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ABSTRACT
Laser powder-bed fusion solidification of Ni–Nb alloys often
results in cellular morphology in which the solute
microsegregation was determined using experiments and
simulations, and the data obtained were utilised to explore
the predictive capability of microsegregation models. The
experimental ‘ground truth’ was compared with high-
fidelity phase-field simulations as well as with analytical
model predictions. Supervised statistical analyses, including
linear regression, polynomial regression, and model
reification were employed to understand the merit of these
approaches toward microsegregation estimation. The bias-
variance and accuracy-interpretability trade-off limits were
considered in the data analysis that was consistent with our
experimental findings.
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1. Introduction

Laser powder-bed fusion (LPBF) metal additive manufacturing (AM) process
has significant advantages over traditional manufacturing and metal forming
routes [1–5]. Some of these advantages include design freedom for printing arbi-
trary shapes, improved material properties, minimal residual waste, and high
economy-to-cost ratio [1–5]. The primary beneficiaries of AM processes are
the aerospace and automobile sectors [1,4,6,7]. Ni-based superalloys, Ti–6Al–
4V, Al–10Si–Mg, and steels are some of the metallic alloys that are printed
widely via AM routes [1–8].

However, the full realisation of the potential of AM processes is impeded by
uncertainty regarding the reliability of the final material in service [5,7,9–11].
Some 47% of manufacturers surveyed indicated that the uncertain quality of
the final product was a barrier to the adoption of AM [12]. This is primarily
due to rapid heating and cooling during the microstructure formation processes,
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leading to significant variations and distributions of the key microstructural fea-
tures, and eventually uneven qualities of the final product [3,5,7,13]. Therefore,
microstructural evolution during AM processes is a critical stage that needs to be
assessed thoroughly. The typical morphology that often forms during laser
melting solidification processes is cellular in nature [1–4,8]. The key features
in a cellular microstructure that determine the properties of the final material,
particularly tensile strength and low-cycle fatigue life, are cellular spacing,
microsegregation, and the misorientation between cells [5,8,14]. We refer to
these microstructural features as the Quantities of Interest (QoIs) critical for
material properties and behaviour in service. Let us consider microsegregation
for our present measurements and analysis. Microsegregation results due to
solute redistribution between the solid cell core and advancing solidification
front in the solidifying alloy melt-pool [15–18]. We use Ni–Nb as the sample
alloy material. Ni–Nb alloys show excellent mechanical properties and creep
resistance at elevated temperatures and thus are often used in gas-turbine and
jet-engine components [19]. Also, Ni–Nb is the most important binary analogue
of Ni-based superalloys because Nb segregates most severely due to its smallest
equilibrium partition coefficient among all the elements in the superalloy, con-
trolling the average solidification behaviour of the material [19,20]. The as-soli-
dified microstructures are further manipulated using appropriate post-
deposition heat treatment schedules to homogenise the variation and distri-
bution of the QoIs for property and performance control [3,8,21].

Modelling and simulation can accurately predict microstructure QoIs in a
solidified melt-pool [22–24]. The phase-field (PF) method has become a power-
ful technique for simulating complex AM microstructures [15,24–29]. The PF
method represents the microstructure phases and interfaces using single or mul-
tiple order parameter values to avoid explicit interface tracking and can be simu-
lated efficiently using massively parallel computer architectures (for reviews, see
[30–33]). We use PF simulations to simulate solidification microstructures that
arise for local thermal gradient (G) and growth rate (V) conditions in the soli-
difying Ni–Nb melt pool. These local conditions are predicted by macroscale
melt-pool simulations using finite element analysis (FEA) [34,35]. Besides
FEA–PF simulations, the analytical model of Kurz and Fisher (KF) [17] was
also considered to predict microsegregation. The emerging machine learning
(ML) and statistical analysis (SA) methods [36,37] including regression and
classification techniques [38,39] were further employed to analyse the microse-
gregation data obtained from the above numerical schemes.

Identifying key sensitive process and material parameters is the basis to
understand and model the microstructure QoIs in reasonably accurate and
interpretable ways [40–42]. A statistical data analysis is used for this purpose
in which the variability of model inputs in terms of bias and variance contri-
butions on microsegregation were modelled. In addition to the statistical
schemes derived from PF, KF, and ML means, an information fusion or

2 S. GHOSH ET AL.



reification [43] across multiple models was also performed for a more accurate
estimation of microsegregation. In what follows, we first describe the LPBF
experiments that represent the ‘ground truth’ for microsegregation. These
measurements are then compared with simulations conducted with comparable
solidification conditions, followed by suitable regression and reification analyses
to model and approximate AM microsegregation.

2. Single-track experiments

Single-track LPBF experiments were carried out to approximate the ‘ground
truth’ for microsegregation using a 3D Systems ProX DMP 200 printer (fibre
laser with a Gaussian power distribution of wavelength 1070 nm and laser
beam size of 100 μm. A Ni-5 wt% Nb alloy, provided by Nanoval GmbH &
Co., was used as the powder as well as the substrate material. Various combi-
nations of laser power and scan speed values were used with a laser scan
length of 10 mm and 1mm distance between the tracks. After the printing
process, cross-sections of the single-tracks were cut using wire electrical dis-
charge machining (EDM) and polished to 0.25 μm thickness using water-
based diamond suspension solutions. Kalling’s No. 2 solution (5 g CuCl2, 100
ml HCl, and 100 ml ethanol) was used to etch the printed Ni–Nb tracks to
reveal the optical microstructures under a Keyence VH-X digital microscope
that was equipped with VH-Z100 wide-range zoom lens. Scanning electron
microscopy (SEM) and wavelength dispersive spectroscopy (WDS) analyses
were performed with a CAMECA SXFive electron probe microanalyser that
was equipped with a LaB6 electron source. Quantitative WDS composition
maps were obtained with a nominal setting of 15 kV, 100 nA, and 110 μs pixel
dwell time with a 0.1 μm step size. The WDS composition maps were analysed
further to extract the elemental distribution within the solidification
morphology.

The optical microscope reveals the solidified melt pool shape and boundary
for different laser parameters (Figure 1(a)), and the SEM analysis reveals the
morphology at different locations in the melt pools (Figure 1(b)). Note that
the solidification morphology can be widely different across melt pool locations
due to different local conditions; of which we present here only two snapshots
for representation. Solidification grains with a cellular morphology is often
observed that is sometimes difficult to distinguish between a transition mor-
phology from planar to cellular or vice versa. We explore the variation of
average composition measured across locations in the solidified grain mor-
phology that is used as the ‘ground truth’ to compare with numerical simu-
lations. Although not shown here, WDS measurements were used to estimate
the composition variation in morphologies in which the composition profile
was extracted as a function of solidification distance x (Figure 1(c)). The non-
equilibrium microsegregation (kv) was approximated from these profiles using
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a calculation of the dimensionless ratio of Nb in the solid (<5 wt%) and Nb in the
liquid (>5 wt%), obeying steady-state solidification [15–18]. In all our exper-
iments and analyses, kv varied between 0.6 and 0.8 with a mean value of 0.72
and standard deviation of 0.1. A synthetic data set was created using these stat-
istical metrics to compare with our simulation results. On average, our measure-
ments of Nb microsegregation reasonably agree with other related LPBF
experiments [26,28,44,45] conducted on Ni–Nb alloys.

3. Simulation details

We used a design-of-simulations approach to validate the kv data approximated
from the above LPBF experiments. An idealised multi-level FEA-PF simulation
framework (Figure 2(a)) is employed. In particular, the forward approach is con-
sidered in this work to model the effects of inputs (say, Xi) on the output Y = kv.
Our 3D FEA thermal model [46,47] employed the standard implementation of
heat transfer (including conduction, natural convection, radiation, and evapor-
ation), boundary conditions, thermophysical properties, and process parameters.
The FEA simulations were performed in COMSOL [48] heat transfer module for
the varying values of laser power between 30 and 300W and scan speed between

Figure 1. (Colour online) (a) Optical microscopy reveals the solidified Ni–Nb melt pools for
different laser parameters. (b) The SEM analysis reveals the typical solidification grains at
different locations in the solidified melt pool. Typical location-specific morphologies are cellular,
planar, and (planar to cellular) transition that depend on the local G and V conditions in the
molten pool. (c) The variation of Nb along the dotted lines is approximated from the correspond-
ing WDS maps of the solidified morphologies.
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0.05 and 2.5 m s−1 that correspond to LPBF of Ni–Nb alloys. The solidification
parameters – G and V – were extracted from the resulting melt pool liquidus iso-
therm as a function of the melt pool depth (Figure 2(b)), where G typically varied
between 2× 106 Km−1 to 5× 107 Km−1 and V varied between 0.05 and 2.5 m
s−1 for all the laser processing parameters employed. Next, a quantitative alloy PF
solidification model [49] with zero anti-trapping solute flux was employed to
simulate location-specific microstructures for the above values of G and V.
Further details of the PF model equations, model parameters, and alloy par-
ameters can be found in [47]. Ignoring curvature effects, kv was determined
from all our simulations following a Ni-rich cell along the line A–B–C (Figure
2(c)), using the dimensionless ratio of Nb at region A (cell core) and region B
(cell tip). Although the kv determined this way was used as a reference for our
statistical analysis, for a more accurate estimation of kv, the effect of cell tip cur-
vature (ρ) on kv by kv(1− (1− kv)d0/r (d0 is chemical capillary length) can be
included [18,50]. The value of kv is unique along the cells during steady-state for a
particular set of values of local conditions.

4. Statistical analysis

Parametric statistical methods are used in general to model the underlying
relationship between Xi and kv given by: kv = f (Xi)+ e, where f is some fixed

Figure 2. (Colour online) (a) A schematic of the overall simulation framework (‘big picture’) is
illustrated. Red represents methods, and blue represents model inputs. The forward analysis pro-
pagates the effects of inputs onto output (kv) in a top-down manner. A desired QoI in the
bottom-level can be obtained after manipulating the parameters at the top-level in an
inverse problem. Approximate models are statistical models. Although not considered here,
material property inputs can be estimated from CALPHAD [51] and atomistic simulations [52]
for realistic analysis. (b) The FEA simulations estimate G and V in the melt pool as a function
of the solidification distance. (c) The values of G and V input to the PF model to simulate cellular
morphology in which the microsegregation is determined and modelled using suitable statistical
methods.
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but unknown functions that approximate kv and ε is a random error term. In this
work, we explore several linear and non-linear forms of f for the prediction of kv
and inference between Xi and kv. Linear or non-linear regression of kv as a func-
tion of p inputs, Xi, where i [ {1, 2, . . . , p}, is essential to model the sensitivity
of inputs onto the variability in kv [38,39]. The set Xi is chosen as {G, V , D, G, k}
(Figure 3), where the material parameters – D the diffusivity of liquid, Γ the
Gibbs–Thomson coefficient (a cell-liquid surface tension related parameter),
and k the equilibrium partition coefficient – are considered from the Ni–Nb
phase diagram [53].

In our PF simulations, the values of Xi varied between predefined ranges
(refer to Table 1 in Ref. [47]), resulting in (non-equilibrium) kv values
ranging between 0.7 and 0.9. These kv values are plotted as a function of one
of the predictors, k, in Figure 3(a). On average, the simulated kv falls within
the experimentally approximated kv range (0.6+ 0.1 , kv , 0.8+ 0.1). In
order to model the statistical effects of Xi on kv, the baseline approach is to fit
the kv data using a simple linear regression (SLR) model [38] of the following

Figure 3. (Colour online) (a) A scatterplot represents the PF-simulated output kv data as a func-
tion of the input predictor k. Such scatterplot representation for other predictors is not shown
here. On average, the PF data fall within the experimental observed kv range. The PF-simulated
kv data were fit using the SLR model (Equation (1)). (b) The sensitivity of the normalised SLR
coefficients for each predictor, as for k in Figure 3(a), was determined using the standard devi-
ation around the mean values of bias and variance. (c) The proportion of variance contributed by
each predictor on kv is calculated using PF and KF model predictions. (d) The KL and HD dis-
tances are small between experimental and PF data and are large between experimental and KF
predictions. (e) Interactions between the predictors were found insignificant in the MLR model
form (Equation (4)). (f) Accuracy of the MLR model decreased with the increasing degrees of
polynomial regression.
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form for each predictor i

ksv = bi
0 + biXi + es, (1)

where variance b0 signifies the mean of kv, bias bi determines the linear relation-
ship between kv and Xi, and es is the estimation error in the line of best (least-
squares) fit that represents the data on the scatterplot between Xi and kv (Figure
3(a)). The absolute difference between the original model (PF) and the approxi-
mate SLR model (say, for Xi = k) data sets of size N was estimated using the

metric of root mean square error (RMSE) [54]:
�����������������������������
(1/N)

∑N
i=1 [kv(i)− ksv(i)]

2
√

= 0.19. The uncertainty associated during the estimation of b0 and bi for each
Xi is shown as error bar in Figure 3(b). Maintaining a bias-variance trade-off
[38,39] is essential for understanding the behaviour/error (∝ bias2 + variance)
of the prediction models. This is primarily controlled here by V and D
(Figure 3(b)), since their Pearson correlations with kv are in the opposite direc-
tion [47]. An analysis of the proportion of variance contributed by Xi on kv
(Figure 3(c)) reveals that the effects of G and Γ are small, while the effects of
V, D, and k are considerable, with the effect of k being the most significant in
the AM limit. The high variance attributed by k on kv can potentially be com-
pensated via a high bias imposed by {G, V , D, G}. Therefore, each Xi was con-
sidered for statistical modelling of kv.

A relatively large number (here, N = 40) of PF simulations and in turn data
are needed for more accurate data analysis. However, PF simulations are com-
putationally intensive, and hence, minimisation of the simulation time is essen-
tial. Therefore, as an alternative to PF simulations, we explore the predictive
potential of the analytical KF model [18] to estimate kv following

kav = 1− (1− k)P exp (P)E1(P)+ ea, (2)

where E1(P) is the first exponential integral of the interface Péclet number
P = f (G, V , D, G) [18]. The predictors in the KF model contribute equal var-
iance on kv, unlike the PF analysis (Figure 3(c)). While this can be intuitively
true for the low-V solidification limit, it rarely applies in the high-V AM
limit. Thus, the KF prediction is found to be ‘statistically’ far from both PF
and experimental data sets (Figure 3(d)). Although not shown here, this was
quantified using the asymmetric Kullback–Leibler [39] (KL) and symmetric
Hausdorff [55] (HD) distance metrics between the involved data sets, resulting
in ascending distance measures when compared between experimental measure-
ments and each of PF and KF predictions.

As the KF model did not represent the AM solidification data well and in
order to minimise repetitive PF calculations, a Gaussian process (GP) surrogate
model of the form (refer to [47,56] for the details of mean m, covariance c,
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correlation matrix Σ, and hyperparameter F functions),

kgv | F � GP m Xi, kv( ), c Xi, kv( ), S( )+ eg , (3)

was used to approximate the PF data set (Figure 4(a)). This led to significant gain
in run time, and the GP prediction lied at a ‘statistically’ smaller distance to the
experimental data when compared to the KF prediction. Although the GP model
may seem computationally inexpensive on the surface, it still requires the parent
PF kv data for training [56,57]. This leads to the GP a less interpretable model for
which inference is more challenging and thus less attractive from engineering
perspective. Alternative statistical models are therefore necessary for a reason-
ably accurate yet interpretable prediction of kv.

As an alternate heuristic approach, multiple least-squares regression (MLR)
[38,39] was used as a baseline to model kv, which is given by

kmv = b0 +
∑p

i=1

bd
i X

d
i +

∑p

i=1

∑p−1

j=i

bijX
d
i X

d
j + em, (4)

where bi are the coefficients, Xi the predictors, and d the degree of polynomial.
In such a generalised additive model (GAM) form [38], each Xi contributes
through synergies (

∑
Xi) and interactions (

∑
i=j XiXj). Although not shown

here, a linear combination of synergies with d=1 reduces the variance of kv sig-
nificantly. When the binary and higher order interactions among Xi were con-
sidered, the accuracy of the MLRmodel decreased with the increasing values of d
(Figure 3(e,f)). Therefore, the most efficient MLR model was found to be of the
form: kmv = b0 + bGG+ bVV + bDD+ bGG+ bkk with RMSE = 0.09. We
wish to note that the KF model (Equation (2)) can also be expressed in the
above MLR form for the sake of generality and without much loss of accuracy

Figure 4. (Colour online) (a) A GP surrogate model (Equation (3)) is used to approximate the PF-
simulated kv data. On average, the GP prediction closely follows the PF data (RMSE = 0.03). (b)
Information fusion of the PF and KF data sets was employed following Equation (5) to derive a
more accurate prediction of kv . Since the experimental data showed relatively good agreement
with the high-fidelity PF model prediction, the reified mean is attracted toward the PF data.
Overall, as a reference to the experimental data, the MR prediction has lower RMSE (=0.06) com-
pared to MLR forms of PF (RMSE = 0.09) and KF (RMSE = 0.16). The reified mean is presented
along with the 95% confidence interval, which, on average, captures all experimental data
points. (c) The accuracy of various numerical models is compared with reference to the
ground truth.
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(RMSE = 0.16). Since our MLR data sets lie on a 5-D hyperplane, which is
difficult to visualise, it is not shown here.

With an aim to derive a more accurate statistical model to predict kv, the MLR
forms of PF and KF models (or, the model data sets) were combined together
using a recent model reification (MR) approach,

kfv = c1k
a
v + c2k

m
v + ef , (5)

where c1 and c2 are constants estimated via machine learning. MR is an infor-
mation source fusion methodology that elevates each available information
source kav (Equation (2)) and kmv (Equation (4)) to the role of ‘ground truth’ in
turn so as to enable the estimation of correlations between the discrepancies
of each information source from actual ground truth. This process, detailed in
[43], when implemented in MATLAB [58] provides a fused information
source (Figure 4(b)) with lower variance and bias from any of its constituent
sources. Thus, depending on the model sources, MR approach can potentially
lead to the best representation of kv.

5. Summary and outlook

We reviewed suitable statistical models to represent microsegregation that was
estimated by LPBF experiments and validated by FEA-PF simulations. The pre-
diction accuracy or flexibility of these models decreased following GP, MR,
MLR, KF, and SLR, while the model interpretability increased in the reverse
order (Figure 4(c)). Our work can be further improved in the following key
directions. Prediction accuracy and model interpretability can potentially be
improved when the least-squares fit applied to the data for a reduced number
of predictors that are determined after suitable subset selection, regularisation,
and dimensional reduction techniques [38]. Fully non-linear ML methods
such as bagging, boosting, and random forest may yield a more accurate predic-
tion of kv, although at the expense of less interpretability for which inference is
even more challenging [38,39]. Suitable ML approaches such as compressed-
sensing are necessary to assess the performance of the above models for a
given data set and size [59]. Finally, for improved quantitative analysis, a large
number of observations are needed. In this way, a statistical basis for AMmicro-
structural features extraction and interpretation can be established toward rapid
engineering decision and policy-making, which will help to identify nominal in-
process microstructure-property space of the AM metal alloy for which overall
processing time and cost are optimal.

Acknowledgments

We thank the support of the National Science Foundation Grants: CMMI-1534534, CMMI-
1663130, and DGE-1545403. High-throughput FEA and PF simulations were carried out at

PHILOSOPHICAL MAGAZINE LETTERS 9



the Ada and Terra Texas A&M University supercomputing facilities. S.G. thanks L. Johnson
and M. Mahmoudi for useful discussions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

We thank the support of the National Science Foundation [grants numbers CMMI-1534534,
CMMI-1663130, and DGE-1545403].

ORCID

Supriyo Ghosh http://orcid.org/0000-0001-7265-5266
Ibrahim Karaman http://orcid.org/0000-0001-6461-4958
Raymundo Arroyave http://orcid.org/0000-0001-7548-8686

References

[1] D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Acta Mater. 117 (2016) p.371.
[2] L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W.

Shindo, F. Medina and R.B. Wicker, J. Mater. Res. Technol. 1 (2012) p.42.
[3] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, Int. Mater. Rev. 61 (2016)

p.315.
[4] W.E. Frazier, J. Mater. Eng. Perform. 23 (2014) p.1917.
[5] T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-

Heid, A. De and W. Zhang, Prog. Mater. Sci. 92 (2018) p.112.
[6] S. Gorsse, C. Hutchinson, M. Gouné and R. Banerjee, Sci. Technol. Adv. Mater. 18

(2017) p.584.
[7] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen and D. Hui, Compos. B. Eng. 143

(2018) p.172.
[8] J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46 (2016) p.151.
[9] D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese and A. Clare, CIRP Ann.

66 (2017) p.659.
[10] N. Shamsaei, A. Yadollahi, L. Bian and S.M. Thompson, Addit. Manuf. 8 (2015) p.12.
[11] M. Seifi, A. Salem, J. Beuth, O. Harrysson and J.J. Lewandowski, JOM 68 (2016) p.747.
[12] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah and

A.M. Rubenchik, Appl. Phys. Rev. 2 (2015) p.041304.
[13] M.M. Attallah, R. Jennings, X. Wang and L.N. Carter, MRS Bull. 41 (2016) p.758.
[14] S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.

Kirka, A. Plotkowski, Y. Lee and R.R. Dehoff, Metall. Mater. Trans. A 49 (2018) p.3764.
[15] S. Ghosh, L. Ma, N. Ofori-Opoku and J.E. Guyer, Model. Simul. Mater. Sci. Eng. 25

(2017) p.065002.
[16] A. Farzadi, M. Do-Quang, S. Serajzadeh, A.H. Kokabi and G. Amberg, Model. Simul.

Mater. Sci. Eng. 16 (2008) p.065005.
[17] W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications,

Zurich, 1998.

10 S. GHOSH ET AL.

http://orcid.org/0000-0001-7265-5266
http://orcid.org/0000-0001-6461-4958
http://orcid.org/0000-0001-7548-8686


[18] M. Rappaz and J.A. Dantzig, Solidification, Engineering Sciences, EFPL Press, Lausanne,
2009.

[19] R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University
Press, Cambridge, 2008.

[20] G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig and W.F. Hammetter, Metall.
Trans. A 20 (1989) p.2149.

[21] T. Keller, G. Lindwall, S. Ghosh, L. Ma, B. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C.
Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer and L.E. Levine, Acta Mater. 139
(2017) p.244.

[22] S. Ghosh, Mater. Res. Express 5 (2018) p.012001.
[23] Y.J. Liang, X. Cheng and H.M. Wang, Acta Mater. 118 (2016) p.17.
[24] K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang, S. Ghosh, T. Duong,

I. Karaman, A. Elwany and R. Arróyave, Acta Mater. 185 (2020) p.320.
[25] J. Kundin, L. Mushongera and H. Emmerich, Acta Mater. 95 (2015) p.343.
[26] R. Acharya, J.A. Sharon and A. Staroselsky, Acta Mater. 124 (2017) p.360.
[27] M. Francois, A. Sun, W. King, N. Henson, D. Tourret, C. Bronkhorst, N. Carlson, C.

Newman, T. Haut, J. Bakosi, J. Gibbs, V. Livescu, S.V. Wiel, A. Clarke, M. Schraad,
T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A. Anderson,
J.-L. Fattebert, R. Ferencz, N. Hodge, S. Khairallah and O. Walton, Curr. Opin. Solid
State Mater. Sci. 21 (2017) p.198.

[28] X. Wang, P. Liu, Y. Ji, Y. Liu, M. Horstemeyer and L. Chen, J. Mater. Eng. Perform. 28
(2019) p.657.

[29] L.-X. Lu, N. Sridhar and Y.-W. Zhang, Acta Mater. 144 (2018) p.801.
[30] W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Annu. Rev. Mater. Res. 32

(2002) p.163.
[31] L.Q. Chen, Annu. Rev. Mater. Res. 32 (2002) p.113.
[32] N. Moelans, B. Blanpain and P. Wollants, Calphad 32 (2008) p.268.
[33] I. Steinbach, Model. Simul. Mater. Sci. Eng. 17 (2009) p.073001.
[34] S. Ghosh, N. Ofori-Opoku and J.E. Guyer, Comput. Mater. Sci. 144 (2018) p.256.
[35] X. Wang, P. Liu, Y. Ji, Y. Liu, M. Horstemeyer and L. Chen, J. Mater. Eng. Perform. 28

(2019) p.657.
[36] K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev and A. Walsh, Nature 559 (2018)

p.547.
[37] Y. Liu, T. Zhao, W. Ju and S. Shi, J. Materiomics 3 (2017) p.159.
[38] G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical

Learning, Springer, New York, 2013.
[39] K. Murphy and F. Bach, Machine Learning: A Probabilistic Perspective, MIT Press,

Cambridge, MA, 2012.
[40] Z. Hu and S. Mahadevan, Int. J. Adv. Manuf. Technol. 93 (2017) p.2855.
[41] F. Lopez, P. Witherell and B. Lane, J. Mech. Des. 138 (2016) p.114502.
[42] G. Tapia, W. King, L. Johnson, R. Arroyave, I. Karaman and A. Elwany, J. Manuf. Sci.

Eng. 140 (2018) p.121006.
[43] W.D. Thomison and D.L. Allaire, A model reification approach to fusing information

from multifidelity information sources, in 19th AIAA Non-Deterministic Approaches
Conference, Grapevine, TX, (2017) p. 1949.

[44] Y. Tian, J. Mun iz-Lerma and M. Brochu, Mater. Charact. 131 (2017) p.306.
[45] P. Tao, H. Li, B. Huang, Q. Hu, S. Gong and Q. Xu, Vacuum 159 (2019) p.382.
[46] K. Karayagiz, A. Elwany, G. Tapia, B. Franco, L. Johnson, J. Ma, I. Karaman and R.

Arroyave, IISE Trans. 51 (2018) p.136.

PHILOSOPHICAL MAGAZINE LETTERS 11



[47] S. Ghosh, M. Mahmoudi, L. Johnson, A. Elwany, R. Arroyave and D. Allaire, Model.
Simul. Mater. Sci. Eng. 27 (2019) p.034002.

[48] COMSOL, Multiphysics reference guide for COMSOL 4.2, 2011.
[49] B. Echebarria, R. Folch, A. Karma and M. Plapp, Phys. Rev. E 70 (2004) p.061604.
[50] A.M. Mullins, J. Rosam and P.K. Jimack, J. Cryst. Growth. 312 (2010) p.1891.
[51] J.-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad 26 (2002)

p.273.
[52] J. Hoyt, M. Asta and A. Karma, Mater. Sci. Eng. R: Rep. 41 (2003) p.121.
[53] J. Davis and A. Committee, Nickel, Cobalt, and Their Alloys, ASM Specialty Handbook,

ASM Int., Materials Park, OH, 2000.
[54] D. Montgomery and G. Runger, Applied Statistics and Probability for Engineers, Wiley,

Hoboken, NJ, 2014.
[55] Y. Gao and Q. Dai, View-based 3-D Object Retrieval, Elsevier Science, Amsterdam,

2014.
[56] M. Mahmoudi, G. Tapia, K. Karayagiz, B. Franco, J. Ma, R. Arroyave, I. Karaman and

A. Elwany, Integr. Mater. Manuf. Innov. 7 (2018) p.116.
[57] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press,

Cambridge, MA, 2006.
[58] MATLAB, Version R2018a, The MathWorks Inc., Natick, MA, 2018.
[59] R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler and L. Ghiringhelli, Phys. Rev.

Mater. 2 (2018) p.083802.

12 S. GHOSH ET AL.


	Abstract
	1. Introduction
	2. Single-track experiments
	3. Simulation details
	4. Statistical analysis
	5. Summary and outlook
	Acknowledgments
	Disclosure statement
	ORCID
	References

