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Uncovering links between processing conditions, microstructure, and properties is a central tenet of materi-
als analysis. It is well known that microstructure determines properties, but expressing these structural fea-
tures in a universal quantitative fashion has proved to be extremely difficult. Recent efforts have focused on
training supervised learning algorithms to place microstructure images into predefined classes, but this
approach assumes a level of a priori knowledge that may not always be available. In this paper, we expand
this idea to the semi-supervised context in which class labels are known with confidence for only a fraction
of the microstructures that represent the material system. It is shown that classifiers which perform well on
both the high-confidence labeled data and the unlabeled, ambiguous data can be constructed by relying on
the labeling consensus of a collection of semi-supervised learning methods. We also demonstrate the use of
novel error estimation approaches for unlabeled data to establish robust confidence bounds on the classifica-
tion performance over the entire microstructure space.
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1. Introduction

1.1. Motivation

A basic goal of materials data analysis is to extract useful informa-
tion from materials datasets that can in turn be used to establish con-
nections along the processing-structure-properties chain. As the
volume, variety and complexity of the datasets increases, extracting
such information will likely be increasingly reliant on automated
frameworks that facilitate the uncovering of distinctive features and
patterns that can be used for further analysis in the context of Inte-
grated Computational Materials Engineering (ICME). A central chal-
lenge exists in arriving at such a framework in the case of
microstructure image data stemming from the fact that variation in a
material’s internal structure is high and exists in a truly multi-dimen-
sional (feature) space that is often times difficult to navigate without
the aid of sophisticated analysis tools [1,2]. The microstructure space
is difficult to navigate in part because of the challenges associated
with establishing the most important features that can in turn be
used to establish differences among microstructures as well as the
complex, multi-dimensional and often times non-linear relationships
between such features and materials behavior. While expert human
annotation is highly effective, problems arise when the microstruc-
ture datasets are large. In this work, we present a framework for the
semi-supervised learning of the microstructure space that moves
towards addressing some of these challenges.

1.2. Background

It is well known that computational methods have been identified
as a cost-effective way of solving the inverse mapping problem of
properties to structure to processing conditions for materials design.
Forging these links requires quantitative analysis, and while process-
ing parameters and property observations are generally easily quanti-
fiable—they tend to be represented as objects that exist in a relatively
low dimensional space—(micro)structure, the central link in the ICME
chain, presents a muchmore challenging characterization obstacle.

For well-studied material systems, expert identification of features
and the resulting demarcation of microstructure images into prede-
fined classes is a start [3�5]. Unfortunately, these human-assigned
labels can be too subjective in the face of large structural diversity, and
with recent advances in simulation capabilities [6�10], physics-based
models can generate massive microstructure datasets for which
human annotation is prohibitively expensive [11]. Automated classifi-
cation models (e.g. support vector machines and neural networks)
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address both of these concerns by removing the human decision-
maker after initial training, making them popular microstructure anal-
ysis tools [4,11�17].

These classification algorithms are in the category of supervised
learning methods. Models built from these approaches are inductive
predictors, implying that they are mappings from inputs to outputs,
including inputs which the model has not yet seen. This is in contrast
to unsupervised learning methods which are transductive algorithms
used to infer relationships between data points within a given set for
which no outputs are known. These relational inferences are com-
monly used for tasks such as dimensional reduction and clustering,
which provide insight into feature redundancy and data structure,
respectively. Because they do not have an output to train over (or val-
idate with), these methods generally make much stronger assump-
tions about data distributions than their supervised counterparts. We
note, however, that when these assumptions align well with the
problem at hand, insights from unsupervised methods can be helpful
in the construction of higher-performing supervised models [18].

Just as with many other automated tools, a supervised classifier’s
performance is limited by the assumptions it ‘is told’ to make and the
data on which it is trained [19]. In general, a successful classifier
requires (I) a robust labeling of the training set, (II) a discriminative
feature set, and (III) an appropriate choice of model assumptions and
hyperparameters. Due to the rigorous theoretical framework of most
mainstream supervised classification algorithms, meeting the third
requirement is usually a straightforward exercise when the first and
second requirements are readily available. Unfortunately, for a given
microstructure classification problem, attaining the first two require-
ments is anything but straight-forward because their acquisition usu-
ally requires an appreciable amount of a priori information. Consider
the requirement of a robustly labeled training set, recalling that a
class of microstructures is most helpful to the design problem if its
members share a set of structural features which map to a tight
region in some property space of interest. For material systems in
which the relationship between (micro)structural features and
resulting properties is not well-studied or for a more general problem
where multiple material systems are involved, identifying the correct
number of classes and confidently assigning a discrete label to each
microstructure image becomes a highly subjective, nontrivial task.
Consequently, expense and/or uncertainty can lead to only a fraction
of the available data being labeled, further deteriorating the robust-
ness of the training set.

Fortunately, semi-supervised learning methods have been devel-
oped specifically to address the challenges associated with partially
labeled training data. While examples of these methods are sparse in
the available literature investigating microstructure classification—
Okaro et al. did make use of them to detect faults in the microstruc-
tures of additively manufactured parts [20]—semi-supervised learning
has been used successfully in a variety of other image classification
studies [21�24]. Just as with the supervised case, traditional semi-
supervised methods can still only assign data points to predefined
classes, which can be a concern if the unlabeled dataset contains data
points from classes beyond those that are known a priori. To address
this issue, approaches which allow for new class discovery have been
explored in contexts outside materials science [25�27], with a large
portion of the work focusing on identifying new cancer classes, for
example, through patterns in gene expression.

Similar to the unsupervised learning problem, most semi-super-
vised methods operate under the assumption that data points which
are close to each other in the feature space (based on a given distance
metric) have a high chance of belonging to the same class. Supervised
classifiers do not necessarily make this assumption, but as the second
requirement above implies, it is to be expected that in general the
larger the degree of separation between classes in the feature space,
the more successful the classifier will be. However, finding such a fea-
ture set which is simultaneously adequately discriminative and
computationally tractable can be extremely difficult, and even if it is
found for one material system, there is no guarantee that it will gen-
eralize with success. In response to this problem, DeCost and Holm
[28] explored a classification framework which applies the ‘bag of
visual features’ methodology [29] to build a discriminative feature
set which requires no a priori knowledge of the relevant structural
features present in the dataset. DeCost and Holm demonstrated the
utility of this method of characterization with an 83% classification
accuracy on microstructure images from seven different material sys-
tems, and subsequent studies have utilized the bag of visual features
approach for their own classification models [30,31].

While DeCost and Holm have presented a method for handling a
lack of a priori information for the requirement of a discriminative
feature set, as far as we know corresponding work has yet to be done
for the situation of human annotation by visual inspection leading to
uncertainty in class taxonomy and initial label assignment for the
microstructure classification problem. The following notional exam-
ple illustrates why this problem is worth considering.

1.3. Notional example

Similar to many problems involving the exploration of micro-
structure spaces [7], color is a continuous physical feature which is
often discretized for a given application. Suppose we are tasked with
building a color classification model using colors (a�g) shown in
Fig. 1. We are given no information about how many classes there
should be or what they should contain. Upon visual inspection of our
sample set, we decide to keep it simple and define two widely-recog-
nizable classes: purple and blue. Furthermore, we are confident that
colors (a) and (e) belong to the purple class and that colors (c) and (d)
belong to the blue class. However, the remaining colors could really
belong to either class, so we leave them unlabeled to start. We find a
feature space which clusters our confidently labeled colors well, and
following our intuition, colors (b), (f), and (g) lie in a space between
the two clusters. From here, we are unsure of how to provide labels
to the remaining three colors.

One option is to claim that classification is inherently subjective
and label them according to our expert opinion. Another is to leave
them unlabeled, train a classifier on the high-confidence colors, and
then use this model to label the ambiguous colors. However, the first
approach has the potential to provide the model with bad training
information while the second may not provide enough information.
In response to this predicament, we could define a third class, say
indigo, which is somewhere between purple and blue. But now our
dilemma is doubled because we have to decide between purple and
indigo on one front and blue and indigo on another, and our confi-
dence level on previously labeled colors could drop now that a new
class is available.

The above example illustrates that when class taxonomy is uncer-
tain, there can exist a tension between providing enough labeled
data for the training set while avoiding the addition of detrimental
data or information that may compromise the performance of the
model. The remainder of this paper proposes a framework to address
this tension in a data-driven manner which involves appending the
high-confidence training set with a subset of the ambiguous data
identified through the application of a collection of semi-supervised
learning methods. The idea is that if a ’safe’ subset of the ambiguous
data can be labeled and added to the training set, the supervised
model trained over this set will gain valuable information at little
risk of degrading performance.

2. Dataset creation

A multi-scale elasto-chemical phase-field approach based on
Cahn�Hilliard (C�H) formalism [7,32] is used to generate synthetic
microstructure dataset used in this study. The total free energy



Fig. 1. Sample set of colors (a�g) from the spectrum in (h). For interpretation of the colors, refer to the online version of this document.
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functional (F tot) for a heterogeneous solid medium as the sum of
contributing fields over the domain (V) is:

F tot ¼
Z
V

fbulk þ finterfacial þ felastic
� �

dV ð1Þ

where bulk free energy, fbulk, interfacial free energy, finterfacial, and
elastic strain energy, felastic are:

fbulk ¼ f 0ðc; TÞ; ð2Þ

finterfacial¼
1
2
k r cj j2; ð3Þ

felastic ¼
1
2
sijeelij ð4Þ

where c is the composition field, f0(c, T) is the free energy of a unit
volume of homogeneous material for a given temperature (T), k is the
gradient energy coefficient, eelij and sij are the local elastic strain and
stress in the material, respectively.

We postulate the following form of the (C-H) kinetic equation (Eq. 5)
along with the micro-elasticity equations (Eqs. (6)�(8)) to generate the
synthetic microstructure space by tracking the evolution of composition
field. We start with a uniform state where the composition is randomly
perturbed only § 2% around alloy composition, and let the system
evolve based on the given input material parameters:

@c
@t

¼ r ¢Mr dF tot

dc

� �
; ð5Þ

@

@rj
Cijkl Ekl þ e$kl �e0kl

� �n o
¼ 0 on V

e$kl periodic on V
;

8><>: ð6Þ
eelij ¼ etotij �e0ij; ð7Þ

etotij ¼ Eij�e�ij ¼ Eij�
1
2

@u$
i

@rj
�
@u$

j

@ri

 !
ð8Þ

where M, Cijkl, Eij, e$ij ; e
0
ij are mobility, elastic constant tensor, mean

of total strain (etotij ), periodic strain, and stress-free transformation
strain, respectively. eelij is elastic strain, and e�ij is the periodic fluc-
tuation strain field given by period displacement (u$ ). The eigen-
strain term is interpolated over the domain by e0ij ¼ eTdijhðcÞ;
where eT is the strength of the mismatch, dij is the Kronecker-delta
function and hðcÞ ¼ c3ð10�15c þ 6c2Þ is an standard interpolation
function. A detailed description of the microelasticity model is
provided in detail in [7]. An efficient method is used to sample
input parameters out of prior probably distributions of input
parameters to minimize the number of samples and these samples
are fed to the phase-field model to generate the microstructure
dataset. For a complete explanation of the method for propagation
of the uncertainty in microstructure space and generation of the
microstructure dataset refer to [8]. The microstructure dataset is
curated in Open Phase-field Microstructure Database (OPMD)
website [33].
3. Microstructure characterization

3.1. Data labeling and pre-processing

Phase-field simulations produced ten thousand 512 £ 512 micro-
structure images for characterization and classification [8]. Of these ten
thousand images, 2,439 were determined to have undergone phase

http://microstructures.net
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decomposition (i.e. they self-organized into two phases). Through visual
inspection, 1,920 of the two-phase microstructures were labeled as
either ‘Bicontinuous’ or ‘Precipitate.’ The remaining 519 images resem-
bled a weighted blend of these two classes; thus, they were initially left
unlabeled since class assignment could not be made with confidence.
Fig. 2 provides examples of this labeling scheme.

Following label assignment, the two-phase dataset was reduced
to binary images using Otsu Thresholding [34]. This popular image
Fig. 2. Examples of initially labeled
segmentation technique iterates through all possible threshold val-
ues and chooses the value which minimizes the sum of intra-class
variance of pixels above and below the threshold. Final processing
consisted of applying opening, a mathematical morphology operator
used to eliminate small foreground islands in binary images, to those
reduced images requiring noise removal [35]. Fig. 3 illustrates this
process. Image processing methods were implemented using the sci-
kit-image package in python [36].
and unlabeled microstructures.



Fig. 3. Microstructure characterization process flow. The raw image (a) is binarized using the Otsu method and noise is removed through opening (b). The image is then ready to be
characterized using the black autocorrelation function (c).
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3.2. Two-point correlation function

Statistical characterization of microstructures is pervasive
throughout recent literature investigating classification, reconstruc-
tion, and structure-property linkages [12,30,37�39]. Statistical func-
tions provide probabilistic spatial correlation information and have
interpretations based in the random placement of a given polyhe-
dron. Specifically, the two-point correlation function Pl;l0 ðrÞ can be
interpreted as the conditional probability of finding local state l at
the first endpoint and local state l0 at the second endpoint of the vec-
tor r after it is randomly placed into the microstructure where local
state is a set of structural characteristics needed to distinguish one
possible material state from another at the length scale of interest. In
[40], Niezgoda et al. give a mathematically rigorous explanation
which starts by defining the microstructure function m(x, h) as a
wide sense stationary stochastic process in which h is a random vari-
able associated with finding a specific local state at spatial position x.
The two-point correlation function is then expressed as

Pl;l0 ðx1; x2Þ ¼ E mðx1; lÞmðx2; l0Þ½ �; ð9Þ
which can be reduced to only a function of the spatial variable
r ¼ x2�x1 sincem(x, h) is assumed to be stationary:

Pl;l0 ðrÞ ¼ E mðx; lÞmðx þ r; l0Þ½ �: ð10Þ
When local state information is limited to realizations over a uniform
grid in spatial position, the two-point correlation function is given by

Pl;l0 ðrÞ ¼
1
S

X
s

Ml
sM

l0
sþr ð11Þ

where S is the total number of grid points, s is a position in the grid,
and Ml

s is an indicator function which equals one when local state l is
at spatial position s [41]. For the case of a binary microstructure with
white (w) and black (b) phases, four two-point correlations are
defined for a given vector r: Pw, w(r), Pb,b(r), Pw, b(r), and Pb, w(r). How-
ever, as the following system of equations demonstrates, only one of
these correlations is independent [42]:

Pw;wðrÞ þ Pb;bðrÞ þ Pw;bðrÞ þ Pb;wðrÞ ¼ 1; ð12Þ

Pw;bðrÞ ¼ Pb;wðrÞ; ð13Þ

Pw;wðrÞ þ Pw;bðrÞ ¼ fw; ð14Þ

Pb;bðrÞ þ Pb;wðrÞ ¼ fb ¼ 1�fw ð15Þ
where fi is the volume fraction of phase i. Thus, for this study, only
Pb,b(r) (also known as the black phase autocorrelation) was consid-
ered. These autocorrelations were computed using the PyMKS frame-
work, where a primitive basis and periodic boundaries were assumed
[43]. Fig. 3 provides a flow from raw input image to black phase auto-
correlation. Note that the axes for the autocorrelation image define
the vector r which is being placed into the microstructure and not a
spatial position in the microstructure.

3.3. Normalization of the two-point statistics and dimension reduction

The black phase autocorrelations calculated for the binary micro-
structures lie in a 512 £ 512 dimensional space, making the data an
impractical input for a classifier due to computational efficiency, clas-
sification accuracy, and data visualization concerns. Principal Compo-
nent Analysis (PCA) is a popular unsupervised dimension reduction
tool in machine learning which builds an orthonormal basis corre-
sponding to directions of most variance in the input data. These basis
vectors, known as Principal Components, are normalized linear com-
binations of the original features, allowing for the reduced represen-
tation to be easily inverted. Principal Components are determined
through an eigenvalue decomposition of the covariance matrix C:

C ¼ WLW�1 ð16Þ
where W is a matrix of eigenvectors of C and L a diagonal matrix of
corresponding eigenvalues. These eigenvectors are the Principal
Components. Thus, reduction to dimension k is accomplished
through multiplying the feature matrix by the first k columns of W
[44]. However, direct computation of this decomposition is often not
practical for large datasets due to computational expense and finite
memory constraints. In response to this dilemma, the machine learn-
ing community developed a class of methods known as Incremental
PCA (IPCA). These methods either incrementally build the eigenvec-
tors without constructing the covariance matrix or estimate eigen-
value decompositions by incorporating the data samples in batches
[45]. Following the latter strategy, Ross et al. [46] developed an IPCA
algorithm which is computationally efficient when the number of
features is much greater than the number of observations. An addi-
tional advantage of this method and those that are similar is that,
since these algorithms process the training inputs in batches, addi-
tions to the training set can be incorporated into the model without
having to reprocess the old data.

PCA has been demonstrated to be an effective dimension reduc-
tion technique for two-point correlation data [4,30]. However, when
the volume fraction of the microstructure sample has high variability,
the first Principal Component, which has been shown to be highly
related to volume fraction, can have an extremely large eigenvalue
relative to the other eigenvectors [40]. If this is the case, then all of
the data points in the high-dimensional feature space could be
arranged around a line closely related to volume fraction. This
implies that the first few eigenvectors of the decomposition provide
very little discriminative (micro)structural information beyond
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volume fraction while apparently capturing a large fraction of the
variance of the original data. While volume fraction can be an impor-
tant discriminative feature for many material systems, for this study
we aim to craft a classifier which is sensitive to higher order (micro)
structural features but robust to varying volume fraction. To address
this concern, we introduce the correlation function

corrl;l0 ðrÞ ¼
E mðx; lÞmðx þ r; l0Þ½ ��E mðx; lÞ½ �E mðx þ r; l0Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var mðx; lÞ½ �
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var mðx þ r; l0Þ½ �
p : ð17Þ

By combining Eqs. (10) and (17) and exploiting the stationarity of m
(x, h), corrl;l0 ðrÞ can be expressed as a function of Pl;l0 ðrÞ and the vol-
ume fractions of local states l, l0

corrl;l0 ðrÞ ¼
Pl;l0 ðrÞ�flfl0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfl�f2
l Þðfl0�f2

l0 Þ
q : ð18Þ

Normalizing Pl;l0 ðrÞ in this fashion removes the strong relationship
with volume fraction, which allows a PCA decomposition of corrl;l0 ðrÞ
to be used as a discriminative feature space based on structural infor-
mation which is robust to varying volume fraction.

Thus, for this investigation, the black phase autocorrelations cal-
culated using PyMKS [43] were normalized using Eq. (18). Those nor-
malized correlations corresponding to labeled microstructures were
split into a training set of 1,536 and a test set of 384 data points. The
training set was combined with the ambiguous set, and the IPCA
method of Ross et al. was then applied to this combined set using the
implementation developed by scikit-learn [47]. All normalized corre-
lations were then projected into the subspace defined by the first fifty
Principal Components, which cumulatively explained about 60% of
the variance (see Table 1). Following projection into the PCA sub-
space, the data was mean-centered at zero and scaled to unit variance
in preparation for classification.

For purposes of comparison, while the PCA decomposition of Pb,
b(r) was not used for classification, the method described above was
also followed for the black phase autocorrelation data and the results
are presented in Table 1. As expected, the first Principal Component,
which we know to be highly related to volume fraction, explains a
very large fraction of the variance while the contributions from the
succeeding eigenvectors are negligible. Pearson correlation coeffi-
cients were also calculated for black phase volume fraction with the
first Principal Component from the decomposition of each of the cor-
relation functions. As expected, the Pearson correlation coefficient
between black phase volume fraction and the first Principal Compo-
nent of Pb,b(r) is quite high at 0.9952, whereas the coefficient for black
phase volume fraction and the first Principal Component of corrb,b(r)
demonstrates very little correlation at a value of�0:1901. Fig. 4 gives
a graphic representation of this result.
4. Classification of labeled data

As articulated in the introduction, the aim of this investigation is
to develop a data-driven approach of assigning labels to a select sub-
set of the unlabeled, ambiguous microstructures in order to train the
decision-making mechanism of a supervised classifier on a more
Table 1
Explained variance of the first five Principal Components (PC) for
decompositions of Pb,b(r) and corrb,b(r).

PC number Pb,b(r) corrb,b(r)

1 0.99801 0.19101
2 0.00037 0.08322
3 0.00017 0.03055
4 0.00006 0.02508
5 0.00004 0.02041
comprehensive representation of the data. However, any addition to
the training set that deteriorates the classifier’s performance on the
confidently-labeled data must be avoided. To this end, it is necessary
to construct a classifier only on the labeled microstructures for the
sake of providing a performance baseline. Sundararaghavan and
Zabaras [16,17] and later Niezgoda et al. [4] successfully employed
microstructure classification schemes involving characterization via
two-point statistics, dimension reduction using PCA, and class assign-
ment through support vector machines (SVM). In simple terms, a
SVM is a binary classification method which constructs an optimal
separating hyperplane in the feature space by maximizing the dis-
tance between the hyperplane and the nearest data points in the
training set. A more detailed explanation is given below.

4.1. Support vector machines

Suppose we are given the labeled feature set (x1, y1), (x2, y2), ⋯;

(xm, ym) where xi 2Rn and yi 2 f�1;1g for i ¼ 1;2;⋯;m. The goal is to
find a decision function

Dw;bðxÞ ¼ sgnð hw; x i þ bÞ ð19Þ
such that

Dw;bðxiÞ ¼ yi ð20Þ
for i ¼ 1;2;⋯;m and where ⟨ ¢ , ¢ ⟩ denotes a dot product in the fea-
ture space. The hyperplane itself is defined where Dw;bðxÞ ¼ 0. To
determinew and b, the objective

JðwÞ ¼ 1
2
jjwjj2 ð21Þ

is minimized such that

yið hw; xi i þ bÞ�1 ð22Þ
are satisfied for i ¼ 1;2;⋯;m. Introduction of the Lagrangian leads to
the conclusion that the solution vectorw is of the form

w ¼
Xm
i¼1

aiyixi ð23Þ

where ai � 0. Since these ai’s are Lagrange multipliers, they are only
nonzero when the corresponding constraints of Eq. (22) are active.
Feature vectors with ai > 0 define the distance between classes, and
they are known as support vectors.

At this point, we have assumed that all of the constraints in Eq.
(22) can be satisfied. However, this is not always the case, especially
when outliers are present. This concern is alleviated through the
addition slack variables ξ i � 0 and an adjustment of the constraints
in Eq. (22)

yið hw; xi i þ bÞ�1�ξ i ð24Þ
for i ¼ 1;2;⋯;m. Inspection of Eq. (24) reveals that these constraints
will always be met if the slack variables are allowed to be arbitrarily
large. To address this issue, we add them to the objective in Eq. (21)

Jðw; jÞ ¼ 1
2
jjwjj2 þ C

Xm
i¼1

ξ i ð25Þ

where C > 0 is a predetermined parameter. This is known as a soft
margin SVM. Since we are minimizing J, only those data points in the
training set which violate Eq. (22) will have nonzero slack variables.
Thus, the larger C gets, the stricter the boundary becomes.

The above discussion only covers the case of a linear boundary.
However, positive definite kernels can be used to transform the train-
ing set into a higher dimensional space in order to provide a more
general decision boundary. This is simply accomplished by replacing
instances of xi in the above equations with F(xi), an appropriate
mapping into a higher-dimensional space. This leads to solution



Fig. 4. Principal Component 1 (PC 1) versus black phase volume fraction (fb) for (a) the PCA decomposition of Pb,b(r) and (b) the PCA decomposition of corrb,b(r).
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vectors of the form

w ¼
Xm
i¼1

aiyiFðxiÞ ð26Þ

with ai > 0 once again indicating that xi is a support vector. Common
kernels include polynomial

hFðxÞ;FðxiÞ i ¼ h x; xi i d ð27Þ
where d is the degree of the polynomial and Gaussian

hFðxÞ;FðxiÞ i ¼ expð�g k x�xi k 2Þ ð28Þ
where g > 0. Further details can be found in [48].
4.2. Classification of labeled data using support vector machines

For this study, soft margin SVMs employing linear and Gaussian
kernels were considered, and the python package scikit-learn was
used to implement them [47]. The penalty hyperparameter C and
Gaussian kernel hyperparameter g were optimized through an
exhaustive grid search using five-fold cross validation on the specified
training set. For purposes of classification performance comparison,
hyperparameters for a baseline SVM were optimized on the initially
labeled training set, resulting in C ¼ 10 and g ¼ 0:01. The ensuing
classifier had a training error estimate of 0.0358, and application of the
labeled test set produced an unbiased error estimate of 0.0547. These
error estimates show that the constructed baseline classifier discrimi-
nates well between high-confidence data points.
5. Assignment of labels to a subset of the unlabeled data

While the results of the previous section provide an excellent per-
formance diagnostic, it must be remembered that the baseline SVM
only demonstrated an ability to correctly classify high-confidence
data points. The decision boundary is still completely uninformed by
the initially unlabeled microstructures, many of which could be in
close proximity to the boundary. To explore the distributions of both
ambiguous and high-confidence data points relative to the decision
boundary, the decision function given in Eq. (19) was calculated for
each data point in the labeled training and ambiguous sets. The
results are displayed in Fig. 5. As expected from the low training error
estimate, the densities for the high-confidence ‘Precipitate’ and
‘Bicontinuous’ microstructures are well separated. Of further interest
is that few of the high-confidence data points have values of the deci-
sion function at values close to zero whereas the distribution for the
ambiguous set appears to be centered close to zero. This means that
many of the ambiguous data points are close to the decision bound-
ary relative to the high-confidence points, implying that the decision
boundary is not informed by much of the data closest to it. Therefore,
in its current state, the baseline SVM is not necessarily a reliable tool
for classifying the initially unlabeled microstructures.



Fig. 5. Distributions of the decision function Dw,b(x) of the baseline SVM for the labeled training and ambiguous sets.
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To address this concern, a collection of semi-supervised methods
involving the labeled training set were used to provide labels for the
initially unlabeled data. In contrast to traditional classification which
is a completely supervised exercise, semi-supervised classification
makes use of additional unlabeled training data to build more accu-
rate classifiers [49]. This can be useful when labeled data is expensive
or label assignment is uncertain. Many semi-supervised methods are
transductive, implying that a traditional supervised classifier is often
trained over the results of the semi-supervised labeling to provide an
inductive model for the classification of future observations. In this
study, the collection of semi-supervised methods acts as a transduc-
tive algorithm which assigns labels only to that subset of the unla-
beled data which receives a unanimous labeling vote. This subset is
then added to the original training set in order to train a new SVM.

As mentioned previously, any addition to the training set that
weakens classifier performance on initially labeled data should be
avoided. This is an important consideration with semi-supervised
methods because it can be very difficult to correctly fit model param-
eters to the problem at hand when labels are missing [50]. Thus, to
mitigate the risk of a poor match between the problem and the
model, a variety of methods with a variety theoretical frameworks
make up the collection of methods being used for the transductive
step described above. The tested methods are described below. Note
that for all four semi-supervised methods, the original labeled train-
ing set was used as the set of labeled data.

5.1. Method 1: modified yarowsky algorithm (MY)

Self-training methods are semi-supervised classification tools
which wrap around an existing supervised classifier, known as the
base classifier. In general, they are easy to understand and imple-
ment, making them a common starting point for semi-supervised
investigations. Because they are wrappers, self-training methods can
be applied to almost any complicated classification framework [50].
In 1995, Yarowsky introduced an iterative rule-based self-training
algorithm for classification problems in computational linguistics
[51]. The algorithm consists of the following steps:

1. Train the base classifier using the available labeled data.
2. Feed all initially unlabeled data into the trained classifier. For

each data point, if the probability of belonging to a certain class
is greater than a predetermined threshold, add that data point
with its corresponding label to the original labeled training set.

3. Retrain the base classifier using the updated training set.
4. Repeat steps (2) and (3) until label convergence is reached.

Note that since the labels of all initially unlabeled data are reas-
signed based on class probability for each iteration, label assignments
in earlier iterations can be changed in later iterations. While this
method was successful for Yarowsky’s purposes, the algorithm did
not receive a robust mathematical analysis until Abney’s
investigation in 2004 [52]. In that work, Abney showed that a slightly
modified version of Yarowsky’s algorithm minimizes a reasonable
objective function. His modifications include fixing the probability
threshold at 1/L where L is the number of classes and imposing the
condition that once a data point gains a label, it can change labels,
but it cannot become unlabeled.

In this study, the base classifier is the SVM used to establish the
baseline classification performance. Only five iterations were neces-
sary to achieve label convergence.
5.2. Method 2: safe semi-supervised support vector machine (S4VM)

Transductive SVMs (TSVM) are a class of semi-supervised classifi-
cation methods derived from the framework of traditional SVMs.
Consider our SVM framework above. Now, suppose we introduce an
unlabeled feature set x̂1; x̂2;⋯; x̂u where x̂ j 2Rn for j ¼ 1;2;⋯;u.
These unlabeled data have corresponding slack variables ξ̂ j�0; and
constraints similar to those in Eq. (24). However, the labels ŷj are var-
iables instead of parameters since they are not assigned. For the
TSVM problem, Eq. (25) becomes

Jðw; j; ĵÞ ¼ 1
2
jjwjj2 þ C1

Xm
i¼1

ξ i þ C2

Xu
j¼1

ξ̂ j ð29Þ

where C1, C2 > 0 and ŷj 2 f�1;1g for j ¼ 1;2;⋯; u [53].
Minimizing Eq. (29) in its current form is a combinatorial night-

mare and is known to be NP-hard [54]. Thus, many less expensive
methods aimed at approximating the TSVM solution have been pro-
posed [53�57]. While these algorithms have made the problem trac-
table, they still must be used with caution because properly tuning
hyperparameters in a semi-supervised environment is difficult and
converging to a decision boundary which hurts classifier perfor-
mance is an ever-present danger. Considering these concerns, the
Safe Semi-Supervised SVM (S4VM) algorithm developed by Li and
Zhou [57] is of particular interest. In contrast to other TSVM imple-
mentations which converge to a single optimal decision boundary,
the S4VM algorithm builds a pool of candidate low-density separa-
tors and then chooses labels for the unlabeled data which maximize
the performance for any separator. Li and Zhou determined these
labels through simulated annealing and heuristic representative sam-
pling approaches. Most importantly, Li and Zhou showed that S4VM
is relatively insensitive to choice of hyperparameters and claimed
that the algorithm never performs significantly worse in a statistical
sense than an SVM trained only on the labeled data.

For these reasons, S4VM is used to approximate the TSVM solution
in this study. For computational efficiency, the sampling technique was
used instead of simulated annealing, and the algorithm was imple-
mented using Li and Zhou’s MATLAB package. While most parameters
were left at default values, the g parameter for the Gaussian kernel and
the C1 penalty parameter were set to 0.01 and 10 respectively to mirror
the optimized hyperparameters for the baseline SVM.



C. Kunselman et al. / Acta Materialia 188 (2020) 49�62 57
5.3. Method 3: label propagation (LP)

Many methods developed for the semi-supervised classification
problem are graph-based—see [50] for a thorough overview. In dis-
crete mathematics, a graph is an abstract entity which captures pair-
wise relationships between elements within a finite set. Formally, a
graph (also known as a simple graph) is an ordered pair G ¼ ðV ; EÞ
comprised of a finite, nonempty set V of elements called vertices and
a set E containing pairs of distinct elements of V called edges. Graphs
can be thought of as geometrical objects by representing vertices as
points and corresponding edges as lines between them in a planar
space. An example is given in Fig. 6. In a weighted graph, each edge a
¼ fx; yg2 E is assigned a non-negative number c(a) (called as its
weight) through the weight function c. Weights generalize graphs by
allowing the relationship between two vertices to go beyond the
existence or absence of an edge, allowing physical concepts such as
distance or cost to be modeled. Further details on graph theory can
be found in [58].

Zhu and Ghahramani created a graph-based semi-supervised
learning algorithm based on the construction of a weighted graph
[59]. It is known as label propagation. This algorithm ‘pushes’ labels
from labeled data points to unlabeled data points under the assump-
tion that close proximity implies similarity. Suppose we have l
labeled and u unlabeled data points where YL ¼ fy1; y2;⋯; ylg are the
observed labels and YU ¼ fylþ1; y1þ2;⋯; y1þug are unobserved. Let
there be C possible class labels. The graph is built by first placing all
labeled and unlabeled data points into the set of vertices. Each vertex
is then connected to every other vertex in the set of edges, producing
what is known as a complete graph. For edge a ¼ fx; yg where x, y
are vertices, the weight function is given by

cðaÞ ¼ exp �d2xy
s2

 !
ð30Þ

where dxy is the Euclidean distance in the feature space between the
data points represented by the vertices x, y and s is a previously
given parameter. Thus, data points which are closer in the feature
space have larger edge weights.

Now, define a ðlþ uÞ � ðlþ uÞmatrix T

Tij ¼
cðfi; jgÞPlþu

k¼1 cðfk; jgÞ
ð31Þ

where T is interpreted as the probability of traveling from vertex j to
vertex i. Furthermore, let Y0 be a ðlþ uÞ � C matrix where the ith row
contains the label probability distribution for data point i. Assume
that the first l rows correspond to the labeled data points. The rows
of labeled data points contain a 1 in the appropriate column and 0 in
all others; the distributions for the unlabeled data points are arbi-
trarily assigned. The algorithm is then conducted through the follow-
ing procedure where t denotes the current iteration number:
Fig. 6. Geometrical representation of graph G ¼ ðV ; EÞ where V ¼ fvA ; vB; vC ; vD; vEg
and E ¼ ffvA ; vCg; fvA; vEg; fvB; vCg; fvB; vDg; fvC ; vEgg.
1. Propagate the labels by applying the transition matrix to the cur-
rent label distribution matrix Yt ¼ TYt�1.

2. Row normalize Yt to maintain the probability interpretation.
3. Set the first l rows of Yt equal to the first l rows of Y0. This is

known as clamping the labels.
4. Repeat until desired convergence criteria are met. Once con-

verged, unlabeled data points are assigned that label with the
highest probability.

In their paper, Zhu and Ghahramani prove this algorithm converges
to a fixed point solution regardless of the initial label probability dis-
tributions for the unlabeled data. Step 3 ensures that a constant push
is provided from initially labeled data points and that classes with
fewer labeled data points are not pushed out.

At this point, choice of the s parameter has yet to be discussed. In
place of optimization through cross validation on the labeled data, Zhu
and Ghahramani propose a heuristic based on the 3s rule of a Gauss-
ian distribution, but for our problem this heuristic produced a value of
s on the order of 10�3;which caused the algorithm to become numeri-
cally ill-conditioned as c(a) approached zero for large values of d2xy.
Further investigation showed that this ill-conditioning persisted for
values of

ffiffiffiffi
s

p
on the order of 10�1 and lower. Conversely, values of

ffiffiffiffi
s

p
on the order of 10 or higher made the radius of influence of each ver-
tex so large that the algorithm assigned the label of the class with the
majority of data points in the training set (Precipitate) to each data
point in the ambiguous set. However, setting s ¼ 1 avoided both
numerical ill-conditioning and assignment of the same label to the
entire ambiguous set; thus, we adopted this value of s for our prob-
lem. Label propagation was implemented through scikit-learn [47].

5.4. Method 4: COP-KMEANS clustering (CKM)

Semi-supervised clustering methods are adaptations of traditional
unsupervised clustering algorithms designed to take advantage of
partial information. In contrast to the other semi-supervised methods
discussed above, this information is not necessarily labeled data and
often takes the form of pairwise linkage constraints. Two common
types of linkage constraints are ‘must-link,’ in which two data points
must be in the same cluster, and ‘cannot-link,’ where two data points
cannot be in the same cluster [60].

Many studies modifying clustering algorithms to exploit partial
information start with K-means clustering [61�65]. For a given K,
this method partitions the data set into K clusters such that the sum
of intra-cluster variance (based on Euclidean distance) is minimized.
An outline of the K-means algorithm is presented below:

1. Randomly assign each data point a cluster label from 1 to K.
2. Compute the centroid, or vector of means for each dimension in

the feature space, of each cluster.
3. Reassign each data point to the cluster whose centroid it is clos-

est to.
4. Repeat steps (2) and (3) until cluster assignments converge.

A rigorous mathematical description can be found in [18].
Wagstaff et al. [65] introduced must-link and cannot-link con-

straints into this algorithm by slightly adjusting step (3). That is,
instead of each data point being assigned to the cluster whose cen-
troid is closest, each data point is assigned to the closest cluster
which does not violate any of the given constraints. Their method is
known as COP-KMEANS.

In order to utilize COP-KMEANS for this study, Kwas chosen to be 2
and linkage constraints were derived from the labeled training set by
giving must-link conditions to those microstructures of the same class
and cannot-link to those of opposite classes. However, specifying all of
these constraints introduced a large degree of redundancy and compli-
cation into the model. Thus, to relieve model complexity, must-link
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constraints were established between one precipitate microstructure
Pi and all other precipitate microstructures in the training set. The
same procedure was followed for one bicontinuous microstructure Bl,
and then one cannot-link constraint was specified between Pi and Bl.
Once all of the necessary constraints were specified, COP-KMEANS
was applied using Babaki’s implementation in python [66].

6. Classification of labeled data using the updated training set

To reiterate, the purpose of applying the collection of semi-super-
vised methods described above was to identify a subset of the ini-
tially unlabeled microstructures for which a labeling consensus could
be reached. This subset is then added to the initially labeled training
set in order to train a new SVM with a decision boundary which is
informed by both high-confidence and ambiguous examples of each
class. The idea is that only adding this subset to the training set will
lessen the risk of degrading classifier performance posed by many
semi-supervised methods. The four semi-supervised learning meth-
ods agreed on 301 of 519 initially unlabeled microstructures (about
58%). The 301 microstructures from the initially unlabeled set which
received an identical label vote from each of the four semi-supervised
methods were added to the original training set with their corre-
sponding labels.

Fig. 7 shows examples of initially ambiguous microstructures that
were subsequently assigned labels through consensus. As can be
seen, the example microstructures are truly ambiguous in that it is
somewhat challenging to decide on the class they belong to. How-
ever, closer inspection of the dominant features in each of the two
subsets seems to make intuitive sense: microstructures labeled as
Fig. 7. Examples of ambiguous microstructures which were assigned to the (a
‘Bicontinuous’ tend to have more elongated and tortuous single-
phase domains, while those labeled as ‘Precipitate’ tend to have
motifs that are closer to precipitate-like morphologies (or at least
have them in greater numbers).

Following the same procedure used for the baseline SVM, kernel
and hyperparameter selection was optimized through an exhaustive
grid search employing five-fold cross-validation. This resulted in a
Gaussian kernel with g ¼ 0:01 a penalty parameter C ¼ 10. This clas-
sifier, which will be referred to as the updated SVM, performed simi-
larly to the baseline SVM on the high-confidence data, with
estimated error rates of 0.0397 from the initially labeled training set
and 0.0599 from the labeled test set.

While the error estimates for updated SVM regarding the initially
labeled data are low, they are still higher than those of the baseline
SVM. To determine whether there is a statistically significant differ-
ence between the performance of the baseline and updated SVMs on
the high-confidence data, McNemar’s test was employed. McNemar’s
test is a non-parametric statistical hypothesis test used to compare
dependent categorical outputs, making it useful for evaluating rela-
tive classifier performance when resampling and retraining is too
expensive or when test data is limited [67]. The test statistic for
McNemar’s test is determined through a contingency table, which
summarizes how the two classifiers agree and disagree on the test
set. An example is given in Table 2 where a is the number of points
from the test set of size n which both classifiers labeled correctly, b
denotes the number of points which the first classifier labeled cor-
rectly but the second classifier did not, and so on.

The null hypothesis is that the proportion of correctly classified
points made by the first classifier is equal to that of the second
) bicontinuous or (b) precipitate class by each semi-supervised method.



Table 2
Example of a contingency table used for calculating the test statistic for McNemar’s
test.

Classifier 1

Correct Incorrect

Classifier 2 Correct a b
Incorrect c d
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classifier. That is,

H0 :
aþ b
n

¼ aþ c
n

: ð32Þ

The test statistic is given by

x2 ¼ ðb�cÞ2
bþ c

: ð33Þ

Under the null hypothesis, this test statistic has a chi-squared distri-
bution with one degree of freedom for sufficiently large values of
bþ c. As a rule of thumb, when bþ c<10; the exact binomial variant
is recommended [68]. Under the null hypothesis, the distribution of
B, the random variable associated with b, conditioned on the number
of discordant pairs bþ c is the binomial distribution
Binomialðbþ c;0:5Þ. A two-sided p-value is then calculated from the
observed value B ¼ b by multiplying the minimum of the upper and
lower tail p-values by two [69]. As per popular convention, in this
work the null hypothesis will be rejected if the p-value is less than
0.05. The contingency table for the baseline and updated SVMs
regarding the labeled test set is given in Table 3.

The sum of discordant pairs is less than 10, so the exact variant of the
test was used, resulting in a p-value of 0.625. Thus, we do not have evi-
dence to reject the null hypothesis at the 95% confidence level, and we
conclude that the difference in performance of baseline and updated
SVMs on the high-confidence data is not statistically significant.
7. Estimating semi-supervised classification error

Estimating model error is of paramount importance in machine
learning. Presently, estimating classification error when some or all
labels are missing is a difficult problem which has yet to be studied
extensively. To estimate the error for semi-supervised problem
encountered in this study, we propose using a convex combination of
error estimates for the high-confidence labeled and ambiguous unla-
beled data. A rigorous mathematical discussion is given below.

7.1. Definitions

Let X be a feature vector of length d which is a member of either
the labeled subpopulation pL or the unlabeled subpopulation pU.
Regardless of which subpopulation X belongs to, it will have a corre-
sponding true class label Y 2 {0, 1}. We define the error rates of a clas-
sifierc : Rd ! f0;1gwith respect to these subpopulations as

�U ¼ P
�
cðXÞ 6¼ YjX 2pU

�
¼ E½jY�cðXÞjjX 2pU �; ð34Þ
Table 3
Contingency table for the baseline and updated SVMs on the labeled test set.

Baseline

Correct Incorrect

Updated Correct 360 3
Incorrect 1 20
�L ¼ P
�
cðXÞ 6¼ YjX 2pL

�
¼ E½jY�cðXÞjjX 2pL�: ð35Þ

We note that the expectation of a random variable Z given event W
can be expressed as

E ZjW½ � ¼ E ZIW½ �
PðWÞ ; ð36Þ

where I is an indicator function. This allows us to rewrite Eqs. (34)
and (35) as

�U ¼ E½jY�cðXÞjIX 2pU �
PðX 2pUÞ ; ð37Þ

�L ¼ E½jY�cðXÞjIX 2pL �
PðX 2pLÞ : ð38Þ

It then follows that the overall error rate � is given by

� ¼ P
�
cðXÞ 6¼ Y

�
¼ E½jY�cðXÞj�

¼ E½jY�cðXÞjIX 2pU � þ E½jY�cðXÞjIX 2pL �
¼ PðX 2pUÞ�U þ PðX 2pLÞ�L;

ð39Þ

which is a convex combination of �U and �L weighted by the probabil-
ities of the feature vector X belonging to pU and pL, respectively.

7.2. Labeled error estimation

Although the previous result provides us with a theoretical defi-
nition of the overall rate, in practice we can only estimate this value
from available data. Suppose that this data is an i.i.d. sample Snþm ¼
fðX1;Y1Þ;⋯; ðXn;YnÞ;Xnþ1;⋯;Xnþmg where X1;⋯;Xn 2pL and
Xnþ1;⋯;Xnþm 2pU. From Eq. (38), we see that the sample estimator
of �L is given by

b�L ¼
bE ½jY�cðXÞjIX 2pL �bPðX 2pLÞ

¼
1

nþm

Xn

i¼1
jYi�cðX iÞj

n
nþm

¼ 1
n

Xn
i¼1

jYi�cðX iÞj;

ð40Þ

which is the well-known result for supervised error estimation. In
this study, all supervised classifiers are independent of the sample
being used to estimate the labeled error rate, so we can assume that
the bias is negligible. Due to the lack of labels, �U cannot be estimated
in the same fashion. We discuss our procedure for estimating this
quantity below.

7.3. Unlabeled error estimation using agreement rates of multiple
classifiers

For many recent machine learning problems, data generation and/
or collection outpaces the labeling process, resulting in a plethora of
information which is practically useless for traditional error estima-
tion techniques. In response, exploring the unsupervised error esti-
mation problem has gained traction over the last ten years. Only a
few methods have been proposed, with most making limiting
assumptions such as the label distribution being known [70] or that
all classifiers make independent errors [71]. However, in [73], Plata-
nios et al. introduce a simple algorithm which uses the sample agree-
ment rate estimates of a collection of classifiers on only unlabeled
data to estimate the individual and joint error rates. It requires no
prior knowledge of the label distribution of the sample data used to
estimate agreement rates, and it relaxes the independence assump-
tion by turning it into the objective in an optimization problem. Let A
be a set of classifiers and aA and eA be the agreement rate (the proba-
bility that all classifiers in A assign the same label) and error rate (the
probability that all classifiers in A make the wrong prediction) for



Table 4
Error estimation results using objective c1. The SVMs trained on the results
of a specific semi-supervised method are denoted by the abbreviation of
that semi-supervised method.

Classifier �̂L �̂U �̂

MY 0.0625 0.0929 0.0690
S4VM 0.0677 0.0538 0.0647
LP 0.0911 0.2038 0.1151
CKM 0.0964 0.1557 0.1090
Updated 0.0599 0.0271 0.0529

Table 5
Error estimation results using objective c2. The SVMs trained on the results
of a specific semi-supervised method are denoted by the abbreviation of
that semi-supervised method.

Classifier �̂L �̂U �̂

MY 0.0625 0.0963 0.0701
S4VM 0.0677 0.0520 0.0644
LP 0.0911 0.2004 0.1144
CKM 0.0964 0.1522 0.1082
Updated 0.0599 0.0289 0.0533
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that set of classifiers, respectively. Specifically, the objective to be
minimized is given by

c1ðeÞ ¼
X

A:jAj�2

eA�
Y
i2A

ei

 !2

; ð41Þ

which is effectively minimizing error rate dependence by making the
joint error rates close in value to the product of their marginal rates.
Equality constraints which relate sample agreement rate estimates to
error rates are given by

âA ¼ eA þ 1þ
XjAj
k¼1

½ð�1Þk
X
I�A

jIj ¼ k

eI �; ð42Þ

where âA is simply the number of data points which received the
same prediction from each classifier in A divided by the sample size.
Furthermore, the following inequality constraints

eA� min
i2A

eAi ð43Þ

for |A| � 2 ensure that all joint error rates are properly bounded by
the values of their corresponding marginal error rates. Platanios et al.
go on to recommend constraining some fraction of the individual
error rates to be less than 0.5 in order to avoid solutions which imply
that most of the classifiers perform worse than chance. We decided
to implement this idea through the following constraint

min
i2A

ei�0:5 ð44Þ

which simply forces at least one of the individual error rates to be less
than 0.5. We also considered a second objective which attempts to
minimize the sum of all of the individual error rates

c2ðeÞ ¼
X
i2A

ei: ð45Þ

While c2 has the potential to give a more optimistic solution than c1,
it takes the independence of error rates out of the problem
completely.

Since the framework above allows for the estimation of error of
multiple classifiers, we decided to create four new training sets by
combining the original labeled training data with the output of each
semi-supervised method. A new SVM was then trained over each of
these training sets, giving us a set of five classifiers including the
updated SVM. The predictions of all five classifiers were then col-
lected on the ambiguous set in order to estimate agreement rates.
Optimization was implemented using Sequential Quadratic Program-
ming in Matlab.

7.4. Overall error estimation

Once �̂L and �̂U are available, an estimate of the overall error rate �̂
can be obtained from Eq. (39):

�̂ ¼ P̂ðX 2pUÞ�̂U þ P̂ðX 2pLÞ�̂L ¼ m
mþ n

�̂U þ n
mþ n

�̂L: ð46Þ

The labeled, unlabeled, and overall error estimates for all five classi-
fiers are given in Tables 4 and 5.

There are a few observations of note. The first is that optimization
of both objectives resulted in very consistent solutions for unlabeled
error estimation. This could be a result of the constraints. That is, while
there are infinitely many solutions to the equality constraints (which
is why optimization was necessary in the first place), the additional
inequality constraints could have resulted in an extremely small feasi-
ble region in the design space, leading to similar solutions for both
objectives. Along these lines, the addition of the constraint given in
Eq. 44, which only forced one of the five individual error rates to be
less than 0.5, led to solutions in which all individual error rates are
below this threshold, which still aligns with the assumption made by
Platanios et al. that most of the classifiers must have error rates better
than chance. The second observation is that the updated SVM, which
was trained on the initially labeled training data and the subset of
ambiguous data which received a labeling consensus from all four
semi-supervised methods, had the lowest labeled, unlabeled, and
overall error estimates. Thus, for this particular problem, only adding
this subset of the initially unlabeled data to the training set helped to
avoid potential performance degradation on the high-confidence data
and resulted in the best decision boundary for the ambiguous data.
Lastly, both labeled and unlabeled error estimates for the SVMs trained
over the results of the individual semi-supervised methods show that
the Modified Yarowsky and S4VM algorithms assigned labels in a less
detrimental way than Label Propagation and COP-KMEANS. This could
be an artifact of the degree to which algorithm assumptions matched
the given problem and is further evidence that more than one semi-
supervised method should be considered when little is known about
the distribution(s) of the data.

A complete suite of scripts with full implementation of all meth-
ods on an abridged version of the dataset for replication and verifica-
tion can be found in [73].
8. Conclusions

Microstructure characterization and classification has been identi-
fied as an important step in building processing-structure-property
linkages for the ultimate goal of materials by design. While the super-
vised classification problem is straight-forward given an appropriate
metric and a robustly labeled training set, the high level of variation in
a material’s internal structure often hinders their acquisition. As we
move to generalize the microstructure classification problem to
encompass both established and emerging material systems, we must
recognize that class taxonomy will be an ambiguous and dynamic
entity which will require tools beyond human inspection to define and
update. In response, we considered the specific problem of binary clas-
sification where class assignment was certain for some microstruc-
tures and ambiguous for others and proposed a data-driven
classification framework which uses a collection of semi-supervised
learning methods to identify the largest ‘safe’ subset of the ambiguous
microstructures to label and add to the training set. We showed that
the addition of this subset, consisting of almost 58% of the ambiguous
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sample, to the training set did not degrade supervised classifier perfor-
mance on high-confidence microstructures and that reliance on the
consensus of multiple semi-supervised methods mitigated the risk of
adding detrimental information to the training set. We also showed
how classifier error can be estimated for the semi-supervised problem
when it cannot be assumed that classifiers make independent errors.
Although this paper has made an important step, future work will
have to address changes in class taxonomy through the identification
of emerging classes, the partitioning of old, broad classes into new,
more specific subclasses, and so on. It must be stressed that the aim of
this work was not only to demonstrate that semi-supervised learning
methods can be used to train high-performing microstructure classifi-
cation models. We also showed that automated, data-driven tools can
be used in conjunction with human experience and rationality to
uncover subtle relationships in complex microstructural systems. It is
our hope that future studies on the microstructure classification prob-
lem will leverage the paradigm of data-driven science to accelerate
the discovery of new useful information about the materials micro-
structure space, rather than simply training supervised classifiers in
order to automate otherwise tedious tasks.
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