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ABSTRACT

ICME approaches provide decision support for materials design by establishing quantitative process-
structure-property relations. Confidence in the decision support, however, must be achieved by estab-
lishing uncertainty bounds in ICME model chains. The quantification and propagation of uncertainty in
computational materials science, however, remains a rather unexplored aspect of computational materi-
als science approaches. Moreover, traditional uncertainty propagation frameworks tend to be limited in
cases with computationally expensive simulations. A rather common and important model chain is that of
CALPHAD-based thermodynamic models of phase stability coupled to phase-field models for microstruc-
ture evolution. Propagation of uncertainty in these cases is challenging not only due to the sheer com-
putational cost of the simulations but also because of the high dimensionality of the input space. In this
work, we present a framework for the quantification and propagation of uncertainty in a CALPHAD-based
elastochemical phase-field model. We motivate our work by investigating the microstructure evolution in
Mg,SixSn;_, thermoelectric materials. We first carry out a Markov Chain Monte Carlo-based inference of
the CALPHAD model parameters for this pseudobinary system and then use advanced sampling schemes
to propagate uncertainties across a high-dimensional simulation input space. Through high-throughput
phase-field simulations we generate 200,000 time series of synthetic microstructures and use machine
learning approaches to understand the effects of propagated uncertainties on the microstructure land-
scape of the system under study. The microstructure dataset has been curated in the Open Phase-field
Microstructure Database (OPMD), available at http://microstructures.net.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

prescribes the integration of databases, multi-scale modeling and
experiments with the aim of reducing the time and effort of the

Uncertainty Quantification (UQ) has a long and successful his-
tory of application to very diverse areas such as climate change [1],
structural engineering [2], aerospace engineering and design [3],
and medicine [4], to name a few. In the field of materials science,
however, notions of UQ remain relatively unexplored even though
proper quantification of uncertainty in models and simulations is
of critical importance as the field progresses towards more quan-
titative/predictive approaches to materials discovery and develop-
ment. Indeed, uncertainty quantification (UQ) and its propagation
(UP) across model/simulation chains are considered key elements
of decision-based [5-8] materials design in the framework of Inte-
grated Computational Materials Engineering (ICME) [9]. The latter
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materials development cycle [10]. Given the complexity and com-
putational cost of most materials simulation frameworks, it is nec-
essary to have a systematic and efficient approach to quantify un-
certainties in the parameters/variables in any system of interest
and to propagate these uncertainties to the respective responses
of individual or multi-scale systems.

Despite the importance of UQ/UP in multi-scale modeling
[11,12], there are very few works in the literature dealing with UQ
and/or UP across multi-scale models in the field of materials sci-
ence and engineering. Liu et al. [13], for example, focused on the
probabilistic prediction of the effective properties in heterogeneous
composite materials and their performance. In that work, UQ of
the parameters and UP across the multi-scale constitutive mod-
els (i.e. UP from structure to property to performance) were per-
formed through a Bayesian stochastic method and a stochastic pro-
jection technique, respectively. Some works for UP across multiple
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scales for the probabilistic predictions of plastic flow behavior in
poly-crystalline materials have been described thoroughly in [14-
16]. Recently, Honarmandi et al. [17] demonstrated the use of UQ
approaches to the parameterization of thermodynamically rigorous
models for the response of NiTi-based shape memory alloys, fol-
lowed by uncertainty propagation over the model parameter space.

In computational materials science, thermodynamic assess-
ments using the CALculation of PHAse Diagrams (CALPHAD)
method [18] constitutes the basis for a broad range of ap-
proaches to materials simulations, including microstructure evo-
lution through phase-field modeling [19]. Given the foundational
nature of CALPHAD-based descriptions of phases’ free energies
in any attempt to predict processing-(micro)structure relation-
ships, UQ/UP in CALPHAD [20] play a very important role, al-
though sparse examples in the literature address this. Honarmandi
et al. [21] used a Bayesian framework to quantify and propagate
uncertainty in the context of CALPHAD thermodynamic assess-
ments and showed how information fusion approaches [22] can
be used to fuse propagated uncertainties from different competing
models. Other groups have also demonstrated different frameworks
for the quantification and propagation of uncertainty in CALPHAD
models [23-25].

Similarly to the case of CALPHAD-based thermodynamic as-
sessments, the application of UQ/UP frameworks to phase-
field modeling remains relatively unexplored [26-31]. Koslowski
et al. [15] characterized how uncertainties propagate across spa-
tial and temporal scales in a physics-based model of nanocrys-
talline plasticity of fcc metals, combining molecular dynamics
(MD) with phase-field dislocation dynamics (PFDD) simulations.
Wang et al. [32] carried out an asymptotic uncertainty analysis
of void formation of materials under irradiation conditions. Leon
et al. [33] used subset selection and active subspace techniques
to identify dominant parameters in a continuum phase-field poly-
domain model for ferroelectric materials. While these earlier ap-
proaches focused on UQ/UP over a single modeling framework,
Bottger [34] recently demonstrated the propagation of uncertainty
across an entire ICME-based model chain.

Across different fields [35], UP is practically implemented
through different approaches, including Monte Carlo (MC)-, lo-
cal expansion-, functional expansion-, and numerical integration-
based methods. By far, the most basic and common approach to
propagating uncertainty through computational models is via MC
simulation [36]. For expensive computational models, however, the
use of MCMC sampling-based approaches is often computationally
prohibitive. While one can use surrogate models to efficiently sam-
ple the input/output relationships in simulations [37], numerical
efficiency often comes at the expense of fidelity —i.e. the genera-
tion of surrogate models more often than not involves a consider-
able reduction in the dimensions of the output space. Moreover,
such approaches tend to fail in cases in which the model out-
put changes qualitatively (not only quantitatively) in different re-
gions of the input space —i.e. when the physical response of the
system under study undergoes abrupt transitions over relatively
short distances in the input space. Phase-field simulations belong
to the latter class of computational problems where these conven-
tional approaches to UP tend to be ineffective—e.g. in phase-field
models solidification small changes in input parameters and ini-
tial conditions can lead to transitions from columnar to equiaxed
growth [38]. The challenges associated with the computational ex-
pense and the non-regular nature of the output of phase-field sim-
ulations are augmented by the large dimensionality of the input
space. Finally, the complexity of the output of phase-field simu-
lations makes the analysis of their propagated uncertainties quite
challenging.

The major objective of the current work is to show the prop-
agation of statistically quantified uncertainties of thermodynamic

parameters to the Gibbs free energies of phases, and equilibrium
phase diagram, in combination with the uncertainties of microelas-
tic and kinetic parameters of an elastochemical phase field model.
Consequently, uncertainties in the Gibbs free energies and their
propagation to microstructural characteristics are studied by using
high throughput analyses across a chain of simulation tools that in-
cludes a CALPHAD, a microelasticity, and a phase-field model, con-
secutively. The uncertainty in thermodynamic parameters in the
CALPHAD model is quantified through Markov Chain Monte Carlo
(MCMC) sampling in the context of Bayesian statistics, while the
uncertainty of microelastic and kinetic parameters is determined
through prior knowledge, calculations and/or expert judgement-
based estimations.

Fig. 1 demonstrates the proposed strategy and steps toward
developing a framework for propagating the uncertainty across
CALPHAD reinforced phase-field model chains. The steps are based
on determining 1) type of processing conditions, 2) interacting
physics (sub-models), 3) Quantities of Interest (Qols), and 4)
microscopic/macroscopic properties of interest. We demonstrate
the framework through the investigation of the microstructure
evolution of nanostructured Mg,SixSny_, thermoelectric (TE)
materials [39,40]. This pseudo-binary system is characterized by
a miscibility gap between two isomorphous cubic phases [40].
The tendency of this system to phase-separate or homogenize is
taken into account by employing a fully parameterized elasto-
chemical phase-field model that accounts for the effect of process
conditions on the resulting microstructure configurations.

Since the performance of multi-phase thermoelectric materials
is greatly determined by their (multi-scale) microstructure, it is ex-
pected that changes in processing schemes may have considerable
impact on performance. In fact, for the case of Mg,SixSn;_,-based
thermoelectrics, it has been already shown that equilibrium and
non-equilibrium processing can lead to dramatic changes to the
TE figure of merit, zT [40-42]. Understanding of this TE system is
further hindered by the considerable uncertainty in the location
of the miscibility gap, with different experimental phase boundary
estimations disagreeing by several tens of atomic percent [40].

In this work, we attempt to propagate uncertainty through
phase-field simulations, accounting for the uncertainty not only
in the parameters directly associated with the phase-field model,
but also arising from uncertainty in the CALPHAD parameteriza-
tion. This paper is structured as follows: in Section 2, we motivate
the present work through the application of ICME-based frame-
works on the design of nanostructured TE materials. We note that
the framework put forward is generalizable to a wide range of ma-
terials simulation problems. The details of the models (CALPHAD
and phase-field) and uncertainty propagation strategy is provided
in Section 3. Section 4 discussed the prior and the resulting un-
certainty in the phase diagram, the subsequent uncertainty in the
microstructures under elastochemical phase field simulations, and
the methods for data interpretation/classification. Furthermore, we
present a summary on our findings and draw our conclusions in
Section 5.

2. Nanostructured thermoelectric materials

As mentioned above, the motivating example in this work is
the propagation of uncertainty in microstructure evolution simula-
tions of nanostructured composite thermoelectrics (TE) [43-46] via
direct coupling of CALPHAD thermodynamic databases [47] with
multi-physics phase-field models (PFM) [28,40] that account for
both chemical and elastic driving forces for structure formation.
The example is motivated by recent work by some of the present
authors [40] on the dramatic effect that processing has on the
microstructure (and TE performance) in Mg,SixSn;_, alloys, but
has a much broader applicability as CALPHAD/PFM-based mi-
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Fig. 1. The process-structure-property uncertainty propagation framework deployed in composition, strain and temperature space based on the process definition and natural

uncertainties in input parameters. Updated Figure.

crostructure simulations are pervasive in ICME-based frameworks
for microstructure-sensitive materials design [48-52], and prop-
erly accounting for uncertainty along processing-(micro)structure-
properties-performance relationships is necessary to make materi-
als design choices with proper confidence bounds.

Current interest in the thermoelectric (TE) effect originates
from the ever increasing demand for energy and the associated
detrimental effects on global climate. Current TE materials, un-
fortunately, do not have the efficiency—quantified by the figure
of merit zT = %ZT where o, is the electrical conductivity, S is
the Seebeck coefficient, T is the absolute temperature and « is
the thermal conductivity—that would turn TE-based devices into
competitive power-generators [43,53]. An ideal TE material would
have a large Seebeck coefficient, while being electrically conduc-
tive and thermally insulating [43,53]. These properties, however,
are strongly coupled and their individual tuning is thus challeng-
ing. Over the past decade, a sophisticated arsenal of strategies for
the rational design of TE materials has emerged [54-56], including
the exploitation of spontaneous self-assembly or non-equilibrium
processing of nanostructures to enhance phonon-scattering [40,43].

Among the hundreds of TE systems investigated to date,
environmentally-benign Mg,SixSn;_, alloys [57,58] have attracted
considerable attention due to their relatively high figure of
merit (zT>1) [59], comparable with intermediate temperature
TE materials such as PbTe and filled skutterudites [40,58,60,61].
The Mg,SixSn;_, pseudo-binary system exhibits a miscibility gap
[62-65] and this has been exploited to realize nanostructures with
optimal TE performance [57,59,66]. Experimental determination of
zT even in a single alloy exhibits considerable scatter, perhaps due
to (subtle) changes in the way these materials are synthesized and
processed. Recently, the present authors and collaborators investi-
gated the effect of non-equilibrium processing on the microstruc-
ture evolution (and transport properties) in the Mg,Sig7Sng3 sys-
tem and found that instead of phase-separating, the system tended
to form a solid-solution with superior TE performance, contrary to
expectations and prior works [57,66]. This was ascribed to (elas-
tic) coherency effects and was verified via quantitative multi-physics
phase-field simulations [40].

These results are interesting as they exemplify the influence
of processing on the microstructural evolution in TE materi-
als [43] and the corresponding change in performance. Most im-
portantly, this constitutes one of the very few examples—to the
best of our knowledge—in which phase-field modeling (PFM) in

combination with CALPHAD free energies has been used to inves-
tigate the microstructure evolution of TE materials. Further inves-
tigation of the PFM developed to study the Mg,Sip7Sngs showed
that rather small changes in the strength of the elastic couplings—
mediated via lattice parameter differences between Si- and Sn-rich
domains—resulted in qualitatively different microstructures, which
in turn could be expected to exhibit different phonon transport be-
havior.

The ability to quantitatively understand [43] and control the
different materials and processing parameters related to mi-
crostructural morphology, topology, size and spacing in compos-
ite TE materials has already been demonstrated [46,67-70]. Many
of these approaches have been inspired by metallurgy and thus
the time is ripe to translate much of what has been learned on
ICME-enabling microstructure-sensitive (structural) alloy design to
the problem of designing (self-assembled) TE microstructures for
optimal performance. While the modeling framework via PFM has
shown to result in (semi-)quantitative predictions that compare
well with experiments [40], a robust ICME research program on
microstructure design of TE materials requires reliable and efficient
UQ/UP frameworks.

Fig. 2 illustrates an schematic phase diagram in which the ma-
terial shows an inherent chemical instability in certain regions
of the composition space. This material is uniform and homo-
geneous at high temperatures and upon reducing the tempera-
ture spontaneously decomposes into distinct phases. Similarly, the
Mg, SixSny_, system has a miscibility where the uncertainties in
the Sn-rich and Si-rich boundaries (refer to Fig. 3 of [40]) has been
the center of discussions in several prior works [39,40,62-64]. The
uncertainties on the location of these phase boundaries necessarily
impact the chemical free energy and (the predicted) microstructure
of this system.

The sensitivity of the microstructural evolution of these systems
to chemical instabilities, the uncertainty in the boundaries of the
unstable region and the wide range of synthesis/processing condi-
tions all suggest that analysis and quantification of uncertainty in
quantitative microstructure simulation models is necessary in this
material to establish the correlation between the thermodynamics
of the system and the resulting microstructural phenomena. These
analyses are essential to estimate how the variance in processing
and (epistemic or aleatoric) uncertainties in material parameters
can affect the microstructure and ultimately the TE response of
this material. This also can contribute to a better identification of
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Fig. 2. Schematic phase diagram for an imaginary binary alloy exhibiting a chemical spinodal. A strategy to enhance thermoelectric performance is engineering the spinodal
line location by non-equilibrium processing for better phonon scattering via mass scattering versus nanoscale precipitates which in turn cause interface scattering. Updated

figure.

the optimal thermodynamic and processing conditions for the en-
hancement of the properties of TE materials [71].

3. Models and methodologies

Here, we first define the thermodynamic state variables rele-
vant to the elastochemical phase-field model formulation and then
quantify the uncertainties in the given material variables and prop-
agate these uncertainties with the aim of quantifying the varia-
tions in the micro-structure of the material that ultimately alters
the predicted macroscopic response.

3.1. Thermodynamic state variables

For an isothermal and isobaric state, the total free energy
functional (F) for an undeformed material configuration with
confined boundaries can be constructed from the sum of all
contributing fields over it. We restrict F** to chemical and elastic
contributing effects here. Consequently, the free energy of the
microstructure is a functional of composition (c), temperature (T),
strain (&), gradients of composition (Vc), and other fields, if they
were present. We write F'® as the sum of all contributing fields
for a confined volume (2) as:

}-mr[C’ T, VC, 8el] = f [fbulk + finterfacial + felastic]dQ (1)

where bulk free energy, fy, interfacial free energy, finterfacial, and
elastic strain energy, feisric are:

Soune = f0(c.T) (2)

finterfacial = J{(VC)Z (3)
1 el

felustic = io'ijgij (4)

where fO(c, T) is the free energy of a unit volume of homogeneous
material, » is the gradient energy coefficient, ef]! and o are the
local elastic strain and stress in the material, respectively. The
chemical free energy is composed of the interfacial and bulk
energy contributions, and it determines the compositions and
volume fractions of the equilibrium phases. The strain energy
affects the equilibrium compositions and volume fractions of the
coexisting phases, as well as the shapes and configurations of the
phase domains.

The bulk free energy of the Mg,SixSn;_, pseudo-binary system
is described through the sub-regular solution model as:

fl‘f;lk(c, T) = Zco, OG? +RT anln(ca)
+ Z D Catp Z”La p(Ca—cp)’ (5)

o« pra
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where « () represents the constituents of the alloy, and ¢ de-
notes Mg,Si, Mg, Sn, or liquid phases. ch,’ is the reference energy
of the constituent, T is temperature (in K), R is the universal gas
constant, and "Lﬁﬁ is Redlich-Kister coefficient of the expansion
order v given by:

VLY y="a) 4+ bh T (6)
where “aﬁ‘ P and ”bg, p are model parameters that describe the in-
teractions between the constituents beyond those corresponding
to ideal mixtures. These parameters can be calibrated against the
available data deterministically or probabilistically, as will be dis-
cussed later. In order to build the phase diagram, the total Gibbs
free energy of the system is minimized at different temperatures
for volume fraction and composition of existing phases. The two
phases Mg,Si and Mg,Sn have the same crystal structure (CaF,
structure type, cF12 Pearson symbol).

3.2. Material modeling strategy: CALPHAD reinforced phase-field
method

From linear kinetic theory, the local mass flux in the pres-
ence of a gradient in composition, the diffusion flux, J (in units
of mol m~2 s~1) is given by:

J=-Mvp (7)

where M is the interface mobility taken to be equal in all direc-
tions due to the isotropic nature of the crystal structures of the
two phases, and p'* = % is the total potential for the kinetic
transition, where § is the variational derivative operator. We postu-
late the following form of the Cahn-Hilliard (C-H) kinetic equation
along with other micro-elasticity equations to study the evolution
of the Mg,SixSn;_, microstructure:

ac SFtot
8t=V-MV< — ) (8)

This equation is solved by utilizing a semi-implicit Fourier spectral
approach [72] in frequency (k) space. The algorithm is provided
in Appendix A. The simulation cell size is 512 x 512 in the entire
study. The composition profile is perturbed + 2% randomly around
the alloy composition with a constant seed number for all calcula-
tions to maintain consistency. We use a constant time step for the
entire calculations, and the results are saved with a constant in-
terval to make them comparable. This is important due to the fact
that a change in kinetic parameters affects the coarsening rate, and
stability of the simulations extensively. The micro-elasticity equa-
tions are given as:

80’,‘1‘ .

a1, =0 in 9)
1 Bu,- 8uj

0ij = Gijueg (11)

el =&l — e (12)

where Eqs. (9)-(12) are the mechanical equilibrium condition,
kinematics, Hooke’s microscopic constitutive law for linear elas-
ticity, and strain relationship, respectively. u is the displacement
field and r is the space vector. The dilatational eigenstrain term is
given by 8,?1 =¢&T§h(c), and it is the consequence of lattice strain
between the phases. €T is the strength of the eigenstrain, §;; is
the Kronecker-delta function, and h(c) is an standard scalar-valued
interpolation function defined by h(c) = c(10 — 15¢ + 6¢?). Gy is

the composition-dependent fourth order elastic modulus tensor. It
is convenient to describe Cyy, using the following expression:

Giju(c) = C,ji{ —8(0) AGjy (13)
where AGj = Cg‘.k, - Cg,d is the difference between the elastic
moduli tensor of the & and B phases. For a linear elastic material,
the general form of the Cyy matrix will be reduced to:

[Ciun G2z CGuzs Gz Gz G|
GCon Gaz Gz Goxz Coiz Gaon
Gsnn Gz Gaszz Gasz Gasiz Gaan
Can Gz Gazz Gz Gsz Gsn
Csn Gz Csz Gz Gz Cin

| Con Gz Gz Gioz Gz G |

Giju = (14)

In a real case, the 21 independent constants of this matrix are
simplified to 2, 5, or 9 depending on the material symmetry. In this
study, we consider only 2 independent constants due to the cubic
symmetry of the phases. Similarly to h(c), g(c) = h(c) — % is also an
interpolation function that sets the average of the elastic constants
of the two phases as the effective elastic tensor. The microelastic-
ity problem (Eqns. 9-12) is solved by the fast Fourier transform
(FFT)-based iterative method. For a detailed description of this ap-
proach, the reader is invited to refer to our previous work on mi-
croelasticity effects on microstructural evolution of Tij_x_yAlxZryN
alloy [29]. In summary, the following conditions are considered
for the microelasticity model: 1) Stress-free transformation strains
(SFTS) for each phase and inhomogeneous elastic constants in the
domain, 2) AGj; =0 in the first iteration, 3) strain-control based
on stress-control, 4) convergence of the problem when the L2 norm
of ||{u™1 —u"|| is less than 10~8, and 5) Periodic boundary condi-
tions on all sides of the domain.

The parameter space for CALPHAD, micro-elasticity, and phase-
field models is listed in Table 1.

3.3. Uncertainty quantification/propagation

The quantification of uncertainties associated with model
parameters and predictions is one of the most important tasks in
simulation-aided materials design. In this regard, quantifying the
uncertainties of the model parameters given the available data
is an inverse problem, known as (inverse) UQ, while propagating
these uncertainties across an individual model or a chain of
models is a forward problem known as (forward) UP.

Generally, UQ of model parameters can be performed in the
context of either frequentist or Bayesian statistical inference. In
this work, the latter has been applied to probabilistically calibrate
the relevant model parameters. Here, the parameter calibration or
uncertainty quantification is performed based on Bayes’ rule where
the parameter posterior probability given the available data is pro-
portional to the parameter prior probability times likelihood, i.e.
P(6|D)xP(0)P(D]0) assuming € and D are the parameters and data,
respectively. Here, the prior probability distributions of the model
parameters—which is defined through the available prior knowl-
edge about the parameters—is updated to their posterior probabil-
ity distributions given the data using the likelihood distribution—
which is a conditional probability of the data given the model
parameters. Bayesian inference thus results from the combina-
tion of prior beliefs and likelihood, as opposed to frequentist
approaches in which the inference is just based on the likelihood.

The resulting posterior distribution represents the plausible op-
timal value of the parameters and their uncertainties that can be
propagated to the model predictions through different analytical
or numerical approaches. To find the statistical properties (mean
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Table 1

457

First-order statistics and Probability Distribution Functions (PDFs) of CALPHAD model parameters and phase field model inputs. The outputs of the CALPHAD model were fed

to the phase-field model. The fitted truncated PDFs correspond to the plausible optimal values and uncertainty of the model parameters. “s

s” and “liq” denote Mg,Si,Sn;_y

solid solution and liquid phases, respectively. ** SFTS stands for Stress-Free Transformation Strain.

Model Sub-model Parameter PDF form Unit N Dispersion (‘j—j) Lower Bound  Upper Bound
g sn v /\ J-mol~! 128404 729.0 6824.89 20474.69
CALPHAD Model Obise snesi Jmol-'K-'  7.20 0.59 3.67 11.02
Parameters m
18 onmgsi /_/_,\ J.mol-! -3324.3 -288.3 -5208.34 -1736.11
li - -
Ot oo s : J.mol-! 80635.7 26688.6 43550.19 130650.57
Phase-field Model 1 ﬁgZSn.Mgzﬁ J.mol-'K-'  -61.25 3.98 -86.03 -28.68
Parameters /\
A s g /»_\\ J-mol-! 6400.5 529.01 3314.80 9944.41
Alloy composition mol 0.40 0.0083 0.3 0.5
Kinetic Parameters Interface mobility /\ m?s~1 ]! 5.62 x 107 4.64 x 10-%° 10-'8/(RT) 10-2%/(RT)
(M) h
Gradient energy J.m—2 116 x 10724 464 x 10-% 2.0 x 10-26 2.0 x 10724
coefficient (x) /\—‘\
SFTS ** (&T) - - —-31x107° -4.28 -0.02 +0.02
Ci1 MgySn . GPa 76.56 0.20 68.30 83.71
Ci2 Mg,Sn I GPa 27.75 1.04 17.68 39.79
Microelasticity C44 MgySn GPa 29.94 1.26 16.03 41.94
baram A
Parameters
C11 Mg,Si . GPa 120.15 0.07 114.07 126.00
Cy2 Mg, Si . GPa 22.62 0.10 19.56 26.00
Caq Mg, Si l GPa 46.79 0.63 33.32 58.20
Molar volume m3.mol~! 578 x 107>  2.40 x 107 4.73 x 1073 6.38 x 10>
Molar volume m3.mol~"! 488 %10  1.55x 1077 3.95 x 1073 5.33 x 103
W) ‘

value and covariance matrix) of the posterior probability distribu-
tion, some intractable integrals should be solved. For this reason,
MC-based approaches are often used to estimate these integrals
[73,74]. In order to obtain well-converged estimates for the rele-
vant integrals, a substantial number of evaluations of the model
must be made. Generally, MCMC approaches are the most com-
monly used sampling techniques in the context of Bayesian infer-
ence. Among these techniques, the Metropolis-Hastings (MH) al-
gorithm has been selected in this work, as described in detail in
Section 3.3.1.

We note that it is also important to propagate uncertainties
from the parameters to the model predictions since these proba-
bilistic predictions of the given system are the quantities of inter-
est in materials design. Three commonly used approaches for UP
are analytical methods, numerical MC methods, and stochastic fi-
nite element analysis. In analytical methods, the output/prediction
uncertainties are represented explicitly as functions of parameter
uncertainties. These methods are useful when only small ranges
of uncertainty are considered and cannot always be applied to

complex, nonlinear models with large parameter uncertainties. MC
methods involve the estimation of PDFs for selected model outputs
by performing a sufficiently large number of model runs with ran-
domly sampled parameters. For computationally intensive models,
the time and resources required for MC methods could be pro-
hibitively expensive. A degree of computational efficiency is ac-
complished by the use of Modified Monte Carlo (MMC) methods
that sample from the parameter distribution in an efficient man-
ner so that the number of necessary samples are significantly re-
duced compared to simple MC methods. Such methods include the
Fourier Amplitude Sensitivity Test (FAST) [75] and Latin Hyper-
cube Sampling [76]. However, even these methods require a sub-
stantial number of model runs in order to obtain a good approx-
imation of the output PDFs, especially for cases involving a large
number of uncertain parameters. Therefore, there is a need for
even more computationally efficient ways for propagating uncer-
tainty in complex/expensive models and this is currently being in-
vestigated by the present authors.
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In this work, a forward UP analysis based on optimal sampling
methods has been applied to propagate the uncertainties across
the chain of models, which is explained in Section 3.3.2.

3.3.1. Applied MCMC approach for the parameter uncertainty
quantification

The MCMC toolbox in Matlab [77] has been utilized to calibrate
the Gibbs free energy parameters of a CALPHAD model for the
pseudo-binary Mg,SixSny_, system. Since there is no prior knowl-
edge about the distribution of the parameters and their correla-
tions, a uniform prior probability distribution has been considered
for the model parameters in this work. However, the initial values
(09) and ranges of the parameters have been determined based
on the deterministically calibrated parameters obtained using the
Thermo-Calc software in order to make the parameter convergence
faster during MCMC sampling. After defining the prior probability
distribution, the values of the parameters are randomly sampled
from an arbitrary posterior proposal distribution (q) iteratively. In
this work, the proposal distribution is an adaptive multi-variate
Gaussian distribution that is centered at the last accepted parame-
ter vector in the MCMC chain with an adaptive covariance matrix
during MCMC sampling based on the resulting covariance from the
previous parameters in the chain, according to Haario et al. [78]. In
each iteration, the sampled candidate is accepted or rejected based
on the Metropolis-Hastings ratio:

P(Qca”d)P(cha"d) q(gz—l |Qcand)
p(@z—l )p(D|91—1) q(gcand|92—l)

This ratio compares the posterior probability of the sampled
candidate (A) with its counterpart for the last accepted param-
eter vector in the MCMC chain (6% 1) through the metropolis ra-
tio (the first ratio in Eq. (15)), and also compares the probability
of moving from 67! to #<@d with the probability of the reverse
move through the Hastings ratio (the second ratio in Eq. (15)) in
the case that the posterior proposal distribution is asymmetric. It
should be noted that the likelihood function is also a Gaussian dis-
tribution centered at the given data (D) with a variance that corre-
sponds to the uncertainty of the data. Since the uncertainty of the
data used in this work is not properly understood, an unknown
variance has been considered for the likelihood which has been
updated as a hyper-parameter with the model parameters during
MCMC sampling—this has been explained in more detail by Gel-
man et al. [73]. min(M — H, 1) indicates the acceptance probability
of the candidate in each iteration. 67 equals <" in the case of
acceptance which updates the mean value of the proposal distri-
bution; while it equals #7~! if the candidate is rejected. The sam-
pling process proceeds until convergence of the MCMC chain to
a stationary distribution, which represents the parameter conver-
gence during the MCMC process. After discarding the burn-in pe-
riod which corresponds to the initial MCMC samples before param-
eter convergence, the mean values of the remaining samples and
the square root of the diagonal terms in their covariance matrix
represent the plausible optimal values and uncertainties of the pa-
rameters, respectively.

M-H-= (15)

3.3.2. Applied uncertainty propagation approach

As mentioned earlier, a forward UP analysis has been consid-
ered in this work to propagate uncertainties from thermodynamic
parameters to Gibbs free energy of phases to microstructural char-
acteristics in the Mg,SixSn;_, system. In this regard, a group of
sampled parameter vectors has been considered as representative
of the multi-variate posterior distribution of the thermodynamic
parameters and then each selected sample (parameter vector) has
been run through the CALPHAD model proposed in Section 3.1 to
find the corresponding responses for Gibbs free energy of phases
and the phase diagram. To find 95% Bayesian credible intervals

(BCI), 2.5% of the samples from both the lower and upper bounds
of the response distributions have been discarded. The same ap-
proach has been used to propagate uncertainties from thermody-
namic, microelastic and kinetic parameters to microstructural char-
acteristics throughout a phase-field model. However, a Gaussian
copula approach has been used to sample a reasonable number
of parameter vectors from the distributions of microelastic and ki-
netic parameters—assuming they are independent—as well as the
multi-variate posterior distribution of thermodynamic parameters
obtained by the MCMC technique.

3.3.3. Sampling methodology

Here we note that propagating uncertainties from high-
dimensional input sets has to be carried out in a way that
minimizes the number of samples—a typical naive sampling
scheme using MCMC approaches may require O(1,000,000) ran-
dom samples—while at the same time accounting for the statisti-
cal correlations among input parameters—for example, parameters
in CALPHAD thermodynamic descriptions tend to be highly corre-
lated.

To construct sample sets with correct marginal distributions
and preserved pairwise correlations, we instead make use of Gaus-
sian copulas. A copula is a function that relates the joint cumu-
lative distribution function (CDF) of multiple variables to their
marginal CDFs and their correlations [79].

To begin, we assume that we have available marginal distribu-
tions, fx (x;), for each parameter, where X; denotes the random
variable associated with the ith parameter, i € {1, 2,...,K} (K is the
total number of parameters), and x; is a particular realization of X;.
We also have available pairwise correlation coefficients, p;;, where
i,je{1,2,...,K}, and

_ COV(Xi,Xj)

16
520s (16)

Pij
where Cov denotes the covariance and o denotes the standard de-
viation. These correlation coefficients are stored in a matrix, R €
[—1,1]%<K which we use to create the proper correlation struc-
ture among the pairwise joint distributions. To do this, we cre-
ate a set of independent, identically distributed random vectors,
G1,Gy, ..., Gy iid.~N(0,R), thus, each G, je{1,2,...,n}is a K-
dimensional random vector with a zero mean multivariate normal
distribution with covariance, R. From this set of random vectors we
can create a sample set, g1, 85, ..., 8n, of n samples from A (0,R),
where g; are realizations from each identically distributed G;. Thus,
we have n samples from standard normal distributions marginally,
and each pairwise joint density has the desired correlation in the
sample set.

From this set of samples, we generate uniformly distributed
samples from {u;= (@(g}),@(g?),...,@(gf))}'}:l, where @ is
the cumulative distribution function of a standard normal ran-
dom variable, and g; = (g},g?,...,gﬁ,‘). This results in n samples
from a vector of uniformly distributed marginal random variables
with our desired pairwise correlations preserved. The final step
makes use of the inverse cumulative marginal distributions of
each of our parameters, FX; T(x;). From these inverse cumulative

marginal distributions and the samples u; = (u},uf,...,uf), we

compute {x; = (F){l1 (u}), FX;l (u?), o Fx}l (uﬁ.())}?ﬂ,
of n sample vectors sampled from the correct marginal distribu-
tions provided at the outset and preserved pairwise correlation
information.

Our sampling methodology is demonstrated here for a two-
dimensional random vector in Fig. 3 to make the preceding dis-
cussion more concrete. The top left plot of the figure is the orig-
inal two-dimensional joint distribution with each marginal shown
as well. This information is distilled into the marginal distributions,

which is a set
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Fig. 3. Two-Dimensional demonstration of our sampling strategy that preserves marginal distributions and pairwise correlations. Updated figure.

fx, (x1) and fx, (x), as well as the correlation coefficient matrix, R.
From this correlation information, two correlated standard normal
marginal distributions are created and shown in the bottom left
plot of the figure. Samples from these distributions are passed in-
dividually through the standard normal cumulative distribution, ®,
which leads to two correlated uniform random variables shown in
the bottom right plot. Samples from these distributions are passed
individually through the inverse marginal distributions of each pa-
rameter, respectively. This results in samples from correct marginal
distributions with preserved pairwise correlation. This can be seen
by comparing the top left and top right plots. The top left plot is
the true joint distribution and the top right plot is the joint distri-
bution generated via this methodology, which is correct in terms of
the marginal distributions and the correlation coefficient between
X] and X2.

4. Results and discussion

Solid state reactions are not only influenced by chemical driving
forces, but also by the interfacial and elastic energy contributions.
The bulk free energy (f, ) greatly dominates the overall phase sta-
bility of a system but strong couplings to elastic fields arising from
lattice and elastic mismatch as well as anisotropy in the prop-
erties play a dominant role in controlling the overall thermody-
namic stability of the system as well as the topology and morphol-
ogy of the resulting microstructures. Given the influence of bulk
thermodynamic properties, the uncertainties in the bulk free en-
ergy require precise quantification first. This will be described in
Section 4.1. Then the quantified uncertainties of the bulk free en-
ergy, the kinetic and microelastic parameters are propagated to mi-
crostructural characteristics in Section 4.2 through the elastochem-
ical phase-field model.

4.1. Uncertainty quantification of Gibbs free energy parameters and
phase diagram

A thorough parameter uncertainty analysis of the CALPHAD
model for the Mg,SixSn;_, pseudo-binary system has been per-
formed through the MCMC technique (explained in Section 3.3.1)
against the calculated composition-temperature data sampled from
the phase diagram proposed by Kozlov et al. [63]. Then, the calcu-
lated parameter uncertainties have been propagated to the Gibbs
free energy of phases and the phase diagram.

As shown in the Table 1, three parameters %a, °b and 'a are
selected for each phase in the CALPHAD model, i.e. Mg,SixSn;_y
and liquid (six parameters in total). As mentioned earlier, the de-
terministically optimized parameters obtained from Thermo-Calc
have been utilized as initial parameter values for MCMC sampling
process; however, lack of knowledge about the parameter proba-
bility distributions resulted in the consideration of uniform (non-
informative) prior distributions for the parameters. In addition,
+50% of the parameter initial values have been considered as the
parameter ranges during this process.

During MCMC calibration, 100,000 samples have been gener-
ated to ensure parameter convergence. In this regard, plotting the
joint frequency distribution of each pair of the model parameters
can graphically show parameter convergence in parameter space.
For example, one of these plots has been shown in Fig. 4. As ob-
served in this figure, the red region with the highest density of
parameter samples indicates the convergence region in the pair
parameter space. Moreover, these kinds of plots can qualitatively
show the degree of correlation between the model parameters
based on the linearity and direction of the convergence region.

The degree of correlation between each parameter pair can also
be quantified through the Pearson linear coefficient [80] denoted
by p;; in Eq. (16). It is worth noting that the linear coefficient is
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Fig. 4. Joint frequency distribution between a selected pair of parameters.

a quantity between —1 and 1. Generally, parameters are uncorre-
lated if p is close to 0, but highly correlated if p is close to ei-
ther —1 or 1. In addition, the negative and positive signs indicate
the correlation direction. In Fig. 4, a semi-circular shape of conver-
gence region and a very close value of p to zero imply negligible
correlation between %ass and %by.

After discarding the burn-in period in the beginning of the
MCMC sampling, the marginal probability distribution of each
model parameter can be plotted as shown with blue color in
Table 1 and Fig. 5. As observed in these distributions, all pa-
rameters show distributions close to truncated normal. There-
fore, a truncated normal probability distribution has been fitted to
each marginal probability distribution, where the hyper-parameters
(u and o) of these truncated distributions have been estimated
through a maximum likelihood method. The estimated u and o
of each parameter probability distribution has also been listed in
Table 1, which represent the plausible optimal values and uncer-
tainties of the model parameters.

The parameter uncertainties in Table 1 have been propagated
to the molar Gibbs free energy of mixing for different phases in
the system to the phase diagram. As mentioned in Section 3.3.2,
the last 5000 MCMC samples as an ensemble of the whole conver-
gence region have been used in a forward model analysis scheme
to identify the variation of the phase boundaries and invariant
lines in the phase diagram. 95 BCIs have then been determined
by discarding 2.5% of the resulting samples from above and below
the variation band at any specified Si composition in the Gibbs en-
ergy of mixing curves or the phase diagram. Fig. 5 demonstrates
uncertainty propagation across different levels of CALPHAD mod-
eling. Here, just an example of molar Gibbs energy of mixing for
solid phases (Mg,SixSn;_x) at 700 K has been plotted to show how
uncertainties propagate from the Gibbs free energy curves to the
phase diagram. This analysis has been repeated for different tem-
peratures in the range from 200 to 1400 K to construct the whole
phase diagram and its uncertainties. Based on Fig. 5, it should be
noted that there are very high uncertainties in the curves for the
Gibbs energy of mixing as well as the resulting phase diagram for
most temperatures. The considerable uncertainties in the Gibbs en-
ergy curves are a direct consequence of the large uncertainty in the
location of the phase boundaries in this system.

4.2. Effect of parameter uncertainties on microstructure

A complete phase-field model for the Mg,SixSn;_, system re-
quires the definition of a large number of parameters—see Table 1.

The proper characterization of all relevant parameters has been a
major challenge in mesoscale microstructural models, and it is a
common practice to define the values of these parameters deter-
ministically and ignore their actual variabilities/uncertainties. As a
consequence, exclusively deterministic models completely sidestep
the intrinsic uncertainty in model outputs. This implies that com-
mon sources of uncertainty may have little or no impact on the
selection of the value of model parameters. Here, the uncertainties
in parameters of the Gibbs energy, obtained through the MCMC
approach, are combined with the prior distribution of the parame-
ters of other sub-models (microelasticity and kinetic) to study the
microstructural evolution using the phase-field model. The prior
information of the all parameters are reported in Table 1. In the
following, we elaborate on the source of these prior distributions.

The process of phase separation is influenced by the elas-
tic anisotropy, and the hardness enhancement observed upon the
age hardening relies on a shear modulus difference between the
formed domains as well as their coherency strain [81]. Thus, it is
of primary interest to take into account the uncertainties in the
elastic properties of the Mg,SixSn;_, system to study their con-
tributions to the variability/uncertainty in microstructural predic-
tions.

The ab-initio-based elastic constants (Cq7, Ci2, and Cy4) for (c)-
Mg, Sn and (c)-Mg,Si are reported in the literature—we note that
these quantities have yet to be measured experimentally. These in-
clude both 0 K, and high temperature data which are calculated by
taking into account entropic and/or quasi-harmonic effects on the
free energies of the lattices. The CDF of Cyq, Cip, and Cy4 for both
phases are shown in the left side of the microstructure palette in
Fig. 6(a). Both ab-initio and experimental lattice parameters for the
cubic Mg,SixSny_, system at room/high temperature for different
ranges of compositions are considered. These values are either pro-
vided for individual phases (Mg,;Sn and Mg,Si), or for the parent
phase as a function of composition. The CDF of the lattice parame-
ter data are shown in Fig. 6(b). Using these data, the range of SFTS
(sf’j) for Mg,Sn and Mg,Si is estimated. This range is used to draw
samples from a uniform distribution in order to propagate the un-
certainty in the microelasticity model.

The molar volumes (V) of the phases are also obtained based
on both calculated and measured data. The calculated data is ob-
tained from V¥ = V,,;.Ny/Z where V, is the volume of the unit
cell, Ny is Avogadro’s number, and Z is the number of atoms in
the cell. Z =3 for both phases considering the fact that the crys-
tal structure of both Mg,Sn and Mg,Si is Fm3m. The distribution
is shown in Fig. 6(c), which is very similar to the distribution of
lattice parameters shown in this figure. The lower bound of this
distribution belongs to the data obtained by division of the molar
mass and density distributions.

Experimental diffusion data are used to estimate the atomic
mobility. The recent combinatorial diffusion couple study by Vivés
et al. [62], and the indirect calculation of inter-diffusion coefficient
using a forward-simulation method provides an insight about the
diffusion at 600°C. Their calculations suggest an estimated dif-
fusion coefficient of ~ 10~ ms—2. There is no other informa-
tion regarding diffusivity measurements to the best of our knowl-
edge. Accordingly, the mobility is estimated by the Einstein’s rule

(M=) or (M= ﬁ) [40]. Hence, a uniform sampling is car-

2
ried out around this value. Initial composition of the alloy is taken
to be uniformly distributed with CMg,Si between 0.3 — 0.5 to make
sure we are under the chemical miscibility region.

In order to propagate the uncertainties of the prior data, it
is necessary to carry out high-throughput phase-field simulations
of microstructure evolution in the Mg,SixSn;_, system. Using the
strategy described in Section 3.3.3, we sampled 10,000 combina-
tions of the parameters out of the prior distributions, which have
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Fig. 5. An illustration of UP from thermodynamic parameters to the molar Gibbs energy of mixing, to the phase diagram for Mg,Si,Sn;_x quasi-binary system at 700 K. left)
the probability distributions for the six CALPHAD parameters, right) the calculated Gibbs energy of mixing at 700 K and uncertainty bands and the pseudo-binary phase

diagram with a close-up of the peritectic reaction. Updated Figure.
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(d) Example microstructures extracted from the palette. Updated figure.

been fed to the phase-field equation solver as implemented in a
Fortran program. The whole process of 1) data initialization, 2) en-
vironment preparation and 3) Fortran code run in the Terra super-
computing cluster at Texas A&M University is automated through a
Python wrapper. This is a custom batch job submission routine that
we developed and it provides a convenient way to run large num-

ber of serial or multi-threaded jobs in the supercomputer. A square
simulation cell with 512 x 512 grid points, where Ly = L, = 350 nm
is used to perform the simulations. All simulations are performed
at isothermal temperature of 720 °C. The snapshots of the obtained
microstructures for 800 samples are shown in the form of a palette
in Fig. 6. Sixteen example microstructures (at the same physical
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Fig. 7. Effect of the local strain due to inhomogenous elastic effects in the microstructure. Although, the parameters are very close in the two cases, the final microstructure
is different due to slight change in C44 component of the elastic tensor of Mg;Sn. (a) and (e) sﬂ, (b) and (f) 85'2, (c) and (g) e;”z, and, (d) and (h) the directional dependence
of elastic tensors of Mg,Si and Mg,Sn phases in 2D space. Alloy composition and elastic parameters are summarized here. Case I: ¢ = 0.473, the SFTS value is &) = —0.0176,
elastic constants are [Mg,Si: C; = 120.2, G = 22.1, C44 = 56.3 GPa], [Mg,Sn : C;; = 76.9,Cy; = 19.2, C44 = 38.4 GPal. Case II: ¢ = 0.495, ag = —0.0191, [Mg,Si: C;; = 120.5,
Ciy =22.2, C44 = 48.8 GPa), [Mg,Sn: Cy; = 79.14, Cpp = 38.2, C44 = 21.5 GPa). For interpretation of the colors refer to the online version of this document. Updated figure.

evolution time) are also extracted from the palette for more effec-
tive demonstration and shown at the bottom section of this figure.

Phase-field models tend to be highly nonlinear so that its out-
put can differ qualitatively, depending on the region in the in-
put/parameter space where the sample is taken from. Phase-field
models are also highly complex in their formulation and are thus
not amenable to intrusive approaches to UP. Moreover, they are
computationally expensive, with full three-dimensional realizations
of the simulations requiring upwards of 10,000 CPU-hours in some
of the fastest supercomputers available. To reduce the modeling
cost, we only performed 2D calculations in this study. Finally, the
input/parameter space is high-dimensional, with more than 20
stochastic input conditions and model parameters that dramati-
cally affect the thermodynamic and kinetic state of the system, as
shown in Fig. 6.

It must be noted that since we are interested in the elas-
tochemical interactions in the microstructure evolution of the
Mg, SixSn;_, system, the effect of variations in elastic constants on
the microstructure were taken into account. The local long-range
interactions (i.e. strain and/or stress fields) of the heterogeneous
multi-phase nanostructure are quite sensitive to the selection of
the elastic parameters, and therefore the latter must be considered
with a great care. Fig. 7 shows the elastic strain maps (sf"j’) for
two distinct microstructures that are obtained with different sets
of elastic constants (i.e. shear constants), and very similar eigen-
strain (s?j) values. Both cases might be categorized as cuboid-type
microstructures. In the first case, (Fig. 7a-c) the morphology is
perfectly cuboidal with a slight deviation from unimodal particle-
size distribution. In the second case (Fig. 7e-g), the particles are

sheared at the corners and evolve towards a cuboidal shape during
the coarsening stages. The elastic surface plots in the right hand
side of each microstructure case shown in Fig. 7 demonstrate the
elastic tensor surface plots as a function of direction for each of
the product phases.

4.3. Microstructure quantification

Uncertainty propagation consists of linking the uncertainty in
the input conditions and model parameters to the generated un-
certainty in the model output. To properly quantify the uncertainty
and study the way it propagates across the simulations, it is neces-
sary to define Qols whose distributions can then be interpreted as
a measure of variance resulting from the stochastic nature of the
input space. In the case of microstructures, these Qols could corre-
spond to different metrics connected to the morphology, topology
and overall distribution of microstructural features.

A challenging aspect of the uncertainty propagation effort in
this work is the large dimensionality of both the input and output
spaces. The large dimensionality of the input space originates from
the many parameters that are necessary to complete the phase-
field model. Moreover, given the fact that the output microstruc-
ture space is highly heterogeneous, it is to be expected that many
Qols would be necessary to completely characterize the effect of
model inputs on the morphology and topology of the resulting mi-
crostructures. In order to handle these very complex spaces, we
will resort to machine learning frameworks, as will be described
below.
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Fig. 8. (a,c.e,g) Example microstructures (composition field, ¢), and the corresponding (b,d,f;h) power spectrum maps, (log|{c};|?) converted to gray scale and shifted to the
center obtained by Fourier transformation of the microstructures. The finer the domains, the power spectrum circle shape becomes larger. In turn, the anisotropy changes

the shape from circle to square. Updated figure.

The propagation of uncertainty first requires the quantification
of changes in the microstructure. Given the large dimensionality of
the model output (512 x 512 grid points), dimensional reduction is
necessary. Moreover, in order to enhance the interpretability of the
analysis it is desirable for the reduced dimensions to have physi-
cal significance. The determination of Qols typically involves ex-
traction of features and identifying a bank of descriptors that can
be used to train a classifier based on the frequency of observations
[82,83]. A conventional yet very useful approach is to use semantic
texton forests [84]. This is specifically useful when the phase-field
variable is composition and can also be broadly used in the real-
image data. In addition, visual words [85] can be used as power-
ful discrete image representations for categorization. Another way
to tackle this is to utilize one or a combination of Filter-bank re-
sponses (e.g. Fourier or other sort of wavelets), and one or combi-
nation of invariant descriptors (e.g. SIFT [86,87]).

A series of microstructure analytic tools were used to determine
a wide range of Qols to evaluate the developed UP framework. We
use metrics such as average feature size, area fraction, composi-
tion of the phases, aspect ratio as well as increasingly common
approaches such as n-point statistics [83], and frequency-domain
analysis (cf. Fig. 8). In latter case, the general information about
the morphology and orientation of the particles are reflected in the
frequency space. Many of the commonly used metrics provide in-
formation about the average state of microstructure spaces, but in
many cases they do not provide information about their topology.
In the case of transport behavior (such as phonon conductivity),
topology may play an important role and metrics quantifying this
microstructure feature are necessary.

Table 2 summarizes the list of Qols and the associated statis-
tics for phase-field model outputs. It contains the posterior, means,
and index of dispersion denoted by variance to mean ratio (VMR)
of the obtained Qol. VMR is an index that quantifies the disper-
sion of a probability distribution and measures the clusterabil-

ity and variability in the data. When VMR > 1, the data is over-
dispersed, and when 0<VMR <1, the data is under-dispersed.
VMR = 0corresponds to a random data-set and VMR = 1 corre-
sponds to a Poisson distribution. Except for the last three Qols, all
other Qols show multimodal distributions. We wish to note that
this multi-modality would render simplified uncertainty analysis
frameworks—such as those based on sampling of minimum, maxi-
mum and mean values of input parameters—ineffective.

It should be noted that cyg,s; and and cyg,s, are considered to
be the equilibrium compositions—in molar fractions—of the Mg,Si
and Mg,Sn phases, respectively. cyg,s; posterior clearly illustrates
a bimodal distribution, while cyg,s, illustrates a trimodal distri-
bution. In the cyg,s; posterior, the first (left) peak belongs to the
case where the process of phase separation has not finished and
the microstructure remains non-decomposed. In principle, this is
due to either slow kinetics or tendency of the system to dissolve
rather than phase separation. In the latter, elastic driving force
overcomes the chemical driving force. In this case, the elastic driv-
ing forces are significantly stronger than the chemical one. This
is believed to be achievable in practice through non-equilibrium
synthesis conditions—refer to [40]| for further information. There-
fore, the non-decomposed microstructures may be classified to two
sub-category. In the cyg,s, posterior, one major peak and two mi-
nor close-by peaks are present. Similar to cyg,s; posterior, these
peaks belong to decomposed and non-decomposed categories. The
right peak belongs to decomposed microstructures. On the con-
trary to cCyg,s; where the two subcategories of non-decomposed
microstructures are not directly distinguishable, here two separate
peaks can be seen for the two subcategories.

The characteristic length scale for each microstructure is ob-
tained by calculating the radial basis power spectrum of the
Fourier transform of the microstructure (2D composition space).
The distribution is bimodal, although highly skewed towards the
low end of the range and its peaks belong to either the non-
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Table 2
List of extracted Qol and their posterior distributions, mean, standard deviation, minimum and maximum from
the entire set of phase-field runs.

Target variables Posterior Distribution nw Index of Dispersion ("72)
3

Cmg,si[mol] 0.57 0.056
Cmg,sn[mol] J I 0.34 0.026
0.2 0.3 0.4 0.5
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10
5
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r ™
non-decomposed
(mass scattering)

(interface scattering)

Fig. 9. Hierarchical clustering using Mahalanobis distance matrix. The horizontal line indicates 78% height ratio. The images are clustered into two main subcategories of
‘decomposed’ versus ‘non-decomposed’ microstructures. Each of these main categories are also divided into other sub-levels. Updated figure.

decomposed, or the decomposed structures with certain mor-
phologies. The calculated area fractions uniformly ascend from a
zero fraction for the dissolved or non-decomposed microstruc-
tures to the decomposed ones. The probability density of obser-
vation of non-decomposed or dissolved microstructures is higher
than its counterpart for the decomposed ones. Roundness is ex-
tracted based on the shape of the morphology that appears in the
power spectrum domain. Fig. 8 demonstrates examples of differ-
ent power spectra that are obtained for the shown microstruc-
tures. For microstructures with somewhat isotropic morphologies
the power spectrum is symmetric and appears to be a circle. On
the other hand, the power spectrum appears to be in the form of
rectangle/square for a perfectly oriented, anisotropic, morphology
in which elastic effects tend to dominate the microstructure evo-
lution. The shapes of the power spectrum become more defined as
the microstructure becomes more coarse.

Quantities Diagonal/width and Diagonal/height are the relative
ratio of the diagonals of the power spectrum centroid with re-
spect to its width and height. The closer the value is to /2.height?
and/or v/2.width?, the morphologies tend to shear more. Moreover,
the higher these values get, the anisotropy becomes more evident.
On the other hand, the mean value of each of the contributing en-
ergy fields are also obtained for the current sampling. The mean
of bulk and elastic driving forces in the domain exhibit unimodal
probability distributions. However, the mean of interfacial driving
forces demonstrates multimodal isolated peaks.

Table 2 represents the total variance in the microstructure space
assuming the CDF of the input parameters and their statistical cor-
relation. The propagated uncertainty is represented through differ-
ent Qols. However, these results are aggregated and further anal-
ysis is necessary in order to examine the effect of individual pa-
rameters (or sets of parameters) on the resulting microstructures.
The large dimensionality of the input and output spaces, as we
discussed above, makes it necessary to rely on machine learning
approaches that facilitate the analysis of the microstructure space
and their relation to model inputs.

4.4. Application of the materials informatics techniques in
microstructural evaluation

A primary purpose of data-mining techniques is to facilitate the
determination of possible meaningful patterns in a given space

in order to better understand, for example, the connection be-
tween inputs (or features) and the Qols, as well as to make in-
formed decisions based on the patterns (or models) elicited from
the data under analysis [88]. Materials informatics is an interdisci-
plinary blend of statistics, machine learning, artificial intelligence,
pattern recognition and materials science. Here we employ a few
core tasks (e.g. cluster analysis, classification, etc.) on the posterior
data generated in this study. This collective integration of statisti-
cal learning tools with experimental and/or computational materi-
als science allows for an informatics-driven strategy for materials
analysis design.

A preliminary simple hierarchical clustering analysis, using dif-
ferent distance metrics, of the microstructural set produced from
the uncertainty propagation exercise is performed to elucidate
the structure of the available microstructural data. The results are
demonstrated as a corresponding dendrogram in Fig. 9. This cal-
culation is based on the 18 material parameter as the inputs and
the eight Qols as the target variables. In addition, several distance
metrics (i.e. Euclidean, Manhattan, Mahalanobis, Spearman and
Pearson) are used. The analysis shown in Fig. 9 is based on Ma-
halanobis distance metric where the elements are taken in a pair-
wise fashion in the given set using dy(x,y) = v/ (X —y)TS-1(x —y)
where S is the covariance matrix. The dendrogram shown in
Fig. 9 is created by the Ward’s linkage criterion (increase in
variance for the cluster being merged) and aims to indicate the
similarity/dissimilarity among annotation categories. The five
sub-clusters of the dendrogram shown in different colors are an-
notated with selected representative microstructures. As seen, this
dendrogram clusters the microstructures into two main categories,
i.e. ‘decomposed’ and ‘non-decomposed’ classes, with some error.
The quantification of the error requires human interaction and
manual identification of the outliers. Instead, we currently work
toward unsupervised classification of the microstructure images.

A comparison of several classifiers is performed on the ex-
tracted Qols data-set. Classification methods are suited for cases
where the class label is discrete. Hence, we simply use the ‘non-
decomposed’ versus ‘decomposed’ class labels. Here we return to
the connection with performance in TE materials by noting that
microstructures that correspond to non decomposed states could
be associated with alloying/mass phonon scattering, while de-
composed microstructures corresponds to interfacial phonon scat-
tering. The length scales of different scattering mechanisms are
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Fig. 10. Classification results for (a) Nearest neighbors classifier in (alloy composition (cyg,s;), °a§§[g25nngzsi) space, (b) Gaussian process classifier in (eT, °a§§[g25nngzsi) space,

(c) Radial basis function support vector machine (RBF SVM) classifier in (Cy;: Mg,Si, %a

1SS )
Mg, Sn. Mg, Si

space (d) Neural network classifier in (x, Oa;j[gZSnngzsi) space. B stands for

non-decomposed or dissolved microstructures and Bl stands for decomposed microstructures with different morphologies. Circle markers represent the training set and the
triangles represent the test set. For interpretation of the colors the reader is referred to the online version of this document.

different and are thus expected to change the phonon transport
characteristics and the corresponding thermoelectric performance
of the Mg,SixSn;_, system [57].

Fig. 10 illustrates the nature of such decision boundaries in the
2D input parameter regions which can be used to determine the
desired regions (alloy/mass vs. interface scattering) in the mate-
rial parameter space. Several classifiers are tested on all of the pa-
rameter pairs and the selected classifiers to report are the Near-
est neighbors, Gaussian process, Radial Basis Function (RBF) kernel
Support Vector Machine (SVM), and Neural Network. Each subfig-
ure in Fig. 10 illustrates the nature of decision boundaries for a
given pair of the input parameter using different classifiers. The
training points in these plots are shown in solid colors and the
testing points are defined by the semi-transparent contour. We

first randomly extracted 10% of the original data obtained from a
set of microstructures frozen at a fixed time. 60% of this data is
used as the training set and 40% as the test set. Fig. 10a demon-
strates the nearest neighbors classifier in the (c, Oa;jIgZSn,Mgﬁi)
space with a transitioning boundary where the points are mixed in
the boundary of the two class. Fig. 10b demonstrates the Gaussian
process classifier [89] result in the (&7, Oaf\fngSnyMgZSi) space with a
smooth, and continuous separation boundary between the decom-
posed (blue) and non-decomposed (red) clusters. Fig. 10c shows
the classification result in (Cy;: Mg;Si, Oa{\j[gZSnngZSi) space using
the RBF SVM classifier that reveals the transitioning bounderies
between the two clusters. The red cluster preserves a larger area
while certain points of this cluster are mixed with the blue clus-
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ter. The result associated with the trained neural network classifier
in (x, 0af\jlgzsmvlgzﬁ) space is shown in Fig. 10d, which again illus-
trates a smooth, and continuous separation boundary between the
two classes. However, it should be noted that no clear classification
boundaries are obtained in most pair-parameter spaces which can
be attributed to the lack of recognition through 2D projections of
the high dimensional parameter space. We note that in these cases,
the application of a dimensional reduction technique, e.g. principal
component analysis (PCA), might be helpful for more rigorous clas-
sification study.

While further investigation of the microstructure space through
machine learning approaches may be warranted in order to fully
characterize the connections between input parameters and result-
ing microstructures, this is well beyond the scope of the present
work. It is in fact our intent to further explore the use of differ-
ent machine learning frameworks with the obtained microstruc-
ture dataset.

5. Summary and conclusion

As with any computational analysis, uncertainty quantifica-
tion/propagation plays a major role in predicting the outcome of
multi-scale models in materials science. One of the most impor-
tant tasks in materials design under the ICME framework is prop-
agation of uncertainties of parameters across the multi-scale mod-
els that connect process-structure-property-performance. Hence,
we addressed an existing challenge in materials science, i.e., UP
from the thermodynamic parameters to the microstructural fea-
tures through a chain of CALPHAD, microelasticity, and phase-field
models. This is a multi-step uncertainty propagation with the tech-
niques used in each step motivated by the type of problem that
is being dealt with. Technically, thermodynamic parameters in the
CALPHAD model and their underlying imposed uncertainties ob-
tained from an MCMC sampling approach has been propagated
to Gibbs free energy of phases and equilibrium phase diagram
through a forward analysis of an ensemble of these samples. Then,
these uncertainties as well as the uncertainties of microelastic and
kinetic parameters have been propagated to the microstructural
features using a Gaussian copula sampling approach.

One of the most important aims of the present study is to
rectify the common belief towards the deterministic assumption
about the parameter values in the phase-field models. In other
words, the variations of the parameter values due to their un-
certainties can result in a range of microstructures rather than
just a single microstructure obtained from the deterministic view.
The propagation of uncertainty in the prior parameter space us-
ing model chains resulted in a massive microstructure data-set
(~50 TB) that is curated in the OPMD website [90]. The quantities
of interest in the microstructures are identified and extracted us-
ing automated frameworks from the large amounts of data that is
generated by HT-phase-field runs. We used eight Qols to map the
obtained probability distributions of parameters into probability
distributions of the extracted quantities. Then, data-mining tech-
niques are employed to find patterns in the parameter space that
can contribute to better understanding of process-microstructure
relations. The results show that the data is clustered into two main
categories of ‘decomposed’ and ‘non-decomposed’ microstructures.
These results can be very useful for engineering material behav-
ior in favor of specific phonon scattering mechanism and/or better
thermoelectric response. The proposed framework is generalizable
to applications to other materials problems and microstructure-
sensitive properties. As of this writing, further exploration of the
input parameter-microstructure space is in progress and will be re-
ported in our future work.

Developing a general Qol that represents the microstructural
space broadly will enable better quantification of the uncer-

tainty propagated through the models and helps establishing
inverse maps to connect regions in the microstructure space to
the corresponding regions in the input space. Standard methods
of microstructure analysis are not good enough to represent
microstructure spaces in a general way. To establish process-
structure-property connections, it is very important to find a
relationship between the specific features of such microstructures
and their properties.
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Appendix A. Semi-implicit algorithm for solving C-H Equation

The semi-implicit algorithm for solving the C-H equation is
adopted from Ref. [72]. The fourth-order C-H equation, neglecting
the higher-order concentration gradients has the following form:

% — _V2<af0 + Melastic + VZC>

3t ac (A1)

where f0 is the free energy of homogeneous domains in the mate-
rial, and f€/0t¢ s the elastic potential for phase change obtained
by means of the microelasticity model. The Fourier transform of
this equation is:

8{;;:}]( — 2 |:{ aafco} + {Melastic}k + 2k2{c}ki|
k

where Kk is a vector in the reciprocal space, and k = |Kk|. The semi-
implicit discretization of this equation is:

ek t+ At) —c(k,t) _kz{afo} —kz{,ue’}k
k

(A2)

At dc
—2kfe(k, t + At) (A.3)

where At is the time step for the numerical integration. The For-
tran compiler and (discrete) Fourier transforms needed for our cal-
culations have been carried out using Intel(R) Fortran Compiler for
Linux and Intel(R) Math Kernel Library for Linux, respectively.

Appendix B. Comparison of experimental and synthetic
microstructures

In this section, we provide several example microstructures to
illustrate the diversity of the microstructures in the Open Phase-
field Microstructure Database with reference to the experimental
cases. While all calculations are performed for Mg,SixSn;_,system,
the propagation of uncertainty in multiscale chain of the models
resulted in the extensive range of microstructures. Fig. B.1 summa-
rizes a series of these experimental and computational microstruc-
tures.

A typical scanning electron micrograph (SEM) of the y + y’
structure of Co0-9.2Al1-10.2W(at.%) is shown in Fig. B.1(a), where
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Experimental

Synthetic

®

Fig. B.1. Selected experimental microstructures compared to the calculated ones. Experimental microstructures of a) SEM micrograph of y + y’ structure of Co-9.2Al-
10.2W(at.%) reproduced from [91] with permission, b) ring-shaped pattern and droplets appeared in Polystyrene, reproduced from Ref. [92] with permission, c) Mg,Sng3Sig7
after high energy ball milling and isothermal heat treatment reproduced from Ref. [40] with permission, and d) SEM micrograph of the CusyZrssA;s bulk metallic glass
immersed in the 0.05M HF solution for 1 days, reproduced from Ref. [93] with permission. d) CLSM micrograph of phase-separated gel systems composed of whey pro-
tein isolate and gellan gum incubated at 5°C, reproduced from Ref. [94] with permission. e,f,gh) Selected synthetic microstructures corresponding to the experimental

observations.

cuboidal y’ phase homogeneously precipitates in the y (Al) ma-
trix. This is also very similar to the morphology observed in many
of the Ni-based superalloys. A similar synthetic microstructure
where the precipitates are in the form of cuboids and oriented in a
similar fashion is shown in Fig. B.1(f). Fig. B.1(b) illustrates a series
of unusual dewetted patterns in polystyrene [92]. A series of ring-
shaped patterns and droplets appeared in an specific region of this
polystyrene sample annealed for 2 hours at 165 °C. Similarly, a mi-
crostructure where ring-shaped patterns appear during the process
of separation is shown in Fig. B.1(g). Further investigation of the
underlying reasons for formation of ring-shaped patterns will be
provided in a feature study. Fig. B.1(c) shows an Electron Dispersive
Spectroscopy (EDS) analysis of samples of Mg,SixSn;_,treated by
high energy ball milling for 2 minutes with a subsequent 3 hours
annealing at 720°C [40]. The micrograph shows dull colors with
smaller reddish and greenish regions suggesting a degree of mix-
ing due to induced elastic strains and suppression of the miscibil-
ity gap. Likewise, the phase-field calculations shown in Fig. B.1(h)
are obtained by the elastochamical modeling where the separa-
tion has been suppressed due to elastic effects. Fig. B.1(d) shows
a microstructure of CusyZrysA;s bulk metallic glass immersed in
the 0.05M HF solution [93]. Fig. B.1(e) shows a gelation process
in a biopolymer system. The biopolymer is a mixture of 3% w/w
whey protein isolate and 0.04% w/w of gellan gum. Incubation
at 5°C resulted in bicontinuous morphology with interconnected
microstructures of a polymer-rich phase and a serum phase (in
dark color) [94]. Similar synthetic morphologies are represented in
Fig. B.1(i) and Fig. B.1(j).
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