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a b s t r a c t 

ICME approaches provide decision support for materials design by establishing quantitative process- 

structure-property relations. Confidence in the decision support, however, must be achieved by estab- 

lishing uncertainty bounds in ICME model chains. The quantification and propagation of uncertainty in 

computational materials science, however, remains a rather unexplored aspect of computational materi- 

als science approaches. Moreover, traditional uncertainty propagation frameworks tend to be limited in 

cases with computationally expensive simulations. A rather common and important model chain is that of 

CALPHAD-based thermodynamic models of phase stability coupled to phase-field models for microstruc- 

ture evolution. Propagation of uncertainty in these cases is challenging not only due to the sheer com- 

putational cost of the simulations but also because of the high dimensionality of the input space. In this 

work, we present a framework for the quantification and propagation of uncertainty in a CALPHAD-based 

elastochemical phase-field model. We motivate our work by investigating the microstructure evolution in 

Mg 2 Si x Sn 1 −x thermoelectric materials. We first carry out a Markov Chain Monte Carlo-based inference of 

the CALPHAD model parameters for this pseudobinary system and then use advanced sampling schemes 

to propagate uncertainties across a high-dimensional simulation input space. Through high-throughput 

phase-field simulations we generate 20 0,0 0 0 time series of synthetic microstructures and use machine 

learning approaches to understand the effects of propagated uncertainties on the microstructure land- 

scape of the system under study. The microstructure dataset has been curated in the Open Phase-field 

Microstructure Database ( OPMD ), available at http://microstructures.net . 

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Uncertainty Quantification (UQ) has a long and successful his-

tory of application to very diverse areas such as climate change [1] ,

structural engineering [2] , aerospace engineering and design [3] ,

and medicine [4] , to name a few. In the field of materials science,

however, notions of UQ remain relatively unexplored even though

proper quantification of uncertainty in models and simulations is

of critical importance as the field progresses towards more quan-

titative/predictive approaches to materials discovery and develop-

ment. Indeed, uncertainty quantification (UQ) and its propagation

(UP) across model/simulation chains are considered key elements

of decision-based [5–8] materials design in the framework of Inte-

grated Computational Materials Engineering (ICME) [9] . The latter
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rescribes the integration of databases, multi-scale modeling and

xperiments with the aim of reducing the time and effort of the

aterials development cycle [10] . Given the complexity and com-

utational cost of most materials simulation frameworks, it is nec-

ssary to have a systematic and efficient approach to quantify un-

ertainties in the parameters/variables in any system of interest

nd to propagate these uncertainties to the respective responses

f individual or multi-scale systems. 

Despite the importance of UQ/UP in multi-scale modeling

11,12] , there are very few works in the literature dealing with UQ

nd/or UP across multi-scale models in the field of materials sci-

nce and engineering. Liu et al. [13] , for example, focused on the

robabilistic prediction of the effective properties in heterogeneous

omposite materials and their performance. In that work, UQ of

he parameters and UP across the multi-scale constitutive mod-

ls (i.e. UP from structure to property to performance) were per-

ormed through a Bayesian stochastic method and a stochastic pro-

ection technique, respectively. Some works for UP across multiple

https://doi.org/10.1016/j.actamat.2019.11.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2019.11.031&domain=pdf
http://microstructures.net/
http://microstructures.net
mailto:attari.v@tamu.edu
https://doi.org/10.1016/j.actamat.2019.11.031
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cales for the probabilistic predictions of plastic flow behavior in

oly-crystalline materials have been described thoroughly in [14–

6] . Recently, Honarmandi et al. [17] demonstrated the use of UQ

pproaches to the parameterization of thermodynamically rigorous

odels for the response of NiTi-based shape memory alloys, fol-

owed by uncertainty propagation over the model parameter space.

In computational materials science, thermodynamic assess-

ents using the CALculation of PHAse Diagrams (CALPHAD)

ethod [18] constitutes the basis for a broad range of ap-

roaches to materials simulations, including microstructure evo-

ution through phase-field modeling [19] . Given the foundational

ature of CALPHAD-based descriptions of phases’ free energies

n any attempt to predict processing-(micro)structure relation-

hips, UQ/UP in CALPHAD [20] play a very important role, al-

hough sparse examples in the literature address this. Honarmandi

t al. [21] used a Bayesian framework to quantify and propagate

ncertainty in the context of CALPHAD thermodynamic assess-

ents and showed how information fusion approaches [22] can

e used to fuse propagated uncertainties from different competing

odels. Other groups have also demonstrated different frameworks

or the quantification and propagation of uncertainty in CALPHAD

odels [23–25] . 

Similarly to the case of CALPHAD-based thermodynamic as-

essments, the application of UQ/UP frameworks to phase-

eld modeling remains relatively unexplored [26–31] . Koslowski

t al. [15] characterized how uncertainties propagate across spa-

ial and temporal scales in a physics-based model of nanocrys-

alline plasticity of fcc metals, combining molecular dynamics

MD) with phase-field dislocation dynamics (PFDD) simulations.

ang et al. [32] carried out an asymptotic uncertainty analysis

f void formation of materials under irradiation conditions. Leon

t al. [33] used subset selection and active subspace techniques

o identify dominant parameters in a continuum phase-field poly-

omain model for ferroelectric materials. While these earlier ap-

roaches focused on UQ/UP over a single modeling framework,

öttger [34] recently demonstrated the propagation of uncertainty

cross an entire ICME-based model chain. 

Across different fields [35] , UP is practically implemented

hrough different approaches, including Monte Carlo (MC)-, lo-

al expansion-, functional expansion-, and numerical integration-

ased methods. By far, the most basic and common approach to

ropagating uncertainty through computational models is via MC

imulation [36] . For expensive computational models, however, the

se of MCMC sampling-based approaches is often computationally

rohibitive. While one can use surrogate models to efficiently sam-

le the input/output relationships in simulations [37] , numerical

fficiency often comes at the expense of fidelity —i.e. the genera-

ion of surrogate models more often than not involves a consider-

ble reduction in the dimensions of the output space. Moreover,

uch approaches tend to fail in cases in which the model out-

ut changes qualitatively (not only quantitatively) in different re-

ions of the input space —i.e. when the physical response of the

ystem under study undergoes abrupt transitions over relatively

hort distances in the input space. Phase-field simulations belong

o the latter class of computational problems where these conven-

ional approaches to UP tend to be ineffective—e.g. in phase-field

odels solidification small changes in input parameters and ini-

ial conditions can lead to transitions from columnar to equiaxed

rowth [38] . The challenges associated with the computational ex-

ense and the non-regular nature of the output of phase-field sim-

lations are augmented by the large dimensionality of the input

pace. Finally, the complexity of the output of phase-field simu-

ations makes the analysis of their propagated uncertainties quite

hallenging. 

The major objective of the current work is to show the prop-

gation of statistically quantified uncertainties of thermodynamic
arameters to the Gibbs free energies of phases, and equilibrium

hase diagram, in combination with the uncertainties of microelas-

ic and kinetic parameters of an elastochemical phase field model.

onsequently, uncertainties in the Gibbs free energies and their

ropagation to microstructural characteristics are studied by using

igh throughput analyses across a chain of simulation tools that in-

ludes a CALPHAD, a microelasticity, and a phase-field model, con-

ecutively. The uncertainty in thermodynamic parameters in the

ALPHAD model is quantified through Markov Chain Monte Carlo

MCMC) sampling in the context of Bayesian statistics, while the

ncertainty of microelastic and kinetic parameters is determined

hrough prior knowledge, calculations and/or expert judgement-

ased estimations. 

Fig. 1 demonstrates the proposed strategy and steps toward

eveloping a framework for propagating the uncertainty across

ALPHAD reinforced phase-field model chains. The steps are based

n determining 1) type of processing conditions, 2) interacting

hysics (sub-models), 3) Quantities of Interest (QoIs), and 4)

icroscopic/macroscopic properties of interest. We demonstrate 

he framework through the investigation of the microstructure

volution of nanostructured Mg 2 Si x Sn 1 −x thermoelectric (TE)

aterials [39,40] . This pseudo-binary system is characterized by

 miscibility gap between two isomorphous cubic phases [40] .

he tendency of this system to phase-separate or homogenize is

aken into account by employing a fully parameterized elasto-

hemical phase-field model that accounts for the effect of process

onditions on the resulting microstructure configurations. 

Since the performance of multi-phase thermoelectric materials

s greatly determined by their (multi-scale) microstructure, it is ex-

ected that changes in processing schemes may have considerable

mpact on performance. In fact, for the case of Mg 2 Si x Sn 1 −x -based

hermoelectrics, it has been already shown that equilibrium and

on-equilibrium processing can lead to dramatic changes to the

E figure of merit, zT [40–42] . Understanding of this TE system is

urther hindered by the considerable uncertainty in the location

f the miscibility gap, with different experimental phase boundary

stimations disagreeing by several tens of atomic percent [40] . 

In this work, we attempt to propagate uncertainty through

hase-field simulations, accounting for the uncertainty not only

n the parameters directly associated with the phase-field model,

ut also arising from uncertainty in the CALPHAD parameteriza-

ion. This paper is structured as follows: in Section 2 , we motivate

he present work through the application of ICME-based frame-

orks on the design of nanostructured TE materials. We note that

he framework put forward is generalizable to a wide range of ma-

erials simulation problems. The details of the models (CALPHAD

nd phase-field) and uncertainty propagation strategy is provided

n Section 3 . Section 4 discussed the prior and the resulting un-

ertainty in the phase diagram, the subsequent uncertainty in the

icrostructures under elastochemical phase field simulations, and

he methods for data interpretation/classification. Furthermore, we

resent a summary on our findings and draw our conclusions in

ection 5 . 

. Nanostructured thermoelectric materials 

As mentioned above, the motivating example in this work is

he propagation of uncertainty in microstructure evolution simula-

ions of nanostructured composite thermoelectrics (TE) [43–46] via

irect coupling of CALPHAD thermodynamic databases [47] with

ulti-physics phase-field models (PFM) [28,40] that account for

oth chemical and elastic driving forces for structure formation.

he example is motivated by recent work by some of the present

uthors [40] on the dramatic effect that processing has on the

icrostructure (and TE performance) in Mg 2 Si x Sn 1 −x alloys, but

as a much broader applicability as CALPHAD/PFM-based mi-
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Fig. 1. The process-structure-property uncertainty propagation framework deployed in composition, strain and temperature space based on the process definition and natural 

uncertainties in input parameters. Updated Figure. 
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crostructure simulations are pervasive in ICME-based frameworks

for microstructure-sensitive materials design [48–52] , and prop-

erly accounting for uncertainty along processing-(micro)structure-

properties-performance relationships is necessary to make materi-

als design choices with proper confidence bounds. 

Current interest in the thermoelectric (TE) effect originates

from the ever increasing demand for energy and the associated

detrimental effects on global climate. Current TE materials, un-

fortunately, do not have the efficiency—quantified by the figure

of merit zT = 
σe S 

2 T 
κ , where σ e is the electrical conductivity, S is

the Seebeck coefficient, T is the absolute temperature and κ is

the thermal conductivity—that would turn TE-based devices into

competitive power-generators [43,53] . An ideal TE material would

have a large Seebeck coefficient, while being electrically conduc-

tive and thermally insulating [43,53] . These properties, however,

are strongly coupled and their individual tuning is thus challeng-

ing. Over the past decade, a sophisticated arsenal of strategies for

the rational design of TE materials has emerged [54–56] , including

the exploitation of spontaneous self-assembly or non-equilibrium

processing of nanostructures to enhance phonon-scattering [40,43] .

Among the hundreds of TE systems investigated to date,

environmentally-benign Mg 2 Si x Sn 1 −x alloys [57,58] have attracted

considerable attention due to their relatively high figure of

merit ( zT > 1) [59] , comparable with intermediate temperature

TE materials such as PbTe and filled skutterudites [40,58,60,61] .

The Mg 2 Si x Sn 1 −x pseudo-binary system exhibits a miscibility gap

[62–65] and this has been exploited to realize nanostructures with

optimal TE performance [57,59,66] . Experimental determination of

zT even in a single alloy exhibits considerable scatter, perhaps due

to (subtle) changes in the way these materials are synthesized and

processed. Recently, the present authors and collaborators investi-

gated the effect of non-equilibrium processing on the microstruc-

ture evolution (and transport properties) in the Mg 2 Si 0.7 Sn 0.3 sys-

tem and found that instead of phase-separating, the system tended

to form a solid-solution with superior TE performance, contrary to

expectations and prior works [57,66] . This was ascribed to (elas-

tic) coherency effects and was verified via quantitative multi-physics

phase-field simulations [40] . 

These results are interesting as they exemplify the influence

of processing on the microstructural evolution in TE materi-

als [43] and the corresponding change in performance. Most im-

portantly, this constitutes one of the very few examples—to the

best of our knowledge—in which phase-field modeling (PFM) in
ombination with CALPHAD free energies has been used to inves-

igate the microstructure evolution of TE materials. Further inves-

igation of the PFM developed to study the Mg 2 Si 0.7 Sn 0.3 showed

hat rather small changes in the strength of the elastic couplings—

mediated via lattice parameter differences between Si- and Sn-rich

omains—resulted in qualitatively different microstructures, which

n turn could be expected to exhibit different phonon transport be-

avior. 

The ability to quantitatively understand [43] and control the

ifferent materials and processing parameters related to mi-

rostructural morphology, topology, size and spacing in compos-

te TE materials has already been demonstrated [46,67–70] . Many

f these approaches have been inspired by metallurgy and thus

he time is ripe to translate much of what has been learned on

CME-enabling microstructure-sensitive (structural) alloy design to

he problem of designing (self-assembled) TE microstructures for

ptimal performance. While the modeling framework via PFM has

hown to result in (semi-)quantitative predictions that compare

ell with experiments [40] , a robust ICME research program on

icrostructure design of TE materials requires reliable and efficient

Q/UP frameworks. 

Fig. 2 illustrates an schematic phase diagram in which the ma-

erial shows an inherent chemical instability in certain regions

f the composition space. This material is uniform and homo-

eneous at high temperatures and upon reducing the tempera-

ure spontaneously decomposes into distinct phases. Similarly, the

g 2 Si x Sn 1 −x system has a miscibility where the uncertainties in

he Sn-rich and Si-rich boundaries (refer to Fig. 3 of [40] ) has been

he center of discussions in several prior works [39,40,62–64] . The

ncertainties on the location of these phase boundaries necessarily

mpact the chemical free energy and (the predicted) microstructure

f this system. 

The sensitivity of the microstructural evolution of these systems

o chemical instabilities, the uncertainty in the boundaries of the

nstable region and the wide range of synthesis/processing condi-

ions all suggest that analysis and quantification of uncertainty in

uantitative microstructure simulation models is necessary in this

aterial to establish the correlation between the thermodynamics

f the system and the resulting microstructural phenomena. These

nalyses are essential to estimate how the variance in processing

nd (epistemic or aleatoric) uncertainties in material parameters

an affect the microstructure and ultimately the TE response of

his material. This also can contribute to a better identification of
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Fig. 2. Schematic phase diagram for an imaginary binary alloy exhibiting a chemical spinodal. A strategy to enhance thermoelectric performance is engineering the spinodal 

line location by non-equilibrium processing for better phonon scattering via mass scattering versus nanoscale precipitates which in turn cause interface scattering. Updated 

figure. 
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he optimal thermodynamic and processing conditions for the en-

ancement of the properties of TE materials [71] . 

. Models and methodologies 

Here, we first define the thermodynamic state variables rele-

ant to the elastochemical phase-field model formulation and then

uantify the uncertainties in the given material variables and prop-

gate these uncertainties with the aim of quantifying the varia-

ions in the micro-structure of the material that ultimately alters

he predicted macroscopic response. 

.1. Thermodynamic state variables 

For an isothermal and isobaric state, the total free energy

unctional ( F 
tot ) for an undeformed material configuration with

onfined boundaries can be constructed from the sum of all

ontributing fields over it. We restrict F 
tot to chemical and elastic

ontributing effects here. Consequently, the free energy of the

icrostructure is a functional of composition ( c ), temperature ( T ),

train ( ε), gradients of composition ( ∇c ), and other fields, if they

ere present. We write F 
tot as the sum of all contributing fields

or a confined volume ( �) as: 

 
tot [ c, T , ∇c, ε el ] = 

∫ 
�

[ f bulk + f interfacial + f elastic ] d� (1)
here bulk free energy, f bulk , interfacial free energy, f interfacial , and

lastic strain energy, f elastic are: 

f bulk = f 0 (c, T ) (2)

f inter facial = �(∇c) 2 (3) 

f elastic = 

1 

2 
σi j ε 

el 
i j (4) 

here f 0 ( c, T ) is the free energy of a unit volume of homogeneous

aterial, ϰ is the gradient energy coefficient, ε el 
i j 

and σ ij are the

ocal elastic strain and stress in the material, respectively. The

hemical free energy is composed of the interfacial and bulk

nergy contributions, and it determines the compositions and

olume fractions of the equilibrium phases. The strain energy

ffects the equilibrium compositions and volume fractions of the

oexisting phases, as well as the shapes and configurations of the

hase domains. 

The bulk free energy of the Mg 2 Si x Sn 1 −x pseudo-binary system

s described through the sub-regular solution model as: 

f 
φ
bulk 

(c, T ) = 

∑ 

α

c α ·0 G 

φ
α + RT 

∑ 

α

c α ln (c α) 

+ 

∑ 

α

∑ 

β � = α
c αc β

∑ 

ν

νL 
φ
α,β

(c α − c β ) ν (5) 
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where α ( β) represents the constituents of the alloy, and φ de-

notes Mg 2 Si, Mg 2 Sn, or liquid phases. 
0 G 

φ
α is the reference energy

of the constituent, T is temperature (in K), R is the universal gas

constant, and νL 
φ
αβ

is Redlich–Kister coefficient of the expansion

order ν given by: 

νL 
φ
α,β

= 
νa 

φ
α,β

+ 
νb 

φ
α,β

T (6)

where νa 
φ
α,β

and νb 
φ
α,β

are model parameters that describe the in-

teractions between the constituents beyond those corresponding

to ideal mixtures. These parameters can be calibrated against the

available data deterministically or probabilistically, as will be dis-

cussed later. In order to build the phase diagram, the total Gibbs

free energy of the system is minimized at different temperatures

for volume fraction and composition of existing phases. The two

phases Mg 2 Si and Mg 2 Sn have the same crystal structure (CaF 2 
structure type, cF 12 Pearson symbol). 

3.2. Material modeling strategy: CALPHAD reinforced phase-field 

method 

From linear kinetic theory, the local mass flux in the pres-

ence of a gradient in composition, the diffusion flux, J (in units

of mol m 
−2 s −1 ) is given by: 

J = −M ∇μtot (7)

where M is the interface mobility taken to be equal in all direc-

tions due to the isotropic nature of the crystal structures of the

two phases, and μtot = 
δF tot 
δc 

is the total potential for the kinetic

transition, where δ is the variational derivative operator. We postu-

late the following form of the Cahn–Hilliard (C-H) kinetic equation

along with other micro-elasticity equations to study the evolution

of the Mg 2 Si x Sn 1 −x microstructure: 

∂c 

∂t 
= ∇ · M ∇ 

(
δF 

tot 

δc 

)
(8)

This equation is solved by utilizing a semi-implicit Fourier spectral

approach [72] in frequency (k) space. The algorithm is provided

in Appendix A . The simulation cell size is 512 ×512 in the entire

study. The composition profile is perturbed ±2% randomly around

the alloy composition with a constant seed number for all calcula-

tions to maintain consistency. We use a constant time step for the

entire calculations, and the results are saved with a constant in-

terval to make them comparable. This is important due to the fact

that a change in kinetic parameters affects the coarsening rate, and

stability of the simulations extensively. The micro-elasticity equa-

tions are given as: 

∂σi j 

∂r j 
= 0 in � (9)

ε i j = 

1 

2 

(
∂u i 
∂r j 

− ∂u j 
∂r i 

)
(10)

σi j = C i jkl ε 
el 
kl (11)

ε el kl = ε tot kl − ε 0 kl (12)

where Eqs. (9) –( 12 ) are the mechanical equilibrium condition,

kinematics, Hooke’s microscopic constitutive law for linear elas-

ticity, and strain relationship, respectively. u is the displacement

field and r is the space vector. The dilatational eigenstrain term is

given by ε 0 
kl 

= ε T δkl h (c) , and it is the consequence of lattice strain

between the phases. εT is the strength of the eigenstrain, δkl is
the Kronecker-delta function, and h ( c ) is an standard scalar-valued

interpolation function defined by h (c) = c 3 (10 − 15 c + 6 c 2 ) . C ijkl is
he composition-dependent fourth order elastic modulus tensor. It

s convenient to describe C ijkl using the following expression: 

 i jkl (c) = C e f f 
i jkl 

− g(c)
C i jkl (13)

here 
C i jkl = C α
i jkl 

−C 
β
i jkl 

is the difference between the elastic

oduli tensor of the α and β phases. For a linear elastic material,

he general form of the C ijkl matrix will be reduced to: 

 i jkl = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 1111 C 1122 C 1133 C 1123 C 1113 C 1112 

C 2211 C 2222 C 2233 C 2223 C 2213 C 2212 

C 3311 C 3322 C 3333 C 3323 C 3313 C 3312 

C 2311 C 2322 C 2333 C 2323 C 2313 C 2312 

C 1311 C 1322 C 1333 C 1323 C 1313 C 1312 

C 1211 C 1222 C 1233 C 1223 C 1213 C 1212 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(14)

In a real case, the 21 independent constants of this matrix are

implified to 2, 5, or 9 depending on the material symmetry. In this

tudy, we consider only 2 independent constants due to the cubic

ymmetry of the phases. Similarly to h ( c ), g(c) = h (c) − 1 
2 is also an

nterpolation function that sets the average of the elastic constants

f the two phases as the effective elastic tensor. The microelastic-

ty problem ( Eqns. 9 –12 ) is solved by the fast Fourier transform

FFT)-based iterative method. For a detailed description of this ap-

roach, the reader is invited to refer to our previous work on mi-

roelasticity effects on microstructural evolution of Ti 1 −x −y Al x Zr y N

lloy [29] . In summary, the following conditions are considered

or the microelasticity model: 1) Stress-free transformation strains

SFTS) for each phase and inhomogeneous elastic constants in the

omain, 2) 
C i jkl = 0 in the first iteration, 3) strain-control based

n stress-control, 4) convergence of the problem when the L 2 norm

f || u n +1 − u n || is less than 10 −8 , and 5) Periodic boundary condi-

ions on all sides of the domain. 

The parameter space for CALPHAD, micro-elasticity, and phase-

eld models is listed in Table 1 . 

.3. Uncertainty quantification/propagation 

The quantification of uncertainties associated with model

arameters and predictions is one of the most important tasks in

imulation-aided materials design. In this regard, quantifying the

ncertainties of the model parameters given the available data

s an inverse problem, known as (inverse) UQ, while propagating

hese uncertainties across an individual model or a chain of

odels is a forward problem known as (forward) UP. 

Generally, UQ of model parameters can be performed in the

ontext of either frequentist or Bayesian statistical inference. In

his work, the latter has been applied to probabilistically calibrate

he relevant model parameters. Here, the parameter calibration or

ncertainty quantification is performed based on Bayes’ rule where

he parameter posterior probability given the available data is pro-

ortional to the parameter prior probability times likelihood, i.e.

 ( θ | D ) ∝ P ( θ ) P ( D | θ ) assuming θ and D are the parameters and data,

espectively. Here, the prior probability distributions of the model

arameters—which is defined through the available prior knowl-

dge about the parameters—is updated to their posterior probabil-

ty distributions given the data using the likelihood distribution—

hich is a conditional probability of the data given the model

arameters. Bayesian inference thus results from the combina-

ion of prior beliefs and likelihood, as opposed to frequentist

pproaches in which the inference is just based on the likelihood. 

The resulting posterior distribution represents the plausible op-

imal value of the parameters and their uncertainties that can be

ropagated to the model predictions through different analytical

r numerical approaches. To find the statistical properties (mean
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Table 1 

First-order statistics and Probability Distribution Functions (PDFs) of CALPHAD model parameters and phase field model inputs. The outputs of the CALPHAD model were fed 

to the phase-field model. The fitted truncated PDFs correspond to the plausible optimal values and uncertainty of the model parameters. “ss” and “liq” denote Mg 2 Si x Sn 1 −x 

solid solution and liquid phases, respectively. ∗∗ SFTS stands for Stress-Free Transformation Strain. 

Model Sub-model Parameter PDF form Unit μ Dispersion ( σ
2 

μ ) Lower Bound Upper Bound 

0 a ss 
Mg 2 Sn , Mg 2 Si 

J.mol −1 12840.4 729.0 6824.89 20474.69 

CALPHAD Model 

Parameters 

0 b ss 
Mg 2 Sn , Mg 2 Si 

J.mol −1 K −1 7.20 0.59 3.67 11.02 

1 a ss 
Mg 2 Sn , Mg 2 Si 

J.mol −1 -3324.3 -288.3 -5208.34 -1736.11 

0 a liq 
Mg 2 Sn , Mg 2 Si 

J.mol −1 80635.7 26688.6 43550.19 130650.57 

Phase-field Model 

Parameters 

1 b liq 
Mg 2 Sn , Mg 2 Si 

J.mol −1 K −1 -61.25 3.98 -86.03 -28.68 

1 a liq 
Mg 2 Sn , Mg 2 Si 

J.mol −1 6400.5 529.01 3314.80 9944.41 

Alloy composition 

( c ) 

mol 0.40 0.0083 0.3 0.5 

Kinetic Parameters Interface mobility 

( M ) 

m 
2 s −1 .J −1 5 . 62 × 10 −19 4 . 64 × 10 −25 10 −18 / (RT ) 10 −20 / (RT ) 

Gradient energy 

coefficient ( ϰ) 
J.m 

−2 1 . 16 × 10 −24 4 . 64 × 10 −25 2 . 0 × 10 −26 2 . 0 × 10 −24 

SFTS ∗∗ ( εT ) - −3 . 1 × 10 −5 -4.28 -0.02 + 0.02 

C 11 Mg 2 Sn GPa 76.56 0.20 68.30 83.71 

C 12 Mg 2 Sn GPa 27.75 1.04 17.68 39.79 

Microelasticity 

Model 

Parameters 

C 44 Mg 2 Sn GPa 29.94 1.26 16.03 41.94 

C 11 Mg 2 Si GPa 120.15 0.07 114.07 126.00 

C 12 Mg 2 Si GPa 22.62 0.10 19.56 26.00 

C 44 Mg 2 Si GPa 46.79 0.63 33.32 58.20 

Molar volume 

(V 
Mg 2 Si 
m ) 

m 
3 .mol −1 5 . 78 × 10 −5 2 . 40 × 10 −7 4 . 73 × 10 −5 6 . 38 × 10 −5 

Molar volume 

(V 
Mg 2 Sn 
m ) 

m 
3 .mol −1 4 . 88 × 10 −5 1 . 55 × 10 −7 3 . 95 × 10 −5 5 . 33 × 10 −5 

v  

t  

M  

[  

v  

m  

m  

e  

g  

S

 

f  

b  

e  

a  

n  

u  

u  

o  

c  

m  

b  

d  

t  

h  

c  

t  

n  

d  

F  

c  

s  

i  

n  

e  

t  

v

alue and covariance matrix) of the posterior probability distribu-

ion, some intractable integrals should be solved. For this reason,

C-based approaches are often used to estimate these integrals

73,74] . In order to obtain well-converged estimates for the rele-

ant integrals, a substantial number of evaluations of the model

ust be made. Generally, MCMC approaches are the most com-

only used sampling techniques in the context of Bayesian infer-

nce. Among these techniques, the Metropolis-Hastings (MH) al-

orithm has been selected in this work, as described in detail in

ection 3.3.1 . 

We note that it is also important to propagate uncertainties

rom the parameters to the model predictions since these proba-

ilistic predictions of the given system are the quantities of inter-

st in materials design. Three commonly used approaches for UP

re analytical methods, numerical MC methods, and stochastic fi-

ite element analysis. In analytical methods, the output/prediction

ncertainties are represented explicitly as functions of parameter

ncertainties. These methods are useful when only small ranges

f uncertainty are considered and cannot always be applied to
omplex, nonlinear models with large parameter uncertainties. MC

ethods involve the estimation of PDFs for selected model outputs

y performing a sufficiently large number of model runs with ran-

omly sampled parameters. For computationally intensive models,

he time and resources required for MC methods could be pro-

ibitively expensive. A degree of computational efficiency is ac-

omplished by the use of Modified Monte Carlo (MMC) methods

hat sample from the parameter distribution in an efficient man-

er so that the number of necessary samples are significantly re-

uced compared to simple MC methods. Such methods include the

ourier Amplitude Sensitivity Test (FAST) [75] and Latin Hyper-

ube Sampling [76] . However, even these methods require a sub-

tantial number of model runs in order to obtain a good approx-

mation of the output PDFs, especially for cases involving a large

umber of uncertain parameters. Therefore, there is a need for

ven more computationally efficient ways for propagating uncer-

ainty in complex/expensive models and this is currently being in-

estigated by the present authors. 
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In this work, a forward UP analysis based on optimal sampling

methods has been applied to propagate the uncertainties across

the chain of models, which is explained in Section 3.3.2 . 

3.3.1. Applied MCMC approach for the parameter uncertainty 

quantification 

The MCMC toolbox in Matlab [77] has been utilized to calibrate

the Gibbs free energy parameters of a CALPHAD model for the

pseudo-binary Mg 2 Si x Sn 1 −x system. Since there is no prior knowl-

edge about the distribution of the parameters and their correla-

tions, a uniform prior probability distribution has been considered

for the model parameters in this work. However, the initial values

( θ0 ) and ranges of the parameters have been determined based

on the deterministically calibrated parameters obtained using the

Thermo-Calc software in order to make the parameter convergence

faster during MCMC sampling. After defining the prior probability

distribution, the values of the parameters are randomly sampled

from an arbitrary posterior proposal distribution ( q ) iteratively. In

this work, the proposal distribution is an adaptive multi-variate

Gaussian distribution that is centered at the last accepted parame-

ter vector in the MCMC chain with an adaptive covariance matrix

during MCMC sampling based on the resulting covariance from the

previous parameters in the chain, according to Haario et al. [78] . In

each iteration, the sampled candidate is accepted or rejected based

on the Metropolis-Hastings ratio: 

M − H = 

P (θ cand ) P (D | θ cand ) 

P (θ z−1 ) P (D | θ z−1 ) 

q (θ z−1 | θ cand ) 

q (θ cand | θ z−1 ) 
(15)

This ratio compares the posterior probability of the sampled

candidate ( θ cand ) with its counterpart for the last accepted param-

eter vector in the MCMC chain ( θ z−1 ) through the metropolis ra-

tio (the first ratio in Eq. (15) ), and also compares the probability

of moving from θ z−1 to θ cand with the probability of the reverse

move through the Hastings ratio (the second ratio in Eq. (15) ) in

the case that the posterior proposal distribution is asymmetric. It

should be noted that the likelihood function is also a Gaussian dis-

tribution centered at the given data ( D ) with a variance that corre-

sponds to the uncertainty of the data. Since the uncertainty of the

data used in this work is not properly understood, an unknown

variance has been considered for the likelihood which has been

updated as a hyper-parameter with the model parameters during

MCMC sampling—this has been explained in more detail by Gel-

man et al. [73] . min (M − H, 1) indicates the acceptance probability

of the candidate in each iteration. θ z equals θ cand in the case of

acceptance which updates the mean value of the proposal distri-

bution; while it equals θ z−1 if the candidate is rejected. The sam-

pling process proceeds until convergence of the MCMC chain to

a stationary distribution, which represents the parameter conver-

gence during the MCMC process. After discarding the burn-in pe-

riod which corresponds to the initial MCMC samples before param-

eter convergence, the mean values of the remaining samples and

the square root of the diagonal terms in their covariance matrix

represent the plausible optimal values and uncertainties of the pa-

rameters, respectively. 

3.3.2. Applied uncertainty propagation approach 

As mentioned earlier, a forward UP analysis has been consid-

ered in this work to propagate uncertainties from thermodynamic

parameters to Gibbs free energy of phases to microstructural char-

acteristics in the Mg 2 Si x Sn 1 −x system. In this regard, a group of

sampled parameter vectors has been considered as representative

of the multi-variate posterior distribution of the thermodynamic

parameters and then each selected sample (parameter vector) has

been run through the CALPHAD model proposed in Section 3.1 to

find the corresponding responses for Gibbs free energy of phases

and the phase diagram. To find 95% Bayesian credible intervals
BCI), 2.5% of the samples from both the lower and upper bounds

f the response distributions have been discarded. The same ap-

roach has been used to propagate uncertainties from thermody-

amic, microelastic and kinetic parameters to microstructural char-

cteristics throughout a phase-field model. However, a Gaussian

opula approach has been used to sample a reasonable number

f parameter vectors from the distributions of microelastic and ki-

etic parameters—assuming they are independent—as well as the

ulti-variate posterior distribution of thermodynamic parameters

btained by the MCMC technique. 

.3.3. Sampling methodology 

Here we note that propagating uncertainties from high-

imensional input sets has to be carried out in a way that

inimizes the number of samples—a typical naive sampling

cheme using MCMC approaches may require O ( 1 , 0 0 0 , 0 0 0 ) ran-

om samples—while at the same time accounting for the statisti-

al correlations among input parameters—for example, parameters

n CALPHAD thermodynamic descriptions tend to be highly corre-

ated. 

To construct sample sets with correct marginal distributions

nd preserved pairwise correlations, we instead make use of Gaus-

ian copulas. A copula is a function that relates the joint cumu-

ative distribution function (CDF) of multiple variables to their

arginal CDFs and their correlations [79] . 

To begin, we assume that we have available marginal distribu-

ions, f X i (x i ) , for each parameter, where X i denotes the random

ariable associated with the i th parameter, i ∈ { 1 , 2 , . . . , K} ( K is the
otal number of parameters), and x i is a particular realization of X i .

e also have available pairwise correlation coefficients, ρ i,j , where

, j ∈ { 1 , 2 , . . . , K} , and 

i, j = 

Cov (X i , X j ) 

σX i σX j 

, (16)

here Cov denotes the covariance and σ denotes the standard de-

iation. These correlation coefficients are stored in a matrix, R ∈
 −1 , 1] K×K , which we use to create the proper correlation struc-

ure among the pairwise joint distributions. To do this, we cre-

te a set of independent, identically distributed random vectors,

 1 , G 2 , . . . , G n i.i.d. ∼ N (0 , R ) , thus, each G j , j ∈ { 1 , 2 , . . . , n } is a K -
imensional random vector with a zero mean multivariate normal

istribution with covariance, R . From this set of random vectors we

an create a sample set, g 1 , g 2 , . . . , g n , of n samples from N (0 , R ) ,

here g j are realizations from each identically distributed G j . Thus,

e have n samples from standard normal distributions marginally,

nd each pairwise joint density has the desired correlation in the

ample set. 

From this set of samples, we generate uniformly distributed

amples from { u j = (�(g 1 
j 
) , �(g 2 

j 
) , . . . , �(g K 

j 
)) } n 

j=1 
, where � is

he cumulative distribution function of a standard normal ran-

om variable, and g j = (g 1 
j 
, g 2 

j 
, . . . , g K 

j 
) . This results in n samples

rom a vector of uniformly distributed marginal random variables

ith our desired pairwise correlations preserved. The final step

akes use of the inverse cumulative marginal distributions of

ach of our parameters, F −1 
X i 

(x i ) . From these inverse cumulative

arginal distributions and the samples u j = (u 1 
j 
, u 2 

j 
, . . . , u K 

j 
) , we

ompute { x j = (F −1 
X 1 

(u 1 
j 
) , F −1 

X 2 
(u 2 

j 
) , . . . , F −1 

X K 
(u K 

j 
)) } n 

j=1 
, which is a set

f n sample vectors sampled from the correct marginal distribu-

ions provided at the outset and preserved pairwise correlation

nformation. 

Our sampling methodology is demonstrated here for a two-

imensional random vector in Fig. 3 to make the preceding dis-

ussion more concrete. The top left plot of the figure is the orig-

nal two-dimensional joint distribution with each marginal shown

s well. This information is distilled into the marginal distributions,
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Fig. 3. Two-Dimensional demonstration of our sampling strategy that preserves marginal distributions and pairwise correlations. Updated figure. 
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f X 1 (x 1 ) and f X 2 (x 2 ) , as well as the correlation coefficient matrix, R .

rom this correlation information, two correlated standard normal

arginal distributions are created and shown in the bottom left

lot of the figure. Samples from these distributions are passed in-

ividually through the standard normal cumulative distribution, �,

hich leads to two correlated uniform random variables shown in

he bottom right plot. Samples from these distributions are passed

ndividually through the inverse marginal distributions of each pa-

ameter, respectively. This results in samples from correct marginal

istributions with preserved pairwise correlation. This can be seen

y comparing the top left and top right plots. The top left plot is

he true joint distribution and the top right plot is the joint distri-

ution generated via this methodology, which is correct in terms of

he marginal distributions and the correlation coefficient between

 1 and X 2 . 

. Results and discussion 

Solid state reactions are not only influenced by chemical driving

orces, but also by the interfacial and elastic energy contributions.

he bulk free energy ( f bulk ) greatly dominates the overall phase sta-

ility of a system but strong couplings to elastic fields arising from

attice and elastic mismatch as well as anisotropy in the prop-

rties play a dominant role in controlling the overall thermody-

amic stability of the system as well as the topology and morphol-

gy of the resulting microstructures. Given the influence of bulk

hermodynamic properties, the uncertainties in the bulk free en-

rgy require precise quantification first. This will be described in

ection 4.1 . Then the quantified uncertainties of the bulk free en-

rgy, the kinetic and microelastic parameters are propagated to mi-

rostructural characteristics in Section 4.2 through the elastochem-

cal phase-field model. 
.1. Uncertainty quantification of Gibbs free energy parameters and 

hase diagram 

A thorough parameter uncertainty analysis of the CALPHAD

odel for the Mg 2 Si x Sn 1 −x pseudo-binary system has been per-

ormed through the MCMC technique (explained in Section 3.3.1 )

gainst the calculated composition-temperature data sampled from

he phase diagram proposed by Kozlov et al. [63] . Then, the calcu-

ated parameter uncertainties have been propagated to the Gibbs

ree energy of phases and the phase diagram. 

As shown in the Table 1 , three parameters 0 a , 0 b and 1 a are

elected for each phase in the CALPHAD model, i.e. Mg 2 Si x Sn 1 −x 

nd liquid (six parameters in total). As mentioned earlier, the de-

erministically optimized parameters obtained from Thermo-Calc 

ave been utilized as initial parameter values for MCMC sampling

rocess; however, lack of knowledge about the parameter proba-

ility distributions resulted in the consideration of uniform (non-

nformative) prior distributions for the parameters. In addition,

50% of the parameter initial values have been considered as the

arameter ranges during this process. 

During MCMC calibration, 10 0,0 0 0 samples have been gener-

ted to ensure parameter convergence. In this regard, plotting the

oint frequency distribution of each pair of the model parameters

an graphically show parameter convergence in parameter space.

or example, one of these plots has been shown in Fig. 4 . As ob-

erved in this figure, the red region with the highest density of

arameter samples indicates the convergence region in the pair

arameter space. Moreover, these kinds of plots can qualitatively

how the degree of correlation between the model parameters

ased on the linearity and direction of the convergence region. 

The degree of correlation between each parameter pair can also

e quantified through the Pearson linear coefficient [80] denoted

y ρ i,j in Eq. (16) . It is worth noting that the linear coefficient is
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Fig. 4. Joint frequency distribution between a selected pair of parameters. 
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a quantity between −1 and 1. Generally, parameters are uncorre-

lated if ρ is close to 0, but highly correlated if ρ is close to ei-

ther −1 or 1. In addition, the negative and positive signs indicate

the correlation direction. In Fig. 4 , a semi-circular shape of conver-

gence region and a very close value of ρ to zero imply negligible

correlation between 0 a ss and 
0 b liq . 

After discarding the burn-in period in the beginning of the

MCMC sampling, the marginal probability distribution of each

model parameter can be plotted as shown with blue color in

Table 1 and Fig. 5 . As observed in these distributions, all pa-

rameters show distributions close to truncated normal. There-

fore, a truncated normal probability distribution has been fitted to

each marginal probability distribution, where the hyper-parameters

( μ and σ ) of these truncated distributions have been estimated

through a maximum likelihood method. The estimated μ and σ
of each parameter probability distribution has also been listed in

Table 1 , which represent the plausible optimal values and uncer-

tainties of the model parameters. 

The parameter uncertainties in Table 1 have been propagated

to the molar Gibbs free energy of mixing for different phases in

the system to the phase diagram. As mentioned in Section 3.3.2 ,

the last 50 0 0 MCMC samples as an ensemble of the whole conver-

gence region have been used in a forward model analysis scheme

to identify the variation of the phase boundaries and invariant

lines in the phase diagram. 95 BCIs have then been determined

by discarding 2.5% of the resulting samples from above and below

the variation band at any specified Si composition in the Gibbs en-

ergy of mixing curves or the phase diagram. Fig. 5 demonstrates

uncertainty propagation across different levels of CALPHAD mod-

eling. Here, just an example of molar Gibbs energy of mixing for

solid phases (Mg 2 Si x Sn 1 −x ) at 700 K has been plotted to show how

uncertainties propagate from the Gibbs free energy curves to the

phase diagram. This analysis has been repeated for different tem-

peratures in the range from 200 to 1400 K to construct the whole

phase diagram and its uncertainties. Based on Fig. 5 , it should be

noted that there are very high uncertainties in the curves for the

Gibbs energy of mixing as well as the resulting phase diagram for

most temperatures. The considerable uncertainties in the Gibbs en-

ergy curves are a direct consequence of the large uncertainty in the

location of the phase boundaries in this system. 

4.2. Effect of parameter uncertainties on microstructure 

A complete phase-field model for the Mg 2 Si x Sn 1 −x system re-

quires the definition of a large number of parameters—see Table 1 .
he proper characterization of all relevant parameters has been a

ajor challenge in mesoscale microstructural models, and it is a

ommon practice to define the values of these parameters deter-

inistically and ignore their actual variabilities/uncertainties. As a

onsequence, exclusively deterministic models completely sidestep

he intrinsic uncertainty in model outputs. This implies that com-

on sources of uncertainty may have little or no impact on the

election of the value of model parameters. Here, the uncertainties

n parameters of the Gibbs energy, obtained through the MCMC

pproach, are combined with the prior distribution of the parame-

ers of other sub-models (microelasticity and kinetic) to study the

icrostructural evolution using the phase-field model. The prior

nformation of the all parameters are reported in Table 1 . In the

ollowing, we elaborate on the source of these prior distributions. 

The process of phase separation is influenced by the elas-

ic anisotropy, and the hardness enhancement observed upon the

ge hardening relies on a shear modulus difference between the

ormed domains as well as their coherency strain [81] . Thus, it is

f primary interest to take into account the uncertainties in the

lastic properties of the Mg 2 Si x Sn 1 −x system to study their con-

ributions to the variability/uncertainty in microstructural predic-

ions. 

The ab-initio -based elastic constants ( C 11 , C 12 , and C 44 ) for (c)-

g 2 Sn and (c)-Mg 2 Si are reported in the literature—we note that

hese quantities have yet to be measured experimentally. These in-

lude both 0 K, and high temperature data which are calculated by

aking into account entropic and/or quasi-harmonic effects on the

ree energies of the lattices. The CDF of C 11 , C 12 , and C 44 for both

hases are shown in the left side of the microstructure palette in

ig. 6 (a). Both ab-initio and experimental lattice parameters for the

ubic Mg 2 Si x Sn 1 −x system at room/high temperature for different

anges of compositions are considered. These values are either pro-

ided for individual phases (Mg 2 Sn and Mg 2 Si), or for the parent

hase as a function of composition. The CDF of the lattice parame-

er data are shown in Fig. 6 (b). Using these data, the range of SFTS

 ε 0 
i j 
) for Mg 2 Sn and Mg 2 Si is estimated. This range is used to draw

amples from a uniform distribution in order to propagate the un-

ertainty in the microelasticity model. 

The molar volumes ( V m ) of the phases are also obtained based

n both calculated and measured data. The calculated data is ob-

ained from V 
cryst 
m 

= V cell .N v /Z where V cell is the volume of the unit

ell, N v is Avogadro’s number, and Z is the number of atoms in

he cell. Z = 3 for both phases considering the fact that the crys-

al structure of both Mg 2 Sn and Mg 2 Si is Fm ̄3 m. The distribution

s shown in Fig. 6 (c), which is very similar to the distribution of

attice parameters shown in this figure. The lower bound of this

istribution belongs to the data obtained by division of the molar

ass and density distributions. 

Experimental diffusion data are used to estimate the atomic

obility. The recent combinatorial diffusion couple study by Vivés

t al. [62] , and the indirect calculation of inter-diffusion coefficient

sing a forward-simulation method provides an insight about the

iffusion at 600 ◦C. Their calculations suggest an estimated dif-

usion coefficient of ≈ 10 −15 ms −2 . There is no other informa-

ion regarding diffusivity measurements to the best of our knowl-

dge. Accordingly, the mobility is estimated by the Einstein’s rule

 M = 
D 
RT ), or ( M = 

D 

( ∂ 
2 f 

∂c 2 
) 
) [40] . Hence, a uniform sampling is car-

ied out around this value. Initial composition of the alloy is taken

o be uniformly distributed with c Mg 2 Si 
between 0 . 3 − 0 . 5 to make

ure we are under the chemical miscibility region. 

In order to propagate the uncertainties of the prior data, it

s necessary to carry out high-throughput phase-field simulations

f microstructure evolution in the Mg 2 Si x Sn 1 −x system. Using the

trategy described in Section 3.3.3 , we sampled 10,0 0 0 combina-

ions of the parameters out of the prior distributions, which have
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Fig. 5. An illustration of UP from thermodynamic parameters to the molar Gibbs energy of mixing, to the phase diagram for Mg 2 Si x Sn 1 −x quasi-binary system at 700 K. left) 

the probability distributions for the six CALPHAD parameters, right) the calculated Gibbs energy of mixing at 700 K and uncertainty bands and the pseudo-binary phase 

diagram with a close-up of the peritectic reaction. Updated Figure. 

Fig. 6. (Center) Microstructure library from 800 phase-field runs (out of 10,0 0 0 run) for the Mg 2 Si x Sn 1 −x system at a fixed time. 10,0 0 0 points in a 18-dimensional parameter 

space were sampled from the prior distributions shown in Table 1 . CDF plots for (a) elastic constants, (b) lattice parameters, (c) molar volumes of the two product phases. 

(d) Example microstructures extracted from the palette. Updated figure. 
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i  
een fed to the phase-field equation solver as implemented in a

ortran program. The whole process of 1) data initialization, 2) en-

ironment preparation and 3) Fortran code run in the Terra super-

omputing cluster at Texas A&M University is automated through a

ython wrapper. This is a custom batch job submission routine that

e developed and it provides a convenient way to run large num-
er of serial or multi-threaded jobs in the supercomputer. A square

imulation cell with 512 ×512 grid points, where L x = L y = 350 nm

s used to perform the simulations. All simulations are performed

t isothermal temperature of 720 ◦C. The snapshots of the obtained
icrostructures for 800 samples are shown in the form of a palette

n Fig. 6 . Sixteen example microstructures (at the same physical
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Fig. 7. Effect of the local strain due to inhomogenous elastic effects in the microstructure. Although, the parameters are very close in the two cases, the final microstructure 

is different due to slight change in C 44 component of the elastic tensor of Mg 2 Sn. (a) and (e) ε 
el 
11 , (b) and (f) ε 

el 
22 , (c) and (g) ε 

el 
12 , and, (d) and (h) the directional dependence 

of elastic tensors of Mg 2 Si and Mg 2 Sn phases in 2D space. Alloy composition and elastic parameters are summarized here. Case I: c = 0 . 473 , the SFTS value is ε 0 
ii 

= −0 . 0176 , 

elastic constants are [Mg 2 Si: C 11 = 120 . 2 , C 12 = 22 . 1 , C 44 = 56 . 3 GPa], [ Mg 2 Sn : C 11 = 76 . 9 , C 12 = 19 . 2 , C 44 = 38 . 4 GPa]. Case II: c = 0 . 495 , ε 0 
ii 

= −0 . 0191 , [Mg 2 Si: C 11 = 120 . 5 , 

C 12 = 22 . 2 , C 44 = 48 . 8 GPa], [Mg 2 Sn: C 11 = 79 . 14 , C 12 = 38 . 2 , C 44 = 21 . 5 GPa]. For interpretation of the colors refer to the online version of this document. Updated figure. 
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evolution time) are also extracted from the palette for more effec-

tive demonstration and shown at the bottom section of this figure.

Phase-field models tend to be highly nonlinear so that its out-

put can differ qualitatively, depending on the region in the in-

put/parameter space where the sample is taken from. Phase-field

models are also highly complex in their formulation and are thus

not amenable to intrusive approaches to UP. Moreover, they are

computationally expensive, with full three-dimensional realizations

of the simulations requiring upwards of 10,0 0 0 CPU-hours in some

of the fastest supercomputers available. To reduce the modeling

cost, we only performed 2D calculations in this study. Finally, the

input/parameter space is high-dimensional, with more than 20

stochastic input conditions and model parameters that dramati-

cally affect the thermodynamic and kinetic state of the system, as

shown in Fig. 6 . 

It must be noted that since we are interested in the elas-

tochemical interactions in the microstructure evolution of the

Mg 2 Si x Sn 1 −x system, the effect of variations in elastic constants on

the microstructure were taken into account. The local long-range

interactions (i.e. strain and/or stress fields) of the heterogeneous

multi-phase nanostructure are quite sensitive to the selection of

the elastic parameters, and therefore the latter must be considered

with a great care. Fig. 7 shows the elastic strain maps ( ε el 
i j 
) for

two distinct microstructures that are obtained with different sets

of elastic constants (i.e. shear constants), and very similar eigen-

strain ( ε 0 
i j 
) values. Both cases might be categorized as cuboid-type

microstructures. In the first case, ( Fig. 7 a–c) the morphology is

perfectly cuboidal with a slight deviation from unimodal particle-

size distribution. In the second case ( Fig. 7 e–g), the particles are
heared at the corners and evolve towards a cuboidal shape during

he coarsening stages. The elastic surface plots in the right hand

ide of each microstructure case shown in Fig. 7 demonstrate the

lastic tensor surface plots as a function of direction for each of

he product phases. 

.3. Microstructure quantification 

Uncertainty propagation consists of linking the uncertainty in

he input conditions and model parameters to the generated un-

ertainty in the model output. To properly quantify the uncertainty

nd study the way it propagates across the simulations, it is neces-

ary to define QoIs whose distributions can then be interpreted as

 measure of variance resulting from the stochastic nature of the

nput space. In the case of microstructures, these QoIs could corre-

pond to different metrics connected to the morphology, topology

nd overall distribution of microstructural features. 

A challenging aspect of the uncertainty propagation effort in

his work is the large dimensionality of both the input and output

paces. The large dimensionality of the input space originates from

he many parameters that are necessary to complete the phase-

eld model. Moreover, given the fact that the output microstruc-

ure space is highly heterogeneous, it is to be expected that many

oIs would be necessary to completely characterize the effect of

odel inputs on the morphology and topology of the resulting mi-

rostructures. In order to handle these very complex spaces, we

ill resort to machine learning frameworks, as will be described

elow. 
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Fig. 8. (a,c,e,g) Example microstructures (composition field, c ), and the corresponding (b,d,f,h) power spectrum maps, (log|{ c } k | 
2 ) converted to gray scale and shifted to the 

center obtained by Fourier transformation of the microstructures. The finer the domains, the power spectrum circle shape becomes larger. In turn, the anisotropy changes 

the shape from circle to square. Updated figure. 
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The propagation of uncertainty first requires the quantification

f changes in the microstructure. Given the large dimensionality of

he model output (512 ×512 grid points), dimensional reduction is

ecessary. Moreover, in order to enhance the interpretability of the

nalysis it is desirable for the reduced dimensions to have physi-

al significance. The determination of QoIs typically involves ex-

raction of features and identifying a bank of descriptors that can

e used to train a classifier based on the frequency of observations

82,83] . A conventional yet very useful approach is to use semantic

exton forests [84] . This is specifically useful when the phase-field

ariable is composition and can also be broadly used in the real-

mage data. In addition, visual words [85] can be used as power-

ul discrete image representations for categorization. Another way

o tackle this is to utilize one or a combination of Filter-bank re-

ponses (e.g. Fourier or other sort of wavelets), and one or combi-

ation of invariant descriptors (e.g. SIFT [86,87] ). 

A series of microstructure analytic tools were used to determine

 wide range of QoIs to evaluate the developed UP framework. We

se metrics such as average feature size, area fraction, composi-

ion of the phases, aspect ratio as well as increasingly common

pproaches such as n-point statistics [83] , and frequency-domain

nalysis (cf. Fig. 8 ). In latter case, the general information about

he morphology and orientation of the particles are reflected in the

requency space. Many of the commonly used metrics provide in-

ormation about the average state of microstructure spaces, but in

any cases they do not provide information about their topology.

n the case of transport behavior (such as phonon conductivity),

opology may play an important role and metrics quantifying this

icrostructure feature are necessary. 

Table 2 summarizes the list of QoIs and the associated statis-

ics for phase-field model outputs. It contains the posterior, means,

nd index of dispersion denoted by variance to mean ratio (VMR)

f the obtained QoI. VMR is an index that quantifies the disper-

ion of a probability distribution and measures the clusterabil-
ty and variability in the data. When VMR > 1, the data is over-

ispersed, and when 0 < VMR < 1, the data is under-dispersed.

MR = 0 corresponds to a random data-set and VMR = 1 corre-

ponds to a Poisson distribution. Except for the last three QoIs, all

ther QoIs show multimodal distributions. We wish to note that

his multi-modality would render simplified uncertainty analysis

rameworks—such as those based on sampling of minimum, maxi-

um and mean values of input parameters—ineffective. 

It should be noted that c Mg 2 Si 
and and c Mg 2 Sn 

are considered to

e the equilibrium compositions—in molar fractions—of the Mg 2 Si

nd Mg 2 Sn phases, respectively. c Mg 2 Si 
posterior clearly illustrates

 bimodal distribution, while c Mg 2 Sn 
illustrates a trimodal distri-

ution. In the c Mg 2 Si 
posterior, the first (left) peak belongs to the

ase where the process of phase separation has not finished and

he microstructure remains non-decomposed. In principle, this is

ue to either slow kinetics or tendency of the system to dissolve

ather than phase separation. In the latter, elastic driving force

vercomes the chemical driving force. In this case, the elastic driv-

ng forces are significantly stronger than the chemical one. This

s believed to be achievable in practice through non-equilibrium

ynthesis conditions—refer to [40] for further information. There-

ore, the non-decomposed microstructures may be classified to two

ub-category. In the c Mg 2 Sn 
posterior, one major peak and two mi-

or close-by peaks are present. Similar to c Mg 2 Si 
posterior, these

eaks belong to decomposed and non-decomposed categories. The

ight peak belongs to decomposed microstructures. On the con-

rary to c Mg 2 Si 
where the two subcategories of non-decomposed

icrostructures are not directly distinguishable, here two separate

eaks can be seen for the two subcategories. 

The characteristic length scale for each microstructure is ob-

ained by calculating the radial basis power spectrum of the

ourier transform of the microstructure (2D composition space).

he distribution is bimodal, although highly skewed towards the

ow end of the range and its peaks belong to either the non-



464 V. Attari, P. Honarmandi and T. Duong et al. / Acta Materialia 183 (2020) 452–470 

Table 2 

List of extracted QoI and their posterior distributions, mean, standard deviation, minimum and maximum from 

the entire set of phase-field runs. 

Target variables Posterior Distribution μ Index of Dispersion ( σ
2 

μ ) 

c Mg 2 Si 
[mol] 0.57 0.056 

c Mg 2 Sn [mol] 0.34 0.026 

Characteristic Length [m] 8.62 × 10 −8 1.08 × 10 −7 

Area fraction 0.17 0.30 

Roundness 0.99 0.70 

Diagonal/width 1.18 0.29 

Diagonal/height 0.98 0.05 

μ̄chem [Jmol −1 ] −156.06 −1012.1 

μ̄elas [Jmol −1 ] −27.83 −214.75 

μ̄int [Jmol −1 ] 1.59 × 10 −9 −6.01 × 10 −6 
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Fig. 9. Hierarchical clustering using Mahalanobis distance matrix. The horizontal line indicates 78% height ratio. The images are clustered into two main subcategories of 

‘decomposed’ versus ‘non-decomposed’ microstructures. Each of these main categories are also divided into other sub-levels. Updated figure. 
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ecomposed, or the decomposed structures with certain mor-

hologies. The calculated area fractions uniformly ascend from a

ero fraction for the dissolved or non-decomposed microstruc-

ures to the decomposed ones. The probability density of obser-

ation of non-decomposed or dissolved microstructures is higher

han its counterpart for the decomposed ones. Roundness is ex-

racted based on the shape of the morphology that appears in the

ower spectrum domain. Fig. 8 demonstrates examples of differ-

nt power spectra that are obtained for the shown microstruc-

ures. For microstructures with somewhat isotropic morphologies

he power spectrum is symmetric and appears to be a circle. On

he other hand, the power spectrum appears to be in the form of

ectangle/square for a perfectly oriented, anisotropic, morphology

n which elastic effects tend to dominate the microstructure evo-

ution. The shapes of the power spectrum become more defined as

he microstructure becomes more coarse. 

Quantities Diagonal / width and Diagonal / height are the relative

atio of the diagonals of the power spectrum centroid with re-

pect to its width and height. The closer the value is to 
√ 

2 .height 2 

nd/or 
√ 

2 .width 2 , the morphologies tend to shear more. Moreover,

he higher these values get, the anisotropy becomes more evident.

n the other hand, the mean value of each of the contributing en-

rgy fields are also obtained for the current sampling. The mean

f bulk and elastic driving forces in the domain exhibit unimodal

robability distributions. However, the mean of interfacial driving

orces demonstrates multimodal isolated peaks. 

Table 2 represents the total variance in the microstructure space

ssuming the CDF of the input parameters and their statistical cor-

elation. The propagated uncertainty is represented through differ-

nt QoIs. However, these results are aggregated and further anal-

sis is necessary in order to examine the effect of individual pa-

ameters (or sets of parameters) on the resulting microstructures.

he large dimensionality of the input and output spaces, as we

iscussed above, makes it necessary to rely on machine learning

pproaches that facilitate the analysis of the microstructure space

nd their relation to model inputs. 

.4. Application of the materials informatics techniques in 

icrostructural evaluation 

A primary purpose of data-mining techniques is to facilitate the

etermination of possible meaningful patterns in a given space
n order to better understand, for example, the connection be-

ween inputs (or features) and the QoIs, as well as to make in-

ormed decisions based on the patterns (or models) elicited from

he data under analysis [88] . Materials informatics is an interdisci-

linary blend of statistics, machine learning, artificial intelligence,

attern recognition and materials science. Here we employ a few

ore tasks (e.g. cluster analysis, classification, etc.) on the posterior

ata generated in this study. This collective integration of statisti-

al learning tools with experimental and/or computational materi-

ls science allows for an informatics-driven strategy for materials

nalysis design. 

A preliminary simple hierarchical clustering analysis, using dif-

erent distance metrics, of the microstructural set produced from

he uncertainty propagation exercise is performed to elucidate

he structure of the available microstructural data. The results are

emonstrated as a corresponding dendrogram in Fig. 9 . This cal-

ulation is based on the 18 material parameter as the inputs and

he eight QoIs as the target variables. In addition, several distance

etrics (i.e. Euclidean, Manhattan, Mahalanobis, Spearman and

earson) are used. The analysis shown in Fig. 9 is based on Ma-

alanobis distance metric where the elements are taken in a pair-

ise fashion in the given set using d M 
(x, y ) = 

√ 

(x − y ) T S −1 (x − y )

here S is the covariance matrix. The dendrogram shown in

ig. 9 is created by the Ward’s linkage criterion (increase in

ariance for the cluster being merged) and aims to indicate the

imilarity/dissimilarity among annotation categories. The five 

ub-clusters of the dendrogram shown in different colors are an-

otated with selected representative microstructures. As seen, this

endrogram clusters the microstructures into two main categories,

.e. ‘decomposed’ and ‘non-decomposed’ classes, with some error.

he quantification of the error requires human interaction and

anual identification of the outliers. Instead, we currently work

oward unsupervised classification of the microstructure images. 

A comparison of several classifiers is performed on the ex-

racted QoIs data-set. Classification methods are suited for cases

here the class label is discrete. Hence, we simply use the ‘non-

ecomposed’ versus ‘decomposed’ class labels. Here we return to

he connection with performance in TE materials by noting that

icrostructures that correspond to non decomposed states could

e associated with alloying/mass phonon scattering, while de-

omposed microstructures corresponds to interfacial phonon scat-

ering. The length scales of different scattering mechanisms are
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Fig. 10. Classification results for (a) Nearest neighbors classifier in (alloy composition ( c Mg 2 Si 
), 0 a ss 

Mg 2 Sn , Mg 2 Si 
) space, (b) Gaussian process classifier in ( εT , 0 a ss 

Mg 2 Sn , Mg 2 Si 
) space, 

(c) Radial basis function support vector machine (RBF SVM) classifier in ( C 11 : Mg 2 Si, 
0 a ss 

Mg 2 Sn , Mg 2 Si 
) space (d) Neural network classifier in ( ϰ, 0 a ss 

Mg 2 Sn , Mg 2 Si 
) space. stands for 

non-decomposed or dissolved microstructures and stands for decomposed microstructures with different morphologies. Circle markers represent the training set and the 

triangles represent the test set. For interpretation of the colors the reader is referred to the online version of this document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

fi  

s  

u  

s  

s  

t  

p  

s  

p  

t  

t  

b  

w  
different and are thus expected to change the phonon transport

characteristics and the corresponding thermoelectric performance

of the Mg 2 Si x Sn 1 −x system [57] . 

Fig. 10 illustrates the nature of such decision boundaries in the

2D input parameter regions which can be used to determine the

desired regions (alloy/mass vs. interface scattering) in the mate-

rial parameter space. Several classifiers are tested on all of the pa-

rameter pairs and the selected classifiers to report are the Near-

est neighbors, Gaussian process, Radial Basis Function (RBF) kernel

Support Vector Machine (SVM), and Neural Network. Each subfig-

ure in Fig. 10 illustrates the nature of decision boundaries for a

given pair of the input parameter using different classifiers. The

training points in these plots are shown in solid colors and the

testing points are defined by the semi-transparent contour. We
rst randomly extracted 10% of the original data obtained from a

et of microstructures frozen at a fixed time. 60% of this data is

sed as the training set and 40% as the test set. Fig. 10 a demon-

trates the nearest neighbors classifier in the ( c , 0 a ss 
Mg 2 Sn , Mg 2 Si 

)

pace with a transitioning boundary where the points are mixed in

he boundary of the two class. Fig. 10 b demonstrates the Gaussian

rocess classifier [89] result in the ( εT , 0 a ss 
Mg 2 Sn , Mg 2 Si 

) space with a

mooth, and continuous separation boundary between the decom-

osed (blue) and non-decomposed (red) clusters. Fig. 10 c shows

he classification result in ( C 11 : Mg 2 Si, 
0 a ss 

Mg 2 Sn , Mg 2 Si 
) space using

he RBF SVM classifier that reveals the transitioning bounderies

etween the two clusters. The red cluster preserves a larger area

hile certain points of this cluster are mixed with the blue clus-



V. Attari, P. Honarmandi and T. Duong et al. / Acta Materialia 183 (2020) 452–470 467 

t  

i  

t  

t  

b  

b  

t  

t  

c  

s

 

m  

c  

i  

w  

e  

t

5

 

t  

m  

t  

a  

e

w  

f  

t  

m  

n  

i  

C  

t  

t  

t  

t  

k  

f

 

r  

a  

w  

c  

j  

T  

i  

(  

o  

i  

g  

o  

d  

n  

c  

r  

c

T  

i  

t  

t  

s  

i  

p

 

s  

t  

i  

t  

o  

m  

s  

r  

a

D

 

c  

i

A

 

i  

p  

T  

p  

C  

t  

a

A

 

a  

t

w  

r  

b  

t

w  

i

w  

t  

c  

L

A

m

 

i  

fi  

c  

t  

r  

r  

t

s  
er. The result associated with the trained neural network classifier

n ( ϰ, 0 a ss 
Mg 2 Sn , Mg 2 Si 

) space is shown in Fig. 10 d, which again illus-

rates a smooth, and continuous separation boundary between the

wo classes. However, it should be noted that no clear classification

oundaries are obtained in most pair-parameter spaces which can

e attributed to the lack of recognition through 2D projections of

he high dimensional parameter space. We note that in these cases,

he application of a dimensional reduction technique, e.g. principal

omponent analysis (PCA), might be helpful for more rigorous clas-

ification study. 

While further investigation of the microstructure space through

achine learning approaches may be warranted in order to fully

haracterize the connections between input parameters and result-

ng microstructures, this is well beyond the scope of the present

ork. It is in fact our intent to further explore the use of differ-

nt machine learning frameworks with the obtained microstruc-

ure dataset. 

. Summary and conclusion 

As with any computational analysis, uncertainty quantifica-

ion/propagation plays a major role in predicting the outcome of

ulti-scale models in materials science. One of the most impor-

ant tasks in materials design under the ICME framework is prop-

gation of uncertainties of parameters across the multi-scale mod-

ls that connect process-structure-property-performance. Hence, 

e addressed an existing challenge in materials science, i.e., UP

rom the thermodynamic parameters to the microstructural fea-

ures through a chain of CALPHAD, microelasticity, and phase-field

odels. This is a multi-step uncertainty propagation with the tech-

iques used in each step motivated by the type of problem that

s being dealt with. Technically, thermodynamic parameters in the

ALPHAD model and their underlying imposed uncertainties ob-

ained from an MCMC sampling approach has been propagated

o Gibbs free energy of phases and equilibrium phase diagram

hrough a forward analysis of an ensemble of these samples. Then,

hese uncertainties as well as the uncertainties of microelastic and

inetic parameters have been propagated to the microstructural

eatures using a Gaussian copula sampling approach. 

One of the most important aims of the present study is to

ectify the common belief towards the deterministic assumption

bout the parameter values in the phase-field models. In other

ords, the variations of the parameter values due to their un-

ertainties can result in a range of microstructures rather than

ust a single microstructure obtained from the deterministic view.

he propagation of uncertainty in the prior parameter space us-

ng model chains resulted in a massive microstructure data-set

 ∼50 TB) that is curated in the OPMD website [90] . The quantities

f interest in the microstructures are identified and extracted us-

ng automated frameworks from the large amounts of data that is

enerated by HT-phase-field runs. We used eight QoIs to map the

btained probability distributions of parameters into probability

istributions of the extracted quantities. Then, data-mining tech-

iques are employed to find patterns in the parameter space that

an contribute to better understanding of process-microstructure

elations. The results show that the data is clustered into two main

ategories of ‘decomposed’ and ‘non-decomposed’ microstructures. 

hese results can be very useful for engineering material behav-

or in favor of specific phonon scattering mechanism and/or better

hermoelectric response. The proposed framework is generalizable

o applications to other materials problems and microstructure-

ensitive properties. As of this writing, further exploration of the

nput parameter-microstructure space is in progress and will be re-

orted in our future work. 

Developing a general QoI that represents the microstructural

pace broadly will enable better quantification of the uncer-
ainty propagated through the models and helps establishing

nverse maps to connect regions in the microstructure space to

he corresponding regions in the input space. Standard methods

f microstructure analysis are not good enough to represent

icrostructure spaces in a general way. To establish process-

tructure-property connections, it is very important to find a

elationship between the specific features of such microstructures

nd their properties. 
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ppendix A. Semi-implicit algorithm for solving C-H Equation 

The semi-implicit algorithm for solving the C-H equation is

dopted from Ref. [72] . The fourth-order C-H equation, neglecting

he higher-order concentration gradients has the following form: 

∂c 

∂t 
= −∇ 

2 

(
∂ f 0 

∂c 
+ μelastic + ∇ 

2 c 

)
(A.1) 

here f 0 is the free energy of homogeneous domains in the mate-

ial, and μelastic is the elastic potential for phase change obtained

y means of the microelasticity model. The Fourier transform of

his equation is: 

∂{ c} k 
∂t 

= −k 2 
[{

∂ f 0 

∂c 

}
k 

+ 

{
μelastic 

}
k 

+ 2 k 2 { c } k 
]

(A.2) 

here k is a vector in the reciprocal space, and k = | k | . The semi-

mplicit discretization of this equation is: 

c(k , t + 
t) − c(k , t) 


t 
= −k 2 

{
∂ f 0 

∂c 

}
k 

− k 2 
{
μel 

}
k 

− 2 k 4 c(k , t + 
t) (A.3) 

here 
t is the time step for the numerical integration. The For-

ran compiler and (discrete) Fourier transforms needed for our cal-

ulations have been carried out using Intel(R) Fortran Compiler for

inux and Intel(R) Math Kernel Library for Linux, respectively. 

ppendix B. Comparison of experimental and synthetic 

icrostructures 

In this section, we provide several example microstructures to

llustrate the diversity of the microstructures in the Open Phase-

eld Microstructure Database with reference to the experimental

ases. While all calculations are performed for Mg 2 Si x Sn 1 −x system,

he propagation of uncertainty in multiscale chain of the models

esulted in the extensive range of microstructures. Fig. B.1 summa-

izes a series of these experimental and computational microstruc-

ures. 

A typical scanning electron micrograph (SEM) of the γ + γ ′ 
tructure of Co-9.2Al-10.2W(at.%) is shown in Fig. B.1 (a), where

http://microstructures.net/
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100009497
https://doi.org/10.13039/100000082
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Fig. B.1. Selected experimental microstructures compared to the calculated ones. Experimental microstructures of a) SEM micrograph of γ + γ ′ structure of Co-9.2Al- 
10.2W(at.%) reproduced from [91] with permission, b) ring-shaped pattern and droplets appeared in Polystyrene, reproduced from Ref. [92] with permission, c) Mg 2 Sn 0.3 Si 0.7 
after high energy ball milling and isothermal heat treatment reproduced from Ref. [40] with permission, and d) SEM micrograph of the Cu 50 Zr 45 A l 5 bulk metallic glass 

immersed in the 0.05 M HF solution for 1 days, reproduced from Ref. [93] with permission. d) CLSM micrograph of phase-separated gel systems composed of whey pro- 

tein isolate and gellan gum incubated at 5 ◦C, reproduced from Ref. [94] with permission. e,f,g,h) Selected synthetic microstructures corresponding to the experimental 

observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cuboidal γ ′ phase homogeneously precipitates in the γ (Al) ma-

trix. This is also very similar to the morphology observed in many

of the Ni-based superalloys. A similar synthetic microstructure

where the precipitates are in the form of cuboids and oriented in a

similar fashion is shown in Fig. B.1 (f). Fig. B.1 (b) illustrates a series

of unusual dewetted patterns in polystyrene [92] . A series of ring-

shaped patterns and droplets appeared in an specific region of this

polystyrene sample annealed for 2 hours at 165 ◦C. Similarly, a mi-

crostructure where ring-shaped patterns appear during the process

of separation is shown in Fig. B.1 (g). Further investigation of the

underlying reasons for formation of ring-shaped patterns will be

provided in a feature study. Fig. B.1 (c) shows an Electron Dispersive

Spectroscopy (EDS) analysis of samples of Mg 2 Si x Sn 1 −x treated by

high energy ball milling for 2 minutes with a subsequent 3 hours

annealing at 720 ◦C [40] . The micrograph shows dull colors with

smaller reddish and greenish regions suggesting a degree of mix-

ing due to induced elastic strains and suppression of the miscibil-

ity gap. Likewise, the phase-field calculations shown in Fig. B.1 (h)

are obtained by the elastochamical modeling where the separa-

tion has been suppressed due to elastic effects. Fig. B.1 (d) shows

a microstructure of Cu 50 Zr 45 A l 5 bulk metallic glass immersed in

the 0.05 M HF solution [93] . Fig. B.1 (e) shows a gelation process

in a biopolymer system. The biopolymer is a mixture of 3% w/w

whey protein isolate and 0.04% w/w of gellan gum. Incubation

at 5 ◦C resulted in bicontinuous morphology with interconnected

microstructures of a polymer-rich phase and a serum phase (in

dark color) [94] . Similar synthetic morphologies are represented in

Fig. B.1 (i) and Fig. B.1 (j). 
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