N-(1-
octenyl)nPr2 under the same reaction conditions (2.0% versus
<0.1%).29 Note that chain-length-dependent activities were
also observed in organolanthanide-mediated hydroamination/
cyclization reactions, where the cyclization rate of 1-amino-
pent-4-ene is 28× faster than that of 1-aminohex-5-ene.64

Intramolecular Amine Coordination after Amino
Olefin Enchainment. After the amino olefin monomer is
inserted, it may affect subsequent monomer insertion events
through amine coordination. Such intramolecular Lewis basic
group coordination to a metal center is also known as a
“backbiting” effect, which acts as a major inhibition pathway in
transition metal-catalyzed ethylene copolymerization with
polar monomers.7,9,65 Such effects are implicated by a positive
correlation between longer comonomer chain length and
higher polymerization activity.7,12,18,66

To probe potential backbiting effects in the present
organoscandium catalyst system, two amino olefins, N-(1-
butenyl)nPr2 and N-(1-octenyl)nPr2, are studied (Scheme 4).
In the case of N-(1-butenyl)nPr2, the thermodynamic driving
force for amine coordination is minimal (ΔG = +4.3 kcal/
mol). Insertion of the next ethylene into the catalytic center
can be slightly affected by the amine coordination, and the
overall polymerization activity should not be significantly

suppressed by this chelating coordination. On passing to N-(1-
octenyl)nPr2, the chelation effect is further weakened due to
the stronger penalty associated with the more unfavorable ring
conformation required for Sc···N coordination of the octyl
chain compared to the butyl chain.12 Thus, amine coordination
is strongly disfavored (ΔG = +15.5 kcal/mol).
These DFT results suggest that backbiting effects are

minimal regardless of the chain length, mirroring the
insignificant correlation between AO linker length and
polymerization activity for organoscandium-catalyzed ethylene
+ AO copolymerization in our previous experimental studies.29

The computational analysis here also indicates that the major
inhibition mechanism is intermolecular amine coordination67

because intramolecular amine coordination is insignificant.
This argument is supported by our experimental control
experiments in which added NnPr3 and N-(alkenyl)nPr2 inhibit
copolymerization activity to a similar extent.29 These results
are in sharp contrast to well-studied d0 group 4 metal
catalysts,12,16 which suffer from severe backbiting poisoning
effects, and highlight the potential of small rare-earth metals,
especially scandium, in polar monomer copolymerization.

Ethylene Insertion in the Presence of AOs. The overall
copolymerization activity is determined not only by the AO
activation/insertion rate but also by the ethylene activation/
insertion rate. Furthermore, the AO enchainment selectivity is
determined by the relative ratio of AO insertion versus
ethylene insertion. Ethylene activation/insertion is inevitably
affected by the presence of AO. Ethylene stabilizes cationic Sc
species to a lesser extent than N-(1-butenyl)nPr2, −5.6 versus
−11.0 kcal/mol (Figure 5), suggesting that the equilibrium
shifts toward amino olefin coordination. Thus, the concen-
tration of ethylene-coordinated species decreases in the
presence of amino olefin. There are two potential ethylene
insertion pathways as shown in Figure 5. Ethylene can undergo
enchainment at the amine-coordinated Sc center with an
energy barrier of 5.6 kcal/mol. Ethylene can also replace the
AO molecule and insert at Sc without amine coordination,
with a free energy barrier of 9.0 kcal/mol (Figure 7).
Replacement of the AO with ethylene occurs through an
associative mechanism. Both pathways have higher activation
barriers than ethylene insertion in the absence of amino olefin
(3.6 kcal/mol), suggesting that the presence of the AO
substrate suppresses the overall polymerization activity. The
energetic barrier for the self-assisted N-(1-butenyl)nPr2

Figure 6. Structures of N-(1-butenyl)nPr2 1,2-insertion transition states with counteranion and H atoms omitted for ease of viewing. Atom···atom
distances in Å. No amine coordination (A), self-assisted with amine coordination (B), and unassisted with exogenous amine coordination (C).

Scheme 4. Computed Equilibria of Inserted Amine
Coordination to the Indicated Sc Cationic Center;
B(C6F5)4

− Counteranion Omitted for Ease of Viewing; ΔG
in kcal/mol
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incorporation pathway is only +0.4 kcal/mol higher than the
barrier for ethylene insertion in the presence of N-(1-
butenyl)nPr2 (6.0 versus 5.6 kcal/mol) (Figure 7). Thus,
significant amounts of N-(1-butenyl)nPr2 can be incorporated
in ethylene copolymerization, as observed experimentally.29

■ CONCLUSIONS

We have systematically investigated the mechanistic details of
organoscandium-catalyzed ethylene copolymerization with the
amino olefins N-(1-butenyl)nPr2 and N-(1-octenyl)nPr2 as
model AOs, using DFT analysis. The major findings are
summarized as follows: (i) Short-chain AOs enable simulta-
neous/chelating coordination of the olefin and amine moiety
of the same AO, which is unavailable for long-chain AOs. (ii)
Short-chain AOs insert via a chelating/self-assisted pathway,
while long-chain AO insertion proceeds with a higher energetic
barrier via an unassisted pathway with amine coordination
from another AO. (iii) Intramolecular amine coordination after
AO insertion is of minimal importance, suggesting intermo-
lecular amine coordination is the major inhibiting factor for
polymerization activity. (iv) The presence of added AO slightly
increases the energetic barrier for ethylene insertion due to
competing AO coordination. These DFT findings are in very
good agreement with our experimental results. Linker length-
dependent AO enchainment patterns are rationalized from the
computed barriers for different AO insertion modes. The
insignificant relationship between copolymerization activity
and tertiary amine/AO identity, (1-alkenyl)NnPr2 versus
NnPr3, is explained by evaluating amine coordination in
different scenarios and their impact on copolymerization
activity. Furthermore, these results highlight the advantage and
potential of rare earth metals, especially scandium catalysts, for
polar monomer copolymerization from a mechanistic stand-
point.
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