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ABSTRACT

We present a general framework for the design/optimization of materials that is capable of accounting
for multiple information sources available to the materials designer. We demonstrate the framework
through the microstructure-based design of multi-phase microstructures. Specifically, we seek to
maximize the strength normalized strain-hardening rate of a dual-phase ferritic/martensitic steel
through a multi-information source Bayesian optimal design strategy. We assume that we have multiple
sources of information with varying degrees of fidelity as well as cost. The available information from all
sources is fused through a reification approach and then a sequential experimental design is carried out.
The experimental design seeks not only to identify the most promising region in the materials design
space relative to the objective at hand, but also to identify the source of information that should be used
to query this point in the decision space. The selection criterion for the source used, accounts for the
discrepancy between the source and the ‘ground truth’ as well as its cost. It is shown that when there is a
hard constraint on the budget available to carry out the optimization, accounting for the cost of querying
individual sources is essential.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Integrated Computational Materials Engineering (ICME) [1,2], as
currently understood, consists of the integration of multiple levels
of computational tools, in combination with experiments, along the
materials design/optimization chain to (i) establish quantitative
Process-Structure-Property-Performance (PSPP) relationships; and
(ii) exploit the so-established PSPP relationships for the accelera-
tion of the materials design/optimization process. A challenge
associated with ICME is the fact that the explicit integration of
multiple computational materials tools remains an outstanding
task [3].

While there have been some successes in terms of fully inte-
grated ICME approaches to materials design [4—7], in most cases it
is assumed that at each level/scale of simulation there is only one
model that serves as a linkage along the PSPP relationship. This
paradigm is somewhat restrictive as it is often the case that often
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times there are multiple models, with different levels of fidelity and
associated (computational) costs, that could potentially be used as
linkages to carry the modeling chain forward. Furthermore, exist-
ing frameworks do not explicitly account for the possibility of using
other types of information, such as experiments, alongside
computational models, within the same materials design/optimi-
zation framework.

Multifidelity methods have seen significant application in en-
gineering design optimization. Most approaches build corrections
to low-fidelity information from higher fidelity sources, such as
adding global response surface corrections to low-fidelity models
[8,9], using low-fidelity information for coarse-grained search
while using high-fidelity function values for fine grained decisions
[10,11], creating a response surface using both high- and low-
fidelity results [12,13], and running higher-fidelity models when
two or more lower-fidelity models disagree [14,15]. More formal
multifidelity optimization frameworks use either a local approach,
such as trust region model management [16—18], or a global
approach constructed via interpolation of the high-fidelity objec-
tive function. For example, efficient global optimization, sequential
Kriging optimization, and knowledge gradient optimization use a
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Gaussian process model to estimate the location of high-fidelity
optima and guide multifidelity sampling [19—21]. Recent work by
the authors has also considered the incorporation of correlated
models and differing types of information sources [22—27]. Recent
review articles (see e.g., Refs. [28,29]) also highlight the advances in
multifidelity model fusion and the scope of the field.

While the ability to handle differing information sources is
critical to a fully integrated ICME framework, we also have to
further consider that ICME poses the establishment of linkages
along the PSPP chain as a necessary, but not sufficient, condition
towards the acceleration of the materials design/optimization
process. ICME-based PSPP model chains tend to be computationally
costly and a key outstanding challenge is how to utilize these ICME
tools to efficiently explore the materials design space. Currently,
high-throughput (HT) experimental [30—32] and computational
[33] exploration of the materials space constitute the dominant
paradigm. These approaches, however, tend to be sub-optimal
when there are constraints on the available resources.

To overcome the challenges associated with the open-loop
exploration (computational or otherwise) of the materials design
space, notions of optimal experimental design—based on Bayesian
Optimization, for example—have been put forward [34,35] and
have been shown to be quite effective in carrying out the targeted
search of optimal materials solutions by balancing the exploration
and exploitation of the materials design space. However, most
Bayesian Optimization based frameworks, similar to ICME-based
works, rely on a single source of information (i.e., model or
experimental response surface) to query the materials design
space. In the absence of sufficient data—as it is most often the case
in materials design/optimization problems—relying on a single
model from the start is highly risky. Moreover, such an approach is
limited as it implicitly requires the use of the most accurate
approximation to the ‘ground truth’ available to query the design
space at every step of the sequential materials design/optimization
task. However, a high degree of fidelity to the ‘ground truth’ often
comes at a considerable cost in terms of resources and time.

A subset of the present authors [35,36] have recently sought to
address this challenge by adaptively selecting competing (non-
parametric) theories or models relating materials features to their
performance [35,36]. The framework begins the exploration of the
materials design space by assuming that each of the competing
models has equal weight. The weight of individual models is then
adjusted by computing the Bayesian evidence relative to the ac-
quired data. Bayesian model averaging is then used to find the best
next point to query in the design space as determined by all the
competing models with their relative contribution to the utility
function being adjusted by their updated weight. The framework,
however, took a very conservative approach to information fusion
and treated each model as statistically independent, ignoring the
correlations between the models that could potentially be exploi-
ted in the materials design/optimization scheme. While this may
not be a major issue when using non-parametric models (models
that have no internal structure based on/constrained by physics),
this may be a significant limitation when the models available are
all connected by the common underlying physical phenomena they
intend to represent.

State-of-the-art of approaches to the computer/data-enabled
discovery and/or design of materials has moved forward signifi-
cantly but there remain important issues to address. Specifically,
model-based ICME approaches focus on integration of tools along
the PSPP chain assuming there is only one model/tool relevant to
each level (or linkage) of the problem. On the other hand, data-
centric approaches tend to focus on the brute-force exploration of
the materials design space, without much emphasis on being able
to inform decisions on where to explore next based on the

knowledge already acquired. Furthermore, both types of frame-
works tend to discount the need for allocating resources in an
efficient manner.

In this work, we present a framework that addresses the chal-
lenges outlined above. Specifically, we tackle the challenge of
optimizing the features of a dual-phase microstructure for a specific
(mechanical) property/performance metric. We further assume
that we have at our disposal a set of models of varying complexity
(or computational cost) and fidelity. We also consider that we have
access to a ‘ground truth’, in the form of an expensive
microstructure-based finite element model that can be queried at
much more expense than the other sources of information and that,
therefore, should be queried as infrequently as possible, provided
the design space represented by such ‘ground truth’ is sampled
efficiently.

The (inexpensive) sources used in this work are fused by ac-
counting for their mutual correlation as well as their correlation
with the ‘ground truth’. The framework accounts for the value of
individual information sources in relation to the property we wish
to optimize. The queried source is used to construct a fuse model
that represents our best estimate for the response of the ‘ground
truth’. We then incorporate the fused model within a Knowledge
Gradient framework in order to carry out, in a principled manner,
two decisions: (i) which source should be used to query the ma-
terials design space; and (ii) which location of the materials design
space to query; taking into account a fixed budget (cost) for queries
to carry out before assessing the ‘ground truth’.

We note that we have previously presented preliminary work
related to this problem [27] although a major difference between
the previous approach and the one presented here is the fact that
here we not only consider a significantly higher number of infor-
mation sources (six versus three), but also explicitly account for the
computational cost associated with individual sources and perform
the optimization task under hard constraints in terms of compu-
tational resources (represented as total computing time) available
to carry out the materials design/optimization task.

While the framework is demonstrated in a computational
context, the problem set up and its resolution closely mimics a
typical materials design/optimization campaign: (i) there are more
than one potential source of information (experimental and/or
computational) about the system to be investigated; (ii) each of the
information sources has different degree of fidelity with regards to
the ‘ground truth’; (iii) each source has different cost (monetary
and/or otherwise); and (iv) there are hard constraints in time and
resources available to complete the research campaign. The last
point is often overlooked but constitutes a very important limita-
tion to the effectiveness of any approach towards materials design/
optimization. Indeed, at the end of the paper we provide ample
(computational) evidence for the fundamental importance for ac-
counting not only for the utility but for the cost of information
sources when there are (as always) hard resource constraints.

2. Mechanical behavior of dual-phase microstructures

In this work, we demonstrate our materials design/optimization
framework by focusing on the mechanical response of dual-phase
advanced high strength steels. In these alloy systems, the micro-
structure consists of a relatively soft, ductile ferrite phase that is
strengthened by the hard martensite phase [37]. The overall me-
chanical response of these dual-phase microstructures are
controlled by the (non-linear) properties of the constituent phases,
the microstructural features such as volume fraction, and the (non-
linear) interaction among the constituent phases [38—41]. In
principle, the overall response of these dual-phase microstructures
can be tuned and optimized. Unfortunately, any approach to
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microstructure design/optimization that does not rely on predictive
models for the overall response of the microstructure will require
extensive and expensive trial-and-error experimentation.

The overall mechanical response of composite dual-phase mi-
crostructures can be predicted with a high level of fidelity using
single [38—41] or multi-scale [42,43] microstructure-based finite
element calculations. Unfortunately, these models tend to be
computationally costly, precluding their use to carry out direct
optimization — of mechanical properties — over the entire
microstructure space. The overall mechanical response of com-
posite dual-phase microstructures can also be predicted using less
computationally expensive reduced-order models with a lower
level of fidelity. These reduced-order models include simple models
that make strong assumptions on how strain [44], stress [45] or
work of deformation [46] partitions between the constituent pha-
ses, and sophisticated micromechanical homogenization schemes
that consider the dual-phase microstructure as a matrix with in-
clusions of another phase homogeneously dispersed within it [47].
The computational cost and predictive power of these reduced-
order models also vary greatly, and the two are not necessarily
correlated. The predictive power of a reduced-order model, here,
refers to the range of microstructure space over which the model
can accurately predict the microstructure-mechanical response
correlation.

Recognizing the advantages and limitations of different poten-
tial cheap models used to predict the response of dual-phase mi-
crostructures, in this work we treat all of them—reduced-order
models and micromechanical homogenization schemes—as sour-
ces of information with varying value and cost, with regards to the
optimization problem at hand. In other words, in order to tackle the
challenge of optimizing the dual-phase microstructures for
enhanced mechanical performance, we assume that we have at our
disposal a set of models of varying complexity (or computational
cost) and fidelity. In order to demonstrate our framework, the high-
fidelity microstructure-based finite element calculations are
considered as ‘ground truth’. Furthermore, the cost to query the
‘ground truth’ is taken to be much more expensive than the other
sources of information.

Before we continue with the description of all the information
sources and the finite element calculations, we note that the
problem posed here is a drastic simplification of the real prob-
lem—even within a simulation-only setting—as we completely
ignore the fact that microstructure is ultimately controlled via
material chemistry and processing. A more realistic problem
setup would consist of models incorporating the process/
chemistry-microstructure connection as well as the effect of
both the chemistry and the processing conditions on the prop-
erties of the constituent phases. For the sake of demonstration, in
this work we ignore the process/chemistry-microstructure
connection and limit our design space to simple microstructural
descriptors.

2.1. Microstructure-based finite element modeling

The microstructure-based finite element modeling to predict
the overall mechanical response of dual-phase microstructures is
carried out using 3D representative volume elements (RVEs) as
described in Refs. [27,41]. Fig. 1 shows two realizations of a 3D RVE
of a dual-phase microstructure with about 50% volume fraction of
the martensite (hard) phase. The RVEs are constructed using C3D8
brick elements of the ABAQUS/Standard element library [48], and
have a dimension of 100um x 100um x 100um. The RVEs are
subjected to monotonically increasing uniaxial tensile deformation
under periodic boundary conditions.

In the finite element calculations, it is assumed that both the

Soft phase Hard phase

Dual-Phase RVE

Realization-1

froa = 54.22%

Realization-2

Fig. 1. Two realizations of the representative volume element (RVE) of a dual-phase
microstructure with 54.22% (by volume) of a hard (martensite) phase. The two re-
alizations refer to different distributions of the hard phase particles in the RVE with a
fixed phase volume fraction.

ferrite and the martensite phase follow an isotropic elastic-plastic
constitutive relation, with identical Young's modulus—E =
200GPa—and Poisson's ratio—» = 0.3, and a Ludwik type strain-
hardening response,

nP
P =rh+KP (b)), (1)

where 7P is the flow stress, eﬁ, is the plastic strain, 75 is the yield
strength, KP is the strengthening coefficient, and n? is the strain-
hardening exponent of phase p. The values for these parameters
are given in Table 1. The models are qualitative in nature and the
parameters used are chosen in order to have a microstructure that
represents a soft phase (ferrite) with a lower initial yield strength
and a higher strain-hardenability than the hard phase (martensite)
[38—41].

2.2. Reduced-order models

The overall mechanical response of a dual-phase microstructure
can also be predicted using reduced-order models constructed
under different assumptions regarding the partitioning of strain,
stress or work of deformation among the constituent phases. Three
such reduced-order models considered here are: (i) the Voigt/
Taylor model that assumes isostrain partitioning, (ii) the Reuss/
Sachs model that assumes equipartitioning of stress and (iii) the
isowork model that assumes both phases undergo identical works
of deformation as the composite microstructure is deformed [49].
For all three reduced-order models the constitutive relation, 77 =
f (sgl), is assumed to follow Eq. (1), with the values of the param-
eters given in Table 1.

2.3. Micromechanical models

In addition to the simple reduced-order models presented
above, we also exploit three more sophisticated micromechanical
homogenization schemes as sources of information that provide
estimates of the overall mechanical response of dual-phase mi-
crostructures. The first two homogenization schemes employed

Table 1
Parameterization of the Ludwik power law for the constituent phases of the dual-
phase microstructure.

Constituent Phase, p 77 [MPa] KP [MPa] nP
Soft (ferrite) 300 2200 0.5
Hard (martensite) 1500 450 0.06
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here are referred to as ‘secant method - 1’ and ‘secant method - 2’,
whereas the third one is referred to as the ‘elastic constraint’
method. The secant method proposed by Weng [47], predicts the
mechanical response of a two-phase composite microstructure
based on Hill's weakening constraint power in a plastically-
deforming matrix. In a dual-phase microstructure, where both
phases are capable of undergoing plastic deformation, and the
phase constitution covers the entire range, i.e., zero-to-one (0%
phase 1 & 100% phase 2) to one-to-zero (100% phase 1 & 0% phase
2), it is difficult to decide which phase should be considered as an
inclusion and which phase should be considered to be the matrix.
Thus, the ‘secant method - 1’ is the secant method proposed by
Weng [47], where the ferrite phase is considered the matrix, while
the scenario when martensite is considered the matrix is referred
to as ‘secant method - 2. It is expected that these two variants of
the secant method will be valid in opposite regions in the micro-
structure design space. The third homogenization scheme, referred
to as ‘elastic constraint’, is based on Kroner's treatment of the
matrix-inclusion system under elastic constraints [47]. For this
method, the final prediction does not depend on which phase,
ferrite or martensite, is assumed as inclusion or the matrix. For all
three homogenization schemes, ‘secant method - 1°, ‘secant
method - 2’ and ‘elastic constraint’, the inclusion-inclusion inter-
action at finite concentration are accounted for by the Mori-Tanaka
method. For all three homogenization schemes, the constitutive
relation, 7P :f(sgl), is assumed to follow Eq. (1), with the values of
the parameters given in Table 1.

2.4. Comparison of the predictions of ‘information sources’ and the
‘ground truth’

In this work, we treat all the reduced-order models, Section 2.2,
and micromechanical homogenization schemes, Section 2.3, as
sources of information, while the microstructure-based finite
element calculations, Section 2.1, are treated as ‘ground truth’. The
predicted flow curve of a dual-phase microstructure with 25%
volume fraction of the hard (martensite) phase, using the reduced-
order models and micromechanical homogenization schemes are
compared against the finite element results in Fig. 2. As can be seen
from the figure, compared to the finite element predictions, the
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Fig. 2. Comparison of the predicted stress-plastic strain curves by the three reduced-
order models and the three micromechanical homogenization schemes with the
microstructure-based finite element calculations (RVE) of a dual-phase microstructure
with 25% volume fraction of the hard phase.

isostress model significantly under-predicts the stress values at
nearly all plastic strain levels. The isostrain and isowork models, on
the other hand, over-predict the stress at low strain levels. How-
ever, at large strain levels their predictions are comparable with the
finite element predictions. In addition, none of the reduced-order
models are able to correctly predict the overall strain-hardening
response of the dual-phase microstructure. Of all the micro-
mechanical homogenization schemes, predictions of the Weng [47]
secant model with the soft phase considered as the matrix (secant
method - 1) are comparable with the finite element calculations at
low strain levels. The predictions of the Weng [47] secant model
with hard phase considered as the as matrix (secant method - 2)
and the elastic constraint model are roughly the same, and at low
strain levels both over predict the stress values.

The flow strength and the strain-hardenability of a material are
two very important mechanical properties with practical implica-
tions for both its performance and manufacturability. These two
fundamental mechanical properties can be reduced to a single
metric by introducing a strength normalized strain-hardening rate,
given as (1/7)(dr/dep). This quantity provides an indication of the
ductility and formability of the material, with higher values cor-
responding to higher ductility and formability. Fig. 3 shows how
(1/7)(d7/dep) varies with the volume fraction of the hard phase,
fhard, estimated at a plastic strain level of ey = 0.9% from the
microstructure-based finite element calculations. The figure shows
that (1/7)(dr/dep;) exhibits a maxima at a finite volume fraction of
the hard phase. The variation of (1/7)(dr/dep) in the figure also
exhibits small perturbations, indicated as error bars, arising from
seven different realizations of the RVE representation of the dual-
phase microstructure with identical phase constitutions. The
response of (1/7)(dr/dep) predicted using the three reduced-order
models and the three micromechanical homogenization schemes
are also shown in Fig. 3. As can be seen, none of the approximate
models or information sources are capable of reproducing the
response predicted using the microstructure-based finite element
calculations over the entire phase constitution space. The ‘Secant
method-1’ approximation is capable of reproducing the response at
small volume fractions of the hard phase but the discrepancy with
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Fig. 3. Strength normalized strain-hardening rate (1/7)(d7/dep) at ey = 0.9% as a
function of the volume fraction of the hard phase, fj,q. Predictions of the three
reduced-order models and three micromechanical homogenization schemes are
compared to the microstructure-based finite element calculations (RVE).
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the ‘ground truth’ becomes significant at volume fractions above
20%. Most models tend to converge towards the finite element
predictions when the majority of the microstructure consists of the
hard phase. In this regime, the microstructure exhibits no strain-
hardenability.

The results presented in Fig. 3 clearly show that all the infor-
mation sources—reduced-order models and micromechanical ho-
mogenization schemes—are incapable of reproducing the ‘ground
truth’ with an acceptable level of fidelity. On the other hand, these
information sources are cheap and their predictions differ from the
‘ground truth’ in a systematic manner. Thus, it may be possible to
learn this discrepancy and use this knowledge to arrive at a more
robust estimation of the ‘ground truth’ at an extremely low cost.
The computational cost of each information source and the ‘ground
truth’ is calculated based on their run time on a PC equipped with
an Intel® Xeon® E5-2670 v2 (Ivy Bridge-EP) processor. The run
time of a given information source was determined by tracking the
wall-clock time using the ‘tic’ and ‘toc’ functions in MATLAB. To
avoid the effect of external load due to memory constraints, each
information source was queried 1,000 times and the average run
time over 1,000 queries was considered as the run time or cost of
each information source. The final assigned computational cost to
each information source are given in Table 2. While all the infor-
mation sources considered here are computational models and the
costs for each information-source is simply the computational time,
our approach is generic enough to incorporate any other type of
information source or cost, as long as they can be represented in a
consistent fashion.

3. Design framework

An optimization problem can be simply written as,

X* = argmax f(x), (2)

xeyx

where fis the objective function, and x is a set of design variables in
the vector space x, and x* is the final design point. In real-world
applications, an analytical form of the objective function is often
unknown and/or expensive to evaluate, and there are oftentimes
constraints placed on decision-making. Additionally, in most real-
world applications, there are potentially multiple ways in which
one can query the design space. One can use, for example, a com-
bination of numerical simulations, experiments and expert opin-
ions, to approximate the objective function with varying fidelity or
accuracy, and with varying cost (monetary or otherwise). Here, we
present a framework that exploits multiple information sources
based on a trade off between the cost and fidelity of a specific in-
formation source by augmenting Eq. (2). Our framework seeks the
value of x* under an overall resource (allocated monetary budget or
time) constraint.

Table 2
Computational cost of the different information sources used.

Information Source Cost (seconds) Normalized Cost

Reduced-order Models

iso-strain 23%x 1074 1
iso-stress 1.0x 1073 44
iso-work 47x 107" 2.0x 10°
Micromechanical models

secant method 1 3.8 x 10! 1.7 x 10°
secant method 2 8.4 x 10! 3.7 x 10°
elastic constraint 3.6 x 10 1.6x 10°

Finite element (RVE) or ‘ground truth’

RVE 7.2x 10% 3.1x 107

A schematic of our framework is shown in Fig. 4. As shown in the
figure, we first model the response of each information source
through Gaussian process (GP)-based surrogates. Next, we proceed
to fuse them using standard approaches for the fusion of normally
distributed data. The fused means and variances in the input design
space, ¥, are then used to construct a fused GP model. The fused GP
model is now used to determine the next design point and the
information source to query while balancing the cost of the query
and the value of such query relative to the objective function. Once
the selected design point has been identified and a query has been
made, the corresponding fused GP is updated. This loop is
continued until the objective of the optimization problem has been
met or the resource allocated to this optimization task has been
exhausted. The framework is further described in detail in the
subsequent paragraphs.

We assume that we have S information sources, f;(x), where ie
{1,2,...,5}, available that can be used to approximate the objective
function, f(x), at x. The response of each of the S information
sources are first modeled through GP-based surrogates, Fig. 4. GPs
for regression purposes consist of a nonparametric Bayesian
approach to conditioning a probability distribution to training data
[50]. GP regression models are widely used as surrogate models in
engineering due to their flexibility and ability to be updated as
more information is gained. In our work, the GPs are fit using data
from previous queries, {Xy,,yy,}, where Xy, = (X4, ..., Xy, ;) corre-
sponds to the N; input samples used to query the response of source
iand yy, corresponds to the output—the domain of the information
source correspond to the microstructural degrees of freedom (i.e.,
phase fractions) available. The posterior GPs distributions of each f;,
fep.i(X), at any point X are

fopi(x) ‘XNI YN, ~ A <#i (%), %P,i(x)> ; (3)
where

T 2 -1
(%) = K (X, %) [Ki (X Xy) + 02 0] W (4)
and

-1
0p(%) = ki(%,%) — K; (X, %) [Ki (X, X)) + 0%11]  Ki (X ).
(5)

Here, k; is a real-valued kernel function associated with informa-
tion source i over the input space, K;(Xy,, Xy,) is the N; x N; matrix
whose m, n entry is k;(Xy, 1, Xp ), Ki(Xn;, X) is the N; x 1 vector whose
mh entry is k;(Xy, ;, X) for information source i, and the term ¢2 ; can
be used to model observation error of information source i or to
guard against numerical ill-conditioning. A major ingredient of GPs
is the prior information about the degree of correlation between
different points in the input space. This information is encoded in a
kernel function. In this work we assume a relatively smooth
response surface based on the behavior of the ‘ground truth’ shown
in Fig. 3 and thus we use the squared exponential kernel,

d

7 \2
kix.X) = o2 exp ( By M) | (6)

2
o1 2l

where d is the dimension of the input space, ¢2 is the variance, and
I, where h = 1,2, ..., d, is the characteristic length-scale that
measures the degree of correlation in the input space. We assume
that each dimension of the input space, h, has its own stationary
characteristic length-scale—the formulation is general but in this
case we attempt to solve an optimization problem with a one
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Construct
Gaussian Processes for
Information Sources

A

Query the Selected Design Select the
Point from the Selected Design Point and
Information Source Information Source

Return the Design Point with
Maximum Mean of Fused GP

Compute the Expected

Value-Gradient Utility per Unit
Cost for all Information Sources
and Alternative Samples

Fig. 4. Flow chart of the proposed efficient multi-information source optimization framework.

dimensional design/input space. The GP models for each informa-
tion source are fit through maximum likelihood or Bayesian tech-
niques [50].

The uncertainty of each information source with respect to the
‘ground truth’ can be estimated from the intrinsic variance of the
GP as well as the discrepancy between the information source and
the ‘ground truth’:

07 (X) = 0gp i (X) + 0F (%), (7)

where afzj(x) is the variance of the discrepancy of information
source i. We note that this variance can in principle vary over the
input space.

While it is to be expected that low cost information sources with
missing physics will exhibit large discrepancies with respect to the
‘ground truth’, in this work our hypothesis is that every source
contains useful information about the ‘ground truth’ that is
expensive/difficult to observe/query. In this specific case this is
justified as all the reduced-order models and homogenization
schemes use the same inputs and produce the same outputs as the
‘ground truth’ microstructure-based finite element calculations.
More importantly, from an epistemic point of view, all the infor-
mation sources seek to predict the response of a microstructure as a
function of imposed loading using different theoretical frameworks
and/or physical assumptions. Regardless of the underlying as-
sumptions (e.g. how stress, strain or work are partitioned among
the different phases), all sources are ‘causally’ connected to the
same underlying ‘ground truth’ and it is thus expected that they
will be correlated—to differing degrees—to it.

Since all information sources potentially have information about
the ‘ground truth’, we proceed to fuse them, using following
standard approaches for the fusion of normally distributed data
(following Winkler [51]), as they are all represented as GPs. Ac-
cording to this fusion method, the fused mean and variance at point
X can be computed as

€20 )
Pwink (X) = eTi(x)’1e ) (8)
> _ 1
UWinl((x) - eTi(x), ev (9)

contains the mean

11 (X), ..., us(X)]

where e =[1,...,1]7, u(x) =

values of S sources at point x, and =(x) is the covariance matrix
between sources,

71 (x) p1s(X) 01 (X)05(X)
Sx) = | P12 O1®72(X) e pas(X) T2 (K)0s(X) |
pr5(X) 71 (X)a5(x) - 2(%)

where 01-2 (x) is the total variance of source, i, at a point X computed
in Eq. (7) and p;(x) is the correlation between the deviations of
information sources i and j at point X. We use the reification process
described in Refs. [22,26], to estimate the correlation between the
errors of sources i and j, computed as

X)) o2(x)

a2 (x) + sz (X)pij(x) * o2(x) + ojz (x)pji(x)’

pij(X) = (11)

which is the variance weighted average of the correlation co-
efficients computed by reifying sources i and j respectively as

. i(X)
(%) = 4
V0 - 0)? + )
(12)
pji(X) = %)

V(10 — 1i(20)* + 7 (%)

where y;(X) and N,( ) correspond to the means of sources i and j,
and oiz( ) and ¢ (x) are the total variances of information sources i
and j at x. The correlations between the errors of two models/
sources is estimated using the procedure described in Refs. [22,26].
We used the fused means and variances in the input design space x
to construct a fused GP model. Letting pwink(X1.y,) and
2(XqN,) = diag(o\zNink(m), e ‘T\ZNink(fo)) be the vector of fused
means with a diagonal matrix of the fused variances at the sam-
pling set Xy.y, Cx, the posterior predictive distribution of the fused
model is given by:

~fused

f X) ~ . (”fused (X), sfused (X)), (13)

where
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Mfused(x) — K<X1;NI7X)T {K(Xl;NﬂX];NI) + 2(Xl:Nf)] B

By constructing the fused GP, in each iteration of our proposed
methodology, we determine the next design point—i.e., phase
fraction to evaluate—and information source to query—i.e., model
connecting microstructure and response—by balancing the cost of
the query and the value of such query relative to the objective
function, Eq. (2). In order to select the next point to query we first
generate a Latin Hypercube experimental design, denoted as X
over the input space. Let (Xq.y,Y1.v) be the design points and the
corresponding objective values, and i;.y be the indices of the
queried information sources up to time step N. In a Bayesian opti-
mization framework, the choice of utility function determines the
next (unobserved) point in the design space to explore. While there
are a number of possible utility functions to choose from, here we
propose a two-step look ahead utility which considers the imme-
diate improvement in one step as well as the expected improve-
ment in two steps.

This utility, which is obtained by querying the design point xe
X, from information source i is defined as

UX.i = [E|: max 'ufused(x/) + max EIX i(x”) X1:N;Y1:Ns i]:Na XN+1 =X,
’ X' €Xaie x'eXay

where El, ;(X”) is the one-step look-ahead expected increase in the
maximum of the fused GP given Xy,1 =X and iy,1 =i as
EIXJ-(XH) _ [E[ max quused (x') fused (x)).

X Xy

XN42 :x”} — max u
X € Xae

(16)

We note that to compute the expectation in Eq. (15) we use a
Monte Carlo approach, drawing Nq independent samples from the
normal distribution of the GP of information source i at a design
point X, f(X) ~ .7 (u;(X), 6%p (X)), ¢ = 1, ..., Ng. Then, by tempo-
rarily augmenting (x, f(x)), one at a time, using the available
samples of information source i, the mean of the fused GP is
temporarily updated, which is denoted as ,u,f(‘fi“d‘q, and the utility is
approximated as '

Ny

e 1 fused,q /7 q "
Ui =R, ;(x@%‘,t“&i () + max EIf(x")), (17)

where Elf(vl.(x”) is the one-step look-ahead expected increase in the
maximum of the fused GP upon augmentation of query (x, f? (x))
to information source i. We compute this expected increase using
the Knowledge Gradient metric over the temporary fused GP as
discussed in Ref. [52].

Using the Latin Hypercube sampling over the input space, we
evaluate the utility function for each of the information sources by
removing the previously added sample and augmenting the next
sample in the proposed alternatives. The next point to query-
—among all the candidate points—with the best information
source is determined using the following policy:

Mwink (X1 :Nf> )

sfused Xy — K(X,X) — 1<(x]:Nf, x)T [K (xltN,,xlsz> n z(xmfﬂ 711<(x1:Nf,X) .

(14)

argmax X (18)

iell,...S|xeXa “x,i

(iNe1,XN41) =

where Gy ; is the cost of querying information source i at a design
point x.

Once the selected design point has been identified and a query
has been made, the corresponding fused GP is updated. This loop is
continued until the objective of the optimization problem has been
met or the budget allocated to this optimization task has been
exhausted. The final design, x*, is then chosen as:

x* = argmax ufused (x) (19)
Xy

iNy1 =1, (15)

4. Designing dual-phase microstructures for enhanced
mechanical performance

The framework, Fig. 4, is now demonstrated against the problem
of identifying the phase constitution —represented in this simpli-
fied instance as just the volume fraction of the constituents in the
dual-phase microstructure— that results in the maximum form-
ability metric. We consider the microstructure-based finite element
calculations as ‘ground truth’ and use the three reduced-order
models and three micromechanical homogenization schemes as
the cheap information sources available to elicit the behavior of the
composite dual-phase microstructure.

The optimization process starts by querying (once) the cheap
and the ‘ground truth’ sources. These data are then used to
construct the initial GPs used to emulate each of the information
sources. The framework is then used to identify which information
source to use next, and where in the input space to use it.

In this first demonstration of the framework, after five queries to
any of the cheap sources the framework makes the recommenda-
tion for the next point to query using the expensive ‘ground truth’.
We note that the framework allows for the querying of any of the
cheap sources multiple times (or not at all) as long as the five-query
budget has not been exhausted. We also note that while the cost is
considered in the construction of the utility function, the total
expenditure (i.e. total computational resources used) is not accu-
mulated. Implicitly, this set up thus considers that there is no real
hard budget constraining the optimization. This problem setup will
be contrasted with a case in which there is a hard budget constrain
for the total computational expenditures before a query to the
‘ground truth’ is made, as described later in Section 5.
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Fig. 5 shows the fused model obtained by our approach
following seven queries from the ‘ground truth’, with mean rep-
resented by the smooth red line and 99.7% confidence interval
represented by the red shaded area. We compare these results to
the ‘ground truth’, represented with the jagged green line and the
green shaded area. Recall, from Section 2.4, that for the ‘ground
truth’ the variation in the values of (1/7)(d7/dep) for a fixed value
of fharq is due to different realizations of the RVE representation of
the dual-phase microstructure with identical phase constitutions.
As can be seen from Fig. 5, the fused model obtained by our
approach represents the ‘ground truth’ well in the region of the
optimal design.

Table 3 shows the progression of the optimization procedure as
the framework identifies the design point that corresponds to
maximum formability. The table compares the predictions from the
fuse model evaluated at the best design point thus far, Xfsed’ with
the value of the formability parameter evaluated using the ‘ground
truth’ at the same best design point. The table shows that it takes
seven queries of the ‘ground truth’ to produce a close-to-optimal
solution. While not shown here, in previous work [27] we have
shown how this multi-information source framework is superior to
the use of the ‘ground truth’ as the only query to sample.

Fig. 6 shows the number of times that any of the information
sources, including the expensive ‘ground truth’, are queried. Be-
tween each of these expensive queries, the different cheap infor-
mation sources are queried depending on their utility (including
consideration of their cost). The figure shows that all the cheap
sources are being queried, albeit at different frequencies, in order to
identify the optimal design. As described above, the querying policy
is controlled through Eq. (18), which balances improvement in

0 Fused and True Models
True 99.7% CI
=== True Mean (RVE)
Fused 99.7% CI
we= Fused Mean
= 50+t ]
S
=
e
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-50 : 5 : 5
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Fig. 5. The mean and 99.7% CI of the fused model obtained by the proposed approach
in comparison with the ‘ground truth’ (RVE).

Table 3

Performance of the optimization framework. The true optimal solution as obtained
by the microstructure-based finite element calculation (RVE) is (x*, f*) =
(21.6080, 29.3123).

Experiment Xfused ffused Strue (xfused)
2 36.1809 18.8470 25.4273
3 36.6834 20.7475 25.1903
4 32.1608 22.5232 27.1322
5 31.6583 28.9564 27.3177
6 26.1307 29.8824 28.8633
7 22.6181 29.7564 29.2840

«®+ RVE (Ground Truth)

* Isostrain

=%+ [sostress

=B+ Isowork
Secant method-1
Elastic Constraint
Secant method-2
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Number of Queried Samples
1]

15 20 25 30
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Fig. 6. Number of queries as a function of the experimental sequence for all infor-
mation sources.

objective with cost. The figure shows, for example, how in the early
stages of the optimization the ‘isostress’ and ‘secant method-1’
sources tend to be queried more extensively than the other four
available sources. In later stages of the process it is evident that
many more sources are being queried and this serves as an indi-
cation of the ability of the present framework to optimally select
the most cost effective information sources. We also point out here
that very cheap information sources, such as the isostress and
isostrain models, could potentially be queried exhaustively and still
follow the policy determined by Eq. (18). In this case, the cost of
querying is so negligible that any potential for objective improve-
ment would lead to these sources being selected. This is an excel-
lent feature of the policy, since in general, if we have access to a
very inexpensive information source, it makes intuitive sense to
quickly gather all information we can from it.

Fig. 7 shows the GPs of the information sources. The black dots
show the samples queried from the information sources and the
black lines represent the mean function of these sources. The solid
shaded regions for each of the GPs correspond to the intrinsic un-
certainty of the GPs themselves and originates from the lack of
information about the response of that particular source in regions
not explored yet. In addition to this uncertainty, a comparison with
the response of the ‘ground truth’ is used to compute the
discrepancy of the information sources. The intrinsic uncertainty of
the GP and the discrepancy between the information source and
the ‘ground truth’ are added into the total uncertainty, shown as a
lighter shaded region.

The figure shows that none of the information sources performs
well over the entire design domain. Some sources overstimate their
predictions relative to the ‘ground truth’ (black solid line) while
some sources underestimate it. None of the sources provides even a
qualitative indication of where the optimal value of the ‘ground
truth’ should be. The application of the reification-based informa-
tion fusion, however, results in a fused model that reproduces, with
high fidelity, the response of the ‘ground truth’.

Fig. 6 shows that different sources are queried at different stages
of the optimization sequence. Moreover, Fig. 7 shows that while all
sources have a significant discrepancy with the ‘ground truth’,
some sources tend to be closer to it in some regions of the problem
space. To understand how different sources were correlated to the
‘ground truth’, we present the effective independent information
sources index in Fig. 8. This index was introduced first time in our
previous work [27], and can be understood as a metric that
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indicates the number of effective number of independent infor-
mation sources used to estimate the fused model at different re-
gions of the domain. If we define ¢2(x) as the variance of the
current best information source at point X, the number of effective
independent information sources with variance ¢2(x) at the point x
is given as

L = o2 (x)eT S(x) e (20)

If we have S total information sources, each with variance 2,
then this index will take the value S. Otherwise, if any information
source has a greater variance than the best current information
source (the source that is closest to the ‘ground truth’ in this

region), then the value of I will be less than S. This is typically the
case since information sources differ in their fidelity. This index also
takes into account the correlation between information sources,
which often results in redundant information that reduces the I.¢
value. The reification approach used in this work takes this into
account by detecting the correlation and discounting this effect
appropriately. We note that if these correlated sources were to be
treated as statistically independent, they would have undue evi-
dence on the overall estimation of the fused model. The value of I.¢
thus counts the number of information sources that provide useful
information.
Fig. 8 includes the I.¢ for all the cheap sources simultaneously
and compares this index against that of the isostress + secant
method-1 pair and the combination of the
isostrain + isowork + secant method-2 + elastic constraint. As can
be seen in Fig. 8, I is not large over the input space. For this
particular problem, it is often the case that only a few of the sources
are reasonable estimates of ‘ground truth’ at any given location in
the domain. This renders the contribution of the other more inac-
curate sources to I to be very small. In this figure, it is clear that
initially, until fi,,q =40%, the isostress + secant method-1 pair is
driving the fused approximation, which is clear from the fact that
the six-source index and the isostress + secant method-1 index
nearly overlap in this region. This means that the isostress + secant
method-1 are capable of explaining most of the variance with
regards to the ‘ground truth’. Examining Fig. 7 one can see that
these two sources are closer to the ‘ground truth’ than the other
four sources within this region of the input space. At the other end
of the domain, the other four sources are contributing more to the
prediction, which can again be seen from the near overlap with the
six-source index and the drop-off of the isostress + secant method-
1 pair. Note, that the proposed framework indicates that there is no
instance in which there are six effective information sources over
the entire domain. This results from two different factors: (i) there
are strong correlations between two or more sources at different
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regions of the domain — the correlated sources are not necessarily
the same everywhere; and (ii) some sources are very poor at pre-
dicting the ‘ground truth’ in some regions of the domain having
very large variance that renders their contribution negligible. This
is exemplified by the isostress + secant method-1 pair, which ac-
cording to Fig. 7 exhibit very large variance at intermediate-to-high
volume fractions of martensite. Accordingly, their contribution to
Lo in this region of the domain is negligible.

This result is significant as I.¢ essentially indicates what infor-
mation source (or model) operates in a specific region of the
problem domain. Thus, it is possible to use I, to uncover the
relevant sources and, indirectly, the relevant physics governing the
behavior of a system in different regimes. In this case, for example,
Logr suggests that the assumption of equal partitioning of stress in
the regime at low volume fraction of the hard particle seems to be
operationally correct. At higher volume fractions of the hard phase,
other theories may be more in agreement with the ‘ground truth’.

5. The impact of cost on optimal decision making under
budget constraints

We note that the set up of the test problem presented in Section
4 was somewhat arbitrary as we defined the acquisition protocol
(five queries to the cheap sources before querying the ‘ground
truth’) ahead of carrying out the exploration/exploitation of the
design space. In principle, we could have chosen to query the cheap
sources any number of times in between queries to the ‘ground
truth’. More importantly, while cost was used to compute the utility
metric of the design space, there was no explicit consideration of
budget available during the optimization exercise.

To resolve this issue, we considered a more realistic situation
that is more relevant to the process of optimal experimental design
for materials optimization:

e There is a finite set of information sources that can be queried at
any given time in order to learn more about the problem space.

e Each of the sources has different degree of fidelity with regards
to the ‘ground truth’ and, most importantly, different cost.

e There is a finite budget, expressed in terms of total cost (in this
case in computational time) available to explore and exploit the
domain space before the information source considered as the
‘ground truth’ is queried.

In order to demonstrate the effect of cost in our decision-making
process, we compare the average results obtained over 100 inde-
pendent simulations in two conditions—Ilabeled as ‘with cost
consideration’ and ‘without cost consideration’—in Fig. 9. In both
conditions, we consider a fixed budget (computational cost) of
100 s to be spent among all the cheap information sources before
querying the ‘ground truth’.

In the case identified as ‘with cost consideration’, we consider
the actual cost of information sources in the selection criterion in
Eq. (18), however in the case of ‘without cost consideration’, the
cost of all information sources are assumed to be the same during
the selection process. After the budget of 100 is spent, then the
‘ground truth’ is queried in both cases.

In the first case (with cost consideration), the cheap information
sources are queried exhaustively allowing the policy to obtain all
available information from the very inexpensive sources with
almost negligible cost. After this, the more expensive sources are
queried according to the balance between cost and utility, in a fully
automated fashion. While in the second case (without cost
consideration), as cost accumulation does not play a role in the
selection process, the expensive information sources are queried in
the early iterations. Therefore, fewer queries are performed,
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Fig. 9. Average maximum function value per cost for cases of decision-making with
and without cost consideration.

particularly on the cheaper information sources, in the limited
budget of 100s. The result is that the total budget is exhausted
before reaching the optimum. However, for the ‘with cost consid-
eration case’, the optimum is obtained.

Fig. 10 demonstrates the average number of queries to each
information source and the ‘ground truth’ over average cost for two
conditions of with and without cost consideration. As can be seen,
in the case of ‘with cost consideration’, the cheaper information
sources are exhaustively queried, which helps to find the optimum
with much less average cost in comparison to the case of ‘without
cost consideration’ as seen in Fig. 9. Essentially, the policy in place
has the ability to quickly gather all information from the negligible
expense sources prior to making a query to a more expensive
source. This provides for more informed queries to the more
expensive sources, and also matches the intuitive strategy con-
sisting of exhaustively evaluating the very inexpensive sources
immediately.

6. Concluding remarks

While there has been real progress in the development of ICME-
based frameworks for materials design, major issues still remain.
The challenges are closely associated to the resource-intensive
nature of the computational and/or experimental approaches to
exploring PSPP relationships as well as to the fact that most ICME
frameworks tend to assume that there is a single model or exper-
iment available at a given scale or PSPP linkage. A further limitation
of traditional ICME approaches is the fact that in most cases there is
no prescribed way to correct for discrepancies between models and
‘ground truth’.

In this work, we have presented a framework capable of utiliz-
ing multiple available sources of information to carry out a mate-
rials optimization task. By exploiting statistical correlations among
the different information sources as well as between the sources
and the ‘ground truth’ it is possible to develop a fused model that
incorporates the available (useful) information originating from all
of the sources. The fused model is represented as a GP and is thus
amenable to Bayesian Optimization. Here we have used the
Knowledge Gradient metric to efficiently balance the need to
explore and exploit knowledge of the materials design space in
order to find an optimal solution in as efficient manner as possible.
Our framework, however, goes beyond optimal experimental
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Fig. 10. Average Number of samples queried from the ‘ground truth’ (RVE) model and the information sources over average cost for the cases of decision-making with and without

cost consideration.

design, as it enables the selection of the most cost-effective infor-
mation source to use every time that we need to query the problem
space, while accounting for a total available budget.

While the proposed framework has been demonstrated by using
a combination of relatively inexpensive computational models, it is
important to note that each information source (including the
‘ground truth’) is represented as a stochastic model (i.e., a GP) and
thus there is no fundamental limitation to using experimental or
any other type of information as an independent information
source. One could, for example, combine mechanistic models,
machine learning derived non-parametric models, experiments at
different degrees of resolution, and even expert opinion as long as
each source is modeled as a GP or any other suitable stochastic
representation. The framework proposed thus provides a natural
approach to seamlessly combining experiments and simulations,
and hopefully will inspire and instigate future works in this
direction.
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