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Thermal conductivity at the bottom of the Earth’s lower mantle:
measurements of pyrolite up to 120 GPa and 2500 K
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Abstract

Knowledge of thermal conductivity of mantle minerals is crucial for understanding heat transport from
the Earth’s core to mantle. At the pressure-temperature conditions of the Earth’s core-mantle bound-
ary, calculations of lattice thermal conductivity based on atomistic models have determined values
ranging from 1 to 14 W/m/K for bridgmanite and bridgmanite-rich mineral assemblages. Previous
studies have been performed at room temperature up to the pressures of the core-mantle boundary,
but correcting these to geotherm temperatures may introduce large errors. Here we present the first
measurements of lattice thermal conductivity of mantle minerals up to pressures and temperatures
near the base of the mantle, 120 GPa and 2500 K. We use a combination of continuous and pulsed laser
heating in a diamond anvil cell to measure the lattice thermal conductivity of pyrolite, the assemblage
of minerals expected to make up the lower mantle. We find a value of 3.97}f W/m/K at 80 GPa
and 2000 to 2500 K and 5.9759 W/m/K at 124 GPa and 2000 to 3000 K. This rules out the highest
calculations of thermal conductivity of the Earth’s mid-lower mantle (i.e. K <6 W/m/K at 80 GPa),
but is consistent with both the high and low calculations of thermal conductivity near the base of the
lower mantle.
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1. Introduction

It is estimated that up to 16 TW of heat flows from the Earth’s core into the overlying mantle
(Pozzo et al., 2012). Heat transfer across the base of the mantle is the rate limiting step of how much
heat is extracted from the core and thereby controls the dynamics of the Earth’s core, the generation
of its magnetic field, and the energy budget of mantle convection. One key factor that influences the
magnitude of core-mantle boundary (CMB) heat flux is the thermal conductivity of the assemblage
of minerals that makes up the lowermost mantle, which can be approximated as 75% bridgmanite,
19% ferropericlase and 6% CaSiOg perovskite (Stackhouse et al., 2015). Determining the thermal
conductivity of these minerals at the high pressure and temperature is therefore a crucial step in
understanding the core-mantle heat flux and its many ramifications on dynamics of the deep Earth.

The lattice thermal conductivity of bridgmanite has been calculated using a variety of classical- and
quantum-mechanics based methods, providing a key starting point for calculation of pyrolite’s thermal
conductivity. The discrepancies between results from different research groups are large. At 120 GPa
and 2500 K, for example, five recent studies calculate thermal conductivity of MgSiO3 bridgmanite
to be 1, 5, 6.5, 9.5, and 14 W/m/K (Tang et al., 2014; Dekura et al., 2013; Stackhouse et al., 2015;
Ammann et al., 2014; Haigis et al., 2012). A sixth study extrapolates to 8.3 W/m/K upon scaling
from 300 K to 2500 K (Ghaderi et al., 2017).

The discrepancies reduce somewhat when estimating total conductivity for pyrolite by adding
bridgmanite’s radiative thermal conductivity and averaging with conductivities of ferropericlase and
calcium perovskite. For example, Tang et al. (2014) estimates 3.5 W/m/K total conductivity whereas
Stackhouse et al. (2015) estimates 10 W/m/K at 125 GPa and 2500 K.

Laboratory measurements of lattice thermal conductivity of mantle minerals have been conducted
up to the pressure of the core-mantle boundary, but measurements at pressure above 40 GPa have
always been at (or near) room temperature (300 to 500 K). Two different research groups measured
conductivity of bridgmanite to be 15 to 25 W/m/K at 120 GPa and room temperature, with conduc-
tivity decreasing with increasing Fe or Al substitution (Ohta et al., 2012; Okuda et al., 2017; Hsieh
et al., 2017). One high-temperature study of thermal conductivity of bridgmanite reached the pressure
of the uppermost lower mantle, and measured 8 W/m/K at 1070 K for pure MgSiO3 and 4 W/m/K
for Mgp.97Fe.03Si03 (Manthilake et al., 2011). Laboratory measurements have also been made on
lattice thermal conductivity of ferropericlase to CMB pressures at room temperature (Dalton et al.,
2013; Imada et al., 2014; Goncharov et al., 2015; Hsieh et al., 2018), of MgO to 32 GPa and 2500 K
(Goncharov et al., 2009), and of the pressure derivative of MgO up to 40 GPa and 2000 K (Rainey
and Kavner, 2014). Radiative thermal conductivity has been experimentally shown to be relatively
small (< 1 W/m/K) even at high temperatures (Lobanov et al., 2017, 2019a,b)

Overall, published experimental determinations of lattice thermal conductivity provide a starting
point for estimating thermal conductivity at the base of the Earth’s mantle, but large extrapolation
is required to reach the appropriate conditions of pressure and temperature.

To date, no laboratory measurements have been reported for thermal conductivity of bridgmanite,
ferropericlase, or Ca-perovskite at pressures and temperatures simultaneously above 40 GPa and
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500 K. The reason is the extreme challenge of maintaining a stable high temperature state while
quickly heating part of the sample and measuring the time-dependent response as heat flows through
the sample.

Here we present the first measurements of thermal conductivity of pyrolite at several pressures and
temperatures along the Earth’s geotherm from 40 to 124 GPa at 1900 to 2900 K. These measurements
combine several cutting-edge techniques: pulsed and continuous laser-heating, time-resolved tempera-
ture measurements, double-sided iridium coating of thin samples, and finite element modeling of heat
flow in a diamond anvil cell.

2. Methods

2.1. FExperimental Methods

We present the results of five high pressure runs in laser-heated diamond anvil cells. In each run,
an iridium-coated pyrolite sample is compressed, laser heated to ~2000 K, and pulsed laser heated
from one side. Thermal emissions are collected as a function of time and space, and are analyzed to
determine thermal conductivity of the pyrolite sample.

Each diamond cell is loaded with a ~6 pm-thick slab of pyrolite glass coated with 2 nm of titanium
and 43 £+ 5 or 178 4+ 5 nm of iridium, surrounded by potassium-chloride or argon, and pressed inside
the hole of a rhenium gasket. The titanium serves as an adhesion layer to prevent the iridium from
delaminating prior to the high pressure run. The first set of experiments used the thinner iridium
coating, which may have contributed to failure of several experiments not reported here, in which
holes formed in the iridium layer upon pulsed heating. The thicker coating was used for the second set
of experiments. The potassium-chloride or argon serves as the pressure medium and thermal insulation
from the diamonds. In the case of argon, the iridum-pyrolite-iridium sandwich was placed atop three
ruby spheres before gas-loading in order to separate it from one diamond. The pyrolite glass is the
same one used in previous measurements of radiative conductivity (Lobanov et al., 2019a). It was
synthesized by grinding together CaCOgs, MgO, Al,O3, SiOs and FeyOs, decarbonating at 850 °C
and fusing in a laser levitation furnace at 2000 °C in a gas with oxygen fugacity 0.7 log units above
the iron-wiistite buffer; see (Lobanov et al., 2019a) for details. The glass’s chemical composition was
measured by (Lobanov et al., 2019a) to be 38.15+0.12 wt% MgO, 46.6+0.1 wt% SiO3, 2.164+0.03 wt%
Ca0, 8.66 + 0.12 wt% FeO, and 4.24 + 0.06 wt% Al;Os.

The subsequent compression and heating procedure is similar to that presented in McWilliams
et al. (2015) and Konopkova et al. (2016). Samples are compressed to the desired pressure, heated to
~2500 K to convert the glass starting material to a polycrystalline assemblage of minerals (bridgman-
ite, ferropericlase, calcium-perovskite), and pulsed-heated from one side while measuring time-resolved
thermal emissions on a streak camera and spatially-resolved thermal emissions on a CCD camera. Sev-
eral sets of thermal emissions data are collected from each side to make sure temperatures do not drift
substantially through time. This also ensures that there is no residual amorphous material near the
hotspot that continues to crystallize during the experiment The samples are decompressed to ambient
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pressure, cross sections are cut with a focused ion beam, thickness is measured, and chemical com-
position is mapped in a SEM. Fig. 1 shows an example of a compressed sample and its cross section
after decompression. Further details are presented in the Supplementary Material.

2.2. Data analysis

We divide the analysis into data reduction, finite element modeling, and error analysis. In the first
step, the raw data is reduced to determine temperature as a function time and location on the two
iridium surfaces. Then a finite element model is used to find best-fit values of thermal conductivity of
the pyrolite sample, kpyro, and the insulating medium, ki, while fixing all other parameters to their
estimated values. Finally, all parameters are co-varied with kpyo and kp, is co-varied with both kpyro
and kips to determine the uncertainty in pyrolite’s thermal conductivity, o,

2.2.1. Data reduction

Each image from the streak camera is reduced to normalized temperature as a function of time
in a five step process. First, measured intensity is corrected for geometrical distortion in the streak
tube. Second, it is corrected for bias in the conversion efficiency from emitted photon to measured
intensity. The bias is both in time and wavelength, and is corrected with a reference image from a
tungsten lamp heated to a known temperature. Third, the Planck function is fit to intensity averaged
over a relatively wide time-window (3 or 10 us) using both temperature and emissivity as fitting
parameters. Fourth, emissivity is fixed to the value from the third step and the Planck function is
fit to the intensity averaged over a set of narrow time-slices. For example, Planck fits to forty slices
of 0.5 us width generate the ~20 ps-duration temperature-time curves in Fig. S4. The fifth step is
reduction to a normalized temperature, which enables efficient comparison of measurements to each
other and to finite element models. This normalization has no effect on the model parameters needed
to match the data, besides the parameter describing the magnitude of laser power.

In addition to measuring the temporal evolution of temperature, the spatial distribution of thermal
emissions from the CCD image are reduced to temperature versus distance. Briefly, we reference the
peak intensity on the CCD camera to the temperature measured on the streak camera prior to heating
pulses. We then use the Planck function to determine 7'(x). This analysis gives us the width of the
hotspot, Trwam, which is an important input for the finite element model used to infer thermal
conductivity. Here, FWHM’ means the full width at half the maximum temperature above the 300 K
baseline temperature. Details are described in the Supplementary Material.

2.2.2. Finite element modeling

Computational modeling is required to determine the thermal conductivity of our samples, be-
cause we lack an analytical model to the three-dimensional heat flow of this experiment. We solve the
governing heat equation using finite element modeling based on the FEniCS project (Alnas et al.,
2015). We model the diamond anvil assembly with an axisymmetric geometry with rotational symme-
try around the center of the assembly. We assume 300 K Dirichlet boundary conditions at » = 100 ym
and z = £40 pm, where r is radius from the center and z is the axial distance from the center of the
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sample (Fig. 2). Thicknesses of sample and insulation match those measured in each experiment. As
in Hsieh et al. (2017), we assume the volume of the iridium coating varies with pressure according to
its equation of state and that its surface area matches that of the sample. In other words, the iridium
adheres perfectly to the sample as the sample flattens under pressure. This means the iridium thins
by 5 to 10% less than the sample due to the fact that iridium is less compressible than pyrolite. All
thicknesses are listed in Table 1. An example of the finite element mesh is shown in Fig. S6.

The free parameters in this model are thermal conductivities of pyrolite, iridium and the insulator
(KCI or Ar). To restrict the parameter space that must be explored, we assume the lower bound
krr > 30 W/m/K (see Supplement for details). All other model parameters are either measured in this
study (such as the parameters describing the geometry), measured in other studies (density), assumed
(heat capacity), or are considered to negligibly affect the modeled temperature evolution of the iridium
surfaces (such as the thermal conductivity of the gasket and diamond, and the distance to boundaries
of the modeled domain). The < 2 nm thick titanium adhesion layer is not modeled, since it is much
thinner than the iridium layer and has similar conductive properties, meaning it provides negligible
resistance to axial heat flow, negligible heat capacity, and negligible radial conductance.

In reality, all three free parameters, kpyro, kir, and kins, depend on temperature, but we do not
model their temperature-dependencies here. Instead, our main results are the values of kyyr, that are
consistent with our data at each pressure, P, and range of temperatures, T+ op; see Fig. 4b and Table
2 for values of P, T', o, and estimated pressure uncertainty, op.

We model the background and pulse heating with two different methods in our determination
of kpyro and its uncertainty. Both methods solve the heat equation on the same domain, but they
differ in one important way. ‘Method Q’ includes a heating term @ on the pulsed-side iridium surface,
Q(r,t) = Qo(r)(1 + dQ(t)), where t is time, Qg is a background term, and d@ is the time-dependent
heating pulse. In ‘method T’ we impose a time-dependent Dirichlet boundary condition at the pulsed-
side iridium surface, T'(r,t) = 300 + To(r)(1 4+ dT'(t)), where T is absolute temperature in K, Tj is
a background term, and d1" describes the effect of the pulse heating. Method QQ models the thermal
evolution that is closer to the reality we expect: the spatial distribution of absorbed laser power remains
constant throughout the heating pulse. Method T models the case of a constant spatial distribution
of temperature, but in reality we expect a slight widening of the temperature distribution throughout
the duration of the pulse. The two methods result in best fit values of kpyro within 5% of each other
for four of our six data points, and up to 25% for the data points at 40 and 68 GPa. The comparison
of results obtained with these two methods is provided in Table S1 and the implementation of the
methodologies is further described in the Supplementary Information.

We use the two methods in the following sequence. First, we use method T to fit measurements of
temperature vs. time and temperature vs. distance. In this step we assume the values of kp, listed in
Table 1 and fit for kyyro and kins. Second, we remove the assumption of &y and search for all values of
(kpyro, krr, Kins) that fit the data. From this search, along with uncertainty propagation from all other
parameters (as describe in the Supplementary Material), we determine the uncertainty cr;fpym. Third,

we use these results as a starting point to find the best-fit of the conductivity k:gyro with method
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Q. Examples of best-fit models of method Q to data from 80 GPa data is shown in Fig. 3. Finally,
we assume the uncertainty in results obtained with method Q is proportional to that determined in

method T, that is a,?pym = a,{pymkfggym / k:gyro. We avoid searching the parameter space to determine
Q

T v explicitly, because the computational effort needed for method Q is significantly larger than that
for method T for reasons described in the Supplementary Material. The final results kf;gyro and a,?pyro
are reported without the superscript “Q)” in all summary figures and Table 2.

Uncertainty in J,Zpyro is determined by quadrature addition of uncertainties from: (i) the range
of values of Ky, that fit the data when exploring the three-dimensional parameter space k =
(kpyros kins, krr); and (ii) uncertainty propagated from uncertainty in seven measured or theoretically
estimated parameters. These seven parameters are pyrolite thickness, iridium thickness, other-side
insulator thickness, FWHM of spatial distribution of temperature, and pc, of pyrolite, iridium, and
the insulator. All other model parameters have minimal effect on the best-fit value of kpyro. Table S1
lists all uncertainties.

3. Results and Discussion

The newly determined thermal conductivity of pyrolite is between 3 and 10 W/m/K at all pressures
from 40 to 124 GPa (Fig. 4). This is consistent with both the low and high calculations of thermal
conductivity of pyrolite near the base of the lower mantle, but does not permit any estimates lower
than those of Tang et al. (2014) or higher than those of Stackhouse et al. (2015). At shallower depths,
near the middle of the lower mantle, our most precise datum rules out the conductivity calculations
with kpyro > 6 W/m/K (Stackhouse et al., 2015). At even lower pressures, our 40 GPa data rule out
the conductivity calculations with kpyro < 3.5 W/m/K (Tang et al., 2014).

While our data are consistent with previous laboratory measurements of bridgmanite at lower pres-
sure and /or temperature, comparisons are complicated by differences in sample composition (Fig. 5).
The conductivity of Fe-bearing bridgmanite at 26 GPa and 1000 K was measured by Manthilake et al.
(2011) to be 4 W/m/K, which matches our measurements of pyrolite at 40 and 41 GPa within the error
bars. Indeed, we expect little change overall since the higher temperatures studied here reduce the
conductivity of Fe-bearing bridgmanite by a few tens of percent, and the addition of magnesiowiistite
likely increases it by a few tens of percent. Compared to the room temperature experimental data
of Fe-bearing bridgmanite (Hsieh et al., 2017), the approximately two-fold lower thermal conductiv-
ity measured here suggests that the effect of heating from 300 to 2500 K, which likely decreases k,
outweighs the addition of ferropericlase, which likely increases k.

Our results suggest that the pressure dependence of thermal conductivity is relatively small, and
that it could be either positive or negative. Assuming a linear dependence on pressure over the range
40 to 124 GPa, the slope dkpyro/dP is estimated to be between -0.04 and +0.04 W/m/K/GPa. Even
the greatest values in this range are less than slopes for the theoretically-determined conductivities
of pyrolite in Stackhouse et al. (2015) (dk/dP = 0.06) and for bridgmanite in four other studies
(Dekura et al., 2013; Haigis et al., 2012; Ghaderi et al., 2017; Ammann et al., 2014), but in agreement
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with the pressure-derivative calculated for bridgmanite in Tang et al. (2014). In all cases, we are
comparing values of dk/dP along the 2500 K isotherm. The relatively small slope measured here
is broadly consistent with the room-temperature measurements of Fe-bearing bridgmanite of Hsieh
et al. (2017), which show dkpyro/dP ~ 0.03 W/m/K/GPa at pressures above 40 GPa. More detailed
analysis of pressure trends awaits further data. The possible influence of the spin-transition is especially
intriguing, as suggested by Hsieh et al. (2017).

Our highest pressure data point at 124 GPa and 2100 to 2800 K constrains the thermal conductivity
near the base of the mantle to the range 3-10 W/m/K. The lower end of this range overlaps with the
theory-based estimate of Tang et al. (2014), while the upper limit of this range is slightly lower than
the lowest estimate of Stackhouse et al. (2015).

The thermal conductivity of the lowermost mantle is one piece of a complicated puzzle that needs
to be solved to better understand the dynamics of the Earth’s mantle and core-mantle interaction.
The cooling of the core is largely dominated by the ability of the lower mantle to absorb the heat
flowing from the core, which in turn is controlled by the thermal conductivity, temperature gradients,
and speed of convective flow of the lowermost mantle. The speed of convective flow is determined by
rheology combined with thermal and chemical buoyancy forces. Our current understanding of lower
mantle rheology is mostly incomplete except for possible inferences of the broad viscosity structure
from geodetic and geodynamic observations (e.g., Mitrovica and Forte, 1997; Rudolph et al., 2015;
Lau et al., 2016). One source of buoyancy is the thermal expansion of mantle material in proximity to
the Earth’s hot core. Other sources are also likely, including density differences associated with deep
mantle structures that have been identified seismically by low shear wave velocities. An understanding
of whether these structures are largely static or highly dynamic is critical for determining the mantle’s
ability to absorb core heat flow (Nakagawa and Tackley, 2014).

It is possible to construct an understanding of core heat flow and its connection to heat transport
from the deep mantle from assumptions of the thickness of and temperature contrast across the
thermal boundary layer (Tang et al., 2014; Stackhouse et al., 2015) but uncertainties are large (see,
e.g., Figure 5 in Tang et al., 2014). A simple calculation shows the inherent impact due to multiplication
of these uncertainties. If we assume a range of core heat flow, Q = 7 to 15.5 TW, a range of thermal
conductivity, £ = 3 to 10 W/m/K, and a temperature jump across the thermal boundary layer,
AT = 600 to 2000 K, then we would determine a thermal boundary layer thickness, §, that is between

32 and 360 km by using the equation
kAT Acvb

4]

where Acvp = 1.5x 10 m? is the surface area of the core-mantle boundary. To arrive at a more precise
prediction, we clearly need a significant reduction in the uncertainties of the governing parameters
including the thermal conductivity.

It remains critically important to continue to improve our understanding about material proper-
ties of the deep Earth as the combination of high-pressure petrological studies, geodynamical model
simulations, and quantitative comparisons with seismological observations and models (e.g., Ritsema

Q=



236 et al., 2007; Jones et al., in revision) should eventually allow us to develop a deep understanding of
237 the way the planet loses its internal heat.
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Figure 1: (a) Iridium-coated pyrolite sample heated at 80 GPa. The hot spot is the white spot in the middle. The sample
is illuminated from the back and front by white light. (b) Secondary electron image of cross section of the iridium-coated
pyrolite sample surrounded with KCI, recovered from 80 GPa, covered in a tungsten protection layer (light grey) and
sliced in half by a focused ion beam.



Laser 1
+ Laser 2

Figure 2: Experimental setup for thermal conductivity measurements. An iridium-coated slab of pyrolite (black outline)
is heated from both sides by a continuous laser (Laser 1) and from the “pulsed side” by a pulsed laser (Laser 2). Thermal
insulation separates the sample from the diamond culets (light grey) and gasket (dark grey). Blue to red shading represent
simulated temperatures of pyrolite, iridium, and insulation from 300 K (blue) to 2500 K (red).
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Figure 3: Example of measurements and fits at 80 GPa. (a) Temperature vs. time on pulsed-heated side (2100 to 2700
K curve) and other side (2450 to 2550 K curve). (b) Temperature vs. distance from center of hotspot on pulsed-heated
side at the time corresponding to 0 us in (a).
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Figure 4: (a) Thermal conductivity of pyrolite at 1900 to 2900 K. Experimental data from this study (red symbols).
Theoretical calculations from Stackhouse et al. (2015) (interpolated to 2500 K; green) and from Tang et al. (2014)
(extrapolated to their estimated geotherm ranging from 2000 to 2500 K; blue). (b) Temperature of data points presented
here (red) as a function of depth along with the estimated lower mantle geotherms of Katsura et al. (2010) (solid black)
and Brown and Shankland (1981) (dashed black).

11



Depth (km)
0O 500 1000 1500 2000 2500

1 //'
¥ 12 473Ke R
7’
£ 573 K® ol
= 104 673 ke -
P d
> 7
S g 1073 <$ et P
Jd // /”’
> 7’ -
© o i -
S
O 573 K
5 4 973"{(.
£
G) 2 T —————_-
|E __————__—-—_
0 1 ) 1 1

0 20 40 60 80 100 120
Pressure (GPa)

Figure 5: Thermal conductivity of pyrolite and bridgmanite at 1900 to 2900 K, except where noted to be < 1900 K.
Pyrolite is represented as in Fig. 4: red are our experimental data; green is from Stackhouse et al. (2015); and blue is from
Tang et al. (2014). Bridgmanite experimental data at 470 to 1070 K of Manthilake et al. (2011) are shown by magenta
circles (MgSiOg bridgmanite) and green circles (Mgo.o7Feo.035103 bridgmanite). Calculations interpolated to 2500 K for
MgSiO3 bridgmanite are shown as dashed lines: Haigis et al. (2012) in grey, Ammann et al. (2014) in orange; Ghaderi
et al. (2017) in yellow; Stackhouse et al. (2015) in green; Dekura et al. (2013) in cyan; Tang et al. (2014) in blue).
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Pyrolite Insulator Iridium

P op T or  kpyro 0 a,j Dpyro kins kD3 ins. ke k™
(GPa) (K) (W/m/K) (mm?/s) (W/m/K) material (W/m/K)

40 4 2290 320 5 -4 +1.9 0.92 2 5.7 Ar 278 600
41 4.1 2180 160 6.1 -2.3 +29 1.12 3 8.9 KC1 280 1600
62 6.2 2200 200 46 -1.8 43 0.8 12.6  20.1 KCl 318 1300
68 6.8 2050 150 43 -14 +23 0.74 4.1 6.6 KC1 330 1400
80 8 2280 210 39 -11 +14 0.65 10 18.2 KCl 352 1300
124 124 2460 380 59 -2.3 4 0.91 10.1 125 KCl 433 2000

Table 2: Results of finite element analysis. Best fits, kpyro and kins, assume listed values of kr.. Uncertainties, o, and
upper-bounds, k™% do not assume any particular value of ki,.
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Supplemental Materials for “Thermal conductivity at the bottom of the Earth’s
lower mantle: measurements of pyrolite up to 120 GPa and 2500 K”

S1. Experimental Methods

Here we focus on details of the compression, heating, decompression, and thickness measurement
procedure. Methods used to load samples are described in full detail in the main text. Details of
laser-heating equipment, collection optics and the streak camera are described in McWilliams et al.
(2015).

After loading each sample, pressure was increased to the desired value, which was measured using
the diamond Raman edge pressure scale (Akahama and Kawamura, 2006). It was then left undisturbed
for at least 30 minutes to allow the cell and gasket to relax. Pressure was measured again and thickness
of insulation was measured using white-light interferometry assuming the refractive indices listed in
Table 1. We first heated both iridium layers up to ~2500 K for several minutes while adjusting laser
alignment by small amounts, which serves two purposes: to convert the glass starting material to a
polycrystalline assemblage of minerals (bridgmanite, ferropericlase, calcium-perovskite), and to align
the continuous laser beams from left-side and right-side to each other and to the center of the area
used for the spectroradiometric temperature measurement. Next, we stopped the continuous laser and
started the second laser. In continuous mode, we align this laser beam to the same position by adjusting
it until we generate thermal emissions at ~1500 K at the same spot. For this laser, at least 100 times
more power is directed to the left-side than to the right side of the sample, a ratio accomplished by
tuning a half wave plate that is placed between two polarizing beam splitting cubes; see McWilliams
et al. (2015) for details. This means the left-side is the “pulsed-side” in our setup, and the right side
or “other-side” is not heated by the second laser. The precision of co-alignment is +1 pm for all five
positions (laser 1 left, laser 1 right, laser 2 left, spectroradiometry left, spectroradiometry right) before
and after the heating experiment. Such precision is evidenced by CCD images collected before, during,
and after the experiment (e.g., Fig S1). Finally, we switch the second laser to pulsed mode.

To make the dynamic heating measurement we first use the mirror-configuration shown in Fig. S2a,
in which thermal emissions from the pulsed-side are sent to the streak camera, and thermal emissions
from the other-side are sent a CCD camera. We trigger a programmed sequence of events shown
schematically in Fig. S2c. At time zero, the continuous laser turns on. One second later, a 1 kHz
sequence of 8 us square waves triggers the pulsed laser, resulting in ~1 us laser pulses. Simultaneously,
the streak camera collects thermal emissions, repeating its sweep at 1 kHz frequency to build up signal.
Five seconds later, the 1 kHz triggers stop and the streak camera is read out. One-hundred milliseconds
later, the continuous laser stops. Sometime during the 5 s of data collection we collect a snapshot of
thermal emissions from the right-side with exposure time ~10 ms. We then switch to the mirror
configuration of Fig. S2b in which the CCD camera views the pulsed-side and the streak camera
views the other-side. We switch between mirror configurations at least two more times to ensure
reproducibility of the temperature evolution. This is necessary since it is only currently possible to
measure temperature versus time from one side with the one streak camera in our lab. The baseline
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temperature typically drifts by 100 to 200 K between sets of 5 s experiments. If it drifts by more
than 400 K, we tweak laser powers and try again. More crucial than the baseline temperature for
determining kpyr, is the change in temperature above the baseline. For each data point presented
here, the change in temperature was reproduced to within 10% at least once.

After several repetitions, we typically stopped heating, measured pressure and KCIl or Ar thick-
nesses again, and decompressed to ambient pressure over ~2 minutes. In the case of runs 4 and 5,
we compressed beyond the pressure of the original data collection (62 or 124 GPa) and attempted to
collect another data set (at 80 or 142 GPa). The data collection at 80 GPa was successful while the at-
tempt at 142 GPa resulted in creation of a hole in the pulsed-side iridium layer. We then decompressed
from 80 GPa or 142 GPa to ambient pressure. Next, we prepared the samples for electron microscopy
using standard procedures. For the KCl loadings, we laser-drilled a circular cut with a diameter that
is ~80% of the culet diameter, and transferred the disc of rhenium plus sample chamber to carbon
tape or a piece of polished Si. In the case of the Ar loading, the pressure medium evaporated upon
decompression so we simply transferred the iridium-pyrolite-iridium sandwich to a piece of Si. We use
silver epoxy to attach the recovered sample to the Si. We then cut cross sections using a focused ion
beam. While cutting, we measure thickness of the recovered sample, a measurement that is crucial
to determining thermal conductivity. After cutting the cross-sections we measure chemical composi-
tion using energy-dispersive spectroscopy (EDS) mapping (Fig. S3). We note that in a previous study
by some of us, transmission-electron-microscopy measurements on recovered samples prepared using
very similar sample synthesis methods to those used here, including the same starting glass, showed
a polycrystalline assemblage of ferropericlase with molar ratio Fe/(Fe+Mg) = 0.17, bridgmanite with
molar ratio Fe/(Fe+Mg) = 0.08, and calcium perovskite (Lobanov et al., 2019a). In this study, we
measure the same bulk chemical composition as in (Lobanov et al., 2019a) and document chemical ho-
mogeneity across of the pyrolite sample when averaging over the ~ 1 um spatial resolution of the EDS
(top nine panels of Fig. S3). We also note sub-micron grains of a phase that is rich in heavy-elements
in the electron backscatter image from the SEM (bottom panel of Fig. S3), which is consistent with
the ~ 100 to 400 nm grains of ferropericlase documented in STEM images of (Lobanov et al., 2019a)
(their Fig. 1).

To determine thickness, d, we use thickness of the recovered samples as our primary source of
information. We assume that the samples decompress elastically, following the equation of state of
pyrolite, just as was assumed in Ohta et al. (2012), Imada et al. (2014), and Okuda et al. (2017) For
the samples that were compressed after pulsed-heating measurements at 62 and 124 GPa, this only
determines the thickness at the highest pressure achieved, i.e. 80 and 142 GPa. To interpolate to the
lower pressures, we use a linear thinning approximation and add a 20% uncertainty to dpyro. Specifi-
cally, we assume the samples reduced in thickness linearly as a function of pressure from their starting
thicknesses of 4.73 and 5.97 pm to their thicknesses at the highest pressure they experienced, 1.07 and
1.8 pm, but admit that this interpolation adds an uncertainty of ~ 20% to the total uncertainty of
dpyro (Table S1).
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S2. Data analysis

S2.1. Data reduction

Raw data from the streak camera is reduced to normalized temperature versus time in five steps.
First, geometric correction of the distorted streak image is accomplished by shifting measured intensity
along lines of constant wavelength and interpolating to recreate an image on a Cartesian grid of pixels.
The necessary shift is determined by calibration of the streak tube’s distortion with a 1 MHz pulse-
train of 1 ns-duration laser pulses from a supercontinuum laser. Second, the radiance correction is
accomplished in the normal way by dividing all intensities of the two-dimensional image by intensity
of a reference image from a tungsten lamp heated to 3187 K and multiplying by the theoretical radiance
of the tungsten lamp at 3187 K. Third, we perform a two-parameter Planck function fit to the time-
averaged intensity during a time interval in which total intensity varies relatively slowly (e.g., the
shaded area in Fig. S4a). The two fitting parameters are temperature and emissivity. Examples of the
fits for six streak camera images are shown in Fig. S4b. Fourth, we perform a one-parameter Planck
function fit with emissivity fixed to the value determined in the first step, but now using narrow time
intervals to determine temperature versus time. These time windows are 0.2 to 0.5 us wide on a streak
image of total duration 10 to 30 us. Note that streak camera timing is calibrated from a sequence
of 1 ns pulses at 1 MHz frequency from the supercontinuum laser. Time zero of the reduced data is
defined arbitrarily, but is identical for the two streak camera images, from the pulsed side and the
other side. Fig. S4d shows an example of the resulting temperature vs. time plots at 80 GPa, 2000 to
2500 K.

The fifth step of data reduction is to normalize changes in temperature. This step is not required,
but it facilitates comparison of laboratory data collected with slightly different laser powers, alignment
precisions, and sample positions. It also enables easier comparison of laboratory data to finite-element
modeling results. We define normalized temperature from the pulsed heated side to be

- T— TO side
T q, = —_pside S1
pside ATpside ( )
and from the other side to be
& _ T— TO,oside (82)
oside ATpSlde

where T is measured absolute temperature, Ty pside and 1o oside are the average temperatures measured
before pulsed heating for the pulsed side and other side, and AT}qe is the amplitude of the change
in temperature of the pulsed side. Comparisons using this normalization scheme are useful because
we model the heat equation as a linear differential equation with temperature-independent material
properties. In reality, material properties are expected to vary by up to ~20% over the temperature
range probed in this experiment Stackhouse et al. (2015).

Fig. S5a shows that the data of Fig. S4 reduce to a single curve to within ~10% when normalized
by the measured value of ATgqe. Fig. S5b shows that the data are even more reproducible when
ATpside s increased by 10% from the measured value for the 0.5 us-resolution data to correct for the
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blurring of intensity of thermal emissions over the time-axis of the streak camera. The 0.2 ps-resolution
data is used in the fitting routines below. The 0.5 ps-resolution data is presented here in order to show
a more complete picture of temperature evolution.

Spatially-resolved thermal emissions from the CCD image are reduced to temperature versus dis-
tance in a three step-process. First, we average over a short and wide region around the center of the
hotspot to determine the measured intensity Iyeas(z). See example in Fig. S1. Second, we assume a
Gaussian distribution of temperature

T(z) = (Thax — 300)e~@20)/20% 4 300 (S3)

where Tyax is the temperature measured on the streak camera prior to pulsed heating. We fit Iiyeas(2)
to the function

I(l’) = lgark + A- P(T(w)) (S4>

where I, is dark current of the CCD, A is a scaling factor, and P is the Planck function at 530 nm,
the center of sensitivity of the green CCD pixels we use for measured intensity, Ineas.! In practice,
this gives sufficient information for fitting our data to the finite element model. But to extract a
more realistic the temperature distribution, we perform a third step of data reduction: “one-color”
fits. We fix the values of Ij,y and A to their values from the second step and fit for T'(x) at each
distance, z, using the function same function as above, but no longer assume a Gaussian distribution
of temperature.

S52.2. Finite element modeling

The following sections supplement the main text by detailing: (1) the implementation of the heat
equation in method T and and method Q; (2) the procedure for determining the heating term in
method Q; (3) the approximation of the modeled temperature; (4) assumptions for specific heat and
density in the model; (5) uncertainties in model parameters; and (6) determination of uncertainties
by searching parameter space for seventeen model parameters.

52.8. Methods T and @

The temperature in the experiment follows from the time-dependent heat diffusion equation with
heat production. Analytical expressions of the solution of this equation in the complicated geometry
explored in these experiments are not available, so we use finite element approximations to this equa-
tion using material properties and boundary conditions that closely mimic those of the experimental

setup. The heat equation is

pcvi)jz: -V (kVT) = Q. (S5)

where p, ¢, and k are the density, specific heat and thermal conductivity respectively. @ is the power
deposited by an external heating source.

"https: //www.flir.com /support-center /iis/machine-vision /application-note /understanding-color-interpolation/
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The domain of interest is the sample chamber plus the nearby diamond and gasket. Assuming az-
imuthal symmetry, the computational domain is reduced to a two-dimensional cross section at uniform
azimuth. The domain is meshed using Gmsh (Geuzaine and Remacle, 2009). An example of domain and
mesh is shown in Fig. S6. The finite element approximation is computed using software based on the
FEniCS project (Alnas et al., 2015). The linear algebra systems are solved using MUMPS (Amestoy
et al., 2000) via the PETSc library (Balay et al., 2019). Model errors due to discretization in space
and time are less than 0.2% in normalized temperature, 7', or 2 K in absolute temperature. This is
negligible compared to the ~2% typical discrepancy between T of the best-fit model and its measured
value.

A Dirichlet boundary condition of room temperature is enforced on the top, right and bottom
exterior boundaries (i.e. at z = 40 ym and r = 100 pm). A Neumann (symmetry) boundary condition
is applied on the left exterior boundary (where r = 0).

In the case of method T, @ = 0, and a Dirichlet boundary condition is applied on the interior
boundary between iridium and insulator at the pulsed side. This boundary condition enforces a time-
dependent interpolation of experimentally measured temperature values. In the case of method Q,
Q is estimated from the heat flux computation of a method T simulation, and no interior boundary
condition is applied. Details are given in the following sections.

S2.4. Q(t) in Method Q

The heating term for method Q is assumed to be non-zero only on the surfaces of the iridium and
be dependent on space and time

Q) = Qo(r)(1 +dQ(1)) (S6)

with d@ = 0 on the non-pulsed side. The spatial components, Qo(r), are assumed to be Gaussians with
the same width on both iridium surfaces. We determine the width and amplitudes of this Gaussian
by fitting the pre-pulse temperature distributions to the measured temperature versus distance. The
time-dependent function dQ(t) is not known a priori, because the time-dependence was not measured
accurately; the Newport 818-B8-40 25-MHz photodiode used to monitor laser pulse shape in this study
output distorted waveforms, perhaps due to damage. Instead of relying on a measured laser-power,
we use a bootstrap method to determine dQ(t) in method Q. We start with the best fit to the data
from method T and set dQ(t) to the total flux out of the central disc of the coupler in method T,
where the central disc extends from the coupler center to » = 0.25 pum in radius and across the full
thickness of the iridium coating. Then, with one or two iterations of adding a broad Gaussian to the
initial guess of d@), followed by adjusting the fitted value of kpyr, we converge to a fit with method
Q that is as good as the fit with method T (e.g., Fig. S7). The small differences between the best-fit
values of kpyro between methods T and Q are listed in Table S1.

S2.5. An approzximation of the modeled temperature

For convenience, we assume the measured temperature is the maximum temperature at the center
of the hotspot, a simplification that makes no measurable difference for the model parameters studied
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here. A more accurate approximation is to model the temperature that would be fit by spectrora-
diometry of thermal emissions averaged over all regions of the iridium surface that are measured in
the streak camera (i.e. r < 6.25 um). Fits with such a “Planck-averaged” model are compared to the
more convenient “maximum-temperature” model in Fig. S8. The only model parameters that must
be altered to create the same curves in the two models are the amplitudes of laser powers required to
heat the sample to the measured temperature.

S52.6. Specific heat and density

To find a best fit of kpyro, we must assume specific heat, ¢,, and density, p, for all materials. Our
assumption is that the pyrolite, iridium, and insulator all reach the Dulong-Petit limit for specific
heat. For comparison, a Debye model at 2500 K for pyrolite with © p = 1000 K would predict specific
heat 14% below the Dulong-Petit limit, which would propagate to a 5% reduction in kpyro. This could
be used as a correction to our fitted values of kpyro, but the correction is uncertain and small compared
to the 37% to 78% uncertainties reported here. The specific heat of iridium and the insulator have
a smaller effect on the best fit value of kpyr,. We assume specific heat and density of gasket and
diamond to be their values at ambient pressure and temperature. The sensitivity of best fit kg, to
these assumptions is negligible (Fig. S9).

We assume density of pyrolite, iridium, and insulator that match the room temperature equations
of state of these materials. This is an overestimate by a few percent that is nearly balanced by
the underestimate that thicknesses of pyrolite, iridium, and insulator match their room temperature
values. For example, volumetric thermal expansion at fixed pressure upon heating pyrolite from 300 to
2300 K at 80 GPa is ~2%, causing a ~2% decrease in density and if the expansion is isotropic, a ~0.7%
increase in sample thickness. Our uncertainty analysis shows that the former causes a ~1% decrease
in estimated value of thermal conductivity, while the latter causes a ~1% increase in estimated value
of thermal conductivity (Fig. S10 and Table S1). Equations of state are from Ricolleau et al. (2009)
for pyrolite, from Yusenko et al. (2019) for iridium, from Dewaele et al. (2012) for KCI, and from
Errandonea et al. (2006) for Ar.

S52.7. Uncertainty in model parameters

‘Method T’ involves twenty-four parameters in total. Specific heat and density always appear
together in the heat equation as ¢,p, reducing the number of parameters to nineteen.

Nine parameters that have negligible effect on the best-fit kpyro are daiamonds dins,psides Kdiamond:
ERe, Tdiamonds Tins, Tpyros CoPRe, CvpPdiamond, Where d is thickness, r is radius and c,p is the product of
specific heat and density. The first seven are shown to have negligible effect on the best-fit at 80 GPa
in Fig. S9. It is intuitive that the final two have negligible effect; c,p of diamond and rhenium vary
much less than thermal conductivity with pressure and temperature, and even thermal conductivity
of diamond and rhenium have negligible effect.

Uncertainties due to seven of the ten remaining parameters are listed in Table S1. These are four
geometric parameters, dpyro, dir, dins,osides 1FwHM, and three values of ¢,p for pyrolite, iridium and
insulator. For convenience, we refer to uncertainties in ¢,p as ‘o.’, which we assume to be 20%. To
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enable wide searches of parameter space, we vary parameters by even units in log-space and keep
track of all uncertainties in log space. For example, these 20% uncertainties are represented in Table
S1 as ojogc = log;o(1.2) = 0.079. The uncertainties in geometric parameters are from the irregularity
of thicknesses and the slight differences in Trway measured from pulsed side and other side.

The three remaining parameters are the free parameters, kpyro, kir, Kins-

S52.8. Propagation of uncertainties

First, we determine a confidence interval around the best fit value of kpyo, allowing kins and kcoupler
to vary along with kg, but keeping all other parameters fixed. To determine the confidence interval,
we first perform a grid search in three-dimensional parameter space:

logk = (logkpyro, logkins, logkcoupler) (S7)

Then we find the contour of RMS (root mean square deviation of model to measurement) that is v/2-
times the minimum RMS. An example is the darkest blue contour in Fig. S11. Projections onto one-
dimension in parameter-space are shown in Fig. S12. The maximum and minimum of logkpy, of this
contour is the confidence interval and we denote the positive and negative deviations from best fit value
of logkpyro as Uliogkpym,k' We note that the limit of v/2 is a conservative estimate of the 1o confidence

interval, because in general the 1o confidence interval is defined where RMS = \/ RMSinn(l + #)
where n is the number of independent measurements in the fitted data (i.e. temperatures at different
times). In practice, we do not know the exact value of n, so we set n = 1, the most conservative value.
To visualize the contour, we first project onto the kpyro — kins plane by taking the minimum RMS
over all values of kcoupler, and then plot contours with the “Axes.tricontour” function within Python’s
matplotlib library.

Note that for practical reasons, we have restricted our search to kcoupler > 30 W/m/K, a con-
servative lower bound given that the ambient pressure value of kr, is 100 to 120 W/m/K at 1000 to
2000°C (Cagran and Pottlacher (2007) and www.pgmdatabase.com) and we expect a positive pressure
dependence of ~1% per GPa as measured for Pt (McWilliams et al., 2015). Even if ky, were less than
30 W/m/K, the resulting best fit would likely have a higher ks to compensate for the low kr, and no
change in ki,s, as is seen in Fig. S11.

Second, we propagate errors from uncertainties in measured and assumed parameters. We assume
the uncertainty on each parameter is independent from the uncertainty on all parameters except for
kpyro, allowing us to independently co-vary each of twelve parameters with £y, to determine how
errors propagate. We perform a grid search in fourteen sets of a two-dimensional parameter space and
visualize the result by contours of RMS in Figs. S10 and S9. More important than the RMS contours
for our error analysis, though, are the slopes Alogks,,,/Alogp where the star denotes the best fit
and p is one of the twelve parameters. These slopes are also plotted in each panel of Figs. S10 and
S9. Note that all slopes in Fig. S9 are zero, which is why these seven parameters are not included
in the uncertainty estimation of Table S1. The contribution of each parameter’s uncertainty to the
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uncertainty of logkpyro is
Alogk*
— P (S8)

O'logkpyro D = Alogp

where oy, is the uncertainty in parameter p.
To combine propagated uncertainties with the confidence interval determined in our search of
(Kpyro, Kcouplers kins) space, we add in quadrature, since we assume independence of uncertainties:

+ +
Ulogkpyro - \/(GIngDyro,k)2 + Ep(alogkpyrmp)2 (Sg)
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P (GPa) Ulog(p)

dpyro Cv,pyro Cv,coupler C'v,ins dcoupler dinspside TFWHM
40 0.079 0.079 0.079 0.079 0.146 0.041 0.079
41 0.079 0.079 0.079 0.079 0.146 0.041 0.079
62 0.146 0.079 0.079 0.079 0.204 0.041 0.079
68 0.114 0.079 0.079 0.079 0.176 0.041 0.079
80 0.079 0.079 0.079 0.146 0.079 0.079 0.041
124 0.146 0.079 0.079 0.079 0.204 0.146 0.079

Glog(kpym)vp

dpyro Cv,pyro Cv,coupler Cv,ins dcoupler dins,oside TFWHM
40 0.111 0.031 0.002 0.01 0.029 0 -0.05
41 0.117 0.039 0.001 0.013 0.016 0 -0.04
62 0.194 0.022 0.001 0.01 0.03 -0.002 -0.045
68 0.152 0.02 0.001 0.02 0.013 -0.001 -0.02
80 0.108 0.029 0.014 0.021 -0.037 0.001 -0.001
124 0.205 0.025 0.001 0.007 0.027 -0.034 -0.039

Method T Method Q Method Q-T
O—l—gg(kpym)vk Ulgg(kpym)vk Ul—gg(kpym) O—lgg(kpym) IOg(k) IOg(kpym) AIOg(kpym)

40 0.046 0.044 0.137 0.137 0.602 0.699 0.097
41 0.103 0.161 0.167 0.208 0.771 0.785 0.014
62 0.073 0.07 0.216 0.215 0.672 0.663 -0.009
68 0.098 0.082 0.184 0.176 0.58 0.633 0.054
80 0.064 0.08 0.136 0.144 0.58 0.591 0.011
124 0.067 0.039 0.225 0.218 0.756 0.771 0.015

Table S1: Error analysis. Top third: uncertainties, 01o4(;), for all input parameters, p. Middle third: propagation of oiog()
to uncertainty in log(kpyro). Bottom third: The first two columns list the uncertainties derived from searching through
the free parameter space, k =(kpyro,kins,krr). The third and fourth columns list the quadrature sum of the first two
columns with the o1og(k,,..)- The final three columns list best fit values of log(kpyro) from method T and method Q, as
well as the the difference thereof.
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Figure S1: Spatial distribution of thermal emissions and temperature at 80 GPa. (a,b) CCD images collected during
the thermal conductivity measurements using a 10 ms exposure time. Red circle outlines the region from which light is
collected on the streak camera. White rectangle outlines the region used for the line-outs in (c,d). (c,d) Red, green, and
blue curves show the spatial distribution of the hotspot intensity as measured in the three color channels of the CCD
camera, averaged over the height of the white rectangles in (a,b). The CCD color channels have maximum sensitivity at
640 nm for red, 530 nm for green, and 470 nm for blue, each with ~ 50 nm FWHM. Grey solid line shows the fit to the
green data of the function I(z) = Iqar + A - P(T(z)) for the Gaussian distribution, T'(x), described in equation S3. Grey
dashed line shows T'(x). Purple shows T'(z) with the Gaussian assumption lifted but I4a,x and A fixed to their values

from the grey fit.
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Figure S2: (a,b) Schematic of optics for collection of thermal emissions from (a) pulsed side and (b) other side. Ovals
represent lenses, angled line represent mirrors, broken horizontal lines represent pinholes, trapezoids represent diamond
anvils, “SC” labels the streak camera, and “Spec” labels the spectrometer. (¢) Schematic of timing of laser power, streak
camera exposure, and CCD camera exposure. Colored lines shows the path of light emitted from the two sides of the
sample in (a,b) and of the laser power incident on the sample from the two sides in (c). Red lines represent the pulsed

side and blue lines represent the other side.
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Backscatter image

Figure S3: Elemental maps of sample recovered from run 4 (decompressed from 80 GPa), along with SEM backscatter
image of the same region.
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Figure S4: Data processing steps used to determine temperature versus time for the 80 GPa data set. (a) Average number
of counts as a function of the horizontal pixel of the streak camera image. Eight traces are shown in black with colored
overlay: four traces at 10 us streak duration (pink, purple for pulsed side; brown, grey for other side), four at 30 us
streak duration (red, orange for pulsed side; blue, green for other side). The shaded region from 500 to 900 pixels shows
the region used to generate (b). (b) Corrected intensity in the grey region of (a) versus wavelength. The correction is
accomplished in the normal way for spectroradiometry: by calibrating the system response with a tungsten lamp of
known temperature. Red curves are two-parameter Planck fits. (¢) Examples of corrected intensity of a narrow time
window versus wavelength. The time windows chosen for this plot are 0.2 to 0.5 us wide, centered on the streak image
(i.e. horizontal pixel # 600). Red curves are one parameter Planck fits, assuming the value of emissivity fitted in (b). (d)
Temperature versus time for all six traces. Temperatures at each time are fitted as shown in (c).
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Figure S5: Normalized temperature-time curves from data at 80 GPa. The eight data sets of Fig. S4 are overlaid in each
plot, with data from the pulsed side in red and from the other side in blue. (a) Automated normalization. (b) By hand
normalization of 30 us data set, automated normalization of 10 us data set. By hand, we choose normalization factors
to make all data sets overlap at all times when temperature changes relatively slowly.
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Figure S6: Mesh used to simulate the heating experiment at 80 GPa.
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Figure S7: Comparison of method T and method Q. Data (black points), method T simulation (blue), method Q
simulation with heating term dQ = dQr inferred from the method T result (green), method @Q simulation with dQ =
dQr + G where G is a Gaussian of 0.08 amplitude relative to d@Qr centered at ¢ = 6 us with 6 us FWHM (yellow),
method Q simulation with dQ = dQr + G and ksam increased by 3% to 3.9 W/m/K. (red)
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Figure S8: Comparison of method T with the “maximum-temperature” approximation (red) and the “Planck-averaged

temperature” model (cyan). The Planck-averaged temperatures require 25% higher laser powers, as shown in (b), but
all other model parameters are identical.
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Figure S9: Rainbow-colored contours show RMS deviations of model to measured temperatures in the space kpyro — D
where the parameter p is labeled on the x-axis. The seven parameters plotted here have uncertainties that propagate to
negligible uncertainty in kpyro. The black dashed line shows the linear fit of the best fit kpy.0(p) versus p. Vertical red

dashed lines show the range of possible values of p, while horizontal red dashed lines show the propagation of this range
onto the best fit kpyro. Black dots mark the parameters values that were simulated.
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Figure S10: Same as Fig. S9, but for seven parameters, p, whose uncertainties propagate to uncertainties in kpyro that
we tabulate in Table S1
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Figure S11: Contours of RMS deviation of fits to data at 80 GPa. (a,b,c) Two-dimensional cross sections of contours
in the three-dimensional free parameter space, k = (kpyro, Kins, kcoupler). (d-€¢) Contours of RMS minimized over the
parameter not plotted. I.e., (d) shows contours of minima over all k. , while (e) shows contours of minima over all kins.

Red dashed lines mark the minimum contour, RMS = v/2 RMS,in = 0.00017, projected onto kpyro. Black dots mark the
parameters values that were simulated.
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Figure S12: Rms deviations projected onto each axis of free parameter space, k = (kpyro, Kins, kcoupler ). Red dashed lines
mark RMS = v/2 RMSmin = 0.00017.
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Figure S13: Graphical Abstract: (a) Schematic cross-section of experimental setup, including electron backscatter image
of sample recovered from high pressure and sliced in half. The pyrolite sample is coated, insulated, and compressed to
80 GPa in a diamond anvil cell. Lasers 1 and 2 are continuous and pulsed lasers, respectively, which heat the pyrolite
sample to the temperature of interest. (b) Measured temperature evolution from left side (red) and right side (blue) at
80 GPa during the heating experiment represented in (a), along with modeled temperature evolutions (black).
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