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Exploring strong-field deviations from general relativity
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Two new observational windows have been opened to strong gravitational physics: gravitational waves,
and very long baseline interferometry. This suggests observational searches for new phenomena in this
regime, and in particular for those necessary to make black hole evolution consistent with quantum
mechanics. We describe possible features of “compact quantum objects” that replace classical black holes
in a consistent quantum theory, and approaches to observational tests for these using gravitational waves.
This is an example of a more general problem of finding consistent descriptions of deviations from general
relativity, which can be tested via gravitational wave detection. Simple models for compact modifications
to classical black holes are described via an effective stress tensor, possibly with an effective equation of
state. A general discussion is given of possible observational signatures, and of their dependence on
properties of the colliding objects. The possibility that departures from classical behavior are restricted to
the near-horizon regime raises the question of whether these will be obscured in gravitational wave signals,
due to their mutual interaction in a binary coalescence being deep in the mutual gravitational well.
Numerical simulation with such simple models will be useful to clarify the sensitivity of gravitational wave

observation to such highly compact departures from classical black holes.
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I. INTRODUCTION

With a steadily increasing number of gravitational wave
observations from coalescing binaries [1], and with immi-
nent new data from very long baseline interferometric
(VLBI) observations of apparent black holes [2], we have
entered a new era of observationally testing strong-field
gravity. As it endures increasingly precise tests in this
strong field realm, general relativity (GR) so far appears to
be holding firm.

Modifications to the classical behavior of black holes are
of course possible, and many models with such modified
behavior have been considered, with various motivations.
But there is one very compelling reason to believe that a
classical description of black holes must ultimately be
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modified: such a description appears inconsistent with
quantum mechanics, which is thought to govern all
physical phenomena. At first it was believed that this
might only be important very near the center of a black
hole, or in the late stages of black hole evaporation, and
would be irrelevant outside the horizon of large black holes.
However, deeper examination of the requirement of con-
sistency of black hole evolution with quantum mechanics
has led to a widespread view [3-9] that there need to be
important corrections to classical black hole behavior at
horizon scales. This is due to the requirement that for
ultimate unitarity of black hole evolution, information
needs to transfer out of a black hole while it is still of
macroscopic size, in direct contradiction with a description
based on classical geometry, together with small perturba-
tions due to local quantum fields.

This raises a key question: can the modifications to
classical behavior necessary for quantum consistency have
observable effects?’ Of course, often when physics has
opened new observational regimes, new phenomena have

'For some earlier discussion of this question, see [10—12]. For
other discussion of tests for deviations from GR for black holes,
see e.g., [13-17].
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been found, so it is important to model and investigate
possible new phenomena in the strong gravity regime,
independent of this question. But, quantum consistency
serves as a particularly important motivator to focus on the
specific class of effects that can restore consistency
between the existence of black hole-like objects and
quantum mechanics.

This leads to a particular focus on the near-horizon
region, r ~ 2M for a black hole without spin. The origin of
the unitarity problem (in some views, really a crisis) is in
the physics of Hawking radiation, which can be thought of
as originating near” 7 ~ 3M. Quantum consistency strongly
motivates the possibility of new quantum effects in this
region, or closer to the horizon [8].

A variety of scenarios have been considered for near-
horizon modifications necessary for quantum consistency.
The resulting objects, whose description is supposed to be
consistent with quantum mechanics, have varying degrees
of departure from the classical black hole (CBH) descrip-
tion, depending on the scenario. In order not to prejudice a
particular scenario at the outset, but given their quantum
origin, we will refer to these objects generically as compact
quantum objects (CQOS).3

A central question then becomes what non-CBH proper-
ties CQOs have, and how these might be detected. While
VLBI is expected to provide an important window," this
paper will focus on gravitational waves. In order to predict
the gravitational wave signature of coalescence resulting
from a particular scenario or model, one needs to describe
the full nonlinear evolution of the binary, analogous to the
nonlinear evolution of GR. This problem of nonlinear
evolution is a first challenge. This is particularly true given
that while existing models for CQOs exhibit some of the
behavior important for quantum consistency, they are not
yet derived from a more complete underlying theory of
quantum gravity. This is an example of a more general
problem in observationally testing GR—the lack of good
foils or alternatives to GR for describing nonlinear evolu-
tion of alternatives to CBHs, in the strong-gravity regime.

A second challenge for tests of highly compact objects is
what we call the problem of gravitational obscuration.
Suppose we consider the collision of two objects that differ
from CBHs only in a region close to the horizon. We might
in general expect there to be little deviation from GR in the
gravitational wave signal until the discrepant regions meet.
However, this happens when the two objects are deep
inside a gravitational well and we might expect that if the

*For recent discussion, see [18].

A related terminology is exotic compact object (ECO).
A CQO is intended to be something more specific than an
ECO, since CQOs are presumed to owe their existence to the
quantum dynamics necessary to make quantum evolution
consistent for CBH-like objects—and quantum mechanics is
certainly not exotic.

*Some discussion of this appears in [10,12,19].

objects coalesce to form an object with horizon-like
behavior, most of the discrepant signal is also absorbed
into this final object and is not observed at infinity [11]. This
potentially considerably lowers observational sensitivity.

Of course, it may be that there are signatures of CQO
properties from inspiral, and CQO behavior may also affect
observations by changing absorption and reflection prob-
abilities for gravitational waves, but these may be more
subtle effects.

Note that this discussion contrasts with another proposal
for modifications to the CBH signal, that of gravitational
echoes [20-22]. The key difference arises from the fact that
the echo story assumes that the two objects coalesce to
immediately form an object that does not have horizon-like
behavior, e.g., by having or rapidly developing a “hard”
barrier, from which the echoes reflect. This represents a
more extreme departure from CBH behavior than appears
to be required for quantum consistency. We instead focus
on the possibility that the effects needed for a reconciliation
with quantum mechanics involve less drastic departure
from CBH behavior.

A goal of this paper is to begin work to investigate these
related problems, in some simple models for departure from
CBH behavior. In fact, a first model for a departure from a
CBH merger is a merger of neutron stars, whose gravita-
tional signatures exhibit important features.” Of course
neutron stars cannot have the masses seen in many recent
detections, so more general models are needed. But this
suggests one general approach to investigating departures
from CBHs that have consistent nonlinear evolution,
namely to parametrize them in terms of an effective stress
tensor, and in even simpler models, in terms of an effective
equation of state (EOS). Such models, if they produce
objects with relevant masses, begin to provide simple foils
for coalescence of CBHs.

After further discussion of motivation and CQO scenar-
i0os in the next section, Sec. III will describe such an
effective approach and its use to formulate simple models
to test aspects of possible modifications to CBH behavior,
such as with CQOs. Section IV will investigate spherically
symmetric solutions for such models, and in particular
those with an EOS that permits them to be highly compact,
in line with preceding comments. Section V will discuss
parameters and features of such solutions, and their
possible connection to observable deviations in gravita-
tional wave signatures. While the models we study are
limited in their ability to capture possible CQO properties,
they should allow initial investigation of some of the basic
questions regarding gravitational wave sensitivity to very
compact departures from CBHs.

In particular, one ultimate goal is to understand how
sensitive gravitational wave observations can be to highly
compact deviations from CBHs, given the obscuration

3See, e.g., [23].
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question. The models we describe provide a way to set up
the problem, but probably the best way to test the role of
obscuration—and other aspects of sensitivity to highly
compact deviations—is through numerical evolution of the
kinds of solutions that we provide. This is an important step
for future work.

In short, now that strong gravitational physics is an
observational subject, it is important to try to parametrize
possible deviations from the predictions of GR, and to test
them against observation. This paper will begin to inves-
tigate some models for certain kinds of deviation from
classical black hole behavior, in an effective approach.

II. CQO MODELS AND OBSERVATIONAL
CHALLENGES

Gravitational dynamics has been quantitatively well
tested primarily in weak-field regimes, perturbatively close
to flat space (for a recent review, see [24]). This leaves as an
important question the possibility of deviations from GR in
strong-field regimes. GR is a mathematically beautiful and
compelling framework, and it is commonly believed that it
will be significantly modified only in strong curvature
regimes. However, there are forceful arguments for some
modification of the combined frameworks of GR and local
quantum field theory (LQFT) in situations where classical
GR predicts a black hole horizon would form. The vicinity
of such horizons can also be thought of as strong-field
regions; although for big black holes they are not expected
to have high curvatures, the metric near a black hole
horizon corresponds to a large perturbation of an ambient
Minkowski space in which the black hole resides.

A primary motivation to expect such modification is the
combination of facts: (i) black hole-like objects appear to
exist and (ii) attempts to describe black holes as objects in a
quantum Universe, based on a combination of LQFT and
GR, appear to produce a contradiction with basic principles
of quantum mechanics. After much exploration of this
“information paradox’ or “unitarity crisis,” many who have
thought deeply about this puzzle have concluded that
modifications to GR + LQFT are required, not just at very
short distances, but, in the context of black holes, at scales
given by the horizon size, which can be arbitrarily large for
big black holes. This appears to be the most conservative
approach to reconciling the existence of compact objects
that have basic features of classical black holes with
quantum mechanics.

A number of proposals have been considered for
modifications to the GR + LQFT description at a scale
given by the radius R of a classical black hole (BH)
horizon, or at even larger scales, while respecting quantum
principles. These can be divided into some broad scenarios
for CQOs:

(1) Massive remnants. A very general scenario was

proposed in [3]: at some stage in its evolution, a
BH transitions to a new kind of star-like “massive

remnant,” truncating the Schwarzschild spacetime
outside the would-be horizon, analogous to, e.g., a
neutron star.” In such a scenario the new physics
outside the horizon is assumed to be characterized
by some short (microscopic) distance scales, and
thus be “hard”; one measure of this is typical
momentum transfer to infalling matter.” A number
of more specific variants of this basic hard picture
have been proposed. These include gravastars [25],
fuzzballs [6], firewalls [8], and Planck stars [26].
These may differ in their evolution subsequent to the
transition.

(2) Soft gravitational atmospheres. Another possibility
is a “softer” departure from CBHs, in a near-horizon
“atmosphere” region, which is similar to the near-
horizon region of a CBH and in particular permits
infalling observers to pass without undue violence
[7,27-30]. The characteristic softness scale should
be determined by a distance scale that at the least
grows with black hole radius. The deviations present
in the atmosphere are constrained by the fact that
interactions with them must suffice to transfer
information from the BH state to the environment
of the BH, so that evolution is unitary. If these
interactions are assumed to couple universally to all
fields, two variants have been described. One is
“strong” [29], with an effective description of the
atmosphere in terms of O(1) but soft state-
dependent metric fluctuations. A more minimal
scenario is the “weak” scenario of [30], in which
very small state dependent metric fluctuations are
found to be sufficient to transfer information.

(3) Long distance modification of locality. A third
possibility is modification to the locality structure
of LQFT on scales > R. A standard example of this
is the ER = EPR proposal [9,31], where mere
entanglement of remote degrees of freedom is
interpreted as corresponding to formation of a
connection between them via a spacetime bridge.

In each of these scenarios for CQO behavior, a very

interesting and important question is whether the required
new effects could have any observational implications. This
question becomes even more compelling with growing
prospects for testing strong field gravity, both through
gravitational wave observation with LIGO/VIRGO, and in
the future with LISA, and with VLBI, specifically with EHT.
These two observational approaches have key
differences. VLBI effectively provides an electromagnetic
picture of the geometry, resulting from passage of light
from, e.g., accreting matter, through the region near the

®A variant proposal is that such a massive remnant forms
before a BH can form.

"Either the gravitational field may be characterized by hard
scales, or other fields or structure may be characterized by such
hard scales.
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(would-be) horizon. Thus, all that is required of a scenario
is a prediction of how light propagates or interacts with the
CQO replacement of a CBH. For example, in the “soft,
strong” proposal of [29], one can perform ray-tracing
through the perturbed geometry to determine possible
modifications of images that could be visible to EHT
[19]. Similar predictions of electromagnetic images are in
principle possible from any other sufficiently explicit
scenario.

As noted, tests of scenarios via gravitational waves
(GWs) face the problem of nonlinear evolution; they
require dynamics as opposed to simply providing “snap-
shots” of the configuration. Specifically, the prediction of
the GW signal requires prediction of the full nonlinear
evolution of the CQOs, analogous to the nonlinear evolu-
tion of GR. Although one or more of the broad scenarios
outlined above may produce a logically viable description
of the quantum behavior, none of them is yet advanced
enough to be based on an understanding of underlying
gravitational dynamics that is sufficiently developed to
make predictions about the nonlinear evolution of CQO
replacements for CBHs.

The second problem described above, obscuration, is also
a potentially important challenge to using GWs as probes of
novel structure that could modify a CBH. Specifically,
suppose a CBH is replaced by a CQO departing from
CBH behavior out to a radius® R, = R + AR,. When two
such objects collide after the end of inspiral, one naively
expects significant modification to the GW signature from
the regime where the modified structures come close to
touching [11]. But, if AR, < R, this occurs when the CQOs
are deep within their mutual gravitational well, suggesting
that a significant part of the signal modification may be
absorbed in the final object, if itindeed has basic features of a
CBH. This seems particularly clear if AR, < R. Indeed,
there are arguments that much of the final GW signal from
coalescence of BHs is generated in the vicinity of the light
ring of the final BH [20] (though for some counterpoints,
see [32]). So, an important question is to what extent GW
observations can be sensitive to possible near-horizon
quantum structure.

Given the growing and anticipated amount of GW data
and the lack of predictions of nonlinear evolution for
complete quantum scenarios, one reasonable approach is
to begin by exploring the questions of sensitivity of
observations to new structure and obscuration in simple
models for modification of CBH behavior. Specifically, if a
CBH is replaced by a CQO with different properties, how
much effect can this have on the GW signal—how sensitive
are GW observations to any modification of structure in
the near-horizon region? Since answering this question

¥For spherically symmetric objects, this can be precisely
defined in terms of the standard Schwarzschild coordinate r,
using the match to the Schwarzschild solution at r > R,.

requires nonlinear evolution of the CQOs, one simple way
to begin to explore this question is to assume that whatever
the full description is of their configuration, it can be
approximately described as possessing an effective four-
dimensional metric g,,, and that departures from the
vacuum Einstein equations can be consistently and approx-
imately summarized by an effective stress tensor source,
T,,,in these equations.9 If this stress tensor satisfies certain
consistency conditions, such as conservation, this provides
a model for how to incorporate modifications to CBH
behavior with consistent nonlinear evolution.

Various specific models for departure from BH predic-
tions for GW signatures have also been considered,
including boson and fermion stars (see e.g., [33-35])
and Proca stars [36]. However, the resulting solutions have
characteristic sizes determined by mass parameters of the
underlying theory, so do not provide models for quantum
behavior of BHs of arbitrary size, and also do not typically
achieve the highest range of compactness. For this reason,
we explore other forms of the stress tensor.

III. EFFECTIVE APPROACH

The complete quantum description of CQOs replacing
BHs is so far unknown, and may at the fundamental
level involve different quantum variables than a four-
dimensional metric. However, in order to test sensitivity
to departures from classical GR, we will assume the
existence of a quantum variable g, that plays the role
of an effective four-dimensional metric, such that (g, (x))
is well behaved (non-Planckian) in a typical state. This may
or may not be true in various scenarios; for example in the
cases of fuzzballs or firewalls, if a consistent fundamental
description even exists for either of these proposals in
situations corresponding to large, nonextremal BHs. In
either a general such massive remnant scenario, or in that
of a soft gravitational atmosphere, there may also be other
quantum degrees of freedom that are excited in the vicinity
of the would-be horizon. We will model the effect of these,
and of possible corrections to classical Einsteinian evolu-
tion, using an effective stress tensor,

<Gﬂu[g]> = 87[G<T/w>' (1)

If the underlying fundamental theory were a field theory,
this would arise from an action

S = / d*x /=g (& + z:) 2)

where £ is a lagrangian summarizing other degrees of
freedom as well as, for example, higher-curvature terms.
The effective stress tensor is then

°In a full quantum theory, these are significant assumptions.
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While the origin of the quantum evolution law in a more
fundamental description of quantum gravity may not be
from such an action, e.g., in the case of a soft gravitational
atmosphere, working with an effective stress tensor gives
an approach to test sensitivity to some types of near-horizon
deviations from CBH behavior. Such an effective stress
tensor must obey certain consistency conditions; one is
conservation,

(V*1,,) = 0. 4)

We ultimately wish to study coalescence of two CQOs in
such a model, governed by the evolution law (1). We begin
by considering the description of the individual objects.
In the spherically symmetric static case, with zero angular
momentum, the stress tensor in spherical coordinates
x* = (t,r,0,¢$) must take the form

(TV) = diag[p(r), p,(r). po(r). po(r)]. (5)

The wunderlying quantum dynamics then determine
P, Py, Pg, Subject to conservation (4), as well as other
consistency conditions. To proceed further, we need more
information about relations between these variables, and
the metric.

If the properties of the CQO can be described in this
fashion, at least approximately, the relations between
ps Prs Po> and g, would depend on the currently unknown
full quantum dynamics. A goal of this paper is to begin to
investigate sensitivity to such dynamics, replacing CBH
behavior in the near-horizon region. Since a primary
question is how much of the signal from colliding compact
objects is absorbed into the final BH, we can start to explore
this sensitivity by considering simplified models for CQOs.
One highly simplified but pragmatic approach is to assume
that the quantum stress tensor is well approximated by (5),
and moreover behaves like an isotropic ideal fluid with an
equation of state,

pr=po = pp) (6)

In this case, one additional plausible consistency condition
is that the speed of sound not exceed the speed of light,
requiring

p'lp) <L (7)

For consistency with quantum mechanics, CBHs of
arbitrary size must ultimately be replaced by CQOs. As
noted above, this is not true for various specific micro-
scopic models for £, such as boson stars (see [37], and
references therein), which have maximum masses that

depend on the mass of the boson that is coupled to GR
to find nontrivial solutions. A way to ensure the existence of
solutions at arbitrary mass is if the effective dynamics has a
scaling symmetry.

The basic scaling transformation replaces the metric
configuration g, (x) with a new configuration,

G (X) = (%) = g (A%). (8)

This leaves the Minkowski metric invariant, but rescales
perturbations of it:

ds? = [, + hy, (X)]dxtdx? —
d§2 = [I/l/u/ + hﬂy(lx)]dx”dx", (9)

For example, this transformation maps the Schwarzschild
solution with mass M to a solution with mass M/A.
A change of integration variables shows that

o) = [ diav/=ik =55 [ dvymaR =S (10

but of course the vacuum equations are invariant:

~ 2

G,w(x) =4 G/“’\M =0. (11)
With a source, the equations will be scale invariant if the

scaling transformation also acts as

T,, = T, (x) = T, (Ax). (12)

For example, the stress tensor of a massless scalar,

1
T/w = 8}4¢8I/¢ - 59/41/(845)2 (13)

satisfies this condition, but it is violated if there is a scalar
mass present.

For the stress tensor (5), there will be static solutions of
all scales if given a solution p(x), p,(x), pe(x), there is a
solution A2p(Ax), A>p,(Ax), A2 py(Ax). This is clearly vio-
lated by a given fixed equation of state, (6). Thus, to have
solutions of all scales, one must consider a family of
equations of state; this is more plausible if (7',,) summa-
rizes some general properties of CQOs, as opposed to being
determined directly by a specific microphysical £. We
return to this point later.

IV. SOME SIMPLIFIED MODELS FOR COMPACT
QUANTUM OBJECTS

New effects associated to a CQO replacement of a
classical BH are plausibly only significant in the strong
gravity region, near the would-be horizon of the classical
BH. As was noted above, this raises the question of

044005-5



GIDDINGS, KOREN, and TREVINO

PHYS. REV. D 100, 044005 (2019)

gravitational obscuration of any modification to the
classical GR signal resulting from the collision of two
such objects. In order to explore this question, we first
explore possible compact solutions, in the effective
approach outlined above.

A. Generalities

The general static, spherically symmetric metric can be
written

ds* = = di* + e dr? + r?(d6* + sin® 0d¢p*); (14)

we assume this form for the effective metric (g,,). One
commonly introduces an effective mass m(r) by

2m(r).

r

6_21(") = 1 —

(15)

With the stress tensor (5), Einstein’s equations (1) take the
form (see, e.g., [38])

m' = 4nr’p, (16)
p_ 1 2 m\ o
u =—4nrp,+— e, (17)
r r
" ol ’ l _ 2
WA W =) W+ ) = 8apge™, (18)

where we use units with G = 1 and prime denotes the r
derivative. The Tolman-Oppenheimer-Volkov (TOV) equa-
tion generalizes to

2

pr=—1(p,+p)— . (Pr—Po)

1 m 2
=——(p-+7) <4ﬂr2pr + r) e — ~(pr=pg). (19)

If a solution of these equations has vanishing (7T7%)
outside a radius R,, and has total mass M, we can define
the compactness of the solution to be C = M/R,. Our
focus is on sensitivity to merger of highly compact
solutions. While it is possible to find more compact
anisotropic solutions [38,39] (see also [40,41] for recent
discussions), we defer exploring these to future work and
instead focus on the simpler isotropic case, p, = pg = p.
In that case, the preceding equations can be shown to imply
that, for positive p and p, the compactness is limited by the
Buchdahl bound [42],

C <4/9. (20)
However, the Buchdahl bound is not achievable using a

physical equation of state (EOS). Specifically, the stiffest
EOS satisfying the constraint (7) on the speed of sound is

0.085f -~ :

0.080 |
M = 0.080976
0.075 |
0.070

0.065 -

0.060 -

. . . A
5 10 15 20

FIG. 1. Mass vs central density parameter A for solutions with
the maximally stiff equation of state (21).

—po, 1if p>
_ {,, Po | P> Po (1)
0, if p < po,

where p, is an EOS parameter. It has been shown [43] that
this EOS yields the isotropic solutions with the highest
compactness [44] satisfying the causality condition(7)."
The surface of these solutions is the radius R, where p
reaches pg, and the pressure vanishes.

It is worth describing this most compact case further,
since these provide first candidate toy models for highly
compact CQOs. The solutions may be found by specifying
a central density p. = Apy and integrating the TOV
equations (19) outward from » = 0. Plots of the total mass
M and compactness C of the resulting solutions as a
function of central density parameter A are shown in Figs. 1
and 2, and radial profiles of the density p and mass within a
given radius are shown in Figs. 3 and 4. Linear stability
properties change at the point where dM/dp,. = 0, and so
the higher density solutions are expected to be unstable.
This gives a maximum compactness C,, = 0.354.

The mass of the maximally compact solutions is deter-
mined in terms of the EOS parameter p, as

~0.085¢*

V G’po ’

M,, (22)

and these have A,, = 3.029. So, if we want to describe such
compact solutions with arbitrary masses, we need to
consider a family of effective equations of state (21) with
varying po. The scaling transformation (12) acts as
Po = Po = 4°py, and correspondingly from (22)

""This EOS has been frequently studied for the purpose of
determining a theoretical maximum mass and radius for neutron
stars; see e.g., [45-50].
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FIG. 2. Compactness vs central density parameter A for
solutions with the maximally stiff equation of state (21).

M, ——= (23)

as is seen with the Schwarzschild solution.

Since these solutions have compactness C > 1/3, they
are inside their light rings at » = 3M. This suggests that
departures of the GW signal due to a merger of two of these
from the signal from two equal mass CBHs may be strongly
obscured. An important test of this would be to calculate
the gravitational wave form arising from such a merger; a
useful project would be to do so with numerical simulation.
However, there are also present practical limitations on
such numerical simulations'' and in particular the disconti-
nuity in dp/dp can be problematic for certain standard
simulation routines. For this reason, the next subsection
will consider solutions with improved continuity proper-
ties; it will also turn out that certain properties depend on
how the density drops to zero.

Another possible issue for solutions that lie inside their
light rings is that of possible nonlinear instability [51-53],
due to the trapping behavior of the effective gravitational
potential of such a solution. This remains a subject for
further exploration, and of course relies on a classical
analysis which may not apply to CQOs. A pragmatic
approach is to study evolution of binaries of such solutions,
for example initiated not far from the orbital radius of
plunge/merger; if instabilities are relevant on such time-
scales, they should be evident in the evolution. In addition,
such objects can become linearly unstable once they
acquire spin [54,55]. If instabilities interfere with use of
such solutions for testing GW departures, another approach
is to adjust p. just to the point where a light ring or
instability ceases to exist; the resulting solutions are still
expected to be highly compact, and to still provide
information about gravitational obscuration of signals from
mergers of CQOs.

"'We thank L. Lehner and D. Neilsen for discussions on this.

0 . . . . i r
0.00 0.05 0.10 0.15 0.20 0.25

FIG. 3. Density profile for solutions with the maximally stiff
EOS (21). Upper (red) curve corresponds to solution with
maximal C (A = 6.211); lower (blue) curve corresponds to
solution with maximal mass (A = 3.029). Vertical dotted lines
mark the Schwarzschild radii corresponding to the total mass of
the solutions.

B. Matched polytropes

Improved continuity properties can be achieved by
considering an EOS corresponding to the stiffest EOS
(21) at high energy densities, but which then transitions to a
polytropic EOS at an energy density Bp,, with B > 1;

P = Pos if p > Bp,
p= {0 (24)
K(p/po)'. if p < Bp.

Here K and y are fixed by the requirement that p and its first
derivative be continuous at Bp,, so that the EOS is C':

m

0.08 -
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0.04 +

0.02 -

000 T L L L s r
0.00 0.05 0.10 0.15 0.20 0.25

FIG. 4. Mass profile m(r) for solutions with the maximally stiff
EOS (21). Upper (red) curve corresponds to solution with
maximal C (A = 6.211); lower (blue) curve corresponds to
solution with maximal mass (A = 3.029). Vertical dotted lines
mark the Schwarzschild radii corresponding to the total mass of
the solutions.
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K = Po (25)

y=—". (26)

The improved continuity properties of (24) suggest
that the corresponding solutions are potentially useful,
particularly for simulation with numerical GR. These have
similar features to those of the maximally compact case
(21), and in particular can achieve very high compactness.
They are also in some ways similar to models of neutron
stars based on hybrid EOSs, but we will consider EOS
parameters attaining much higher compactness than that of
neutron stars, or of other simple EOSs such as a purely
polytropic EOS.

It is important to emphasize that our p is the energy
density of the solution (that is, Tg in Schwarzschild
coordinates). In the modeling of neutron stars, the term
“polytrope” is often used for simple toy EOSs where the
pressure is a monomial of a “rest mass density” p,, instead.
In that context, the neutron star is composed of matter with
a conserved quantum number, namely baryon number.
Then parametrizing the rest mass density as p,, = myn,
with m,, a fixed average baryon mass and n a conserved
baryonic number density, allows for this additional con-
servation law to be accounted for when dynamics are
turned on. The energy density is then related to this number
density and pressure using an argument based on the first
law of thermodynamics. For example, see [56] on the use of
piecewise-polytropic EOSs to model general NS EOSs, and
[57] has considered matching the extremal EOS (21) onto
such an EOS. Of course our EOSs, as toy models of
quantum-gravitational corrections to CBHs, need not have
any such conserved quantities (and surely should not have
exactly conserved baryon number). Matching our extremal

0 . . ) r
0.0 0.1 0.2 0.3 0.4

FIG. 5. Density vs radius curves for matched solutions with
EOS (24), with range of B from 1.3 to 2.2 (lower, blue curves),
and for corresponding extremal solution with EOS (21) (upper,
red curve).

FIG. 6. Compactness of matched solutions with EOS (24), as a
function of the parameters A and B. The red line denotes the
stability boundary, where dM/dp,. vanishes; solutions to the left
of this line are expected to be linearly stable. The green line
demarcates compactness C = 1/3.

core EOS to an envelope EOS where the pressure is a
monomial of the energy density should allow for a unified
numerical treatment of the two different regions of the
solution.

Specifically, one can once again solve Einstein’s equa-
tions together with the TOV equation. The EOS is now
determined by p, and B. For a given EOS, spherically
symmetric, static solutions are determined by the central
density p. = Ap,y. These solutions have cores with the
linear EOS in (24), and envelopes with the polytropic EOS
in (24). Example profiles of these solutions are shown in
Fig. 5. The compactness of these solutions, as a function of
A and B, is shown in Fig. 6.1 Clearly solutions exist, for a
range of B, with compactness C > 1/3. The maximal
compactness for such linearly stable solutions is obtained
in the (singular) limit of the EOS, B — 1. As before, we
expect the mass of such solutions to scale as M « 1/,/p.

The C' EOS (24) thus furnishes solutions that may
possibly be more suitable for simulation of inspiral and
merger via numerical GR methods. We next turn to
discussion of some general aspects of such evolution.

"“While the matched polytropic EOS is well defined up to the
line A=B, as B — A the solutions become predominantly
composed of the polytropic envelopes, which leads to lower
compactness and also to longer numerical integration time. In
Fig. 6 the upper cutoff corresponds to solutions where the outer
radius of the solution was at three times the radius of the inner
boundary, so the omitted solutions are >3/4 envelope in terms
of radial extent. As is evident, the plotted region contains the
parameter space of greatest interest, namely where the solutions
are both ultracompact and linearly stable.
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V. GRAVITATIONAL WAVE TESTS OF COMPACT
QUANTUM STRUCTURE

If consistency with quantum mechanics dictates that
CBHs are replaced by compact quantum objects with
different properties, it is important to understand the
possible sensitivity of gravitational wave observations,
with LIGO/VIRGO or LISA, to this new structure. Since
we do not yet have a first-principles description of such
objects that follows from a complete quantum theory of
gravity, a first step is to find approximate or effective
characterizations of the deviations from CBH behavior, and
try to determine how these deviations might manifest
themselves in modifications to GW signals."” Indeed,
precisely because we do not yet have a complete quantum
theory describing black hole-like objects, any observational
(or experimental) evidence for deviations from GR could
provide extremely useful guidance, and should be searched
for by all available means. A way to begin to understand
and characterize such possible deviations is by introducing
parameterizations of structure and dynamics of objects
replacing CBHs, and investigating the GW sensitivity and
how it depends on those parameterizations. This can help
focus the search for possible departures from GR. In cases
where we can provide tractable models for the new
dynamics, these can be investigated with numerical GR
methods.

We can distinguish three levels of detail in characterizing
behavior of candidate CQOs: their description in terms of
simple effective parameters, modeling of such objects in
toy models or effective dynamical descriptions, and a
complete description in a more fundamental theory of
quantum gravity.

A. Effective parameters

The first level of detail focuses on the sizes of certain key
parameters [10—12]. For example, the departure of CQO
structure from that of a CBH may extend to a characteristic
radius R, = R + AR, outside the horizon radius R of the
CBH with the same mass.'* The CQO structure may also be
“hard” or “soft.” A characteristic of this distinction is the
typical spatial variation scale, or momentum transfer scale
for particles as they scatter from the structure; a simple
parametrization of this is as 1/L, where L is a length scale
describing the variation of the structure. Obviously
L < AR,, and L may be much smaller, e.g., a microscopic
size. Another characteristic is the strength A of the

®In the regime where departures from GR are small, including
inspiral and plunge up to the point of significant interactions,
useful approaches may include the post-Einsteinian framework
[58] or effective field theory [59].

For simplicity we ignore spin dependence, but in the more
general spinning case the “height” AR, of the gravitational
atmosphere may vary e.g., by an order one amount as a function
of angle.

departures from GR; a benchmark for this is the amplitude
for scattering of excitations from a CQO to depart from
scattering from a CBH. A fourth parameter is the timescale
T, at which a CQO exhibits behavior departing from that of
a CBH. In order for CQO dynamics to resolve quantum
problems with BHs, this timescale is expected to lie in the
range from ~Rlog R—a short timescale in astrophysical
terms—to ~R3, much longer than the age of the Universe
for stellar-sized or larger BHs. Other potentially important
parameters include tidal deformability, quantified by the
Love numbers, and absorption cross sections, which can
depend on wavelength.

These parameters play an important role in governing
expected departure from GR predictions for GW signals.
For example, departures will only be found for CQOs with
age longer than 7. For such CQOs, changes in Love
numbers can lead to small departures in the GW signal from
inspiral. Then, as CQOs plunge to merger, important
departures from GR behavior can be expected at CQO
separations ~2(R + AR, ), where the structures come into
contact. This expectation holds for strong departures,
A~ 1, but not necessarily if A < 1, and the departures
are expected to depend on other effective parameters such
as L. A model for such departures [12] is merger of neutron
stars, which give an example of large deviations in GW
signals from those of CBHs, due to hard, O(1) structure
outside the would-be horizon.

For example, a typical massive remnant scenario has
hard (L microscopic), A ~ 1 structure, but without a more
detailed model, AR, could range from microscopic values
to 2 R. Only in the latter case would one expect significant
modifications to GW signals.15 Love numbers and absorp-
tion cross sections also depend on the details of the model.

The soft gravitational atmosphere case has
AR, ~L ~ R, or more generally AR, ~ R4, L ~R?, for
some p,q > 0, to achieve “soft” scales for large CQOs.
There are two variants, the strong one [29] with A ~ 1, and
the weak one [30] with A ~ 1/ /N, where N characterizes
the large number of internal states. The strong case is
expected to modify the GW signal, but also the weak case
can lead to modified absorption cross sections [60] of GWs
with wavelength ~R, and thus also yield departures in
gravitational wave signals.

The EOS-based models considered in the preceding
section also illustrate possible such parameters. The depar-
tures from the Schwarzschild metric extend over scales
AR, ~ R, as can be seen from Figs. 3 and 4. Likewise, the
characteristic variation scale of the geometry of these
solutions is L ~ R; the gravitational departures are “soft”
in this sense. Note, however, that if the EOS (21) or (24)
gives an effective description of fluctuations of the geom-
etry or other fields at microscopic distances, then in this

">This assumes that massive remnants merge to form BHs, and
that T, 2 Rlog R; exceptions will be discussed below.
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more fundamental dynamics L < R. This could then reveal
itself in the interaction properties of two such objects. This
can be illustrated by the analogous collision of two neutron
stars. The macroscopic geometries of the neutron stars vary
on scales L > R. However, when the surfaces of neutron
stars approach in a collision, the interactions of the neutron
condensates of the two stars are important, and are
characterized by hard scales L < R. Absorption into or
scattering from such objects, if it involves interactions other
than with the macroscopic gravitational field, may also be
characterized by scales L < R. With such hard structure,
the models of Sec. IV behave like massive remnants,
although if one considers only their average gravitational
field they behave more like soft gravitational atmospheres.

B. Love numbers

Love numbers, characterizing tidal deformability, are
particularly relevant parameters for investigating deviations
during inspiral. With an EOS such as (21) or (24), one may
calculate these. For the case of the matched EOS (24), a plot
of the numerically calculated Love number k, is shown in
Fig. 7. We calculate the £ = 2 polar tidal Love number
(TLN) using the method outlined in [61 ],16; it is defined as
ky = 3AM™ /2, where A is the proportionality constant
between the quadrupole moment Q and tidal field &,
Q;; = —A&;;. The definition of k, is normalized to the mass
of the objects (rather than the radius), as proposed in [63],
since generic models of CQOs need not have well-
defined radii.

We utilize Mathematica [64] to numerically solve the
TOV equations for the matched polytropes and then to
calculate the first-order # = 2 response to an external
quadrupolar tidal field. This allows us to calculate the
TLN k, which encodes information about the internal
structure of the object. As explained in [61], this constant is
sensitive to the boundary conditions imposed at the outer
radius of the star R. As seen in Fig. 7, values of k, range
from ~2-6 in the region of parameter space in which the
solutions are ultracompact and linearly stable. We will
comment below in Sec. V C 1 on the physical effects of &,
during merger, and its measurability. (Discussion of uncer-
tainty in these calculations of k, appears in the Appendix.)

It is important to note that while our matched polytropes
have a continuous family of EOSs parametrized by B, the
solutions of the TOV equations with these EOSs are not
continuous in the limit B — 1. This is visible already in
Fig. 5, where one can see that the outer radius of the extremal
EOS B = 1 has p(R) = p,, whereas the energy density falls
to zero at the outer radius for any B # 1. As the TLN is
sensitive to the boundary conditions at » = R, this difference
in boundary behavior significantly affects the TLN calcu-
lation. In Fig. 8 we show the TLNS of the extremal solutions

"For a general analysis of # > 2, see [62].

ko

FIG.7. Love number k, of matched solutions with EOS (24), as
a function of the parameters A and B.

and of the matched polytropic solutions in the limit B — 1
and find that the presence of the envelope roughly doubles
the TLN, even in the limit of vanishing size. This serves as
one illustration of the necessity of including parameters
beyond AR, in an effective description of CQOs, as despite
having the same compactnesses, the macroscopic, observ-
able effects of these objects in inspiral differ significantly.

C. Evolution: Effective models and expectations

The effective parameters described above may be useful
in characterizing the signal departures from that of CBHs.
For a more precise determination of these departures, one
needs to consider the second level of detail, using models
for dynamics of CQOs. Details of dynamics can be
important; for example, even in the massive remnant
scenario with AR, ~ R, GW signal departures may be
suppressed through gravitational obscuration (absorption

—B=1
—B=1+¢€

1 1 1 1 1 1 A
1.5 2.0 25 3.0 3.5 4.0

FIG. 8. Tidal Love numbers of the extremal solutions with EOS
(21) (“B = 17), compared to those with the matched EOS (24), in
the limit approaching B = 1.
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into the final BH). One approach to such dynamics is via
evolving solutions with effective EOSs.

Thus, for example, we would like to understand depar-
tures from CBH behavior in the gravitational wave signal
arising from the collision of two solutions with effective
EOS (21) or (24). Ideally, this could be addressed via
numerical simulation of the inspiral and merger of two such
solutions. In turn, understanding the signal departure then
can give further insight into the roles of the effective
parameters AR, L, and k,, in governing gravitational wave
signals from other models for CQOs.

In fact, given the parameters we have discussed, we can
describe some anticipated features of this evolution and the
signal departures.

1. Inspiral

To begin with, consider the inspiral phase. Here, the
principal modification to the GW signal is expected to arise
from the tidal deformability of the compact objects, as
parameterized by the Love number k,, and there is a clear
and precise connection between this parameter and the
predicted signal deviation.

This TLN affects the signal at fifth post-Newtonian order
and adds linearly to the phase of the waveform in frequency
space as

h(f) = A(f)ei[WPP(f)JFWTD(f)]’ (27)

where f is the frequency, A4 is the amplitude, ypp is the
would-be phase for a merger of point particles, and yrp, the
effect from the tidal deformability of the merging objects.
This is related to the TLN k, as [65]

3 0 M, M (1) ]
== 11—+ Mk, +1 < 2],
wrp(f) 8 uM* K M, M1> 152 g

(28)

where v = (zMf)'/3 is the inspiral velocity, M and y are
the total and reduced masses of the binary, and M; and k§'>
are the individual masses and TLNs. This effect has been
used to constrain the tidal deformability of neutron stars
[66], which places nontrivial constraints on the neutron star
EOS already from the first observation of a binary merger
(see e.g., [67]).

The TLNSs of static CBHs vanish exactly. This interesting
result was first noted in [68], and further studied in [69-74].
Contrastingly, other compact objects generically have non-
zero tidal deformability, which makes this effect a good
discriminating feature (as suggested in [75]). Reference [63]
used Fisher matrix methods to systematically compute the
sensitivity of GW detectors to this parameter for compact
objects, and finds broadly that Advanced LIGO at design
sensitivity may be able to constrain TLNs down to k, ~ 100
across a broad range of binary masses; the analysis of [76]

used similar methods and is in broad agreement.l7 We thus
use this number as a benchmark for near-term sensitivity to
tidal effects. Neutron star models have tidal Love numbers
of this magnitude. However, it is clear from Fig. 7 that the
tidal effects of the present very compact CQO models are
far too small to be measurable with Advanced LIGO. In
[63], a study of compact objects with AR, =~ [p found k,~
O(107?), together with a universal logarithmic dependence
of the TLNs on the location of the surface in the AR, — 0
limit, in agreement with k, = 0 for CBHs."® In order to
distinguish a CQO merger from a CBH merger by its tidal
deformability alone, space-based detectors appear neces-
sary. The possibility of observing strong gravity effects with
these machines should serve as additional motivation for
their construction, as well as for further detailed study of
their capabilities [63,79,80]. Reference [63] shows that
current designs of future space-based GW detectors may
be able to do up to 2 orders of magnitude better in optimistic
detection scenarios, though it has recently been pointed
out in [79] that the effect of tidal heating dominates for
LISA binaries. (Reference [80] suggests even greater LISA
sensitivity to highly spinning objects.) It may also be
possible to extract signatures of departures from CBHs
by “stacking” signals from multiple events, as in (81]."

The structure of objects of moderate compactness can also
significantly shift the end of inspiral; objects can for example
begin to interact before they reach what would be the ISCO
for CBHs [33,82]. However, while further investigation is
warranted, such effects are not expected to be important for
objects with compactness in the range C = 1/3. Such objects
are expected to have important modifications due to later
interactions after they have entered the plunge phase, as they
begin to merge. This observation and the preceding chal-
lenges emphasize the importance of moving past inspiral and
gaining detailed understanding of the behavior of CQOs
during plunge, where their deviations from CBHs will be
more pronounced.

2. Plunge and merger

Larger deviations are expected when the model CQOs
approach the point where they merge. For equal mass
CQOs with mass M, inspiral transitions to plunge at a
separation d ~ 24M, corresponding to the mutual inner-
most stable circular orbit. So objects with compactness

"The effect of tidal deformations in modifying the “contact
frequency” has also been used to constrain some simple models
of boson stars (which are not ultracompact) as being the sources
of LIGO’s “black hole” mergers [77], though this does not take
advantage of all of the constraining power of the effects of tidal
deformability.

For work to distinguish tidal parameters for neutron stars see
[67,78].

Pltalso may be worth using such methods with binary neutron star
templates even at high masses, to explore for possible departures. We
thank L. Lehner for pointing out the possible role of such stacking.
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>1/12 will have a plunge phase, terminated by this merger
at separation d ~ 2R,,. The GW signal departs from that of a
CBH collision both because the objects encounter the
gravitational field modifications, and because they increas-
ingly disrupt each other’s structure. Neutron star collisions,
for example as modeled in [23], furnish an example of
some of these possible modifications [11]. In neutron star
simulations, one finds a significant increase in the GW
amplitude when the stars begin to merge (see e.g., Fig. 2 of
[23]), but a decrease in the emitted power spectrum; a
scaled up version of the examples of [23], using the scaling
transformation (8), (9), for example, already appears
inconsistent with LIGO data.

While similar features are expected for simple CQO
models, such as those given above, CQOs may be much
more compact than neutron stars, which have compact-
nesses C <1/5. In the case where the compactness
approaches, or exceeds, C = 1/3, one expects some signal
obscuration, as noted above, since the departures due to
merger are generated “deep in the gravitational potential.”
This is not necessarily a sharp boundary. Indeed, such a
configuration has a significant angular momentum; this
means for example that the prograde and retrograde light
rings of the ultimate object have different radii. If one
assumes that most of the perturbations are prograde, the
fact that the prograde light orbits tend to cluster towards
r ~ M for high spin then suggests the possibility of reduced
obscuration. One also expects the GW signal to depend on
other details of the model for the colliding objects,
including how their structure interacts.

Given the uncertainties, a particularly interesting project
would be to simulate the CQO models described above via
numerical methods. It appears that already some important
questions—such as the role of obscuration—can begin to
be addressed even in the simple models with effective EOS
given in Sec. IV. An example of a concrete question is
whether recent GW detections—e.g., the first LIGO detec-
tion of a merger of two ~30 M, objects—are capable of
distinguishing a CBH merger from a merger of objects
governed by the EOS (24), if the EOS parameters are such
that the solutions are highly compact, C = 1/3. We hope to
see such models studied via numerical GR in the near
future. As an intermediate step, it may also be possible to
formulate hybrid waveforms which approximately capture
important aspects of the GW signatures for model CQOs,
by matching tidally corrected inspiral waveforms to para-
metrizations of waveforms for plunge and merger, and then
to the quasinormal regime [83].

D. Quantum dynamics and expectations

We would of course like to be describing CQO evolution
within the context of a complete quantum theory of
quantum gravity, providing a consistent description of
quantum analogs of black holes, but the field has not
sufficiently advanced. The models described above may

supply some insight into how sensitive observations are to
this more complete quantum dynamics. However, a key
question is how accurately the models capture important
features of the full quantum evolution.

As was noted in Sec. II, there are multiple contenders for
scenarios for the quantum completion of black hole
evolution.

In the massive remnant category, one possibility that has
been repeatedly considered is that of a massive remnant
with AR, < R. Firewalls [8] fit in this category. If there is a
viable fuzzball scenario, it is not known if it produces
AR, ~ R or AR, < R, but the latter has been suggested
[84] and would fit in this category. Such objects have also
been considered, and given the name “ClePhOs,” in [14].
However, there is so far no dynamical theory or effective
model that produces any of these objects, and allows study
of their evolution, and an important question is whether
such configurations can exist in a consistent description.
Possibly, such highly compact solutions could be modeled
with an anisotropic stress tensor [40], avoiding the
Buchdahl bound (20), with a stress tensor violating other
conditions (e.g., gravastars), or by other means. If such a
highly compact configuration does give the correct physics,
it is important to develop a consistent dynamical descrip-
tion for it, even if it is in an effective model.

If such configurations were physical, the next question
is whether observations would be sensitive to their
features. The case AR, < R appears difficult, although
there is possible sensitivity through TLNs [80]. Electro-
magnetic images are determined by trajectories of photons
in the vicinity of the light ring, and so are not necessarily
sensitive to such a configuration. Likewise, given the
preceding discussion surrounding obscuration, it appears
even less likely that the collision of two such highly
compact objects would substantially alter gravitational
wave signals.

Of course, one proviso in this is if such objects coalesce
to form another such object that does not behave like a
black hole. There is no compelling reason for this to
happen,; if such objects exist, they are plausibly expected to
coalesce to form black holes that /ater transition to a
ClePhO, after a time at least ~Rlog R. But, if a ClePhO
were to form promptly, at times < R log R, then it could be
possible for the surface of the object to reflect gravitational
waves, and produce echoes [20-22] of its formation.
However, such a scenario obviously requires a sequence
of nontrivial assumptions.

A promising alternative to such a hard scenario is that of
a soft gravitational atmosphere [29,30]. This can be
described in terms of metric perturbations A (or, more
generally, other field perturbations) that depend on the
quantum state of the black hole. It is not clear how a soft
atmosphere scenario could have dynamics summarized in
terms of an effective EOS. The strong version of [29] has
perturbations with size (h) ~ 1, and thus could possibly
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yield an observational signal, but the more complete
nonlinear dynamics is needed for its prediction.zo

The weak scenario of [30] involves perturbations such that
(h) can be exponentially small in the black hole entropy,
representing a smaller departure from a GR-based descrip-
tion. While this may seem more plausible, it naively looks
problematic for observation. However, due to the large
number of black hole internal states, quantum scattering
and absorption cross sections from such an object can receive
O(1) corrections, which are particularly important for modes
with wavelength ~R; this follows from an extension of the
estimates for transition rates given in [30] to the case with
scattered radiation [60]. If these provide the leading quantum
corrections, that can produce an observational effect on
gravitational wave modes, which in a merger typically have
wavelengths characterized by the same scale. It may be
possible to parametrize such absorption effects and analyze
their effects on the gravitational signal. This may be even
more straightforward in the case of extremal mass ratio
binaries where absorption into the larger mass object can
be parametrized and its effect on the coalescence and radiation
inferred [85 ,86]21 ; these investigations are left for future work.
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APPENDIX: UNCERTAINTY IN k,
CALCULATIONS

The main source of uncertainty in our calculation
of k, comes from the determination of the outer
radius R, which is defined as the location at which the

2possible electromagnetic signals are discussed in [19].
We thank S. Hughes for a discussion on this question.

% Uncertainty in ko

FIG. 9. The estimated percent uncertainty in our calculation of
the TLN. See text for details.

pressure vanishes. Due to the stiffness of our envelope
EOS, the energy density falls quite steeply near the
outer radius—especially as B — 1, as seen in Fig. 5. As
a result, our numerical implementation of the TOV equa-
tions turns into a “stiff system of differential equations,”
which causes Mathematica’s numerical solution to fail at
R4, some small distance before the true outer radius
R — R.,g << R, when the pressure has not yet reached
precisely zero.

For a rough sense of the uncertainty this gives our
calculation, we extrapolate the quickly falling pressure past
the point at which the solution fails and find where it hits
zero. We assign an outer radius uncertainty AR to be the
difference between this radius and where the solution
stopped at R.,q. We then assign an uncertainty to the
TLN of Ak; = k(Renq) AR, where k) is the derivative of
the TLN with respect to the outer radius at which it is
calculated. While AR is very small, the TLN is sensitive
exactly to the behavior of the solution at the boundary,
which changes rapidly, so it is not obvious a priori that the
resulting uncertainty should be negligible. Nevertheless, in

K, (Rend) AR
2k2 (Rend) x 1 00’

which suggests that the calculation is under reasonable
control everywhere.

Fig. 9 we plot the percent uncertainty
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