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Abstract A transformative advance in Earth science is the development of low-temperature
thermochronometry to date Earth surface processes or quantify the thermal evolution of rocks through
time. Grand challenges and new directions in low-temperature thermochronometry involve pushing the
boundaries of these techniques to decipher thermal histories operative over seconds to hundreds of millions
of years, in recent or deep geologic time and from the perspective of atoms to mountain belts. Here we
highlight innovation in bedrock and detrital fission track, (U-Th)/He, and trapped charge
thermochronometry, as well as thermal history modeling that enable fresh perspectives on Earth science
problems. These developments connect low-temperature thermochronometry tools with new users across
Earth science disciplines to enable transdisciplinary research. Method advances include radiation

damage and crystal chemistry influences on fission track and (U-Th)/He systematics, atomistic calculations
of He diffusion, measurement protocols and numerical modeling routines in trapped charge systematics,
development of “He/*He and new (U-Th)/He thermochronometers, and multimethod approaches. New
applications leverage method developments and include quantifying landscape evolution at variable
temporal scales, changes to Earth's surface in deep geologic time and connections to mantle processes, the
spectrum of fault processes from paleoearthquakes to slow slip and fluid flow, and paleoclimate and past
critical zone evolution. These research avenues have societal implications for modern climate change,
groundwater flow paths, mineral resource and petroleum systems science, and earthquake hazards.

Plain Language Summary Documenting the timing and rates of transformations to Earth's
surface and crust helps scientists understand how and why geologic processes occur and improves
predictions of future changes to our planet. The field of low-temperature thermochronometry, which
quantifies the temperature (T < 250 °C) evolution of minerals and rocks through time, is uniquely suited to
address these challenges. We highlight development of three techniques: fission track (damage tracks from
spontaneous fission), (U-Th)/He (abundances of uranium and thorium compared to helium), and

trapped charge (electrons trapped in crystal defects) thermochronometry. Innovations in these methods
enable breakthroughs on long-standing and emerging Earth science problems. For example, low-
temperature thermochronometry can document dramatic changes to Earth's surface through erosion and
plate tectonics, such as past earthquakes or detect subtle surface changes that are connected to deep (mantle)
Earth processes. Thermochronometry research has implications for climate change, geologic exploration of
other planets, subsurface water, resource development, and earthquake hazards.

1. Thermochronometry and Earth Processes

Many Earth processes result in a change in Earth's thermal structure. Temperature changes impart distinct
geochemical and isotopic fingerprints on minerals and rocks. A transformative advance in Earth science is
the development of thermochronometry, which utilizes these fingerprints to quantify the thermal evolution
of rocks through time as they move through Earth's subsurface. Radioisotopic systems sensitive to a range of
temperatures place specific ages on Earth materials from the oldest preserved rocks and minerals to the most
recently formed, as well as dates on processes that cool, weather, transport, and deposit them. Low-
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temperature thermochronometry has become a cornerstone of tectonics, geomorphology, and sedimentary
systems research. Grand challenges in low-temperature thermochronometry involve pushing the boundaries
of these techniques to constrain the evolution of Earth's landscape and upper crust over seconds to hundreds
of millions of years, in recent to deep geologic time, by leveraging perspectives from the scale of atoms to
mountain belts. Addressing these challenges advances our understanding of how Earth materials deform,
fault zones evolve, sedimentary basins fill, continental margins develop, Earth's surface responds to mantle
flow, and orogens are built and decay through the interplay of tectonic and erosional processes.

Thermochronometric methods involve the measurement of ratios of fission tracks (FTs), isotopes creating
parent-daughter decay systems, and trapped electrons in crystal defects. Annealing of FTs, loss of daughter
isotopes, and ratios of parent-daughter isotopes and trapped charges reflect the thermal history of the sample
in which they are measured. The temperature sensitivity of a particular thermochronometer is described
using the concept of “closure temperature” (T¢; e.g., Dodson, 1973; Guralnik et al., 2013). The T. reflects
the transition from open- to closed-system behavior (i.e., retention of noble gases and trapped charge and
preservation of FTs). The concept of T, applies to monotonic cooling histories, is cooling rate and grain size
dependent, and serves as a useful metric for comparing different thermochronometric systems.

Low-temperature thermochronometry systems (250 °C > T, > 25 °C) are uniquely suited to decipher upper
crustal and Earth surface thermal histories owing to their low-temperature sensitivity (Figure 1). Here we
highlight recent advances in FT, (U-Th)/He, and trapped charge thermochronometry. We focus on these
systems due to their complementary T, (Figure 1) and because addressing grand challenges in low-tempera-
ture thermochronometry requires integration of observations from multiple systems. Recent method and
application advances enable fresh perspectives on fundamental Earth science problems and connect these
tools with new users across disparate Earth science disciplines to facilitate transdisciplinary research.
These developments mirror innovation in moderate (i.e., OAr-¥Ar; e.g., Lovera et al., 1991) and high tem-
perature (i.e., U-Pb; e.g., Blackburn et al., 2011; Cochrane et al., 2014; Schoene & Bowring, 2007) thermo-
chronometry systems, as well as the development of noble gas paleothermometry (e.g., Tremblay et al.,
2014; Tremblay et al., 2017), which are not the focus of this contribution. Ongoing work in *°Ar-**Ar and
U-Pb thermochronometry and noble gas paleothermometry enable researchers to tackle a range of Earth
science problems from crustal deformation to surface processes and mountain building (e.g., Gottardi
et al., 2018; Hodges et al., 2005; Resor et al., 1996; Schneider et al., 2013; Tremblay et al., 2019; van der
Pluijm et al., 2001; and many others).

In this contribution, we first review the fundamentals of the FT, (U-Th)/He, and trapped charge thermo-
chronometry systems. We then highlight some of the discoveries and method improvements that are advan-
cing the field to address grand challenges. Innovative applications leverage these advances and multisystem
data sets and include but are not limited to landscape evolution, connecting Earth surface changes with the
deep Earth processes, documenting the spectrum of fault processes from paleoearthquakes to slow slip and
fluid flow, and paleoclimate changes and critical zone (CZ) evolution in deep geologic time.

2. Foundation
2.1. FT Thermochronometry

FT thermochronometry exploits the natural production of tracks formed during the spontaneous fission of
2381 and time-temperature-dependent annealing of FTs. The first observations of charged-particle tracks
were reported in the late 1950s (Silk & Barner, 1959; Young, 1958), and Price and Walker (1962a, 1962b,
1962c) discovered that tracks created by fission fragments are revealed by chemical etching. The foundation
of the FT dating method, developed by Fleischer et al. (1975) and Naeser (1967), involves measuring U con-
centration, a 23U fission decay constant, and the FT density in a crystal, the accumulation of which is a func-
tion of time. Although many phases contain U, FT thermochronometry is predominantly applied to apatite
and zircon, owing to suitable U concentrations (10-1000s ppm) that generate FT densities associated with
relatively precise dates. Apatite and zircon FT (AFT and ZFT) are now routinely used to constrain geological
processes occurring over 10°~10° years, as well as high-temperature (i.e., >800 °C), short-duration (seconds
to minutes) phenomena.
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Figure 1. Closure temperature (T.) ranges for fission track (FT), selected (U-Th)/He, and trapped charge thermochronometry systems. T, ranges for FT and
(U-Th)/He assume a 10 °C/Myr cooling rate (Baughman et al., 2017; Bernet, 2009; Flowers et al., 2009; Gautheron et al., 2009; Guenthner et al., 2013;

Ketcham et al., 2007; Shuster et al., 2005). T, ranges for trapped charge thermochronometry are determined relative to the minimum resolvable cooling rate

(cf Griin et al., 1999; Guralnik et al., 2013; Guralnik, Jain, et al., 2015; King, Guralnik, Valla, & Herman, 2016; Biswas et al., 2018). Conceptual sketch at right shows
topography, isotherms that increase with depth, and projected T, values for each system on left. ESR = electron spin resonance; OSL = optically stimulated
luminescence; TL =

thermoluminescence.

An AFT or ZFT date is obtained by counting the density of spontaneous FTs in a suite of epoxy-mounted
crystals, revealed in an acid-etched polished surface. The spontaneous track density is compared with a U
concentration, determined either by counting induced tracks from ***U neutron activation in an irradiated
mica (i.e., external detector method; Gleadow, 1981) or by laser ablation inductively coupled plasma mass
spectrometry (ICPMS; Chew & Donelick, 2012; Hasebe et al., 2004). Refinement and standardization of etch-
ing protocols, combined with consideration of compositional proxies (i.e., Dpyr), have improved FT thermo-
chronometry applicability (Donelick et al., 1999; Ketcham et al., 1999; Murrell et al., 2009; Sobel & Seward,
2010) and refined data interpretations (e.g., Stevens et al., 2016).

FTs are not permanently preserved in minerals, and they can shorten, fade, and segment (e.g., Ketcham,
2005). Annealing of FTs in apatite and zircon is primarily a function of the thermal history and grain chem-
istry (Barbarand et al., 2003; Carlson et al., 1999; Green et al., 1986; Ketcham et al., 1999; Ketcham et al.,
2007; Tagami et al., 1998; Yamada et al., 1995). More specifically, FTs anneal by temperature-controlled
atomic diffusion, observed from the microscopic to atomic scales (Barbarand et al., 2003; Laslett et al.,
1987; Li et al., 2011; Li et al., 2014). The T, for the AFT and ZFT systems are ~80-120 °C and ~180-250 °C
(e.g., Bernet, 2009; Ketcham et al., 2007; Figure 1). The measurement of the track length distribution in a
given sample provides additional constraints on the sample's thermal history (Gleadow et al., 1986; Green
et al., 1985).

2.2. (U-Th)/He Thermochronometry

(U-Th)/He thermochronometry exploits decay of ***U, **>U, **Th, and **’Sm isotopes, associated alpha

particle (*He) production, and temperature-dependent “He diffusion through a crystal lattice (e.g., Farley,
2000; Strutt, 1909; Wolf et al., 1996; Zeitler et al., 1987). Because the Sm contribution to the He budget is lim-
ited, this method is historically referred to as (U-Th)/He, with (U-Th-Sm)/He used more recently for phases
with measurable Sm content. (U-Th)/He dating has a historical perspective, with Ernest Rutherford report-
ing the first radioisotopic date using a U-He system in 1904. In the last three decades, a resurgence of interest
in dating minerals with “He ingrowth has been facilitated by an improved understanding of the behavior of
He in minerals (Farley, 2000; Flowers et al., 2009; Gautheron et al., 2009; Guenthner et al., 2013; Lippolt
et al., 1994; Reiners et al., 2004a; Shuster et al., 2006; Shuster & Farley, 2009; Stockli & Farley, 2004; Wolf
et al., 1996; Zeitler et al., 1987) and development of robust analytical techniques (Farley, 2002; Farley
et al., 1999; Guenthner et al., 2016). This method can be applied to address geological problems operative
over 10° to 10° years, as well as high-temperature, short-duration thermal pulses.

(U-Th)/He dates are calculated using the “He, U, Th, and Sm content. An alpha ejection correction factor is
applied to account for the fraction of “He lost from the crystal during alpha decay (Farley et al., 1996;
Ketcham et al., 2011), most recently via mapping the 3-D grain-shape and parent nuclide distribution
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Figure 2. Fundamentals of trapped charge thermochronometry. (1) Exposure of quartz or feldspar minerals to ionizing
radiation (i.e., from decay of naturally occurring U, Th, and K) causes electrons (yellow circles) to become excited and
to migrate from their ground state in the valence band to the conduction band. Some electrons become trapped in lattice
defects (T), creating holes (blue circles) that form recombination centers (R). (2) The trapped charge population is
metastable over geological time, requiring energy E; (eV) to escape the electron trap. (3) Stimulation of the mineral with
heat or light results in the electrons obtaining sufficient energy to overcome E; and escape the trap. Electrons diffuse to R,
dissipating excess energy as light which can be measured (luminescence). Electron spin resonance dating measures the
trapped charge population directly, circumventing Stage 3.

(Fox, McKeon, & Shuster, 2014; Glotzbach et al., 2019; Herman et al., 2007). Whole, pristine crystals (e.g.,
apatite) are selected, measured, or mapped, and, typically, individual grains are loaded into pure metal
(e.g., Nb) tubes or foils. Zircon crystals can be purposefully selected to leverage the range of intrasample
visual metamictization, a qualitative proxy for accumulated radiation damage and intrasample
geochemical variability (Ault et al., 2018). Hematite aliquots can be targeted by grain size or texture,
proxies for the range in T, and formation process, respectively (Jensen et al., 2018; McDermott et al.,
2017). *He content is determined by He release from the samples by laser heating or ablation under
vacuum, gas purification, and analysis using a noble gas quadrupole or magnetic sector mass
spectrometer (Boyce et al., 2006; Farley et al., 1999; Horne et al., 2016, 2019). U, Th, and Sm content
are measured using an ICPMS by laser ablation or after aliquot dissolution using appropriate acids
(e.g., Evans, Byrne, et al., 2005; Reiners, 2005). Elemental concentrations are traditionally determined
by aliquot dimensional mass. Elemental concentrations can also be determined via ICPMS
measurement of the Ca and Zr content of apatite and zircon crystals, respectively, and stoichiometry
to calculate aliquot mass (Guenthner et al., 2016).

Many common accessory phases including apatite, zircon, titanite, rutile, magnetite, and monazite, and sec-
ondary minerals such as calcite, fluorite, hematite, and goethite incorporate trace but measurable amounts
of U, Th, and Sm into their crystal structure and negligible initial He. Together with “He retentivity over geo-
logic timescales, these factors make minerals amenable to (U-Th)/He thermochronometry. The apatite (U-
Th)/He (apatite He), zircon (U-Th)/He (zircon He), and titanite (U-Th)/He (titanite He) systems, for exam-
ple, have T of ~30-120 °C (Farley, 2000; Flowers et al., 2009; Gautheron et al., 2009; Shuster et al., 2006;
Shuster & Farley, 2009), ~20-200 °C (Guenthner et al., 2013; Reiners et al., 2004a), and ~20-210 °C
(Baughman et al., 2017; Reiners & Farley, 1999; Figure 1). Additional T, ranges for various (U-Th)/He sys-
tems are described in section 4.4.

2.3. Trapped Charge Thermochronometry

Trapped charge thermochronometry is based on the dynamic equilibrium between rates of charge trapping
and thermally stimulated rates of charge detrapping. Free electronic charge (electrons or holes) is trapped at
defects in a mineral lattice (i.e., atomic interstitials, atomic vacancies, and elemental substitutions) due to
environmental or ionizing radiation (Figure 2). Electrons are excited by ionizing radiation and both the elec-
tron and hole left behind migrate to lower-energy positions or crystal defects. The trapped charge concentra-
tion is measured indirectly by a luminescence signal produced when the charge is evicted from a trap by
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either light (Aitken, 1998; Huntley, 1985) or heat (Aitken, 1985; Figure 2). The trapped charge concentration
of a mineral can also be measured directly using electron spin resonance (ESR; Griin et al., 1999; Rink, 1997),
which permits nondestructive charge quantification. The potential of trapped charge systems for determin-
ing the thermal history of rocks was recognized >65 years ago (Houtermans et al., 1957). However, since
2010, this technique has been the subject of intense research in an effort to develop a new low-temperature
luminescence thermochronometer. To date, the focus has been on the development of optically stimulated
luminescence (OSL; Guralnik, Jain, et al., 2015; Herman et al., 2010; King, Herman, Lambert, et al., 2016; Li
& Li, 2012) and thermoluminescence (TL; Biswas et al., 2018; Brown et al., 2017) thermochronometry. These
approaches benefit from a foundation in the established trapped charge method of luminescence dating
(Roberts & Lian, 2015).

Although many minerals produce luminescence (e.g., Marfunin, 2012), defects, trapping capacities, and
kinetic parameters are best characterized and thus understood in quartz and feldspar (see Table 2 in King,
Guralnik, Valla, & Herman, 2016). Luminescence signals in other phases may not be stable or have such
a high and variable environmental radiation dose that they are saturated at short timescales or the dose rate
is challenging to calculate. Quartz and feldspar are extracted from bedrock samples with care because the
trapped charge is light and heat sensitive. The exterior >1 cm of sample material is removed, and samples
are gently hand crushed to extract minerals under subdued red light to avoid potential signal resetting.
Samples are sieved to extract the desired grain size range (typically 180-220 um), followed by treatment with
HCI and H,O0, to remove carbonates and any organic material, respectively. Density separation isolates
quartz and feldspar-enriched fractions. Quartz fractions are then etched in HF acid to remove any contam-
inating feldspar as well as the outer ~10 um of the grain that has been affected by alpha irradiation. Feldspar
grains may be etched in dilute hydrofluoric acid (e.g., Guralnik, Jain et al., 2015).

Trapped charge dates (ka), in their simplest form, are given by the following equation:

e

D
Date = — 1
5 )

where D, is the number of trapped charge, or the equivalent dose (Gy), and D is the environmental dose rate
(Gy/ka). The accumulated dose from environmental radiation, rate of signal saturation, and saturation level
are measured via the natural signal using heat (TL), light (OSL), or microwaves (ESR). Kinetic parameters of
trapped charge signals, such as signal loss in response to heat for quartz and feldspar, as well as athermal
signal loss from feldspar, are documented using isothermal decay and anomalous fading measurements,
respectively. TL and OSL measurements use automated systems such as a Rise TL/OSL reader
(Botter-Jensen et al., 2000) and ESR measurements are typically made with an X-band ESR spectrometer.
The rate of signal trapping is calculated from the sample-specific environmental radiation dose rate, which
is a function of the U, Th, and K concentrations within the surrounding rock matrix, as well as grain size and
mineral type (cf. Durcan et al., 2015). Radioisotope concentrations are measured via ICPMS or by sample
activity, constrained with high-resolution gamma spectrometry, alpha, and/or beta counting.

Trapped charge systems have T, ranging from ~30 °C to ~90 °C, depending on the mineral and signal inves-
tigated (Figure 1; Biswas et al., 2018; Guralnik, Jain, et al., 2015; King, Herman, & Guralnik, 2016). In con-
trast to other thermochronometric systems, these systems are used to infer changes in rock cooling over
finite time periods of 10° years for OSL and TL dating and 10° years for ESR dating because these systems
saturate. The saturation limit and low T, means that trapped charge thermochronometry is applicable for
documenting recent rapid exhumation or for late Quaternary paleothermometry (Guralnik, Jain, et al.,
2015; Herman & King, 2018; King, Herman, & Guralnik, 2016). Below the T, the rate of charge trapping
is governed by the environmental radiation dose rate and the grain size distribution of the analyzed aliquots
(cf. Durcan et al., 2015).

3. Analytical Uncertainties, Models, and Interpretations
3.1. FT and (U-Th)/He Systems
Resolving complex thermal histories using FT and (U-Th)/He data is a function of analytical precision, our

evolving understanding of variables that control FT annealing and He diffusion as well as our ability to accu-
rately model these phenomena, and the questions posed. Reported FT dates utilize pooled, central, or
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arithmetic means from large (n = 20-100) single-grain data sets (Galbraith & Laslett, 1993; Vermeesh, 2009).
These dates may comprise single or multiple populations with different annealing kinetics. Track density
and track length analysis (Gleadow et al., 1986) collectively provide a powerful constraint on a sample's ther-
mal history. Primary sources of analytical uncertainty in FT thermochronometry are undersaturation or
oversaturation of FTs due to low or high U concentrations, respectively, and analyst bias in track counting
and track length measurements (e.g., Donelick et al., 2005; Ketcham et al., 2015). Ketcham, van der Beek,
et al. (2018) provide a review of laboratory intercomparison of FT and (U-Th)/He dates and the sources of
variability within each system and between the two systems.

Analytical uncertainties for individual (U-Th)/He dates are typically ~3-4% (not accounting for uncertainty
in the alpha ejection correction). However, mean (U-Th)/He dates are commonly overdispersed, with stan-
dard deviations of the means exceeding analytical precision. Overdispersion is due to various factors that
control He diffusivity and thus influence T, and dates, including diffusion-domain length scale and cooling
rate (Dodson, 1973; Farley, 2000; Jensen et al., 2018; Reiners & Farley, 2001), radiation damage accumula-
tion (Baughman et al., 2017; Flowers et al., 2009; Gautheron et al., 2009; Guenthner et al., 2013, 2017;
Shuster & Farley, 2009), grain chemistry (Gautheron, Barbarand, et al., 2013), and grain breakage
(Brown et al., 2013). Additional variables that cause He data dispersion include implantation of parent-
less He by adjacent U-Th-rich phases (Gautheron et al., 2012; Murray et al., 2014; Spiegel et al., 2009),
parent isotope zonation (Ault & Flowers, 2012; Farley et al., 2011; Gautheron, Barbarand, et al., 2013;
Guenthner et al., 2013; Hourigan et al., 2005; Meesters & Dunai, 2002; Orme et al., 2015), microvoids
or crystal defects (McDannell, Zeitler, Janes, et al., 2018; Zeitler et al., 2017), and inaccuracies in the
alpha ejection correction factor owing to grain geometry or zoning (Farley et al., 1996, 2011;
Glotzbach et al., 2019). Relationships between individual apatite, zircon, titanite, and hematite He dates
and radiation damage, grain chemistry, and grain size can be leveraged to extract a more precise time-
temperature history from rocks, as described in section 4.1.

3.2. Trapped Charge Thermochronometric Systems

OSL signals can be measured with <5% precision in the laboratory (Murray & Olley, 2002). Precision of TL
and ESR analyses may be lower, owing to sensitivity changes throughout laboratory analyses and lack of
automated instrumentation, respectively. However, the largest source of uncertainty for trapped charge
dates is derived from the environmental dose rate, with uncertainty increasing with sample date (cf. equa-
tion (1)). Calculation of the environmental dose rate (D) is especially challenging for trapped charge thermo-
chronometry because the sample grain size distribution is lost during sample preparation (Durcan et al.,
2015; Guralnik, Jain, et al., 2015), and approaches to overcome this issue are discussed in section 4.6.

Constraining the signal saturation level is essential for accurate modeling of trapped charge data (Wintle &
Murray, 2006), with the possible exception of the Al center in ESR analysis. A laboratory-irradiated calibra-
tion curve is generated for every aliquot under investigation (Murray & Wintle, 2000, 2003). However, some
studies suggest that laboratory measurements do not mimic natural observations (e.g., Chapot et al., 2012;
Tsukamoto et al., 2018). The cause of this discrepancy is not known but may relate to the creation of new
defects or changing charge trapping probabilities throughout laboratory measurement. Furthermore, the
trapped charge in feldspar is affected by athermal detrapping thought to be caused by the tunneling of charge
to recombination centers (i.e., anomalous fading; Visocekas et al., 1994; Wintle, 1973), resulting in an under-
estimation of trapped charge concentrations and an overestimation of cooling rates. Laboratory measure-
ments of anomalous fading rates and trapped charge concentrations for samples in field saturation (i.e.,
where rates of charge trapping are in equilibrium with rates of athermal charge detrapping) match modeled
signal saturation values to within ~10% (Huntley, 2006; Kars et al., 2008; King et al., 2018). Thus, it is unli-
kely that cooling rates will be reported for samples that are saturated, providing appropriate screening of sig-
nal saturation (e.g., Guralnik, Jain, et al., 2015; King, Herman, & Guralnik, 2016; King, Herman, Lambert,
et al., 2016; Valla, Lowick, et al., 2016).

In common with all thermochronometric systems, thermal kinetic parameters estimated in the labora-
tory must be extrapolated over geological time, potentially introducing significant uncertainties.
Various numerical models have been proposed to extract kinetic parameters from luminescence decay
measured in response to isothermal holding (e.g., Guralnik, Jain, et al., 2015; Li & Li, 2012).
However, to date, none of these models yield physically plausible values (Riedesel et al., 2018).

AULT ET AL.

3710



'AND SPACESCIENCE

Tectonics 10.1029/2018TC005312

Despite this challenge, all currently employed models are validated against the known thermal history
German Continental Deep Drilling Program (KTB) borehole using the experimental data of Guralnik,
Jain, et al. (2015).

3.3. Thermal History Modeling of Thermochronometry Data

Thermochronometry results, reported as dates and saturation ratios, reflect a mineral's integrated thermal
history. FT and (U-Th)/He data are modeled using computer-based numerical simulation programs, such
as QTQt and HeFTy (Gallagher, 2012; Ketcham, 2005) or numerical codes that simultaneously invert ther-
mochronometry data and additional thermal constraints, such as vitrinite reflectance data (Issler et al.,
2005). Trapped charge data are modeled using Monte Carlo inversion approaches (Guralnik, Jain, et al.,
2015; King, Herman, Lambert, et al., 2016). Simulations use kinetic models that describe how the FT, (U-
Th)/He, and trapped charge systems respond as a function of temperature and time. These programs predict
dates for a given time-temperature path or yield time-temperature paths that are consistent with thermo-
chronometric data and independent geologic (e.g., unconformities and overburden estimates) and thermo-
chronologic constraints. Owing to the subjectivity of imposed time-temperature constraints and choices in
kinetic models and data visualization, thermal history models should be viewed as interpretations and trans-
parency in model inputs and outputs is necessary (Flowers et al., 2015; Ketcham, van der Beek, et al., 2018).
Simultaneous simulation of multiple low-temperature thermochronometers (i.e., AFT and apatite He or zir-
con He) has the potential to improve the reliability of thermal history information and/or provide inter-
method calibration (e.g., Fox et al., 2019; Mackintosh et al., 2017; Winn et al., 2017).

Thermal histories derived from thermochronometry data are converted into burial and unroofing histories
assuming appropriate geothermal gradients and surface temperatures. Surface temperature can be a critical
parameter in some of these models, owing to the low T of select (U-Th)/He and trapped charge thermochro-
nometric methods (Figure 1). In some trapped charge systems, for example, a sample that does not appear to
be in athermal saturation may in fact be in thermal steady state, reflecting equilibrium with the surface tem-
perature (Guralnik & Sohbati, 2019). Codes have been devised to convert thermochronometric dates to sur-
face erosion or exhumation rates (e.g., Fox, Herman, et al., 2014; Willett & Brandon, 2013) and variable
erosion rates (Biswas et al., 2018). Models such as Pecube (Braun, 2003; Braun et al., 2012) use a finite ele-
ment method to solve the 3-D heat transport equation and predict thermal histories of rocks. Outputs from
Pecube and other complementary models are compared with low-temperature and trapped charge thermo-
chronometric data to constrain tectonic and erosion rates (Batt & Braun, 1997; Braun, 2003; Stiiwe &
Hintermiiller, 2000; Whipp et al., 2009). Pecube is also coupled with landscape evolution models to infer sur-
face processes (Braun et al., 2012; Herman et al., 2010; van der Beek et al., 2002). Midland Valley's Move
kinematic modeling software has been linked with finite element advection-diffusion thermal models to pre-
dict thermochronometric dates from deformation-specific thermal histories (Lock & Willett, 2008;
McQuarrie & Ehlers, 2015).

4. Advances in Thermochronometry Systematics
4.1. Radiation Damage and Chemistry Controls on (U-Th)/He and FT Thermochronometry

The recognition that radiation damage accumulation and crystal chemistry impact He mobility and FT
annealing and, consequently, T. and (U-Th)/He and FT dates has transformed our ability to apply these
techniques to a range of Earth science problems. Damage to the crystal lattice develops from self-irradiation
from the natural decay of isotopes of U, Th, and Sm by ionization and electronic excitation and heavy
nuclide recoil during alpha decay, as well as spontaneous fission (e.g., Weber & Matzke, 1986). This discov-
ery is rooted in materials science approaches to characterize apatite, zircon, and titanite using X-ray diffrac-
tion, infrared and Raman spectroscopy, in situ transmission electron microscopy analysis, and hardness
analysis via nanoindentation (Beirau et al., 2018; Ginster et al., 2019; Hawthorne et al., 1991; Holland &
Gottfried, 1955; Li et al., 2017; Lumpkin et al., 1991; Nasdala et al., 1995, 2004; Woodhead et al., 1991).
Damage anneals at high temperatures and thus cumulative damage is a function of a sample's initial U,
Th, and Sm content and its thermal history.

Radiation damage impacts He diffusivity in apatite (Flowers et al., 2009; Gautheron et al., 2009; Gerin et al.,
2017; Recanati et al., 2017; Shuster et al., 2006; Shuster & Farley, 2009; Willett et al., 2017), titanite
(Baughman et al., 2017; Guenthner et al., 2017), and zircon (Ginster et al., 2019; Guenthner et al., 2013;
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Figure 3. Patterns of relative individual apatite, zircon, and titanite (U-Th)/He (apatite He, zircon He, and titanite He,
respectively) dates as a function of relative effective U concentration (eU), a proxy for radiation damage provided ali-
quots experience the same thermal history, for slowly cooled bedrock. Empirical data and damage-diffusivity models yield
positive apatite He date-eU trends (Flowers et al., 2009; Gautheron et al., 2009), and recent work shows apatite He
dates can decrease at high eU values (Recanati et al., 2017). Zircon He dates can yield positive and/or negative relation-
ships with eU (Guenthner et al., 2013) and increasing visual metamictization (see zircon images) tracks with increased eU
(Ault et al., 2018). Young, uniform zircon He dates at high eU (and thus high radiation damage) define a date-eU
“pediment,” reflecting residence at temperatures low enough to accumulate sufficient damage to yield low closure
temperatures combined with subsequent heating followed by relatively rapid cooling across a range of closure
temperature (T.)—equivalent to apatite fission track and apatite He T, (e.g., Ault et al., 2018; DeLucia et al., 2018; Johnson
et al., 2017; Mackintosh et al., 2017). High eU zircon He dates can be younger than apatite He dates reflecting low T¢.
Titanite He dates similarly yield an inverse date-eU relationship and older dates owing to lower eU values and higher T,
(Baughman et al., 2017; Guenthner et al., 2017).
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Hurley, 1952; Reiners, 2005). Provided grains experience the same thermal history, the measured effective U
concentration (eU, where eU is calculated as [U] + 0.234 * [Th] + 0.0046 * [Sm]; Gastil et al., 1967)
corresponds to relative radiation damage. Figure 3 illustrates relationships between eU, radiation damage,
and (U-Th)/He dates for apatite, zircon, and titanite in slowly cooled rocks. Radiation damage effects are
manifest in samples with a span of eU values that experience slow cooling, which involves sufficient time
for the He retentivities of variably damaged grains to diverge. In the apatite He system, increasing
amounts of radiation damage from alpha recoil impede He diffusion, resulting in a higher T. (Flowers
et al., 2009; Gautheron et al., 2009; Shuster et al., 2006). The influence of radiation damage can yield a
positive relationship between apatite He date and eU, depending on the thermal history (Figure 3; e.g.,
Ault et al., 2009; Flowers, 2009; Flowers & Kelley, 2011; Flowers et al., 2007; Gautheron, Barbarand, et al.,
2013; Murray et al., 2016; Weisberg et al., 2018). Recent work by Recanati et al. (2017) reveals damage
accumulation in high eU apatite reaches a threshold reflecting damage interconnection. This results in a
decrease in He retentivity, T, and apatite He date, analogous to radiation-damaged zircon (Figure 3).
Radiation damage may also influence FT annealing and thus FT dates (Hendriks & Redfield, 2005;
McDannell et al., 2019). However, additional work is required to evaluate this and deconvolve complex
relationships between alpha damage accumulation, FT annealing, and other parameters such as grain
chemistry (McDannell et al., 2019).

The radiation damage effect is magnified in the zircon and titanite He systems owing to higher eU content
(~100-10,000 ppm) and crystal self-healing properties requiring higher annealing temperatures than the
apatite He system. In zircon, accumulating damage initially disrupts c axis-parallel diffusion pathways but
reaches a threshold causing damaged portions of the crystal lattice to become interconnected and diffusivity
to increase (Figure 3; Guenthner et al., 2013; Ketcham et al., 2013). Thus, low eU zircon grains yield low
damage, decreased diffusivity, higher T, and older dates, provided that grains share a common thermal
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history. High eU grains result in comparatively higher damage, increased diffusivity, lower T, and younger
dates (Figure 3). Given a spread in eU values, individual grains from a single sample can develop positive
and/or negative date-eU relationships depending on the thermal history (Figure 3; Guenthner et al.,
2013). Titanite reaches a damage threshold causing increased He diffusivity at lower damage levels than zir-
con, potentially due to larger damage zones (Baughman et al., 2017; Ewing et al., 2000). However, titanite He
dates record higher temperatures and older dates than zircon for the same thermal history, owing to lower
eU (Figure 3; Baughman et al., 2017; Guenthner et al., 2017).

Apatite, zircon, and titanite date-eU relationships (e.g., Figure 3) are a powerful tool for reconstructing pro-
tracted thermal histories characteristic of ancient bedrock (Ault et al., 2009, 2013; Ault et al., 2018;
Baughman & Flowers, 2018; DeLucia et al., 2018; Flowers, 2009; Flowers et al., 2007; Guenthner et al.,
2013, 2014, 2017; Johnson et al., 2017; Mackintosh et al., 2017; Orme et al., 2016; Powell et al., 2016;
Weisberg et al., 2018). Damage-diffusivity patterns can be predicted given a thermal history or inverted to
derive a thermal history using HeFTy or QTQt. Current radiation damage-diffusivity models for apatite
and zircon available to the larger community (Flowers et al., 2009; Gautheron et al., 2009; Gerin et al.,
2017; Guenthner et al., 2013) are now used to resolve thermal histories from bedrock data sets that were pre-
viously considered uninterpretable. This is because crystals with variable eU and thus damage yield different
temperature sensitivities, in essence providing multiple thermochronometers within one sample to improve
model resolution. However, applying a damage-diffusivity model in HeFTy or QTQt implies that observed
intrasample dispersion in bedrock samples can be explained by radiation damage or diffusion-domain
length scale effects. Thermal history information should only be derived from bedrock samples that exhibit
date-eU and/or date-grain size patterns, including uniform dates regardless of eU or grain size values
(Flowers & Kelley, 2011). Samples yielding overdispersed (U-Th)/He dates uncorrelated with eU or grain
size should either not be modeled or more information is required to understand the date scatter (Flowers
& Kelley, 2011; Fox et al., 2019).

Crystal chemistry and lattice defects also influence FT annealing and He diffusion in apatite and ultimately
the T, in both FT and apatite He thermochronometry. For example, Cl substitution, as well as some cations
(Fe, Mn, Na, Sr, and Mg) and rare Earth elements (La and Ce) that substitute for Ca, impact FT annealing
resulting in an increase in the 7. (Barbarand et al., 2003; Carlson et al., 1999; Ketcham et al., 2007;
Ravenhurst et al., 2003). Cl substitution also alters He mobility and increases the apatite He T, (Djimbi
et al., 2015; Gautheron, Barbarand, et al., 2013). Because current damage-diffusivity models assume alpha
recoil damage anneals at temperatures analogous to FTs in fluorapatite, chemical variability also influences
the annealing model in (U-Th)/He systems (Gautheron, Barbarand, et al., 2013). In addition, microvoids
and strain dislocations in the apatite crystal lattice can either trap He or alter the He diffusion pathway,
resulting in a higher T. (McDannell, Zeitler, & Schneider, 2018; Zeitler et al., 2017). New work suggests
alpha recoil damage anneals at higher temperatures compared to FTs in both apatite and zircon and
damage-diffusivity models are being refined (Ault et al., 2018; Fox & Shuster, 2014; Garver & Kamp, 2002;
Gerin et al., 2017; Ginster et al., 2019; Willett et al., 2017).

4.2. Atomistic Perspectives on He Diffusion

A realistic, atomic level description of He diffusion behavior in minerals is required to understand the role of
chemical composition on diffusion, mechanisms modifying diffusivity by radiation damage, and noble gas
diffusion in a range of mineral structures. He diffusion behavior in perfect crystal lattices has been investi-
gated for different minerals at atomic to crystal scales using computing advances. In this approach, a crystal
cell is constructed using density functional theory (DFT), or a computational quantum mechanical model
that predicts material behavior. This method determines the ground energy state of the crystal by solving
the Schriédinger equation for all bonds in the atomic structure. Different model codes can be applied to cal-
culate He insertion sites, or interstitial positions, and energetic pathways in a crystal lattice (e.g., Reich et al.,
2007). Most studies use the Vienna Ab Initio Simulation Package (Kresse & Furthmiiller, 1996a, 1996b;
Kresse & Hafner, 1993) for DFT calculations to optimize crystal lattice models for a perfect (i.e., damage free)
crystal. Ab initio algorithms were first developed for the theoretical chemistry community but are now
applied to geological problems.

To characterize the 3-D diffusion of He in minerals, the size of the cell used (i.e., number of atoms in
the structure) is optimized to minimize the crystal relaxation effect due to the incorporation of a He
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Figure 4. Example of apatite crystal framework for density functional theory calculations to explore He diffusion. (a) Apatite crystal cell with He insertion sites
along the c axis. (b) Required migration energy (Ep;g) for He diffusion through the crystal lattice two scenarios: F atoms only (back left) and when one Cl atom
is substituted (front right). Modified from Djimbi et al. (2015).

atom. For example, an optimized apatite crystal model comprises 84 atoms representing a double apatite
cell (Ca;o((PO4)sF2),; Djimbi et al., 2015). The minimum migration energy between He insertion sites is
obtained using the nudged elastic band method (Jénsson et al., 1998; Mills et al., 1995). Figure 4 shows He
diffusion pathways in apatite with associated insertion types along the c axis (Djimbi et al., 2015). A 3-
characterization of the apatite He diffusion coefficient including the activation energy (E,) and the
frequency factor (Dy) is calculated using a Monte Carlo random walk, using all insertion and migration
energies along the a, b, and c crystal axes (Figure 4; Djimbi et al., 2015; Gautheron & Tassan-Got, 2010).
Calculation details for a damage-free apatite crystal structure and associated 3-D He diffusion coefficients
at 0 K are found in Saadoune and De Leeuw (2009) and Djimbi et al. (2015). Computed 3-D He diffusion
in apatite and hematite mirrors experimental data on real specimens, supporting the veracity and
applicability of this theoretical approach (Balout et al., 2017; Djimbi et al., 2015).

DEFT calculations with large numbers of atoms (>200-2,000) cannot be performed at present owing to com-
putational limitations, thus limiting the application to alpha recoil damage and quantifying the damage-
induced trapping energy of He diffusion. However, atomic investigation of He diffusion in zircon yields non-
retentive results (Bengtson et al., 2012; Reich et al., 2007; Saadoune et al., 2009; Saadoune & De Leeuw,
2009), which differs from retentive behavior in natural zircon (e.g., Reiners et al., 2002; Reiners et al.,
2004b). This comparison reveals that processes such as the creation of radiation damage-induced traps sig-
nificantly alter He diffusion in zircon. In addition, the impact of chemical substitution or single vacancies
can be investigated using DFT (Djimbi et al., 2015; Gerin et al., 2017; Saadoune & De Leeuw, 2009). Thus,
atomistic calculations of He diffusion in perfect crystal lattices identify parameters that alter diffusion, pro-
viding new perspectives when diffusion coefficient measurements are not available or difficult to perform.

4.3. Double and Triple Dating With U-Pb, FT, and (U-Th)/He Systems

FT and (U-Th)/He thermochronometry are now routinely applied to detrital minerals (e.g., Carter, 2019,
and references therein). Detrital apatite and/or zircon crystals can trace sediment sources in orogenic sys-
tems (Bernet & Garver, 2005; Glotzbach et al., 2011; Horton et al., 2010; Stock et al., 2006), quantify the basin
burial and exhumation phases (Guenthner et al., 2015; Ketcham, Mora, & Parra, 2018; Schwartz et al., 2017),
and track the source to sink evolution of sedimentary basins (Calzolari et al., 2016; Carter, 2019; Tranel et al.,
2011; Zattin et al., 2014). Detrital thermochronometry from catchments also informs the timing and tempo
of source area exhumation related to tectonism (e.g., Bernet et al., 2006; Bernet et al., 2009; Espurt et al.,
2010; Filleaudeau et al., 2012; Gautheron, Espurt, et al., 2013), glacial processes (e.g., Ehlers et al., 2015;
Enkelmann & Ehlers, 2015), or the interplay between the two.

FT and (U-Th)/He data can be acquired on crystals previously analyzed for U-Pb geochronology, aided by
analytical advances of laser ablation and noble gas mass spectrometry analyses. This approach includes
“double” U-Pb and FT or He analysis of apatite or zircon (Campbell et al., 2005; Carter & Moss, 1999;
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Figure 5. T, ranges, assuming a 10 °C/Myr cooling rate, for a variety of conventional and new (U-Th)/He thermochro-
nometry systems. See text in section 4.4 for associated references.

Fosdick et al., 2015; Lease, Haeussler, & O'Sullivan, 2016; Odlum & Stockli, 2019; Rahl et al., 2003; Reiners
et al., 2005; Ternois et al., 2019; Thomson et al., 2017) or U-Pb, FT, and (U-Th)/He “triple” dating (e.g.,
Carrapa et al.,, 2009; Danisik, 2019; Danisik et al., 2010). Integration of data from two or more
thermochronometric systems with different temperature sensitivities in the same mineral permits a more
detailed reconstruction of the thermal history in these settings. These detailed time-temperature histories
allow researchers to discriminate between different source regions, constrain protracted postdeposition
burial histories, or capture the source to sink dynamics including sediment recycling. The ability to more
fully characterize a basin's thermal evolution also has implications for georesource exploration, as
temperature constraints through time are critical for understanding the maturation, expulsion, and
trapping of hydrocarbons.

4.4. New (U-Th)/He Thermochronometers

Apatite, zircon, and titanite He continue to be the most widely applied (U-Th)/He thermochronometers, but
new mineral systems have been developed in the past three decades that extend the application of these tech-
niques to tackle new research questions (Figure 5). For example, primary and secondary Fe oxides are amen-
able to (U-Th)/He dating. Hematite He thermochronometry has been successfully applied to constrain
deformation, hydrothermal, and diagenesis histories (Ault, Reiners, et al., 2015; Ault et al., 2016; Calzolari
et al., 2018; Evenson et al., 2014; Farley & Flowers, 2012; Farley & McKeon, 2015; McDermott et al., 2017;
Moser et al., 2017; Wernicke & Lippolt, 1993, 1994). Hematite occurs as polycrystalline aggregates and exhi-
bits polydomain He diffusion behavior (Evenson et al., 2014; Farley, 2018; Farley & Flowers, 2012).
Individual crystallites are the He diffusion domains and the hematite He T., which is ~25-250 °C (10 °C/
Myr cooling rate), increases with increasing domain (grain) size (Balout et al., 2017; Evenson et al., 2014;
Farley, 2018; Farley & Flowers, 2012; Jensen et al., 2018). Goethite He has a T, ~25-60 °C with possible
He loss at surface conditions and is used to date supergene alteration and deep weathering profiles (Deng
et al.,, 2017; Heim et al., 2006; Miller et al., 2017; Monteiro et al., 2014; Riffel et al., 2016; Shuster,
Vasconcelos, et al., 2005; Shuster et al., 2012; Vasconcelos et al., 2013). Magnetite He thermochronometry
is used to date intermediate to mafic volcanic rocks (Blackburn et al., 2007) and serpentinization
(Cooperdock & Stockli, 2016). This system has a T, of ~250 + 50 °C (Blackburn et al., 2007), although com-
ponents of “He diffusion data suggest potential multidomain diffusion behavior.

A variety of accessory phases in igneous and metamorphic rocks can serve as (U-Th)/He thermochron-
ometers. Baddeleyite, for example, has a T, ~450-500 °C (Metcalf & Flowers, 2013). Perovskite has a T,
>300 °C and has been used to date kimberlite emplacement (Stanley & Flowers, 2016). Rutile has a T, of
~220-235 °C and has the potential to quantify midcrustal exhumation when paired with well-characterized
petrologic and geochemical context (Stockli et al., 2007; Wolfe, 2009). Garnet, common in metamorphic
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rocks, has a T, of ~200-300 °C (Seman et al., 2014), although *He diffusion experiments using nuclear reac-
tion analysis yield T, >450 °C (Roselieb et al., 2006). Spinel, a primary phase in mantle peridotites, hasa T, of
~200-300 °C based on empirical constraints comparing spinel He and ZFT results (Cooperdock & Stockli,
2018). This technique may constrain the timing of oceanic crust formation and mantle exhumation.
Monazite, common in peraluminous granites and pelitic rocks, has a T of ~180-280 °C that is dependent
on chemical composition (Boyce et al., 2005; Farley, 2007). Fluorite He thermochronometry has a T, of
~50-170 °C, and this tool has potential for investigating ore deposits and hydrothermal systems (Evans,
Wilson, et al., 2005; Wolff et al., 2015; Wolff et al., 2016). Xenotime yields a T, of ~35-75 °C (Anderson
et al., 2019; Farley, 2007; Farley & Stockli, 2002).

In addition to detrital zircon and apatite He thermochronometry, calcite and bioapatite are useful (U-Th)/
He tools for reconstructing the thermal history of sedimentary rocks. Calcite, a constituent of limestone,
mudstone, and fossils, has a T, of ~40-80 °C and common (initial) “He issues are mitigated by analyzing
samples that have experienced significant postdepositional reheating (Copeland et al., 2007; Copeland
et al., 2015; Cros et al., 2014). Conodont microfossils (bioapatite) are a target for (U-Th)/He analysis applied
to carbonates and shales and the T, mirrors that of the traditional apatite system (~60 °C; Landman et al.,
2016; Peppe & Reiners, 2007). Ongoing research aimed at quantifying the diffusion kinetics of each of the
aforementioned systems, coupled with textural and geochemical information and data comparisons with
established low-temperature thermochronometry systems, will continue to expand the utility of new (U-
Th)/He thermochronometers.

4.5. “He/*He Thermochronometry: Grain-Specific Diffusion Kinetics and Thermal Histories

Recent and ongoing development of “He/*He thermochronometry permits recovery of aliquot-specific diffu-
sion kinetics and a sample's detailed thermal history (Farley, 2018; Farley & Flowers, 2012; Fox, McKeon, &
Shuster, 2014; Shuster et al., 2004; Shuster & Farley, 2004, 2005; Shuster, Vasconcelos, et al., 2005). This
approach quantifies the distribution of “He in a single crystal or polycrystalline aggregate. Stepwise degas-
sing of an aliquot containing synthetic, uniformly distributed, proton-induced *He constrains the *He distri-
bution, which is a function of the initial U and Th distribution (Farley et al., 2010) and the thermal history.
Combined with additional geochronological and thermochronological (i.e., the (U-Th)/He date) or geologic
information, the “He concentration profile can be used to more narrowly constrain a sample’s thermal his-
tory. The *He Arrhenius relationship yields information about the aliquot's diffusion domain(s) and diffu-
sion kinetics (e.g., Farley, 2018).

The apatite “He/*He method can resolve cooling histories down to ~20-30 °C (Shuster & Farley, 2004).
Owing to its low temperature sensitivity, this technique has been used to quantify the timing and tempo
of glacial erosion and related relief generation (Christeleit et al., 2017; Shuster, Ehlers, et al., 2005; Shuster
et al., 2011; Valla et al., 2011), exhumation of mountain ranges (Tremblay et al., 2015; Valla et al., 2012),
and canyon incision including carving of Grand Canyon (Flowers & Farley, 2012; Fox et al., 2017,
Schildgen et al., 2010; Winn et al., 2017). Zircon ‘He/*He thermochronometry has been applied to the
fast-cooled Fish Canyon Tuff zircon standard and zircon crystals from the Sierra Nevada batholith in the
vicinity of the Little Devil's Postpile intrusion (Tripathy-Lang et al., 2015). This tool has also been used to
constrain the diffusion kinetics and thermal history of hematite (Evenson et al., 2014; Farley, 2018; Farley
& Flowers, 2012; Farley & McKeon, 2015), goethite (Allard et al., 2018; Deng et al., 2017; Shuster,
Vasconcelos, et al., 2005; Vasconcelos et al., 2013), and Mn oxides (Garcia et al., 2017).

4.6. Measurement and Modeling Advances in Trapped Charge Thermochronometry

The recent development of trapped charge thermochronometry means that methods and kinetic and ther-
mal models are rapidly improving. Advances center on numerical models that describe the equilibrium
between charge trapping and thermal and athermal charge detrapping (e.g., Biswas et al., 2018; Brown
et al., 2017; Guralnik, Jain, et al., 2015), measurement protocols (Guralnik, Jain, et al., 2015; King,
Herman, Lambert, et al., 2016), and method validation against samples of known thermal history
(Guralnik, Jain, et al., 2015). Ongoing development of ESR thermochronometry (Fang et al., 2018; Griin
et al., 1999) may overcome the limitation of signal saturation. ESR signals saturate over timescales of up
to ~2 Myr (Rink, 1997), potentially extending the applicability of trapped charge thermochronometry meth-
ods to more environmental settings (e.g., Bartz et al., 2018) and longer timescales.
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A sample's environmental radiation dose rate determines the rate of signal accumulation (i.e., charge
trapping) for trapped charge thermochronometric systems. For samples in thermal steady state within the
partial retention zone, dose rate exerts only a logarithmic control on the trapped charge concentration,
and thus has a low impact on the palaeotemperature determined (Guralnik et al., 2013; Guralnik, Jain,
et al., 2015). However, for samples that record cooling, the effect of dose rate will vary from linear to
logarithmic as sample saturation (steady state) is approached (Guralnik et al., 2013). This means that, in
rapidly cooled settings, a change in dose rate of 30% results in an equivalent shift in the calculated cooling
rate (King, Herman, Lambert, et al., 2016).

Grain size exerts a significant control on environmental dose rate, but grain size information is commonly
lost during the sample preparation by hand crushing. Grain size distributions can be quantified via thin-sec-
tion petrography (Guralnik, Jain, et al., 2015). Consideration of end member and/ average observed grain
size distributions can provide bounds on dose rate calculations (Guralnik, Jain, et al., 2015) and Monte
Carlo modeling can evaluate the impact of heterogeneous grain size distributions on the dose rate of miner-
als extracted from bedrock (Fang et al., 2018). Accurate estimation of the grain size distribution and chemi-
cal composition of K-feldspar are important owing to an internal dose rate component, which can cause a
significant change in the total dose rate (Fang et al., 2018). K positioning within the K-feldspar lattice con-
tributes a beta dose, which may increase with increasing mineral size (Buylaert et al., 2018).

Trapped charge systems yield multiple luminescence signals with different optical and thermal stabilities,
which can be conveniently measured within the same analytical run. This means that multiple constraints
on the cooling history of a single sample are obtained, overcoming potential uncertainties associated with
combining data from different thermochronometric systems. For example, King, Herman, Lambert, et al.
(2016) demonstrated the utility of multiple OSL signals to derive high-precision cooling and thus exhuma-
tion histories in geological settings. Combining four infrared stimulated luminescence signals measured
from K-feldspar, with T, of ~30-90 °C, permits inversion of a more precise cooling history than from sin-
gle-system inversion (King, Herman, Lambert, et al., 2016). Biswas et al. (2018) developed this approach
for TL thermochronometry, measuring a continuum of charge with different thermal stabilities and 10
different signals to constrain cooling rate variations. In addition, a new algorithm now allows for inversion
of multiple trapped charge data sets to constrain cooling and thus erosion rate variations (Biswas et al.,
2018). Model outputs are more robust, because physically impossible cooling histories are rejected from
the inversion and a time series of cooling rate changes are generated. Following the success of these studies,
similar approaches have been applied to samples from other rapidly exhuming terranes (Herman
& King, 2018).

5. Low-Temperature Thermochronometry Applications

New applications of low-temperature thermochronometry utilize the aforementioned method advances in
the FT, (U-Th)/He, and trapped charge systems, as well as numerical modeling approaches. In this section,
we highlight efforts to push the boundaries of these techniques to address Earth science problems including
landscape evolution, surface-mantle connections in deep time, fault zone processes, and weathering. We
emphasize that these examples represent only a fraction of the innovative applications of low-temperature
thermochronometry. Figure 6 depicts the diverse science questions that are currently being investigated
across continents worldwide using FT, (U-Th)/He, and trapped charge thermochronometry.

5.1. Landscape Evolution

Understanding the tempo of erosive processes that sculpt Earth's surface is at the core of geomorphology and
Earth science more broadly. This information has fueled debates into how passive margins evolve via scarp
retreat, sediment dispersal and routing from source to sink, and relationships between tectonics and climate.
Bedrock and detrital low-temperature thermochronometry, coupled with other chronologic, geologic, and
geophysical insights, inform these debates (Figure 6). For example, thermal histories derived from AFT
and apatite He dating characterize the topographic evolution of passive continental margins and rates of
escarpment retreat associated with supercontinent breakup (Figure 6). Low-temperature thermochronome-
try provides new perspectives on the relative importance of lithospheric flexure, isostasy, and structural
inheritance controlling escarpment development and degradation. Examples of FT and (U-Th)/He thermo-
chronometry applications to passive margins include southern Africa (Brown et al., 1990, 2000; Brown et al.,
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questions in a range of geologic settings.

2002; Cockburn et al., 2000; Flowers & Schoene, 2010; Gallagher & Brown, 1999; Kounov et al., 2009; Tinker
et al., 2008; Wildman et al., 2016), Fennoscandia (Hendriks & Redfield, 2005), Brazil (Gallagher et al., 1994;
Hackspacher et al., 2004), and Baffin Island and West Greenland (Japsen et al., 2009; Jess et al., 2018; Jess
et al., 2019).

In active orogenic settings, landscape evolution is driven by the interplay between surface uplift via tectonics
and climate-modulated surface processes. FT, (U-Th)/He, and “He/*He thermochronometry of basement
rocks, sedimentary rocks, and sediments quantify the timing and tempo of erosional and tectonic exhuma-
tion in orogens (Figure 6). In mountain ranges that develop in convergent orogens, these tools lay the foun-
dation to investigate relationships between rapid erosion and surface uplift (e.g., Avdeev & Niemi, 2011;
McDermott et al., 2019; Spencer et al., 2019; and many others), propagation of deformation into the foreland
(e.g., Gautheron, Espurt, et al., 2013; Lease, Ehlers, & Enkelmann, 2016; Thomson et al., 2017), rapid
Quaternary exhumation (Blythe et al., 2007; Shuster et al., 2011; Valla, Rahn, et al., 2016; Yang et al.,
2018), and Quaternary climate influences on sediment storage and erosion (e.g., Lang et al., 2018).

Conventional low-temperature thermochronometers traditionally cannot precisely resolve variations in
Quaternary erosion rates. Trapped charge thermochronometry is able to span this temporal gap and has
been successfully applied to understand the Quaternary evolution of the Southern Alps of New Zealand
(Herman et al., 2010), the Western Arunachal Himalaya (De Sarkar et al., 2013), the Eastern Himalayan syn-
taxis (King, Herman, & Guralnik, 2016), and the Japanese Alps (Herman & King, 2018). For example,
Figure 7 illustrates that the combination of OSL thermochronometry, together with higher temperature
thermochronometric systems, reveals an acceleration in exhumation rates from <1 to >6 mm/year over
the past ~1 Myr at Namche Barwa in the eastern Himalayan syntaxis (King, Herman, & Guralnik, 2016).
More recent work using TL thermochronometry, which has a lower T, and thus records more recent changes
in rock cooling and exhumation, suggests exhumation rates may have exceeded ~10 mm/yr at ~40 ka, fol-
lowed by rates of ~2-8 mm/yr over the past 20 ka (Biswas et al., 2018). Regardless of method, trapped
charge-derived erosion rates are greater than those inferred from higher-temperature thermochronometry
systems. Based on their results, King, Herman, and Guralnik (2016) suggest that tectonics is the key control
on the location of rapid exhumation in this region. Future research directions coupling trapped charge with
FT and (U-Th)/He thermochronometry, as well as comparing “He/>He and trapped charge data that have
similar T, will help decipher variations in exhumation rate and thus evaluate the relative roles of tectonics
and surface processes in orogenic systems.

5.2. Deep Time Thermochronometry

The ability to reconstruct low-temperature thermal histories spanning billions of years, known as deep time
thermochronometry (e.g., DeLucia et al., 2018; Flowers, 2009; Flowers et al., 2006), has implications for the
recognition of dynamic topography in the rock record, identifying if and how surface processes are coupled
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Figure 7. Example of combined trapped charge and low-temperature thermochronometry data from eastern Himalayan
syntaxis, Namche Barwa, modified from King, Herman, Lambert, et al. (2016). (a) Erosion rates over 2 million years
derived from apatite fission track (AFT) and zircon fission track (ZFT), zircon (U-Th)/He (ZHe), and biotite “OAr/*Ar
thermochronometry from prior work. Regions of high stream power (yellow) previously identified as coincident with high
exhumation rates; circles denote optically stimulated luminescence (OSL) sample locations of King, Herman, Guralnik
(2016). (b) Multi-OSL and low-temperature thermochronometry results, as well as modeled exhumation (exh.) rate
changes (pink diamonds) from these data, as a function of distance along A-B line in (a). (c) Data comparison and
inversion reveals exhumation rates increased an order of magnitude in the last 1 Ma.

or decoupled from deep-seated (mantle) processes through geologic time, understanding how
supercontinent cycles shape Earth's landscape, and documentation of feedbacks between weathering,
erosion, and global paleoenvironmental change. AFT thermochronometry can decipher long-term
thermal histories of ancient rocks exposed in cratons (e.g., Feinstein et al., 2009; Gleadow et al., 2002;
Kohn et al., 2002; Kohn et al., 2005; McDannell et al., 2019). In addition, the low-temperature sensitivity
and radiation damage influences on the apatite He system make it ideal for quantifying the timing,
magnitude, and extent of low (<2 km) amplitude deposition and denudation episodes in cratonic regions,
even when the deposited rocks have been completely eroded from the rock record. Apatite He date-eU
relationships inform long-term thermal histories linked to these surface processes (e.g., Ault et al., 2009,
2013; Ault, Flowers, & Bowring, 2015; Flowers, 2009; Flowers et al., 2012; Guenthner et al., 2017,
Mackintosh et al., 2017). Figure 8 presents apatite He, AFT, and zircon He data patterns from across the
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Figure 8. Application of deep time thermochronometry to cratonic North America. (a) Simplified geologic map showing results of apatite and zircon (U-Th)/He
(He), fission track (AFT and ZFT) thermochronometry studies. 1: Ault et al. (2018); 2 and 3: Ault et al. (2009, 2013); 4: McDannell et al. (2019); 5: Flowers (2009); 6:
Flowers et al. (2012); 7: Feinstein et al. (2009); 8: Kohn et al. (2005); 9: Orme et al. (2016); 10: Flowers and Kelley (2011); 11: DeLucia et al. (2018). (b) Example of
thermochronometry-derived thermal history compared to a model of dynamic topography and sea level curves, modified from Flowers et al. (2012). Upper panel:
Paleozoic-early Mesozoic sea level curve reconstructions relative to modern sea level from Haq and Al-Qahtani (2005; black line), Haq and Schutter (2008; dark gray
line), and Vail et al. (1977; light gray line). Lower panel: Predicted Slave craton vertical motion history (red line, left y axis) relative to mean global dynamic
topography from a mantle convection model (Zhang et al., 2012), compared with thermal history (gray-shaded region) derived from apatite He data

(Ault et al., 2009) and damage-diffusivity model of Flowers et al. (2009). Thermal history converted to burial history (right y axis) assuming a 0 °C surface
temperature and 25 °C/km geotherm. Slave craton surface history compares favorably with modeled pattern of subduction-related dynamic topography in the
Paleozoic-Mesozoic and is out of phase with sea level change, suggesting the former drives subsidence in the continental interior. (c) Thermochronometry data
reported in (a) constrain two supercontinent cycles. Time-temperature paths from zircon He, AFT, and apatite He data from the Ozark Plateau (DeLucia et al.,
2018). Timing of Rodinia and Pangea supercontinent amalgamation and breakup (from Whitmeyer & Karlstrom, 2007), Sr isotope data (Cox et al., 2016), and global
glaciations shown. Modified from DeLucia et al. (2018).

interior of continental North America. Apatite He and AFT data reveal phases of substantial burial (1-4 km),
unroofing, and elevation change long after initial cratonic stabilization (Figures 8a and 8b; Ault et al., 2009,
2013; Feinstein et al., 2009; Flowers, 2009; Flowers et al., 2012; Flowers & Kelley, 2011; Kohn et al., 2005;
McDannell et al., 2019). The long wavelength (>1,000 km) nature of this elevation change is out of phase
with sea level change (Figure 8b). Elevation change distal from plate boundaries and the lack of
significant associated crustal deformation suggest dynamic topography as a probable cause (Figure 8b;
Ault et al., 2013; Flowers et al., 2012; Zhang et al., 2012).

Recent work extends the low-temperature thermal history of cratonic North American into deeper geologic
time (Figures 8a and 8c; Ault et al., 2018; DeLucia et al., 2018; McDannell, Zeitler, & Schneider, 2018; Orme
et al., 2016). For example, zircon He thermochronometry date-eU patterns from the North American mid-
continent cratonic basement reveal ~850- to 680-Ma cooling and exhumation associated with the develop-
ment of the Great Unconformity, an erosion surface representing ~100-1,000 Ma of missing geologic time
between Precambrian and Phanerozoic rocks (DeLucia et al., 2018). In addition, *°Ar-*’Ar multidiffusion
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data suggest prolonged residence in the midcrust through the Proterozoic and exhumation initiating at ~1.0
Ga related to the development of the Midcontinent Rift System (McDannell, Zeitler, & Schneider, 2018).
Collectively, low-temperature thermochronometry from across the North American craton reveals phases
of burial and subsequent unroofing associated with processes operative during two supercontinent cycles,
Rodinia and Pangea, raising possible links between cratonic exhumation and dramatic, possibly global,
paleoenvironmental change (Figure 8c; Ault et al., 2013; DeLucia et al., 2018; Flowers et al., 2012).

FT and (U-Th)/He thermochronometry are also valuable tools for linking southern Africa's unique surface
history with mantle processes. Southern Africa, a continental shield residing at a mean elevation of ~1 km
(Nyblade & Robinson, 1994) is widely cited as an example of dynamically supported topography (Gurnis
et al., 2000; Lithgow-Bertelloni & Silver, 1998). Combined AFT and apatite He data from Archean rocks
of the Kaapvaal craton and off-craton Paleozoic mobile belts suggests Early Cretaceous cooling and unroof-
ing focused on craton margins with comparatively limited erosion in the cratonic interior (Wildman et al.,
2017). Apatite He thermochronometry from kimberlites document a Cretaceous eastward wave of erosion
and imply disparate lithospheric responses to deep mantle processes on and off craton (Stanley et al.,
2015). Off-craton kimberlite apatite He thermochronometry data reveals Cenozoic unroofing, concomitant
with increasing temperature and metasomatism in the mantle, which may be connected with surface uplift
(Stanley et al., 2013). Researchers are now extending the low-temperature thermal history of southern Africa
into deep time, using zircon and titanite date-eU patterns to document Proterozoic burial across the
Kaapvaal craton for which the geologic evidence has been erased (Baughman & Flowers, 2018) and Pan-
African orogenesis in the Zimbabwe craton (Mackintosh et al., 2017). Collectively, these studies highlight
the potential of FT and (U-Th)/He thermochronometry to decipher cryptic thermal histories in cratons
and connect surface processes with geodynamics in deep geologic time.

5.3. Fault Zone Processes: Earthquakes, Creep, and Geofluid Flow

Documenting fault zone behavior in space and time is integral for understanding the mechanical, chemical,
and thermal conditions of crustal deformation and illuminating dynamic interactions between tectonics and
Earth surface processes (Huntington & Klepeis, 2018). Fault activity can be inferred from variations in bed-
rock FT and (U-Th)/He thermochronometry dates and/or extrapolated cooling rates (e.g., Abbey & Niemi,
2018; Bidgoli et al., 2015; Brady, 2002; Carter et al., 2006; Clark et al., 2005; Colgan et al., 2008; Collett et al.,
2019; Curry et al., 2016; d'Alessio & Williams, 2007; Ehlers & Farley, 2003; Johnstone & Colgan, 2018;
McDermott et al., 2013; Stockli et al., 2000; Tagami, 2012; Wells et al., 2000).

Exhumed fault zones provide a target for dating deformation and a bridge to geophysical and geochemical
observations of deformation processes (e.g., Rowe & Griffith, 2015, and references therein). Radioisotopic
methods used to place direct temporal constraints on fault slip include “°Ar/*Ar and K-Ar dating of neo-
formed, fault gouge clay (Duvall et al., 2011; Fitz-Diaz & van der Pluijm, 2013; Haines & van der Pluijm,
2008; van der Pluijm et al., 2001; van der Pluijm et al., 2006; Vrolijk & van der Pluijm, 1999; Zwingmann
& Mancktelow, 2004), muscovite (Pachell & Evans, 2002), and pseudotachylytes (Cosca et al., 2005; Di
Vincenzo et al., 2013; Magloughlin et al., 2001; Reimold et al., 1990; Sherlock et al., 2004; Sherlock et al.,
2008; Sherlock et al., 2009); and U-Pb and U-Th dating of carbonate and opal (Nuriel et al., 2011, 2012,
2013, 2017, 2019; Pagel et al., 2018; Rittner & Muller, 2011; Roberts & Walker, 2016; Uysal et al., 2007;
Verhaert et al., 2003; Watanabe et al., 2008).

Minerals on or adjacent to fault surfaces record strain, friction-generated heat, and fluid circulation asso-
ciated with fault slip. Low-temperature thermochronometry of these phases offers the potential to document
the timing, temperature, and nature of brittle fault zone processes, provided that fault-specific thermal sig-
natures can be isolated from the ambient thermal history. For example, ZFT annealing kinetics respond to
short duration, high-temperature thermal pulses (Murakami, Yamada, & Tagami, 2006) due to frictional
(shear) heating (Ben-Zion & Sammis, 2013), asperity flash heating (Rice, 2006), or melting (Sibson, 1975).
ZFT thermochronometry has been used to identify paleoearthquakes that generate pseudotachylytes or
shear heating (Murakami, Kosler, et al., 2006; Murakami & Tagami, 2004; Tagami, 2005, 2012, 2019;
Tagami & Murakami, 2007). Friction-generated heat has also been detected using zircon He thermochrono-
metry (Maino et al., 2015) and ferrimagnetic resonance signals via ESR (Fukuchi et al., 2007). Luminescence
and ESR signals of quartz and feldspar can be reset within fault gouge (Ding & Lai, 1997; Fukuchi, 2001; Lee
& Yang, 2007; Mukul et al., 2007; Singhvi et al., 1994; Spencer et al., 2012), although it is challenging to
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(a) Hematite-coated minor fault surfaces in fault damage zones that parallel the southern San Andreas fault in Mecca Hills, CA, comprise thin, high-aspect
ratio, densely stacked hematite plates visible in high-resolution scanning electron microscope (SEM) images (b). (c) Comparison of hematite He and apatite He
thermochronometry dates reveals the former record phases of Pleistocene synkinematic mineralization during slow slip events. Modified from Moser et al. (2017).
(d) Hematite fault mirrors exposed in Wasatch fault damage zone comprise nanoparticles that locally exhibit polygonal morphology visible in SEM (e) from asperity
flash heating. (f) Individual hematite He dates with 2o analytical uncertainty from eight samples (different colors), which were prescreened with SEM to
identify a variety of hematite crystal morphologies. Hematite aliquots with these distinctive high-temperature morphologies yield hematite He dates younger than
apatite He-derived ambient cooling, reflecting thermal resetting during microearthquake to nanoearthquakes accommodated on these thin slip surfaces.
Modified from McDermott et al. (2017).

empirically reproduce signal resetting under equivalent conditions in the laboratory (e.g., Fukuchi & Imai,
1998; Toyoda et al., 2000).

Hematite He thermochronometry informs fault slip timing and processes (Figure 9). Accurate interpretation
of hematite He data requires hematite textural characterization, grain size (T,.) distribution data, and con-
straints on ambient thermal conditions during and after hematite formation from apatite He thermochrono-
metry (e.g., Ault, Reiners, et al., 2015; McDermott et al., 2017; Moser et al., 2017). For example, hematite
fault mirrors in the exhumed Wasatch fault damage zone, UT, preserve textural and thermochronometric
evidence for asperity flash heating during earthquake aftershocks <4.5 Ma (Figures 9d-9f; Ault, Reiners,
et al., 2015; Evans et al., 2014; McDermott et al., 2017). In the Mecca Hills, CA, adjacent to the San
Andreas fault, hematite textures analogous to “scaly” fabrics observed in clays and thermochronometric
data document Late Pleistocene episodes of synkinematic hematite mineralization in fault damage zones
via creep processes (Figures 9a-9c; Moser et al., 2017). Similar scaly hematite fabrics are documented on
small faults in the Kuh-e-Faghan strike-slip fault system, central Iran, from punctuated Miocene minerali-
zation during fault-related exhumation (Calzolari et al., 2018).

Fluids circulating in fault systems advect heat, influencing local and regional temperature gradients and
low-thermochronometry systematics in fault-bounded mountain ranges (e.g., Whipp & Ehlers, 2007).
Minerals forming from fluids and entrained in fault zones also provide a record of these processes. (U-
Th)/He and FT thermochronometry of minerals precipitated from fluids (e.g., hematite and Mn-K oxides)
and entrained in faults (e.g., apatite and zircon) inform the timing and geologic significance of modern
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Figure 10. Schematic illustration of a typical lateritic profile that develops in intertropical regions with associated goethite He and hematite He thermochronome-
try. (a) Lateritic profile from surface to bedrock, with mineralogical constituents. Top of profile comprises a duricrust, formed during intense weathering. Depth
scale is approximate, as weathering profile thickness is variable and can be >100 m. Insets (b, ¢) show metallic, Fe oxide enrichment and a scanning electron
microscope image of a goethite concretion (Allard et al., 2018), respectively. (d) Frequency of supergene goethite He and hematite He dates from northern Brazil
(Allard et al., 2018; Monteiro, Vasconcelos, & Farley, 2018; Monteiro, Vasconcelos, Farley, & Lopes, 2018; Shuster et al., 2005, 2012). (e) Temperature variations
based on 5'%0 isotopic composition over the Cenozoic (Zachos et al., 2001). Fe oxide He dates may reflect generations of hematite or goethite mineralization
associated to multiple weathering episodes due to climatic change since ~65 Ma.

and paleofluid migration (Ault et al., 2016; Garcia et al., 2017; MacNamee & Stockli, 2015; Reiners et al.,
2014; Tagami, 2019; Tagami & Murakami, 2007; Wolfler et al., 2010). For example, faults in the Gower
Peninsula, Wales contain hematite that preserves a thermochronologic fingerprint of hydrothermal fluid
circulation and hematite growth, contemporaneous with the opening of the North Atlantic Ocean ~140
million years ago (Ault et al., 2016). Some fault systems host paleo and juvenile geothermal systems.
Bedrock and borehole apatite He thermochronometry can document transient and long-lived thermal
anomalies in faults and, together with other low-temperature thermochronometers, are useful tools for
geothermal research and exploration (Gorynski et al., 2014; MacNamee & Stockli, 2015; Valla, Rahn,
et al., 2016; Whipp & Ehlers, 2007).

5.4. Weathering and Paleoclimate Changes

Earth's landscapes evolve by physical erosion and chemical weathering, processes that reflect tectonics and
climatic change (West et al., 2005). The dynamics of the Earth's surface and especially of soils that cover most
of it influence climate through the production and consumption of greenhouse gases such as CO, (Berner
et al., 1983). Up to ~30% of continental surfaces comprise tectonically quiescent, low relief landscapes in
intertropical regions with deep weathering profiles (i.e., laterites). As such, laterites and their components
(e.g., primary and secondary minerals, water, and plants) are a tropical expression of the CZ (Anderson
et al., 2007). The formation of laterites, like that of all soils, results from the transfer of chemical elements
between different compartments of the CZ (Brantley & Lebedeva, 2011). The release of chemical elements
from the parent rock will lead to the precipitation of secondary supergene phases such as clays (e.g., kaoli-
nite), Fe oxides (e.g., hematite and goethite), and Mn-K oxides, which host less soluble elements such as Al,
Fe, or Ti (Nahon, 1991).

Laterites factor significantly in the global geochemical budget of weathering and erosion processes. The deep
weathering profiles can accumulate only through the combination of intense chemical weathering and slow
physical erosion (Retallack, 2010). Figure 10 depicts a typical lateritic profile and its mineralogical compart-
ments, capped by a strong Fe-enriched weathering horizon, referred to as a duricrust horizon. Mesozoic to
Cenozoic laterite chronology has enhanced our understanding of soil formation and opens new research
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avenues as laterites also record past climatic conditions (e.g., Vasconcelos et al., 2015) or landscape evolution
(e.g., Bonnet et al., 2016). Opr-3Ar analysis of Mn oxides, and more recently, hematite and goethite He
geochronology from laterites inform the timing, tempo, and geochemical processes of laterite formation
via past climate change (Allard et al., 2018; Deng et al., 2017; Monteiro et al., 2014; Monteiro,
Vasconcelos, Farley, & Lopes, 2018; Shuster, Vasconcelos, et al., 2005; Vasconcelos et al., 1994;
Vasconcelos et al., 2013). For example, Figure 10d presents a compilation of published supergene goethite
and hematite (U-Th)/He dates from northern Brazilian laterites. For comparison, temperature changes
over the Cenozoic are shown inferred from stable isotope data. This compilation highlights the longevity
of continental landscapes and protracted laterite formation during multiple weathering episodes. In
addition, supergene hematite or goethite formation can also be used to date paleochannel evolution and
water table drawdown during climate (e.g., Danisik et al.,, 2013; Heim et al., 2006) or landscape
(Monteiro, Vasconcelos, & Farley, 2018; Riffel et al., 2015) changes.

6. Frontiers in Low-Temperature Thermochronometry

In this contribution we highlight advances and new directions in FT, (U-Th)/He, and trapped charge ther-
mochronometry. The power and utility of these approaches to resolve Earth surface and upper crustal ther-
mal histories has enabled researchers to quantify the timing and tempo of a cornucopia of fundamental
Earth processes (Figure 6). In the coming decades, researchers will continue to push the boundaries of each
of these methods and their applications to constrain increasingly complex—from seconds to billions of years
—thermal histories. Innovation in theory and analytical methods, combined with numerical modeling,
materials science, integrated thermochronometric approaches, and leveraging independent textural, geo-
chemical, geophysical, and/or climatic observations, will usher in new Earth science discoveries
and breakthroughs.

6.1. Theory and Systematics

Empirical, experimental, and theoretical observations fuel the low-temperature thermochronology commu-
nity's desire to improve our understanding of diffusion, radiation damage accumulation, damage annealing,
and trapped charge saturation ratios. Important advances in these topics will occur as thermochronologists
engage with other scientific communities, such as theoretical chemists, nuclear or material physicists, and
mineralogists. Investigations of atomic to crystal-cell-scale phenomena will allow us to address persistent
questions centered on He diffusion and/or annealing behavior. For example, DFT calculations provide foun-
dational insights into He diffusion in crystal structures (e.g., Djimbi et al., 2015), and ongoing analysis of apa-
tite, zircon, goethite, magnetite, and quartz will allow us to better understand noble gas diffusion in those
minerals. In addition, new material science characterization of radiation damage using Raman spectro-
scopy, transmission electron microscopy, atom microprobe, and/or ion beam techniques (e.g., elastic recoil
detection analysis, nuclear reaction analysis, and Rutherford backscattering spectroscopy) can refine our
understanding of damage annealing. Complementary laboratory and empirical characterization of crystal
damage accumulation and annealing will help improve damage-He diffusivity and FT annealing models
(Gerin et al., 2017; Ginster et al., 2019; McDannell et al., 2019; Recanati et al., 2017; Willett et al., 2017).

Trapped charge thermochronometry will also benefit from material science investigations into the physical
nature of defects within quartz and feldspar, as well as new approaches to probing their trapped charge
populations using spectroscopic methods (e.g., photoluminescence, radioluminescence, ESR, and time-
resolved luminescence; cf. Krbetschek et al., 1997; Prasad et al., 2017; Riedesel et al., 2018).
Understanding the nature of these defects will aid the development of robust physical models that accurately
describe the processes of electron trapping and detrapping in these minerals, reducing the potential error
caused by the extrapolation of thermal histories from poorly estimated kinetic parameters. Collectively,
these advances directly translate to our ability to decipher more precise thermal histories over a variety of
timescales and improve modeling packages that quantify the thermal evolution of rocks and minerals.

6.2. Emerging Tools and Analytical Approaches

Analytical improvements to low-temperature thermochronometry systems will similarly promote discovery
and innovation. For example, ongoing application of a new continuous ramped heating approach can assess
anomalous He diffusion behavior (Idleman et al., 2018; McDannell, Zeitler, Janes, et al., 2018). This
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approach, currently used for apatite, offers the promise of identifying the source(s) of (U-Th)/He data dis-
persion during near routine He degassing analysis and, importantly, provides new insights into He mobility
in target grains. Improved understanding of He diffusion in accessory and secondary phases from atomistic
calculations and “He/*He diffusion experiments will expand applications. For example, “He/*He thermo-
chronometry allows us to recover thermal history information from a single crystal or aliquot (e.g., Farley
& McKeon, 2015; Flowers & Farley, 2012; Garcia et al., 2017; Schildgen et al., 2010; Tripathy-Lang et al.,
2015; Valla et al., 2011). Advances in our understanding of He diffusion in hematite, magnetite, goethite,
and Mn oxides (e.g., Balout et al., 2017; Farley, 2018; Garcia et al., 2017), new aliquot selection approaches
(e.g., Jensen et al., 2018), and integration of nanotextural observations with oxide thermochronometry (e.g.,
Ault et al., 2016; Ault, Reiners, et al., 2015; McDermott et al., 2017; Moser et al., 2017) enable robust applica-
tion of these thermochronometry tools to hydrothermal systems, faults, and surficial deposits in recent and
deep time.

Recent development of (U-Th)/Ne thermochronometry opens up new and exciting research avenues. This
system is based on *'Ne production during alpha decay, capture on **0 in O-rich minerals, and strong
retention in O-bearing phases and requires measurement of U, Th, and 2INe in excess of atmospheric
neon (Cox et al., 2015; Farley & Flowers, 2012; Farley & McKeon, 2015; Gautheron et al., 2006). For
example, (U-Th)/Ne dating can provide Fe oxide formation ages and complementary thermal history
information from oxides, apatite, and zircon to the (U-Th)/He and FT systems. This method offers the
potential to date fluid circulation and concomitant mineralization in faults as well as deformation processes.

Analytical advances in detrital low-temperature thermochronometry will facilitate tracking sediment rout-
ing patterns in ancient basins due to tectonics and/or paleoclimate change as well as modern systems in
response to anthropogenic climate change. Refinement of double- and triple-dating analytical procedures
and expansion of these approaches to other detrital accessory phases is critical to this. For example, ongoing
development of laser ablation (U-Th)/He thermochronometry and evaluation of method challenges will
enable high sample throughput necessary for detrital studies in sedimentary rocks and modern drainage sys-
tems (e.g., Horne et al., 2016, 2019).

6.3. Emerging Applications

New applications will combine multiple low-temperature and trapped charge thermochronometry data sets
(e.g., King, Herman, & Guralnik, 2016), as well as leverage other geochemical, geophysical, and geobiologi-
cal data to tackle new science questions in the societally relevant fields of climate change, planetary geology,
geomicrobiology, and sustainable resource development. For example, hematite He, goethite He, and mag-
netite He dating will be combined with stable isotope geochemistry to reconstruct paleoclimate (e.g., Miller
et al., 2017; Yapp & Shuster, 2017). This also opens new avenues of soil science research, shedding light on
paleoenvironmental and modern climate change. Comparison of magnetite, hematite, and goethite He dates
can also reveal changes in oxidation-reduction conditions of Earth's surface in recent and deep time. These
changes may be microbially mediated and future thermochronometry research will sit at the intersection of
geochemistry and geomicrobiology. The aforementioned lines of inquiry are not restricted to Earth.
Hematite and goethite He dating can be used to date weathering and thus the presence of water on Mars
(Heim et al., 2006; Kula & Baldwin, 2012; Riffel et al., 2016). Investigation of oxide minerals on Mars may
shed light rock-powered life on another planet. (U-Th)/He thermochronometry has been used to document
terrestrial (van Soest et al., 2011; Young et al., 2013) and lunar (Kelly et al., 2018) impacts events and, in the
future, may be applied to such events on Mars.

Applications of thermochronometry are also relevant for current and future geothermal, hydrocarbon, and
mineral resource research and exploration. Apatite He and AFT thermochronometry have long been used to
characterize basin and reservoir thermal histories, owing to the overlap between the T, of these systems and
oil production window temperatures (~120-60 °C, Hunt, 1996). High radiation-damaged zircon is sensitive
to temperatures less than the apatite He T, (e.g., Johnson et al., 2017), in line with hydrocarbon maturation
temperatures. High damage and thus high eU zircon can be identified via visual metamictization (e.g., Ault
et al., 2018). Together with greater preservation potential versus apatite in continental and submarine basin
systems and ongoing refinement to zircon damage-diffusivity models (Ginster et al., 2019), the zircon He sys-
tem is attractive and complementary tool for reconstructing basement and basin thermal histories for hydro-
carbon research. FT, (U-Th)/He, and “He/*He thermochronometry of minerals on and adjacent to fault
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damage zone slip surfaces and in fault cores are well suited to detect signatures of fluid circulation in these
systems and thus serves as a tool for geothermal exploration. Fe oxide and Mn oxide He thermochronometry
will be applied to ore deposit research. For example, hematite and goethite coprecipitate with economically
valuable ore minerals and thus hematite and goethite He chronology will be applied to Ni-rich laterites and
Au-Ag-Cu-Zn deposits (Reich & Vasconcelos, 2015; Wernicke & Lippolt, 1997) to guide
resource development.
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