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A new generation of smart stormwater systems promises to reduce the need for new construction by enhancing
the performance of the existing infrastructure through real-time control. Smart stormwater systems dynamically
adapt their response to individual storms by controlling distributed assets, such as valves, gates, and pumps. This
paper introduces a real-time control approach based on Reinforcement Learning (RL), which has emerged as a
state-of-the-art methodology for autonomous control in the artificial intelligence community. Using a Deep Neu-
ral Network, a RL-based controller learns a control strategy by interacting with the system it controls - effectively
trying various control strategies until converging on those that achieve a desired objective. This paper formulates
and implements a RL algorithm for the real-time control of urban stormwater systems. This algorithm trains a
RL agent to control valves in a distributed stormwater system across thousands of simulated storm scenarios,
seeking to achieve water level and flow set-points in the system. The algorithm is first evaluated for the control
of an individual stormwater basin, after which it is adapted to the control of multiple basins in a larger watershed
(4 km?). The results indicate that RL can very effectively control individual sites. Performance is highly sensitive
to the reward formulation of the RL agent. Generally, more explicit guidance led to better control performance,
and more rapid and stable convergence of the learning process. While the control of multiple distributed sites
also shows promise in reducing flooding and peak flows, the complexity of controlling larger systems comes with
a number of caveats. The RL controller’s performance is very sensitive to the formulation of the Deep Neural
Network and requires a significant amount of computational resource to achieve a reasonable performance en-
hancement. Overall, the controlled system significantly outperforms the uncontrolled system, especially across
storms of high intensity and duration. A frank discussion is provided, which should allow the benefits and draw-
backs of RL to be considered when implementing it for the real-time control of stormwater systems. An open
source implementation of the full simulation environment and control algorithms is also provided.

1. Introduction actually been illustrated by studies evaluating system-level outcomes

(Emerson et al., 2005). The changing and highly variable nature of

Urban stormwater and sewer systems are being stressed beyond their
intended design. The resulting symptoms manifest themselves in fre-
quent flash floods (Laris Karklis and Muyskens, 2017) and poor receiv-
ing water quality (Watson et al., 2016). Presently, the primary solution
to these challenges is the construction of new infrastructure, such as
bigger pipes, basins, wetlands, and other distributed storage assets. Re-
designing and rebuilding the existing stormwater infrastructure to keep
in pace with the evolving inputs is cost prohibitive for most communities
(Kerkez et al., 2016). Furthermore, infrastructure is often upgraded on
a site-by-site basis and rarely optimized for system-scale performance.
Present approaches rely heavily on the assumption that these individ-
ual upgrades will add up to cumulative benefits, while the contrary has
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weather and urban environments demands stormwater solutions that
can more rapidly adapt to changing community needs.

Instead of relying on new construction, a new generation of
smart stormwater systems promises to dynamically re-purpose exist-
ing stormwater systems. These systems will use streaming sensor data
to infer real-time state of a watershed and respond via real-time con-
trol of distributed control assets, such as valves, gates, and pumps
(Kerkez et al., 2016). By achieving system-level coordination between
many distributed control points, the size of infrastructure needed to
reduce flooding and improve water quality will become smaller. This
presents a non-trivial control challenge, however, as any automated de-
cisions must be carried with regard to public safety and must account
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for the physical complexity inherent to urban watersheds (Mullapudi
et al., 2017; Schiitze et al., 2004).

In this paper, we investigate Deep Reinforcement Learning for the real-
time control of stormwater systems. This approach builds on very recent
advances in the artificial intelligence community, which have primarily
focused on the control of complex autonomous systems, such as robots
and autonomous vehicles (Mnih et al., 2015; Lillicrap et al., 2015). In
this novel formulation, our algorithm will learn the best real-time control
strategy for a distributed stormwater system by efficiently quantifying
the space of all possible control actions. In simple terms, the algorithm
attempts various control actions until discovering those that have the
desired outcomes. While such an approach has shown promise across
many other domains, it is presently unclear how it will perform and
scale when used for the real-time control of water systems, specifically
urban drainage networks.

The fundamental contribution of this paper is a formulation of a
control algorithm for urban drainage systems based on Reinforcement
Learning. Given the risk to property and public safety, it is imprudent
to hand over the control of a real-world watershed to a computer that
learns by mistake. As such, a secondary contribution is the evaluation
of the Reinforcement Learning algorithm across a series of simulations,
which span various drainage system complexities and storms. The re-
sults will illustrate the benefits, limitations, and requirement of Rein-
forcement Learning when applied to urban stormwater systems. To our
knowledge, this is the first formulation of Deep Reinforcement Learning
for the control of stormwater systems. The results of this study stand to
support a foundation for future studies on the role of Artificial Intelli-
gence in the control of urban water systems.

1.1. Real time control of urban drainage systems

Since the European Union’s Directive on water policy (The European
Parliament and the council of European Union, 2000), there has been a
significant push towards the adoption of real-time control for improv-
ing wastewater and sewer systems (Schiitze et al., 2004; Mollerup et al.,
2016). Many of these control approaches fall broadly under the cate-
gories of real-time control (RTC, control decisions made solely on the
real-time state of the system), and Model Predictive Control (MPC, de-
cisions that account for predicted future conditions). During the past
decade, MPC has emerged as a state-of-the-art methodology for de-
veloping control strategies and analyzing their potential for control-
ling urban drainage and sewer networks in simulated setting. MPC has
been used to regulate dissolved oxygen in the flows to aquatic bod-
ies (Mahmoodian et al., 2017), control inflows to wastewater treat-
ment plants (Pleau et al., 2005), and enhance the system-level perfor-
mance and coordination of sewer network assets (Mollerup et al., 2016;
Meneses et al., 2018). These and many other simulation based studies
(Wong and Kerkez, 2018) have illustrated the benefits of control, the
biggest of which is the ability to cost-effectively re-purpose existing as-
sets in real-time without the need to build more passive infrastructure.

The performance of MPC depends on the extent to which the un-
derlying process can be approximated using a linear model (Van Over-
loop, 2006). A benefit of this linearity assumption is the ability to ana-
lytically evaluate the stability, robustness, and convergence properties
of the controller (Ogata, 2011), which is valuable when providing safety
and performance guarantees. Network dynamics of storm and sewer sys-
tems and transformations of the pollutants in runoff are known to be
heavily non-linear. This demands a number of approximations and a
high level of expertise when applying Model Predictive Control. Fur-
thermore, real-world urban watersheds are prone to experiencing pipes
blockages, sensor breakdowns, valve failures, or other adverse condi-
tions. Adapting and re-formulating linear control models to such non-
linear conditions is difficult, but is being addressed by promising re-
search (Wong and Kerkez, 2018). The constraints of linear approxima-
tions and the need for adaptive control algorithms open the door to ex-
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ploring other control methodologies, such as the one presented in this
paper.

2. Reinforcement learning

Across the Artificial Intelligence and Behavioral research commu-
nities, Reinforcement Learning (RL) has emerged as a state-of-the-art
methodology for autonomous control and planning systems. Unlike in
classical feedback control, where the controller carries out a pre-tuned
and analytical control action, a RL controller (i.e. a RL agent) learns a
control strategy by interacting with the system - effectively trying var-
ious control strategies until learning those that work well. Rather than
just learning one particular control strategy, a RL agent continuously at-
tempts to improve its control strategy by assimilating new information
and evaluating new control strategies (Sutton and Barto, 1998). RL can
be used in a model free context since the system’s dynamics are implic-
itly learned by evaluating various control actions. Leveraging the recent
advancements in Deep Neural Networks and the computational power
afforded by the high performance clusters (HPCs), RL agents have been
able to plan complex tasks, such as observing pixels to play video games
at a human level (Mnih et al., 2015), defeating world champions in the
game of GO (Silver et al., 2017b), achieving “superhuman” performance
in chess (Silver et al., 2017a), controlling high speed robots (Kober et al.,
2013), and navigating autonomous vehicles (Ng et al., 2006). Despite
the wide adoption of Deep Neural Network based Reinforcement Learn-
ing (Deep RL) in various disciplines of engineering, its adoption in civil
engineering disciplines has been limited (Abdulhai and Kattan, 2003;
Bhattacharya et al., 2003; Castelletti et al., 2010). Deep RL control has
yet to be applied to the real-time control of urban drainage systems.

Deep RL agents approximate underlying system dynamics implicitly,
hence not requiring a simplified or linearized control model (Sutton and
Barto, 1998). A Deep RL agent instantaneously identifies a control action
by observing the network dynamic, thus reducing delay in the decision
process (Mnih et al., 2015; Silver et al., 2017a). The explorative nature
of the Deep RL agents also enables the methodology to adapt its control
strategy to changing conditions of the system (Sutton and Barto, 1998).
Hence, Reinforcement Learning shows promise as a potential alterna-
tive or supplement to existing control methods for water systems. To
that end, the goal of this paper is to formulate and evaluate of Rein-
forcement Learning for the real-time control of urban drainage systems.
The specific contributions of the paper are:

1. The formulation and implementation of a reinforcement learning al-
gorithm for the real-time (non-predictive) control of urban stormwa-
ter systems.

2. An evaluation of the control algorithm under a range of storm in-
puts and network complexities (single stormwater basins and an en-
tire network), as well as an equivalence analysis that compares the
approach to passive infrastructure solutions.

3. A fully open-sourced implementation of the control algorithm to pro-
mote transparency and permit for the direct application of the meth-
ods to other systems, shared on open-storm.org.

3. Methods
3.1. Reinforcement learning for stormwater systems

When formulated as a Reinforcement Learning (RL) problem, the
control of stormwater systems can be fully described by an agent and
environment (Fig. 1). The environment represents an urban stormwater
system and the agent represents the entity controlling the system. At
any given time t, the agent takes a control action a, (e.g. opening a
valve or turning on a pump) by observing any number of states s, (e.g.
water levels or flows) in the environment. Based on the outcomes of its
action, the agent receives a reward r, from the environment. The reward
is formulated to reflect the specific control objectives. For example, an
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Fig. 1. During a storm event, a Reinforcement Learning controller observes the
state (e.g. water levels, flows) of the stormwater network and coordinates the
actions of the distributed control assets in real-time to achieve watershed-scale
benefits.

Table 1
Summary of notation used in paper.
Symbol Definition
S; state observed by agent at time ¢t
a, action taken by agent at time t
T, reward received by the agent at time t
T policy of the agent
v(s;) value estimate for a given state s;
q(s,, a,)  action value estimate for a given state action pair s;, a,
q action value estimator
q* target estimator
€ rate of exploration
a step size
y discount factor
h, basin’s water level at time t
I channel’s flow at time t
H desired water height in basin
H,. height threshold for flooding
F flow threshold for erosion

agent could receive positive reward for preventing flooding or a negative
reward for causing flooding. By quantifying these rewards in response
to various actions over time, the agent learns the control strategy that
will achieve its desired objective (Sutton and Barto, 1998). The agent’s
control actions in any given state are governed by its policy x. Formally,
the policy is a mapping from a given state to the agent’s actions:

7 5,(R") - a,(R) n

The primary objective of the RL control problem is to learn a policy
that maximizes the total reward earned by the agent. Notation used in
this paper is summarized in Table 1.

While the reward r; at the end of each control action teaches the
agent the immediate desirability of taking a particular action for a given
state, it does not necessarily covey any information about the long-term
desirability of that action. For many water systems, maximizing short-
term rewards will not necessarily lead to the best long-term outcomes.
An agent controlling a watershed or stormwater system should have the
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ability to take individual actions in the context of the entire storm du-
ration. For example, holding water in a detention basin may initially
provide high rewards since it reduces downstream flooding, but may
lead to upstream flooding if a storm becomes too large. Instead of choos-
ing an action that maximizes the reward r, at time ¢, the agent seeks to
maximize the expected long-term reward described by state-value v or
action-value q.

u(s)=E [i [Yer+k+1|sz]] 2)
k=0

q(s;.a) =E I:i [Vkrt+k+1 ‘Sﬂ at]:| S
k=0

The state-value provides an estimate of the reward received for an
instantaneous action, as well as potential future rewards that may arise
after state s,, discounted with a factor y (0 < y < 1). The action-value
provides a similar estimate conditioned on taking an action q, in state
s;. The discount factor y governs the temporal context of the reward.
For example, a y of 0 forces the agent to maximize the instantaneous
reward, while a y of 1 forces it to equally weigh all the rewards it might
receive for present and future outcomes. y is specific to the system be-
ing controlled and can vary based on the control objective (Sutton and
Barto, 1998).

A RL agent can learn to control a system by learning the policy di-
rectly (Sutton et al., 2000). Alternatively, the agent can learn the state-
value or action-value estimates and follow a policy that guides it to-
wards the states with high estimates (Sutton and Barto, 1998). Several
methods based on dynamic programming (Watkins and Dayan, 1992;
Sutton, 1991) and Monte Carlo sampling (Sutton and Barto, 1998) have
been developed to learn the functions that estimate the policy and value
functions. While these algorithms were computationally efficient and
provided guarantees on the convergence, their application was limited
to simple systems whose state action space can be approximated using
lookup tables and linear functions (Sutton and Barto, 1998; Mnih et al.,
2013).

Given the scale and the complexity of urban watersheds and
stormwater networks, a simple lookup table or a linear function can-
not effectively approximate the policy or value functions for each state
the agent may encounter while controlling the system. As a simple ex-
ample, considering just ten valves in a stormwater system and assuming
that each valve has ten possible control actions (closed, 10% open, 20%
open,...) this gives 1010 (10 billion) possible actions that can be taken
at any given state, making it computationally impossible to build an ex-
plicit lookup table for all possible states. This, however, is where very
recent advances in Deep Learning, become important. It has been shown
that, for systems with large state-action spaces, such as stormwater sys-
tems, these functions can be approximated by a Deep Neural Network
(Sutton and Barto, 1998; Mnih et al., 2015).

Deep Neural Networks are a class of feed-forward artificial neural
networks with large layers of interconnected neurons. This Deeply lay-
ered structure permits the network to approximate highly complex func-
tions (Hornik et al., 1989), such as those needed for RL-based con-
trol. Each layer in the network generates its output by processing the
weighted outputs from the previous layer. This means that each layer’s
output is more complex and abstract than its previous layer. Given the
emergence of cheap and powerful computational hardware over the past
decade - in particular graphical processing units (GPUs) and high perfor-
mance clusters (HPCs) — Deep Neural Networks and their variants have
emerged as the state of the art in the approximation of complex func-
tions in large state spaces (LeCun et al., 2015a). This makes them a good
candidate for approximating the complex dynamics across stormwater
systems. For purposes of this paper, a brief mathematical summary of
Deep Neural Networks is provided in SI section 1.
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3.2. Deep q learning

Deep reinforcement learning agents (Deep RL) use Deep Neural Net-
works as approximators for value or policy functions to control complex
environments. In their relatively recent and seminal Deep Q Network
(DQN) paper (Mnih et al., 2015) demonstrated the first such algorithm,
which used Deep Neural Networks to train a Deep RL agent to play Atari
video games at a human level. This algorithm identifies the optimal con-
trol strategy for achieving an objective by learning a function that esti-
mates the action values or g-values. This function (i.e. g-function) maps
a given state-action pair (s, a,) to the action value estimate.

At the beginning of the control problem, the agent does not know
its environment. This is reflected by assigning random g-values for all
state-action pairs. Over time, as the agent takes actions, new information
obtained from the environment is used to update these initial random
estimates. After each action, the reward obtained from the environment
is used to incorporate the new knowledge:

q(s;, a;) < q(sg,a,) +a [r,+1 +y mgx q(s;1,a) — q(s,, a,)] “4)

The more actions an agent takes at any given state, the closer it gets
to converging to the true action value function (Sutton and Barto, 1998).
The « (step-size) parameter governs how much weight is placed on the
new knowledge (Sutton and Barto, 1998).

An agent will choose an action that maximizes its long-term reward.
This process is known as exploitation since it greedily seeks to maximize
a known long-term reward. This may not always be the best choice,
however, since taking another action may lead the agent to discover a
potentially better action, which it has not yet tried. As such, the agent
also needs to explore its environment. This is accomplished by taking a
random action periodically, just in case this action leads to better out-
comes. In such a formulation, the exploration vs. exploitation is addressed
via a e-greedy policy, where the agent explores for ¢ percent of time and
chooses an action associated with the highest action value for the rest.
This gives the final policy for the RL agent:

random a, €
x(s,) = {arg max q(s,,a), else ®
a

e is often set at a high value (e.g. 50%) at the start of the learning
process and gradually reduced to a lower value (e.g. 1%) as the agent
identifies a viable control strategy.

While there have been prior attempts to approximate the action
value function using Deep Neural Networks, they were met with min-
imal success since the learning is highly unstable (Mnih et al., 2015).
Mnih et al. (2015) addressed this by introducing a replay buffer and
an additional target Neural Network. The replay buffer acts as the RL
agent’s memory, which records only its most recent experience (e.g. the
past 107 states transitions and rewards). During the training the RL agent

randomly samples data from the replay buffer, computes the neural net-
work’s loss and updates its weights using stochastic gradient descent:

Loss = |I(r, +y max q*(s.41,4)) = a(sp, @)l ©)

This random sampling enables the training data to be uncorrelated
and has been found to improve the training process. The target neu-
ral network g¢* has the same network architecture as the main net-
work g, but acts as a moving target to help stabilize the training pro-
cess by reducing the variance (Mnih et al., 2015). Unlike the neural
network approximating q, whose weights are constantly updated using
gradient decent, q* weights are updated sporadically (e.g. every 104
timesteps). For more background information, Mnih et al. (2015) and
Lillicrap et al. (2015) provide an in-depth discussion on the importance
of replay memory and target neural networks in training Deep RL agents.

3.3. Evaluation

Here, we investigate the real-time control of urban stormwater in-
frastructure using Deep Reinforcement Learning. To begin, we formulate
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and evaluate reward functions for the control of an individual stormwa-
ter basin. We then extend these lessons to the control of a larger, inter-
connected stormwater network. Given the relatively nascent nature of
Deep RL, the need to account for public safety, and the desire to evalu-
ate multiple control scenarios, a real-world evaluation is outside of the
scope of this paper. As such, our analysis will be carried out in simu-
lation as a stepping-stone toward real-world deployment in the future.
To promote transparency and broader adoption, the entire source code,
examples, and implementation details of our implementation are shared
freely as an open source package'.

3.4. Study area

Motivated by a real-world system, we apply RL control to a stormwa-
ter system inspired by an urban watershed in Ann Arbor, Michigan, USA
(2). Our choice to use this watershed is motivated by the fact that it has
been retrofitted by our group with wireless sensors and control valves
already (Bartos et al., 2017) and will, in the future, serve as a real-world
testbed for the ideas proposed in this paper. This headwater catchment
features 11 interconnected stormwater basins that handle the runoff
generated across 4km? of predominantly urbanized and impervious sub-
catchment areas. A Stormwater Management Model (SWMM) of the wa-
tershed has been developed and calibrated in prior, peer-reviewed stud-
ies (Wong and Kerkez, 2018). It is assumed that each controlled basin in
the system is equipped with a 1m? square gate valve. The valves can be
partially opened or closed during the simulation, which represents the
action taken by a RL agent. The states of the control problem are given
by the water levels and outflows at each controlled location. Given the
small size of the study area, as well as the need to constrain this initial
study, uniform rainfall across the study area is assumed. Groundwater
base flow is assumed to be negligible, which has also been confirmed in
prior studies (Wong and Kerkez, 2018).

3.5. Analysis

Prior Deep RL studies have revealed that performance is dependent
on the formulation of reward function, quality of neural networks ap-
proximating action value function, as well as the size of state space
(Sutton and Barto, 1998; Henderson et al., 2017). This creates a number
of “knobs”, whose sensitivity must be evaluated before any conclusion
can be reached regarding the ability to apply Deep RL to control real
stormwater systems. As such, in this paper, we formulate a series of ex-
periments across two scenarios to characterize Deep RL’s ability to con-
trol stormwater systems. In the first scenario, we control a single valve
at the outlet of the watershed, comparing its particular performance un-
der various reward function formulations. Given that Deep RL has not
been used to control water systems, this will constrain the size of the
state space to establish a baseline assessment of the methodology. In
the second scenario, we scale these findings to simultaneously control
multiple valves across the broader watershed and to analyze sensitivity
to function approximation (neural networks). Finally, the system-scale
scenario is subjected to storm inputs of varying intensities and durations
to provide broader comparison of the benefits of the controlled system
in relation to the uncontrolled system.

3.6. Scenario 1: Control of a single basin

In this scenario, we train a Deep RL agent to control the most down-
stream detention basin in the network (basin 1 in Fig. 2). This basin was
chosen because it experiences the total runoff generated in the water-
shed, and because its actions have direct impact on downstream water
bodies. At any given point in time, the RL agent is permitted to set the

! https://github.com/kLabUM/1l-storm-control.
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Fig. 2. Stormwater system being controlled in
this paper. The urban watershed includes a
number of sub-catchments which drain to 11
stormwater basins of varying storage volumes.
The first control scenario applies RL to the con-
trol of a single basins, while the second sce-
nario evaluates control of multiple basins. The
colors correspond with the catchment that con-
tributes local runoff into each basin. Average
volumes experienced by the ponds during a 25
year 6 h storm event are presented.

km

10 3 2 11—
26 m® 8760 m® 2546 m® 63 m® 4275 m®
. 'V Network Outlet = Channels @@ Detention Pond
5md 44 md 137 m? 42mé

basin’s valve to a position between fully closed or open, in 1% incre-
ments (i.e. 0%, 1%, 2%, ..., 100% open) based on the water height in
the basin. All other upstream basins remain uncontrolled.

The overall control objective is to keep the water height (state:{h,})
in the basin below a flooding threshold H,,,, and the outflows from
the basin (state :{f;}) below a desired downstream flooding or stream
erosion threshold F:

ht < Hmax (7)

fi<F ®)

Three reward functions are formulated to reach this objective, each
incorporating more explicit guidance (in the form of constraints) to
guide the RL agent.

In the first reward function the RL agent receives a positive reward
for maintaining the basin’s outflow below the specified threshold, a neg-
ative reward for exceeding the threshold, as well as a larger but less
likely negative reward if the basin overflows:

4+, f,<F
risp)=4-1, f,>F ©)
—10, h, > H,,,

The reward function is represented visually in the first row of Fig. 3.
This reward function formulation is inspired from the classic inverted
pendulum problem (Watkins and Dayan, 1992) where the agent receives
+1 for success and -1 for failure.

The second reward function is formulated to exhibit a more com-
plex and gradual reward structure. In lieu of a jagged or discontinuous
“plus/minus” reward structure, the agent is rewarded for reaching flows

that are close to the desired flow threshold. It has been shown that more
smooth and continuous rewards such as this, may help the agent con-
verge onto a solution faster (Sutton and Barto, 1998; Aytar et al., 2018).
Visually, the reward function looks like a parabola (Fig. 3), where the
maximum reward is achieved when the flow threshold is met exactly:
ra(s) = ¢ (fy — e)(fy —¢3) (10

¢q, €y, and cg are constants representing the scaling and inflection
points of the parabola. Here we choose c;=-400 e, c,=0.05, and c¢3=0.15
to maintain the general scale of the first reward function. Note that this
formulation does not explicitly include the local constraint on the basin’s
water level since the agent gets implicitly penalized by receiving a neg-
ative reward for low outflows.

The third reward function seeks to provide the most explicit guidance
to the RL agent by embedding the most relative amount of information
(third column, Fig. 3). In this heuristic formulation, the agent receives
the highest reward for keeping the basin empty (water levels and flows
equal to zero). Intuitively, this reward formulation seeks to drain all
of the water from the basin as fast as possible without exceeding the
flow and height thresholds. If water level in the pond rises, the agent
gets penalized, thus forcing it to release water. If flows remain below
the flow threshold F, the agent is penalized linearly proportional to the
water level in the basin, with a more severe factor applied if the height
of the basin exceeds the height threshold H. If the outflow exceeds the
flow threshold F an even more severe penalty is incurred:

¢y —chy, h,<Hf <F
c| —c3hy, h,>Hf <F
—cyfi—cohy+cs, hy<Hf, >F
—cyfi—c3h,+c5, h,>2Hf, >F

an

r3(s;) =
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The penalty rates are governed by a set of five parameters c={c;, ¢,,
C3, C4, C5}, which were parametrized {2.0, 0.25, 1.5, 10, 3} to match the
scales of the other two reward functions.

To illustrate the transferability of the control approach to variable
inflows, storage volumes, and the location of a basin in the network,
control by an agent trained on the third reward function is evaluated
on four basins (basins 1, 4, 6, and 9 in Fig. 2). These basins are chosen
to represent distinct components in the network. Basin 1 is located at
the outlet of the watershed. Basin 4 is the largest in the network and
receives flows from the two major branches in the system. Basin 6 is the
largest of the upstream basins, while basin 9 is a smaller basin in series
with larger basins (please see SI section 5).

Additionally, to analyze the performance and sensitivity of the agent
to the reward function formulation, two variants of the third reward are
evaluated in the supplementary information (please see SI section 4) sec-
tion of this paper. The goal of this analysis is to determine the sensitivity
of the agent’s performance to the choice of mathematical equations in
the reward function.

3.7. Scenario 2: Controlling multiple basins

This scenario evaluates the ability of an agent to control multiple
distributed stormwater basins. Specifically, basins 1, 3, and 4 (Fig. 2) are
selected for control because they experience the largest average volume
during a storm event, which often corresponds with the larger control
potential (Schiitze et al., 2008). It is assumed that at any time step the
agent has knowledge of the water levels and valve positions for each of
these basins, as well as the basin between them (basin 2 in Fig. 2), thus
quadrupling the number of observed states compared to the control of a
single basin. The action space must also be reduced to make the problem
computationally tractable. For the control of the single basin, there are
101 possible actions at any given time step (valve opening with 1%
granularity). For three controlled basins, this increases to 1012 possible
control actions at any given time step. This is not only intractable given
our own computational resources, but is well beyond the size of any
action space covered in other RL literature. Here, to reduce the action
space the agent is allowed to only throttle the valves. Specifically, at any
time step, agent can only open or close the valve in 5% increments or
leave its position unchanged. This results in only three possible actions
for each site and thus 27 (or 3%) possible actions for the entire network.

The agent receives an individual reward for controlling each basin.
These rewards are weighted equally and added together to provide a
total reward for controlling the larger system. The reward for controlling
each basin is given by:

—c1hy + ¢y, h,<H,f <F
ri(s) = —czhr2+c3+c4, h,>H,f,<F (12)
YT —eyhy + (F = fes, h,<H,f >F

—yh? +e3+(F—f)es, h,>H,f,>F

where reward parameters c={c;, ¢, 3, ¢4, C5} are chosen as {0.5, 1,
3, 1, 10} to retain the relative scale of the single-basin reward formu-
lations. This reward seeks to accomplish practically identical objectives
as the third reward function used in the single-basin control scenario.
The difference is the quadratic penalty term that is applied to the height
constraint. This modification is made to provide the agent with a more
explicit guidance in response to the relatively larger state space com-
pared to the single-basin control scenario. In the rare instance that flood-
ing should occur at one of the basins, agent also receives an additional
penalty.

3.8. Simulation, implementation, and evaluation
Beyond the formulation of the reward function, the use of RL for

the control of stormwater systems faces a number of non-trivial imple-
mentational challenges. The first relates to the hydrologic and hydraulic
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simulation framework, which needs to support the integration of a sim-
ulation engine that is compatible with modern RL toolchains. The sec-
ond challenge relates to the implementation of the actual RL toolchain,
which must include the Deep Neural Network training algorithms.

Most popular stormwater modeling packages, such as the Stormwa-
ter Management Model (SWMM) (Rossman, 2010) and MIKE Urban
(Elliott and Trowsdale, 2007) are designed for event based or long-term
simulation. Namely, the model is initialized, inputs are selected, and the
model run continues until the rainfall terminates or simulation times
out. While these packages support some rudimentary controls, the con-
trol logic is pre-configured and limited to simple site-scale action, such
as opening a valve when level exceed a certain value. The ability to sup-
port system-level control logic is limited, let alone the ability to interface
with external control algorithms, such as the one proposed in this paper.
To that end, we implement a step-wise co-simulation approach that was
described in one of our prior studies Mullapudi et al. (2017).

Our co-simulation framework separates the hydraulic solver from
the control logic by halting the hydraulic model at every time step. The
states from the model (water levels, flows, etc.) are then transferred to
the external control algorithm, which makes recommendation on which
actions to take (valves settings, pump speeds, etc.). Here, we adopt a
python-based SWMM package for simulating the stormwater network
(Riano-Bricefio et al., 2016). This allows the entire toolchain to be imple-
mented using a high-level programming environment, without requiring
any major modifications to hydraulic solvers that are often implemented
in low-level programming languages and difficult to fuse with mod-
ern libraries and open source packages. While other or more complex
stormwater or hydrologic models could be substituted, model choice is
not necessarily the main contribution of this paper. Rather, we content
that SWMM adequately captures runoff and flow dynamics for the pur-
poses of this paper. SWMM models the flow of water in the network
using an implicit dynamic wave equation solver (Rossman (2010)). This
allows it to effectively model the nuanced conditions (e.g. back chan-
nel flows, flooding) that might develop in the network though real-time
control. Furthermore, the authors have access to a calibrated version of
the model for this particular study area, which has been documented in
a prior study (CDMSmith, 2015; Wong and Kerkez, 2018).

One major task is the implementation of the Deep Neural Network
that is used to approximate the RL agent’s action value function. Deep
Neural Networks are computationally expensive to train (LeCun et al.,
2015b). Efficient implementation address this by leveraging a com-
puter’s graphical processing unit (GPU) to carry out this training, which
is a non-trivial task. To that end, a number of open source and commu-
nity libraries have emerged, the most popular of which is TensorFlow
(Abadi et al., 2016). This state-of-the-art library has been used in some
of the most well-cited RL papers and benchmark problems, which is the
reason we choose to adopt it for this study. TensorFlow is a python li-
brary and can be seamlessly interfaced with our python-based stormwa-
ter model implementation.

Multiple agents are trained and evaluated across the two scenarios:
eight for the control of individual basins (across multiple reward func-
tion variants and basins), and two agents for the multi-basin control. A
Deep Neural Network is designed and implemented to learn the action-
value function of each agent. The network contains 2 layers with 50
neurons per layer. This network is set up with a ReLu activation func-
tion (Goodfellow et al., 2016) in the internal layers and a linear activa-
tion function in the final layer. The full parameters used in the study,
including those for gradient descent and the DQN, are provided in the
SI section 2 of this paper. A Root Mean Square Propagation (RMSprop)
(Goodfellow et al., 2016) form of stochastic gradient descent is used for
updating the neural network as this variant of gradient descent has been
observed to improve convergence.

One storm event is used to train these agents. The SWMM model is
forced with a 25-year storm event of 6 hour duration and 63.5mm in-
tensity (Fig. 3). This event generates a total runoff of 3670.639 m® with
a peak flow of 0.35m3/s at the outlet of watershed. The agents are pro-
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vided with an operational water level goal H of 2m, flooding level H,
of 3.5m and outflow exceedance threshold of F of 0.10 m>s~!. It is im-
portant to note that the outflow threshold, in particular, serves more as
an approximate guide rather than exact requirement, since the discrete
valve settings used by the RL agents may not allow the exact setpoint to
be physically realizable (e.g. throttling a valve by 5% will limit outflow
precision correspondingly). These setpoints are chosen to reflect real-
istic flooding and stream erosion goals in the study watershed. Agents
are trained on a Tesla K20 GPUs on University of Michigan’s advanced
research computing’s high performance cluster.

The second multi-basin control agent uses the same neural network
architecture of the other multi-basin RL control agent, trained this time,
however, using batch normalization (Ioffe and Szegedy, 2015). Batch nor-
malization is the process of normalizing the signals between the inter-
nal layers of the neural network to minimize the internal covariance
shift and has been observed to improve the performance of the Deep
RL agents (Lillicrap et al., 2015). Ioffe and Szegedy (2015) provides a
detailed discussion on batch normalization.

The performance of each agent is evaluated by comparing the RL
controlled hydrographs and water levels to those that are specified in
the reward functions. For the agents controlling the individual basins,
this is used to determine the importance of the reward formulation on
performance, reward convergence, and training period duration. For
the multi-basin control scenario, the same approach is used to quantify
overall performance, comparing this time the agent that uses the batch
normalized neural network to the agent that uses the non-normalized
network.

To evaluate the ability of a RL agent to control storms that it is not
trained on, a final analysis is carried out. Since the agent controlling
multiple basins presents the most complex of the scenarios, it is first
trained on one of storms and evaluated on a spectrum of storm events
with varying return periods (1 to 100 years) and durations (5 min to
24 hours). These storm events are generated based on the SCS type II
curve and historical rainfall intensities for the study region (Scs, 1986).
The performance of the agent across these 70 storms is compared to the
uncontrolled system to evaluate the boarder benefits of real-time con-
trol. For comparison with an other control algorithm, we also implement
and compare the performance of RL to an Equal Filling Degree controller,
which seeks to control the volume in each basin to achieve equal rel-
ative filling (Schiitze et al., 2018). Implementation details of the equal
filling algorithm can be found in the SI section3. We also evaluate the
performance of the RL-controller on a back-to-back storm event (3 h
5 year event, followed by a 2 h 2 year event). To allow for a compar-
ison between the controlled and uncontrolled system, a non-negative
performance metric is introduced to capture the magnitude and time
that the system deviates from desired water level and flows thresholds.
Specifically, across a duration T the final performance P adds together
the deviation of all N controlled sites from their desired water level (P;,)
and flow thresholds (Pf), where:

h—-H, h>H
Py(hy=4h—H +100h, h> H,,, (13)
0, otherwise
_J1o(f-F), f>F
Pf(f) - {O, otherwise (1
N T
P=3"% Pkl + Pr(f]) (15)

Il
(=]

n=1 i

A relatively lower performance value is more desirable, since it im-
plies that the system is not flooding, nor exceeding desired flow thresh-
olds.
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4. Results
4.1. Scenario 1: Control of single basin

The ability of a RL agent to control a stormwater basin is highly sen-
sitive to the reward function formulation. Generally, a more complex
reward function — one that embeds more information and explicit guid-
ance — performs better, as illustrated in Fig. 3. Each column of the figure
corresponds with an individual RL agent, each of which is trained using
a different reward function (r;, ry, r3). The reward functions are plotted
in the first row, while the reward received during training is plotted in
the second row. The training period is quantified in terms of episodes,
each of which corresponds to one full SWMM simulation across an entire
storm. The third and fourth rows in the figure compare the uncontrolled
flows and water levels, respectively, for the episode that resulted in the
highest reward.

The RL agent that uses the simplest reward function has the rela-
tively worst performance (Fig. 3, first column). Even after 5000 train-
ing episodes (a week of real-world simulation time), the mean reward
does not converge to a stable value. Playing back the episode that re-
sulted in the highest reward (Fig. 3, rows 3-4, column 1), reveals that
the RL agent does retain more water than would have been held in the
uncontrolled basin. While this lowers the peak flows relative to the un-
controlled basin, the RL agent is generally not able to keep flows below
the desired threshold. More importantly, the RL agent’s control actions
begin oscillating and become unstable toward the middle of the sim-
ulation. In this episode, the agent keeps the water level in the basin
relatively constant by opening the valve very briefly to release just a
small amount of water. This “chattering” behavior (shown as a close up
in the figure) results in an unstable outflow pattern that oscillates in a
step-wise fashion between 0m?3/s and 0.18 m3/s. For various practical
reasons, such rapid control actions are not desirable. Since the RL agent
never once receives a positive reward, it may have converged onto an
undesirable local minimum during the training. Providing more time
for training does not appear to resolve this issue, which may also sug-
gest that a stable solution cannot be derived using this particular reward
formulation.

Embedding more explicit guidance (harder constraints) into the re-
ward formulation improves the control performance of the RL agent
(Fig. 3, second column). When the second and more continuous reward
function is used by the agent, the highest reward episode reveals that the
RL agent is relatively more effective at maintaining flows at a constant
value. Unlike the RL agent using the simple step-wise reward function,
the RL agent using the parabolic reward function has more opportunities
to receive smaller, more gradual rewards. During most of the episode,
this increased flexibility allows the second RL agent to receive positive
rewards and keep the outflow below a flow threshold of 0.14m3/s. While
relatively improved, the RL agent using the parabolic reward also does
not converge to a stable reward value. However, toward the end of the
episode, this RL agent also carries out irregular and sudden control ac-
tions by opening and closing the valve in short bursts. In this case, the
RL agent is oscillating between a maximum (valve open) and minimum
(valve closed) reward rather than taking advantage of variable rewards
in other configurations. This suggests that the agent has either not yet
learned a better strategy or, again, that a stable solution cannot be con-
verged upon using this particular reward formulation. This speaks to the
need for more explicit constraints as well, since a real-world stormwa-
ter system could not be throttled in this fashion. Simply put, the reward
formulations used in this case was too simple to achieve realistically
desirable outcomes.

The RL agent using the third and most constrained formulation ex-
hibits the relatively best control performance. This agent regulates flow
and water levels in a relatively gradual and smooth manner. Unlike in
the case of the other two RL agents, after 3500 training episodes, the
third agent does converge to a steady reward. Evaluating the episode
resulting in the highest reward (Fig. 3, rows 3-4, column 3), the desired
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Fig. 3. RL control of a single basin, trained using three reward formations (grouped by column). The first row plots each reward function used during training. The
second row plots the average reward received during training (please note that the scale of Y-axis differers for each reward function). The third and fourth rows
compare the controlled flows and water levels with the uncontrolled, for the episode that resulted in the highest reward. Generally, reward function formulations
with more explicit guidance lead to relatively better control performance and improved convergence during raining. Agents trained using relatively simple reward
also exhibit a rapidly-changing and unstable control behavior, shown as a close up in the bottom left plot.

“flat” outflow hydrograph is achieved. No unstable or oscillatory control
actions are evident, as in the case of the other two reward functions. The
agent is able to maintain flows below a constant threshold of 0.15m3/s.
While this is not the exact threshold that was specified (0.1 m3/s), it is
close considering that the achievable threshold is dependent on water
levels and the ability to only throttle the valve in 1% increments. As
stated in the methods section, matching the exact threshold may not be
physically realizable in any given situation due to constraints enforced
by discretized throttling. Furthermore, the RL agent must balance the
desired outflow against the possibility of flooding and is thus more likely
to release a greater amount of water than is specified by the threshold.
Interestingly, this agent does not change its valve configuration at all.
Rather, it keeps its valve 54% open the entire time of the simulation,
which allows it to meet a mostly constant outflow given the specific in-
flows. Overall, the general shape of the outflows is improved compared
to the uncontrolled scenario. Furthermore, an added benefit of real-time
control is that the overall volume of water leaving the basin is also re-
duced by 50% due to infiltration.

Similar to the third reward function, agents trained on the 3a and
3b reward functions are successfully able to maintain the outflows close
to the threshold during the stormevent (figure 3 in SI section 4). While
these reward functions may appear similar, the solution identified by
their respective agents differs. This is a result of the difference between
the decay rates in the exponential and squared terms. Performance of the
agent trained on the 3a and 3b reward functions (SI section 4) indicates
that the ability of the agent to identify a viable control strategy is not

dependent on the choice of equations used for the creating the reward
functions, but rather on the general shape of the reward function in the
domain.

The agent using the third reward function (trained on basin 1), is able
to control basins 4,6 and 9 without any further modifications (SI section
5, figure 4). The agent in this formulation makes its control decisions
only based on the depth at the current time step and does not incorporate
any predictions. Hence, the ability of the controller to shape of outflows
should not dependent on the location of the basin in the network, mag-
nitude of inflows or the storage curves. Our simulation results indicate
the same. Though the degree to which the agent is able to achieve the
objective is governed by these physical constraints, its ability to discover
a solution is not influenced by them.

This scenario, which focuses on the control of a single site, empha-
sizes the importance of the reward function formulation in RL-based
control of stormwater systems. The complexity of the reward formula-
tion plays an important role in allowing the RL agent to learn a control
policy to meet the desired hydrologic outcomes. The importance of re-
ward formulations has been acknowledged in prior studies (Sutton and
Barto, 1998; Ng et al., 1999). Generally, reward functions with more
explicit guidance lead to a more rapid convergence of a control policy,
while avoiding unintended control actions, such as the chattering be-
havior seen in Fig. 3. In fact, prior studies have attributed such erratic
control actions to the use of oversimplified reward functions (Ng et al.,
1999), but have offered little specificity or concrete design recommen-
dations that could be used to avoid such actions. As such, our approach
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heuristically evaluates reward formulations of increasing complexity un-
til arriving at one that mostly meets desired outcomes. This introduces
an element of design into the use of RL for the real-time control of
stormwater, as one cannot simply rely on the implicit black box nature
of neural networks to solve a control problem under complex system dy-
namics. The reward function needs to embed enough information to help
guide the RL agent to a stable solution. This introduces only a limited
amount of overhead, as reward functions can be intuitively formulated
by someone with knowledge of basic hydrology.

For control of individual basins, the reward function presented here
should be directly transferable. If more complex outcomes are desired,
modifications to the reward function may need to be carried out. Objec-
tively, the convergence of the reward will serve as one quality measure
of control performance. The ultimate performance of RL for the control
of individual sites will, however, need to be assessed on a case-by-case
basis by a designer familiar with the application. Taking the baseline
lessons learned during the control of a single basin, the second scenario
can now evaluate the simultaneous control of multiple basins.

4.2. Scenario 2: Control of multiple basins

When trained using the generic feed forward neural network con-
figuration that was used for the control of a single basin, the RL agent
controlling multiple assets was unable to converge to a stable reward,
even after 25,000 episodes of training (Fig. 4). This totaled to =~ 52
days of computation time on our GPU cluster, after which the training
procedure was halted due to lack of improved reward. Overall, learn-
ing performance was low in this configuration. Not only did the learn-
ing procedure not converge to a stable reward, but the vast majority of
rewards were negative. Given this observation, this ineffective neural
network was then replaced with one that was batch normalized. The
agent using the batch normalized neural network achieved a higher av-
erage reward than the agent with a generic feed forward neural network
(Fig. 4). Furthermore, the agent using the batch normalized neural net-
work achieved a relatively high rewards early on in the training process,
thus making it more computationally favorable. While beyond the scope
of this study, this suggests that the choice of neural network architec-
ture is likely a major design factor in the successful implementation of
RL-based stormwater control.

Even with batch normalization, the RL agent did not consistently re-
turn to the same reward or improve its performance when perturbed.
The exploration in its policy caused the RL agent to oscillate between
local reward maxima. Similar outcomes have been observed in a number
of RL benchmark problems (Henderson et al., 2017; Mnih et al., 2015),
which exhibited a high degree of sensitivity to their exploration pol-
icy. Prior studies have noted that the exploration-exploitation balance
is difficult to parameterize because neural networks tend to latch onto
a local optimum (Larochelle et al., 2009). As such, it is likely that the
lack of convergence observed in this scenario was caused by the use of
a neural network as a function approximator. Forcing neural networks
to escape local minima is still an ongoing problem of research (Osband
et al., 2016). Nonetheless, even without a consistent optimum, the max-
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Fig. 4. Average reward earned by the RL
agent when learning to control multiple basins.
The use of neural network batch normaliza-
tion (blue) leads to consistently higher rewards
when compared to the use of a generic neural
network (orange). The batch normalized net-
work also leads to higher rewards earlier in
the training process. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this ar-
ticle.)
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imum reward obtained during this scenario can still be used as part of
an effective control approach.

Selecting the episode with the highest reward revealed the actions
taken by the RL agent during the training storm (Fig. 5). The figure com-
pares the controlled and uncontrolled states of the four basins during a
25-year 6-hour storm event, showing the depth in each basin, inflows,
outflows, and control actions taken by the RL agent. Though basin 2 is
not explicitly controlled by the controller, given that the water level and
outflows in this basin are impacted by the actions taken in the upstream
basin, we have chosen to present its response. No flooding occurred
during this simulation, which means that the reward received by the RL
agent was entirely obtained by meeting outflow objectives. The valves
on basins 1 and 3 throttled between 100% and 95% open, which for all
practical considerations could be considered uncontrolled. As such, the
RL agent in this scenario earned its reward by only controlling the most
upstream basin in this network.

While the outcome of control was somewhat favorable compared
to the uncontrolled systems, the playback of the highest reward in
Fig. 5 does not show drastically different outcomes. Control of the 4th
basin shifted the timing of the outflows from the basin but did not re-
duce its outflows. This resulted in improvements at the 1st, 2nd and 3rd
basins. By delaying flows from the 4th basin, the RL agent allowed the
downstream basins to drain first and to spend less time exceeding the
flow threshold. Interestingly, the RL agent did not control basin 1, even
while the single-basin control scenario makes it is clear that a more fa-
vorable outcome can be achieved with control (Fig. 3). As such, a better
control solution may exist, but converging to such a solution using a
neural network approximator is difficult. This likely has to do with the
larger state action space. While the site-scale RL agent was only observ-
ing water level at one basin, the system level RL agent had to track lev-
els and flows across more basins, which increases the complexity of the
learning problem. The rewards received by the RL agent in the scenario
are cumulative, which means that improvement at just a few sites can
lead to better rewards, without the need to control all of them. Increas-
ing the opportunity to obtain rewards thus increases the occurrence of
local minima during the learning phase.

In the single basin control scenario, the RL agent can immediately
observe the impact of its control actions. In the system scale scenario
more time is needed to observe water flows through the broader system,
which means that the impact of a control action may not be observed
until later timesteps. This introduces a challenge, as the RL agent has
to learn the temporal dynamics of the system. This challenge has been
observed in other RL studies, which have shown better performance for
reactive RL problems, as opposed to those that are based on the need to
plan for future outcomes (Aytar et al., 2018). The need to include plan-
ning is still an active area of RL research. Potential emerging solutions
include adversarial play (Silver et al., 2017b; 2017a), model-based RL
(Clavera et al., 2018), and policy-based learning (Schulman et al., 2017).
The benefits of these approaches have recently been demonstrated for
other application domains and should be considered in the future for
the control of water systems.

It is important to note that Fig. 5 represents an evaluation of the RL
agent for one storm only - namely, the training storm. Realistically, the
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Fig. 5. RL agent controlling multiple stormwa-
ter basins during a 6-hour, 25-year storm event.
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control system will need to respond to storms of varying durations and
magnitudes. As an example, the RL agent’s response to a 24-hour, 10-
year storm is shown in Fig. 6. Performance of the controller in control-
ling a back-to-back event is presented in SI section6. Here, the RL agent
outperformed the uncontrolled system much more notably compared to
the training storm. The controlled outflows were much closer to the de-
sired threshold, even when only one basin was controlled. This broader
performance is captured in Fig. 7, which quantifies performance (Eq. 15)
across a spectrum of storm inputs. Fig. 7 compares the uncontrolled sys-
tem to the RL controlled system. Both the controlled and uncontrolled
systems perform equally well during small-magnitude and short events
(e.g. the training storm in Fig. 5). The benefits of control become more
pronounced for larger events, starting at 10-year storms and those that
last over 2 hours. This visualization holistically captures the benefits of
real-time control by highlighting new regions of performance and show-
ing how control can push existing infrastructure to perform beyond its
original design.

5. Discussion

Given the recent emergence and popularity of Reinforcement Learn-
ing, much research still remains to be conducted to evaluate its poten-
tial to serve as a viable methodology for the RTC of water systems. Our
study brings to light a number of benefits and challenges associated with
this task. Arguably, it seems that the major benefit of using RL to con-
trol water systems is the ability to simply hand the learning problem
to a computer without needing to worry about the many complexities,
non-linearities and formulations that often complicate other control ap-
proaches. However, as this study showed, this comes with a number
of considerable caveats. These include the challenges associated with
formulating rewards, choosing function approximators, deciding on the
complexity of the control problem, as well as contending with practical
implementation details.

Our study confirms that the performance of RL-based stormwater
control is sensitive to the formulation of the reward function, which has
also been observed in other application domains (Ng et al., 1999). The
formulation of the reward function requires domain expertise and an ele-
ment of subjectivity, since the RL agent has to be given guidance on what

Control actions at each of the controlled basins

e o are shown as valve settings in the fourth row
1 of the plot. In this scenario, the agent achieves

3.00 a high reward by just controlling the most up-

stream control asset (4) and shifting the peak
of the hydrograph. Difference in the scale of Y-
axis in second row demonstrates the wide range
of inflows in the network.

1.50

constitutes appropriate actions. In the first scenario, it was shown that
a reward function that is too simple may lead to adverse behavior, such
as the chattering or sudden actions. The reward may also not converge
to a stable solution since the neural network can take advantage of the
simple objective to maximize rewards using sudden or unintuitive ac-
tions. The formulation of the problem, which depends heavily on neural
networks, also makes it difficult to determine why one specific reward
function may work better than another. Increasing the complexity of the
reward function, by incorporating more explicit guidance, was shown to
help guide the RL agent to a more desirable outcome. In other control
approaches, such as genetic algorithms or model predictive control, the
design of reward is an iterative process, and sometimes involves antici-
pating fringe cases to improve the robustness of the controller. Similar
to these approaches, we can however begin using this early study to for-
mulate a number of practical considerations when formulating reward
functions:

» Define the reward function for entire domain of the state-action
space, ensuring that it distinguishes the desirable actions from the
undesirable ones.

Ensure that the reward function represents a specific hydrologic re-
sponse that the controller is to achieve, while anticipating, as much
as possible, alternate and adverse hydrologic responses that the con-
troller may discover to maximize the reward function.

Relax the mathematical formulation of the reward function and focus
rather on the two above points (e.g. the shape of a reward surface
rather than its specific mathematical form).

.

Reward formulations are an ongoing research area in the RL commu-
nity and some formal methods have recently been proposed to provide
a more rigorous framework for reward synthesis (Fu et al., 2017). These
formulations should be investigated in the future.

Even when the choice of reward function is appropriate or justifi-
able, the control performance can become sensitive to the approxima-
tion function, which in our case took the form of a Deep Neural Net-
work. Choosing the architecture and structure of the underlying net-
work becomes an application dependent task and can often only be de-
rived through trial and error (Sutton and Barto, 1998; Henderson et al.,
2017). Secondly, for challenging control problems, such as the one stud-
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Fig. 6. RL agent controlling multiple stormwater basins during a 24-hour, 10-year storm event. Control actions at each of the controlled basins are shown as valve
settings in the fourth row of the plot. In this scenario, the agent achieves a high reward, by maximizing the storage utilization in the most upstream control asset (4)
and regulating the outflow from it to meet the downstream objectives. Difference in the scale of Y-axis in second row demonstrates the wide range of inflows in the
network.
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ied here, learning the mapping between rewards and all possible control pose a barrier to implementation. We showed that a RL agent can learn
decisions becomes a complex task. The neural network must be exposed how to control a single stormwater basin effectively, but that control-
to as many inputs and outputs as possible, which is computationally de- ling many sites at the same time is difficult. A major reason is the in-
manding. In our study we ran simulations for many real-world months crease in the number of states and actions that must be represented
on a high performance cluster, but it appears that the learning phase using the neural network. While computational time may remedy this
could have continued even longer. This, in fact, has been the approach of concern, the structure of the neural network may also need to be al-
many successful studies in the RL community, where the number of com- tered. In a system-scale stormwater scenario, actions at one location
puters and graphical processing units can be in the hundreds (Espeholt may influence another location at a later time. As such, the agent
et al., 2018; OpenAl, 2018). This was not feasible given our own re- would benefit from a planning-based approach which considered not
sources, but could be evaluated in the future. only current states, but future forecasts as well. Such planning-based

Aside from the formulation of the learning functions and frame- approaches have been proposed in the RL literature and should be in-

work, the actual complexity and objectives of the control problem may vestigated to determine if they lead to an improvement in performance
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(Clavera et al., 2018; Depeweg et al., 2016). Furthermore, model-based
approaches have also recently been introduced and could allow some el-
ements of the neural network to be replaced with an actual physical or
numerical stormwater model (Gu et al., 2016). Such approaches should
be evaluated in the future since they may permit more domain knowl-
edge from water resources to be embedded into training the controller.

It is important to note that the Equal-filling algorithm outperforms
the RL agent in this study (SI section 3). It achieves the objective of
maintaining the outflow below the desired threshold without causing
flooding. Since Equal-filling outperforms RL, it could very well be con-
sidered a superior choice in this study. That said, developing and deploy-
ing Equal-filling often requires an intuitive understanding of the system
and require a highly manual tuning of parameters. While it may be rel-
atively straightforward to design control approaches in smaller systems
and simple outcomes —such as the one in this study — developing coor-
dinated control strategies for large scale systems with multiple-objective
might not be as easy. As such, we see RL-based control as a long-term
goal, which should be investigated in future studies across bigger scales
and complex outcomes. Our study presents an initial goal toward the
broader study of RL-based stormwater control, after which an compre-
hensive apples-to-apples comparison may be possible with current state-
of-the-art approaches.

Finally, the use of RL for the control of stormwater systems is under-
pinned by a number of practical challenges. Computational demands
are very high, especially compared to competing approaches, such as
dynamical systems control, model predictive control, or load-balancing
approachs (Troutman et al., 2020). While computational resources are
becoming cheaper, the resources require to carry out this study were
quite significant and time demanding. Since actions taken by neural
networks cannot easily be explained and explicit guarantees cannot be
provided, this may limit adoption by decision makers who may consider
the approach a “black box”. It is also unlikely that the control of real-
world stormwater systems will simply be handed over to a computer that
learns through mistakes. Rather, simulation-based scenarios will be re-
quired first. It has recently been shown as long as a realistic simulator is
used — in our case SWMM — then the agent can be effectively trained
in a virtual environment before refining its strategy in the real world
(OpenAl, 2018).

6. Conclusion

This paper introduced an algorithm for the real-time control of ur-
ban drainage systems based on Reinforcement Learning (RL). While RL
has been used successfully in the computer science communities, to
our knowledge this is the first instance for which it has been explicitly
adopted for the real-time control of urban water systems. The method-
ology and our implementation show promise for using RL as an auto-
mated tool-chain to learn control rules for simple storage assets, such
as individual storage basin. However, the use of RL for more complex
system topologies faces a number of challenges, as laid out in the discus-
sion. Simultaneously controlling multiple distributed stormwater assets
across large urban areas is a non-trivial problem, regardless of the con-
trol methodology. To that end, the concepts, initial results and formula-
tions provided by this paper should help build a foundation to support
RL as a viable option for stormwater control. The source code accompa-
nying this paper should also allow others to evaluate many other possi-
ble architectures and parameterizations that could be used to improve
the results presented in the paper.
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