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ABSTRACT
Evidence for coseismic temperature rise that induces dynamic weakening is challenging 

to directly observe and quantify in natural and experimental fault rocks. Hematite (U-Th)/
He (hematite He) thermochronometry may serve as a fault-slip thermometer, sensitive to 
transient high temperatures associated with earthquakes. We test this hypothesis with he-
matite deformation experiments at seismic slip rates, using a rotary-shear geometry with an 
annular ring of silicon carbide (SiC) sliding against a specular hematite slab. Hematite is 
characterized before and after sliding via textural and hematite He analyses to quantify He 
loss over variable experimental conditions. Experiments yield slip surfaces localized in an 
∼5–30-μm-thick layer of hematite gouge with <300-µm-diameter fault mirror (FM) zones 
made of sintered nanoparticles. Hematite He analyses of undeformed starting material are 
compared with those of FM and gouge run products from high-slip-velocity experiments, 
showing >71% ± 1% (1σ) and 18% ± 3% He loss, respectively. Documented He loss requires 
short-duration, high temperatures during slip. The spatial heterogeneity and enhanced He 
loss from FM zones are consistent with asperity flash heating (AFH). Asperities >200–300 μm 
in diameter, producing temperatures >900 °C for ∼1 ms, can explain observed He loss. Re-
sults provide new empirical evidence describing AFH and the role of coseismic temperature 
rise in FM formation. Hematite He thermochronometry can detect AFH and thus seismicity 
on natural FMs and other thin slip surfaces in the upper seismogenic zone of Earth’s crust.

INTRODUCTION
Earthquakes dissipate most energy as heat 

(e.g., Kanamori and Riviera, 2006). Temperature 
rise on thin slip surfaces facilitates fault weaken-
ing, rupture propagation, and transformation of 
mechanical and chemical rock properties that 
influence subsequent fault slip (e.g., Di Toro 
et al., 2011; Goldsby and Tullis, 2011). How-
ever, documenting coseismic paleotemperatures 
in exhumed fault rocks is challenging, owing to 
overprinting thermal, physio-chemical, and de-
formation processes (Rowe and Griffith, 2015). 
Thermally activated dynamic weakening pro-
cesses include frictional melting (Sibson, 1975; 
Di Toro et al., 2006), superplasticity (De Paola 
et al., 2015), and asperity flash heating (AFH), 
or transient, localized temperature pulses at as-
perity contacts (Archard, 1959; Lachenbruch, 

1986; Rice, 2006). Minimum AFH tempera-
tures are commonly inferred from textures and 
reaction products on exhumed and experimen-
tally generated faults (Kohli et al., 2011; Proc-
tor et al., 2014; Kuo et al., 2016; McDermott 
et al., 2017). Mapping the spatial distribution of, 
and quantifying, AFH temperatures can docu-
ment earthquakes in the rock record and inform 
on the in situ mechanics and energy budget of 
earthquake rupture (Aubry et al., 2018; Hayward 
et al., 2019).

(U-Th)/He thermochronometry potentially 
serves as a fault slip thermometer (e.g., McDer-
mott et al., 2017). This is because He diffusion 
kinetics of minerals on slip surfaces respond to 
short-duration, high-temperature thermal pulses 
(Reiners, 2009; Ault et al., 2015). Hematite, a 
common phase in fault zones, is amenable to 

(U-Th)/He thermochronometry (e.g., Wernicke 
and Lippolt, 1993; Farley and Flowers, 2012; 
Calzolari et al., 2018). Polycrystalline hematite 
typical of fault surfaces exhibits polydomain dif-
fusion and a grain size–dependent closure tem-
perature (Tc) from ∼50–250 °C for a 10 °C/m.y. 
cooling rate (Evenson et al., 2014; Farley, 2018; 
Jensen et al., 2018). Recent work suggests that 
AFH can induce He loss in natural hematite fault 
mirrors (FMs)—thin (<1 mm), light-reflective, 
high-gloss slip surfaces—by temperature-in-
duced recrystallization and/or volume diffu-
sion (Ault et al., 2015; McDermott et al., 2017).

Here, we test the hypothesis that hematite 
He thermochronometry detects transient, cryptic 
thermal signatures of seismic slip on exhumed 
faults using frictional sliding experiments on 
specular hematite at seismic slip rates. We apply 
microtextural analysis and He thermochronom-
etry of pre- and post-slip hematite to quantify 
frictional evolution, microstructural changes, 
and temperature-induced He loss. Analyses re-
veal that experimentally produced faults have 
FM zones analogous to those observed in natural 
fault rocks, with associated He-loss signatures 
consistent with AFH.

MATERIALS AND METHODS
Deformation experiments were performed on 

slabs created from a specular hematite boulder, 
collected from the central Wellsville Mountains, 
northeastern Utah (USA). Details of sample 
preparation and characterization, experimen-
tal setup, and post-run sampling are outlined in 
the GSA Data Repository1. Briefly, we acquired 
scanning electron microscopy (SEM) images of 
representative polycrystalline and single plates 
of hematite to characterize starting-material 

1GSA Data Repository item 2020148, method details for SEM; grain-size measurement and distribution analysis and corresponding closure-temperature calcula-
tions; deformation experiment setup and sample preparation; (U-Th)/He sample preparation and analysis; temperature-rise and hematite He-loss calculations; and five 
data tables and 10 additional SEM, hematite He data, and calculation figures, is available online at http://www.geosociety.org/datarepository/2020/, or on request from 
editing@geosociety.org.
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texture and grain size (i.e., hematite plate thick-
ness). Plate thickness was measured with Im-
ageJ software (https://imagej.net). Correspond-
ing hematite He Tc was calculated assuming (1) 
correspondence of observable plate half-width 
to diffusion-domain length scale (Jensen et al., 
2018), (2) hematite He diffusion kinetics of Far-
ley (2018), and (3) a 10 °C/m.y. cooling rate. 
Material from the edge of each undeformed he-
matite slab was extracted and homogenized to 
create a uniform grain-size population to mini-
mize grain-size effects on undeformed hematite 
He dates. These data serve as a benchmark for 
hematite He loss during deformation (see the 
Data Repository for sample preparation).

We used an Instron 1 atm rotary-shear ap-
paratus at Brown University (Providence, Rhode 
Island, USA) to perform frictional-sliding ex-
periments at ambient temperature and humidity 
and 8.5 MPa normal stress; the same apparatus 
was employed by Goldsby and Tullis (2011) 
and Kohli et al. (2011). The experimental setup 
involves a 4.77-mm-wide silicon carbide (SiC) 
ring (22.2 mm inner radius) sliding on a slab of 
specular hematite (Fig. DR1 in the Data Reposi-
tory). Displacement per cycle is 36.5 mm (86° 
rotation), and cyclic inversion of slip direction 
yields higher total displacement. Data (torque, 
normal force, normal displacement, and angular 
displacement) are cataloged in the Data Reposi-
tory (Figs. DR2–DR4).

We conducted two types of experiments 
to assess different aspects of He loss during 
fault slip. “Continuous slip” experiments com-
prised 40 cycles at the maximum slip velocity 
(∼320 mm/s), with no interruptions between 

cycles, to produce the maximum frictional heat 
over 1500 mm total displacement. “Interrupted 
slip” experiments were conducted to the same 
total displacement, but comprised 40 cycles of: 
2-mm-displacement at 0.01 mm/s, velocity step 
to ∼320 mm/s for ∼34 mm, and a 2-min “hold” 
before the next cycle.

Experimental fault surfaces were imaged 
with optical microscopy and SEM to character-
ize deformation textures and identify targets for 
hematite He analysis. Aliquots of undeformed 
and deformed material were analyzed for He, 
U, and Th to quantify He loss at the University 
of Arizona Radiogenic Helium Dating Labo-
ratory (Tucson, Arizona, USA) using standard 
apatite lasing temperatures to prevent U and Th 
volatilization and modified zircon dissolution 
procedures (see the Data Repository for ana-
lytical details).

RESULTS
Undeformed Material

The starting material is polycrystalline, 
comprising randomly oriented hematite plates 
(i.e., individual grains; Fig. DR5). Plate thick-
nesses are 1–198 μm with a 17 ± 20 μm mean, 
corresponding to a Tc range of 114–197 °C 
and mean of 147 ± 13 °C (Fig. 1; Table DR1 
in the Data Repository). Individual hematite He 
dates from 16 single plates spanning 75% of 
the observed plate thicknesses are 166 ± 11 Ma 
to 286 ± 10 Ma (±2σ analytical uncertainty). 
Dates exhibit a positive relationship with plate 
thickness and the corresponding calculated Tc 
(Fig. 1). Analyses (n = 2; Table DR2) with high 
Th/U and/or low U (see the Data Repository) are 

excluded from further discussion. Mean dates of 
homogenized material from each undeformed 
hematite slab are 211 ± 34 Ma for the continuous 
slip experiment (n = 3) and 177 ± 17 Ma for the 
interrupted slip experiment (n = 3) (±1σ standard 
deviation), which overlap with the range of sin-
gle-plate hematite He dates (Fig. 1; Table DR2).

Deformation Products
Friction data from continuous and interrupt-

ed slip experiments reveal that hematite has a 
low coefficient of friction (μ) of 0.28 ± 0.12 over 
a range of slip velocities (0.1–320 mm/s) and 
displacements (Figs. DR2–DR4), comparable 
to other platy minerals (e.g., Moore and Lock-
ner, 2007). Interrupted slip experiments show a 
drop in μ in response to the velocity step. The 
friction drop (Δμ) is ∼0.02 during the first cycle, 
and steadily increases to 0.12 over the course 
of the experiment, indicating evolution of the 
dynamic weakening behavior.

Both experiments yielded rust-colored hema-
tite fault gouge on the hematite plate and SiC 
ring (Fig. 2; Fig. DR6). Gouge forms a continu-
ous ∼5–30 μm-thick layer with a sharp contact 
with undeformed hematite; an ∼5-μm-thick 
gouge layer is observed on the SiC ring. Angu-
lar to subangular gouge particles are ∼50 nm to 
2 μm in diameter. Fault surfaces exhibit elon-
gate (0.1–3-mm-wide, 0.3–6.5-mm-long), black, 
high-gloss FM zones on both hematite and SiC 
(Figs. 2A, 2B and 2I; Fig. DR6). FM zones make 
up >10% of continuous slip and <5% of inter-
rupted slip surfaces by area. They are discontin-
uous on both surfaces, macroscopically striated, 
and pitted with gouge inclusions. In SEM, FM 
zones are ∼10 μm thick and comprise flat, fea-
tureless layers of rounded 10–50-nm-diameter 
particles and sintered nanoparticle aggregates 
70–800 nm in diameter (Fig. 2). Collectively, 
observations indicate that the fault surface de-
veloped within hematite gouge, closer to the SiC 
ring (Fig. 2I).

We report hematite He dates from FM 
zones and gouge generated during both ex-
periments (Fig. 3; Table DR2). The number 
of analyses was limited by the material’s deli-
cate nature and our ability to exclusively iso-
late target textures in an aliquot. For the con-
tinuous slip experiment, three gouge aliquots 
(22G_H1–22G_H3) yield hematite He dates 
of 180 ± 3 Ma, 170 ± 3 Ma, and 169 ± 3 Ma 
(±2σ analytical uncertainty). Two FM aliquots 
(22S_H1, 22S_H3) yield dates of 62 ± 1 Ma and 
59 ± 1 Ma. A third FM aliquot with an older 
116 ± 2 Ma date has a high Th/U ratio, con-
sistent with U volatilization during degassing, 
and is not considered in our discussion (Fig. 
DR8). For interrupted slip experiments, three 
gouge aliquots (23G_H1–23G_H3) yield dates 
of 137 ± 2 Ma, 157 ± 3 Ma, and 165 ± 3 Ma, 
and two FM aliquots (23S_H1, 23S_H2) yield 
dates of 113 ± 2 Ma and 117 ± 2 Ma. A third 

120 130 140 150 160 170 180 190
Hematite closure temperature (°C) 

0

10

20

30

40

C
ou

nt

50 20 30 40102
Hematite plate thickness (µm)

50 10080 150

mean 17 147
max 197 197
min 1 114
std dev 20 13
range 196 83

n = 693

(µm) (°C)

260

280

240

220

200

180

160H
em

at
ite

 (
U

-T
h)

/H
e 

da
te

 (
M

a)

CSE
ISE

homogenized
single plateThickness T

c

Figure 1.  (Left panel) Single-plate hematite (U-Th)/He (hematite He) dates (orange symbols, 2σ 
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FM aliquot with an 86 ± 1 Ma date has an el-
evated Th/U ratio and is not considered further 
(see the Data Repository; Fig. DR8). Thus, FMs 
exhibit the youngest dates in each experiment, 
continuous-slip FM dates are younger than in-
terrupted-slip FM dates, and gouge dates overlap 
at 2σ with corresponding undeformed, homog-
enized hematite He dates from each experiment 
(Fig. 3).

COSEISMIC TEMPERATURE-INDUCED 
He LOSS

Younger hematite He dates from experi-
mental FMs require faulting-induced He loss. 
To quantify He loss, we use a first-order ap-

proximation of the (U-Th)/He age (t) equation 
(Equation DR1 in the Data Repository) where 
t is proportional to [4He]. We compare mean 
dates of undeformed homogenized material 
with FM and gouge hematite He dates from 
each experiment (see Table DR3 for full cal-
culations). For continuous slip, He loss from 
FM and gouge is 71% ± 1% and 18% ± 3% 
(mean ± 1σ), respectively. He loss from in-
terrupted-slip FM and gouge is 35% ± 2% 
and 13% ± 8% (Fig. 3). Thus, He loss occurs 
dominantly in FMs, and continuous-slip FMs 
exhibit ∼50% more loss than interrupted-slip 
FMs. Calculated He loss is likely a minimum 
because FMs are <10 μm thick and analyzed 

aliquots may include coarser-grained, more 
retentive non-FM material. Continuous-slip 
gouge exhibits greater calculated He loss than 
interrupted-slip gouge, although He loss from 
both is minor. These calculations indicate co-
seismic frictional heating is the primary pro-
cess responsible for the observed He loss.

The temperatures and frictional-heating pro-
cesses operative during slip can be estimated 
through analysis of (1) average fault-surface 
temperature rise and (2) AFH (Equations DR3 
and DR4, respectively; Fig. 4). Both calcula-
tions consider the temperature for the maximum 
continuous displacement, which equates to 40 
cycles for continuous slip and one cycle for in-
terrupted slip experiments. Following Proctor 
et al. (2014), AFH calculations incorporate tem-
peratures estimated through analysis of average 
fault-surface temperature rise.

We compare calculated fault thermal histo-
ries with calculated fractional He loss for FM 
aliquots (McDougall and Harrison, 1999; Rein-
ers, 2009; Equation DR6). Fractional He loss 
curves in Figure 4 correspond to mean observed 
He loss, assume a square-pulse heating event, 
use He diffusion parameters of Farley (2018), 
and apply observed maximum and minimum 
hematite grain size in FM zones from each 
experiment (Fig. DR9). This comparison in-
dicates that average fault-surface temperature 
rise alone—305 °C and 64 °C for continuous 
and interrupted slip experiments, respectively—
does not explain observed He loss in FM zones 
(Fig. 4; Table DR5). FM He loss from both ex-
periments is consistent with AFH at asperities 
>200–300 μm in diameter, capable of producing 
temperatures >900 °C for ∼1 ms.
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Figure 3.  Individual hema-
tite (U-Th)/He dates with 
2σ analytical error from 
undeformed single plates 
and for homogenized 
hematite, gouge, and fault 
mirror aliquots from con-
tinuous and interrupted 
slip experiments, with 
calculated percent He 
loss. std. dev.—standard 
deviation. White-filled 
symbols indicate data 
omitted from discussion 
(see the Data Repository 
[see footnote 1]).
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ASPERITY FLASH HEATING AND He 
LOSS MECHANISMS

Results support coseismic AFH causing the 
observed textural changes and He loss in FM 
zones. Comminution, which commonly oc-
curs during seismic slip (Stünitz et al., 2010), 
decreases the diffusion-domain length scale, 
and in turn, decreases temperatures required 
to cause He loss during AFH (Fig. DR10; Ault 
et al., 2015). Our experimental FMs comprise 
sintered nanoparticles, texturally distinct from 
polygonal, recrystallized grains observed 
on other natural hematite fault mirrors (Ault 
et al., 2015, 2019; McDermott et al., 2017). 
We model He loss as thermally activated vol-
ume diffusion for simplicity, and note that the 
effects of sintering, a thermal process, on He 
loss are not known. Regardless, the spatial 
association between localized He loss and sin-
tering suggests that both are related to AFH. 
In addition, average fault-surface temperature 
rise influences AFH-induced He loss (see Equa-
tion DR4) and may induce partial He loss from 
ultrafine gouge particles (Figs. 3 and 4; Fig. 
DR10). Compared to continuous-slip results, 
interrupted-slip data show a lower magnitude of 
FM and gouge He loss as well as a lower surface 

area of FM zones, implying that average fault-
surface temperatures decrease between cycles 
in this experiment.

Interestingly, our inferred asperity size 
(>200–300 μm diameter; Fig. 4), assuming a 
typical asperity lifetime that scales with diam-
eter, is larger than conventional theory (∼10–
50 µm; e.g., Rice, 2006). Smaller-diameter as-
perities with longer contact times can achieve 
the same temperatures. Assuming that experi-
mentally generated FMs are trackways of paleo-
asperities, the high-aspect-ratio FMs (Figs. 2A 
and 2B) are an order-of-magnitude longer than 
expected, supporting an asperity ploughing pro-
cess. Although textures, He loss, and calculated 
temperatures may reflect our experimental con-
ditions, this study offers new empirical evidence 
of AFH conditions.

PINPOINTING EARTHQUAKES IN THE 
ROCK RECORD

Our experiments reveal that hematite He 
thermochronometry and other (U-Th)/He sys-
tems with similar diffusion kinetics can serve as 
paleotemperature proxies in fault rocks. These 
tools, when combined with textural analysis 
and constraints on the post-slip ambient ther-

mal history (e.g., Ault et al., 2015; McDermott 
et al., 2017), can pinpoint past earthquakes in 
the uppermost crust in exhumed fault zones. 
Previously, minimum AFH temperatures were 
inferred to explain thermal decomposition in 
carbonates (Han et al., 2007; De Paola et al., 
2011) and serpentine (Viti and Hirose, 2010; 
Kohli et al., 2011), as well as high-temperature 
iron reduction (Evans et al., 2014) on natural 
and experimental faults. Our work indicates that 
(U-Th)/He thermochronometry can map out the 
spatial distribution of AFH temperatures on fault 
surfaces to inform earthquake mechanics at the 
upper end of the seismogenic zone.
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