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Abstract
Quality control in additive manufacturing can be achieved through variation
control of the quantity of interest (Qol). We choose in this work the micro-
structural microsegregation to be our Qol. Microsegregation results from the
spatial redistribution of a solute element across the solid—liquid interface that
forms during solidification of an alloy melt pool during the laser powder bed
fusion process. Since the process as well as the alloy parameters contribute to
the statistical variation in microstructural features, uncertainty analysis of the
Qol is essential. High-throughput phase-field simulations estimate the solid—
liquid interfaces that grow for the melt pool solidification conditions that were
estimated from finite element simulations. Microsegregation was determined
from the simulated interfaces for different process and alloy parameters.
Correlation, regression, and surrogate model analyses were used to quantify
the contribution of different sources of uncertainty to the Qol variability. We
found negligible contributions of thermal gradient and Gibbs—Thomson
coefficient and considerable contributions of solidification velocity, liquid
diffusivity, and segregation coefficient on the Qol. Cumulative distribution
functions and probability density functions were used to analyze the dis-
tribution of the Qol during solidification. Our approach, for the first time,
identifies the uncertainty sources and frequency densities of the Qol in the
solidification regime relevant to additive manufacturing.
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1. Introduction

Additive manufacturing (AM) processes are increasingly becoming pervasive due to their
ability to produce intricate parts with improved properties compared to traditional manu-
facturing processes and are therefore widely being used in aerospace and automotive
industries [1, 2]. The AM process studied in the present work is laser powder bed fusion
(LPBF). The material chosen for research is a Ni-Nb alloy, which is a binary analog of
Inconel 718, that finds application in jet-engine and gas-turbine components [1, 2]. During the
LPBF process, the laser beam moves across the alloy powder with a fixed velocity, resulting
in a liquid melt pool that solidifies into a complex solid-liquid interface. The morphology of
the solid-liquid interface is determined by the solidification conditions in the melt pool,
namely, temperature gradient G and solidification velocity V [3]. The typical solidification
morphologies are planar, cellular, and dendritic in which the key microstructural features such
as spacing, segregation, and orientation determine the properties of an AM component.

The primary barrier to the widespread adoption of the new classes of AM materials is the
lack of confidence in the product quality [4—6], which is due to the variability present at
various stages of the manufacturing process. Development of a quality control approach
based on uncertainty quantification (UQ) of the process through multiscale simulations is a
key to resolve this issue. The flowchart in figure 1 summarizes our multiscale uncertainty
analysis approach. A macro-scale finite element analysis (FEA) model simulates the LPBF
process where the potential sources of uncertainty are the laser processing parameters, mat-
erial properties, and boundary conditions. The melt pool profile obtained from FEA simu-
lations is used to determine the solidification parameters as they are inputs to the
microstructure model. A phase-field model [7-9] is used for the simulation of microstructure,
from which the quantity of interests (Qols) are determined. Phase-field models can be
computationally intensive as the simulations [10—12] often run from hours to days to produce
informative microstructures. Surrogate models are inexpensive approximations to the original
computer model ([13] and the references within). Therefore, a suitable surrogate model could
potentially substitute for the expensive phase-field simulations.

The microstructural features that develop during LPBF solidification process are statis-
tically variable in several aspects [14, 15]. The solidification morphology and the distribution
of the grain size can vary from region to region within the microstructure. The spatial
distribution of the solute composition in the as-built alloy samples can be severely inho-
mogeneous due to rapid cooling rates (' = G x V). The misorientation of the solidifying
grains with respect to the build direction is frequently observed in multi-layer multi-pass
solidification microstructures [16]. The above microstructural features further vary as a
function of the alloy properties, such as the segregation coefficient, the diffusivity of the
liquid, and the Gibbs—Thomson coefficient. All the above issues lead to inhomogeneous
mechanical properties of the solid material. From a modeling perspective, numerical para-
meters such as interface width and mesh size contribute to uncertainties. It is entirely una-
voidable to eliminate the microstructural variabilities due to the non-equilibrium nature of the
solidification during LPBF [4, 6]. The incorporation of non-equilibrium physics adds further
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Figure 1. Summary flowchart of uncertainty propagation in a multi-level simulation
framework.

computational cost to the original computer simulation models, thus requiring efficient sur-
rogate models to approximate those.

We chose to study the microsegregation (i.e. the spatial distribution of the solute across
the interface) in LPBF solidification microstructures as our Qol. Microsegregation severely
affects the yield, tensile, and fatigue strengths of the material and can be estimated from a
microstructure in a relatively small domain. Our strategy in this work is to use a micro-
structure model to determine the Qol statistics in LPBF microstructures and to apply the
knowledge of UQ to understand the contribution of various sources to the Qol variability.
Microstructure evolution during a low-velocity solidification process possesses much less
variability of the microstructural features compared to that of the same during the LPBF
process and hence is often ignored in the casting solidification literature. Conversely,
uncertainty analysis is essential for the quantification of LPBF microstructures due to sig-
nificant variability in its key features. It is, however, rarely addressed in the literature (for
recent overviews, refer to [17-19]).

UQ frameworks of a FEA model for melt pool simulation and a cellular automata model
for microstructure simulation were coupled very recently [17, 20]. The phase-field method is
more efficient compared to the cellular automata method in that the phase-field method does
not require explicit tracking of the solid-liquid interface and the difficulties associated with
the estimation of interfacial curvature are handled efficiently [21, 22]. There is no study, as far
as we are aware, that addresses uncertainty during the high-fidelity microstructure evolution
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using the phase-field method. Further, one must be cautious in using statistics derived from
limited input and output data during phase-field simulation of the LPBF process, as small
datasets may not necessarily represent the overall processing as well as the solidification map.
Therefore, the distribution derived from a large dataset could potentially be used as a metric to
gain a deeper understanding of the physics and trends involved in the solidification process.
Uncertainty analysis for LPBF is a relatively new research field with tremendous growth
opportunities in the future. In this first approach, key questions we address in the micro-
segregation modeling in the solidification regime relevant to LPBF are: Which model para-
meter uncertainties affect microsegregation? How can statistical distributions be used to
represent microsegregation? How do sample size and distribution affect microsegregation?
Are surrogate models good enough to approximate phase-field models?

The remainder of the article is as follows. Simulation method, parameters, and micro-
structure analysis techniques are outlined in section 2. The sensitivity, surrogate, and fre-
quency analyses of our phase-field simulation results are illustrated in section 3. A detailed
discussion of our simulation results is given in section 4. Finally, a summary and outlook of
the current work are given in section 5.

2. Simulation details

2.1. Method

Inconel 718 (IN718) is a multicomponent alloy with a more than ten alloying elements
making the microsegregation in the solidifying melt pool complex. Our strategy here is to
conduct an uncertainty analysis of a binary approximation of the IN718 alloy, the under-
standing of which can be effectively extended for the modeling of a multicomponent analog
using a multi-phase-field model that handles multiple components and phases [23-25]. Ni-Nb
is the most important binary analog of IN718, since Nb segregates most severely from the
solid to the liquid during directional solidification of the IN718 melt pool due to the smallest
partition coefficient of Nb among all elements in IN718 and thus has a major role in deter-
mining the key solidification microstructural features as well as the subsequent solid—solid
precipitation reactions.

We have used a phase-field solidification model detailed in [26, 27] to simulate the solid—
liquid interfaces that evolve during directional solidification of a Ni-5 wt% Nb alloy. The
model was developed to obtain a quantitative assessment of the microstructure information
that results during directional growth of a binary alloy. The model is employed and validated
extensively in the literature [9, 26, 28] and the simulation results agree excellently with the
experimental measurements on metallic alloys in the low-velocity limit. Therefore, as a
reference, such an established model is programmed to simulate the evolution of the non-
conserved phase-field ¢ and the conserved composition field ¢ during the time(#)-dependent
solidification process in the melt pool. The phase-field ¢ is a scalar-valued order parameter
field which distinguishes the microstructure phases; ¢ = 1 in the solid, ¢ = —1 in the liquid
and the solid-liquid interface is described by —1 < ¢ < 1. This approach avoids explicit
tracking of the interface and thus the complex solid-liquid interfaces are extracted in an
efficient way. The effects of melt convection are not included, the diffusion of solute in the
solid is neglected, the diffusion of heat is ignored, and local equilibrium at the solid-liquid
interface is imposed in this model. The evolution equation for ¢ can be written as:
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The dimensionless surface energy function a(g) =1 — ¢[3 — 4214: 1ql.‘l] represents the d-
dimensional fourfold anisotropy at the solid-liquid interface with a strength € and g; is the
interface normal vector pointing into liquid along the Cartesian direction i in the lab frame of
reference. Alloy composition ¢, liquidus slope m,, and equilibrium partition coefficient (or,

segregation coefficient) k can be approximated from a Ni—Nb phase diagram [29, 30]. The

2¢ck / co
l+k—(1-ko
approximation [26] is applied in which the temperature gradient G is translated along the z
(growth) axis with a velocity V.

The evolution equation for ¢ can be written as:

dimensionless chemical potential u is given by ln( ) A frozen-temperature

Oc

==V [—%(1 + @)D ¢ exp () Vexp(u) + a,Wo(l — k)exp(u)%ﬁ],

or |Vl
2

where the first term inside the square bracket represents a standard Fickian diffusion flux, and
the second term is the anti-trapping solute flux term that prevents any artificial solute trapping
to occur at the simulated solid-liquid interface and thus the solute redistribution across the
interface becomes efficient. The value of @, = 1/(2+/2) is based on the thin interface model
by Karma [27]. D is the diffusivity of solute in the liquid.

The numerical parameters in the model, the interface thickness W,, the phase-field
relaxation time 7, and the dimensionless coupling constant )\, are linked to material para-
meters via the chemical capillary length dy = 0.8839W;/\ and the timescale for diffusion
70 = 0.6267)\ W3 /D that use a thin-interface analysis in order to make the interface kinetics
vanish. Both W, and 7 values are used to render all the simulation parameters dimensionless.

2.2. Parameters and procedures

2.2.1. Finite element analysis. The solidification parameters in equation (1) were estimated
using 3D FEA simulations carried out within the COMSOL Multiphysics [31] heat transfer
module. A single-track laser scan in the length direction of a rectangular parallelepiped
specimen of Ni—Nb substrate at an initial uniform temperature of 298 K was modeled
(figure 2). The laser beam power distribution was assumed to be Gaussian with a beam
diameter of 80 ym. The power absorption coefficient was considered to be phase-dependent
following [32]. The absorptivity values of solid, liquid, and vapor phases was 0.3, 0.3, and
0.6, respectively. The governing equations for the conservation of energy during the laser heat
distribution within the material can be found in [33]. The boundary conditions listed as
thermal loads (figure 2(a)) included heat transfer considerations of the deposited laser beam,
natural convection, radiation, and vaporization. Natural convection and radiation
contributions were included through the standard implementations of each phenomenon
typical of heat transfer analysis [33]. Vaporization was included through a loss of energy via
the mass flux of vapor leaving the system which was calculated using the weld pool
evaporative flux model developed in [34].

Heat transfer within the simulation domain was governed by conduction only, but
included phase-transformation effects in the form of latent heat contributions to the specific
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Figure 2. (a) Three-dimensional FEA simulations determine the temperature
distribution in the resulting melt pool during LPBF (laser power of 200 W and beam
speed of 500 mm s~ ') of a Ni-5% Nb alloy. A typical melt pool profile is shown within
the geometry of the simulation domain. (b) A 2D section of the 3D melt pool cut along
its center in the length direction is presented to illustrate the temperature distribution.
(c) G and V vary as a function of the melt pool depth. (d) These G and V values are the
inputs to the phase-field simulation. Note that this schematic is one instance of multiple
such parallel FEA and phase-field calculations that are being used for the uncertainty
analysis of the LPBF microstructures.
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heat during melting and vaporization, as well as phase-dependent material properties [33].
Thermophysical properties such as the bulk material density, latent heat, and specific heat of
the solid, liquid, and vapor phases of the Ni-Nb alloy were calculated using an atomic
composition based rule of mixtures of pure Ni and Nb properties. For a small alloying
addition of Nb (5 wt%), the properties are essentially that of pure Ni which can be found in
the Material Property Handbook [35, 36]. Liquid conductivity was calculated as twice that of
the solid to approximate the effect of convection within the melt pool, as is common practice
in heat transfer analysis [37]. Vapor phase conductivity was artificially enhanced to simulate
the transmission of laser deposited energy through the phase into the substrate during
vaporization. This enhanced vapor conductivity is unique to this model, but has similarities to
the element birth and death method [38]. However, our approach is more physical in that it
retains the vapor that forms in the region between the laser beam and the substrate material.

The LPBF process was simulated for a wide range of laser parameters that were based on
our knowledge and machine specifications; laser power typically varied between 30 W and
300 W and beam speed typically varied between 0.1and 2.5m s~ '. A typical resultant
thermal profile after the FEA simulation is shown in figure 2(b). The melt pool profile
obtained from this simulation was used to extract the solidification parameters G and V

6
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Table 1. Assumed ranges for the phase-field model input parameters.

Input (X) Minimum  Maximum
G(Km 10° 4 x 10’

Vmsh 0.01 2.5

D (m*s™!) 107° 9x107°
' (K m) 1077 4 x 1077
k (dimensionless) 0.48 0.74

(following their mathematical expressions given in [3, 39]) at the liquidus temperature
isotherm where the solid-liquid phase transformation begins. The ranges of G and V
(figure 2(c)) estimated for various values of laser parameters approximate the entire LPBF
solidification map (table 1). These G and V values are inputs to the phase-field model
(figure 2(d)).

It should be noted that we ignore the effects of uncertainty regarding the material
properties (e.g. laser absorptivity, thermal conductivity of the liquid), melt pool physics (e.g.
computational fluid dynamics and Marangoni convection), and numerical parameters (e.g.
mesh size) that affect the temperature distribution as well as the melt pool size and geometry
during our FEA simulations; a detailed uncertainty analysis of which can be found in [40]. An
arbitrary single set of laser parameters may not necessarily lead to ranges of G and V that
approximate the overall LPBF process and solidification maps, on average. This is why we
choose to use wide ranges of laser parameters in our FEA simulations to use the resultant
ranges of G and V values for the subsequent phase-field simulations. A large number of input
samples designed from the resultant ranges of G and V is used to perform uncertainty analysis
efficiently in the present work.

2.2.2. Phase-field. Equations (1) and (2) are solved on a two-dimensional uniform mesh
using a finite volume method and no-flux boundary conditions in all directions. The
numerical values of the parameters used in the simulations are: interface width of 0.5 nm; grid
spacing of 0.3 nm; and two different mesh sizes (in grid units) of 600(V,) x 3000(%,) and
10(V,) x 3000(NV,) are used to simulate cellular and/or planar interfaces. The interface
thickness and grid spacing values used in our simulations are small enough so that the results
become independent of their values. Each simulation begins with a thin layer of solid at the
bottom of the simulation box with an initial Nb composition of k¢ in the solid and ¢y in
the liquid. Small, random amplitude perturbations are applied at the initial solid—liquid
interface, from which perturbations either grow with time and break into a cellular interface or
decay with time resulting into a planar interface. The spatial redistribution of the resulting
composition field ¢ across the interface is referred to as microsegregation.

Three input material parameters, namely, the diffusivity of the liquid D, the Gibbs—
Thomson coefficient I', and the segregation coefficient k are found to affect significantly on
the variability of the phase-field model output. Gibbs—Thomson coefficient I' is given by
doy ATy, where d, is the capillary length and AT is the equilibrium freezing range of the
alloy. Although not shown here, we found that the variabilities of ¢y, m;, and e (refer to
equation (1)) are not significant and hence are ignored following preliminary phase-field
experiments. The specific ranges of the uncertain material properties are decided based on the
literature review [29, 30, 35, 36, 41].
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We use a Latin hypercube sampling (LHS) method [42] to sample N = 100 process and
alloy parameters evenly across all possible values, the statistical measures of which are listed
in table 1. LHS partitions each input distribution into N intervals of equal probability and
select one sample randomly from each interval to construct the input design space. This is
more efficient compared to the Monte Carlo sampling technique that randomly selects a
sample from an input distribution, leading to some intervals in the sample space with a
clustered data and some intervals with no samples.

2.3. Analysis of uncertainty

We use a scatterplot to visualize the variability of n input process and material parameters
X ={x1,.... X, }fvzl on the Qol Y. We perform sensitivity analysis by determining the
Pearson product-moment correlation coefficient py, for each X and Y combinations [43, 44]:
Covariance(X, Y)

Ox Oy

Corr(X, Y) = pyy = 3)

where oy and oy are the standard deviations of X and Y, respectively. The value of py, ranges
between —1 and 1; py, = 0 signifies no correlation between X and Y, and the absolute value
of pyy defines the relationship strength between the two. A value of py, close to O signifies
that the variability of the input X on Y can be discarded. From such an analysis, the number of
uncertain input parameters can be reduced and the parameters can be ranked according to
their correlation strengths with Y.

A regression analysis [43, 44] was used to obtain the line of best fit from a typical
scatterplot representing X versus Y. Regression line equations, as a first approximation,
would help to find a rough estimate of the Qol Y for arbitrary values of the input choices X.
The calculations of mean (x) and standard deviation (o) of X and Y are necessary to perform
regression analysis, which can be expressed as: Y = aX + b, where a = pyy oy /oy and
b= py — a py. ox =XV — py)?/N and oy =S N(y; — py)?/N, where x; and y; are
the elements in X and Y, respectively.

A Gaussian process (GP) surrogate model [45] was used to approximate Y. The surrogate
model was built on the training dataset (X, Y) provided by the phase-field simulations. The
performance of the surrogate model was estimated by measuring the difference between
phase-field model (y;) and surrogate model (3,) predictions, referred to as the mean absolute
predictive error (MAPE):

1 N
MAPE:NZ|yI.—y;| Yie{l,..., N} 4)
i=1

Here y; is ith element of the phase-field model output at an input x;, and , is the ith element of
the surrogate model prediction evaluated at the same input x;. Similarly, mean absolute
percent error is given by %Z,N: | hy;yl x 100.

Frequency analysis of Y is perlformed using cumulative distribution (CDF) and prob-
ability density functions (PDFs) [43, 44]. Phase-field simulated ¥ values are ranked M = 1
through M = N = 100 in the ascending order and then, for each Y entry, the empirical CDF
is calculated using the formula: M/N and plotted against Y. The derivative at any point in this
CDF plot is regarded as the probability of the associated PDF. The empirical CDF is fitted
against different target CDFs such as normal, lognormal, gamma, beta, and Weibull in a
MATLAB distribution fitting tool ‘dfittool’ [46] that uses maximum likelihood estimator to
approximate Y. This analysis helps to gain insights regarding the type of frequency
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distribution the simulated Y closely follows. Such an analysis was performed for various
random samples to test whether there is any effect of sampling on the Y.

3. Results

3.1. General features

The solid-liquid interfaces in a solidifying melt pool grow in the liquid in the direction of the
temperature gradient G at a rate V. The morphology of the solidifying interface can be estimated
by two critical velocities [47], the constitutional supercooling velocity V., = GD/AT; and the
absolute velocity V,;, = AToD/(kT"). When V is below V,,, the interface morphology would
be planar, for V., < V < V,, the interface would be cellular/dendritic, and, for V > V,;, the
interface becomes planar again.

The essence of the planar front and cellular solidification from the phase-field simulation
is as follows. Simulation starts with the procedure described in section 2.2. The initial
perturbation in the solid—liquid interface either decays or grows (referred to as the Mullins—
Sekerka instability [48]) depending on the size of the domain and the strength of the per-
turbation, leading to either planar or cellular interface. Cellular solidification undergoes
intermediate transient stages of growth by merging or splitting of the neighboring cells, which
finally develop into a steady state cellular microstructure. At steady state, the solidification
front grows with the temperature field at a constant velocity of V, which equals that estimated
from the FEA simulation (refer section 2.2). Typical simulations of planar and cellular
interfaces are shown in figure 3.

Let us consider that ¢* is the composition of Nb in the solid and ¢,y is the maximum
composition of Nb in the liquid side of the interface. The scaled microsegregation is then
determined by the solid composition (c,) to the liquid composition (cpay) at the interface,
given by k, = cs*/ Cmax- FOr a planar interface, cs>k = ¢y (nominal composition). For a cellular
interface, ¢ < ¢y for a Ni-Nb alloy. Note that there is an uncertainty associated with the
determination of ¢y, this being a steeply peaked function, which we ignore in the present
work. Since the diffusivity of the solute in the solid is several orders of magnitude smaller
than that of the same in the liquid, we ignore diffusion in the solid and thus ¢ remains
constant in the solid. In our simulations, the solid-liquid interface is not in local equilibrium,
since the k, value extracted at the interface deviates from the equilibrium segregation coef-
ficient k. In this context, an analytical approximation such as the Gulliver—Scheil equation
[47] can predict the solute redistribution during planar solidification for the conditions of zero
diffusion in the solid, infinite fast diffusion in the liquid, and local interface equilibrium.
However, such an analytical approach would be even more strongly idealized compared to the
present scenario where complex interface shapes form during non-equilibrium solidification
and deviations from the phase-diagram are expected for arbitrary solidification conditions.

3.2. Size effects

To quantify the effects of the domain size on the simulated microstructures, we perform
phase-field simulations for two lateral sizes (N,) of the domain (refer to section 2.2). The
small domain (ten grid points) is used to obtain a planar solid-liquid interface in all simu-
lations. Simulations with the large lateral domain (600 grid points) resulted into either planar
or cellular interface depending on the combinations of G and V inputs. The simulated planar
and cellular interfaces are presented in figure 3. The values of k, are extracted from these
interfaces and are plotted against the model inputs X = {x;, ..., x5} = {G, V, D, T, k} in

9



Modelling Simul. Mater. Sci. Eng. 27 (2019) 034002 S Ghosh et al

16

w
-
L~

© (% Nb)
{--]
(% Nb)

Figure 3. (a) Planar solid-liquid interface (not to scale) forms with a composition
distribution that is shown using a color map. The corresponding Nb composition in
both solid and liquid equals the nominal composition of the alloy ¢y, and Nb
enrichment at the interface is denoted by cp.x. (b) Cellular interface that forms for a
fixed value of (G, V) is illustrated using a color map. The characteristic compositions
from A (), B (¢max)» and C (co) are determined. (c) Composition distribution across a
plane front or a cell tip determines the scaled microsegregation number k, = ¢*/cCpax-
For a planar interface, ¢ = c.

figures 4 and 5. It is clear that the k, extracted from planar and cellular solidification fronts are
different when a single numerical experiment is considered that is performed with the same
process and material parameters, but with different domain sizes. However, when the k, data
is considered from the entire population of phase-field experiments, the k, distribution for
both planar and cellular interfaces appears similar, on average, and the ‘average’ lines that
represent these two k, data set almost overlap with each other. Thus, the model output
becomes size independent when the effects of the total population are considered. This is
quantified using a sensitivity analysis in the following section. Since the distribution of &,
population derived from both interfaces is similar, at least for the present ranges of the
solidification conditions, henceforth, we present the output data from planar solidification
only. For the sake of completeness, we present the effect of mesh size and interface width on
the simulated &, values in figure 6. We find that below a mesh size of 0.5 nm and interface
thickness of 0.5 nm simulation results become grid independent and therefore these numerical
values are used for the present study.
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Figure 4. Scatterplots for (a) G and k, (b) V and k, for planar and cellular interfaces are
presented. These phase-field data are extracted from two different domain sizes.
Simulations with the small domain resulted into a planar interface, and the simulations
with the larger domain resulted into either cellular or planar interface. The lines of best
fit estimated from the simulation outputs from two independent runs overlap, signifying
the same output distribution of microsegregation, on average.
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Figure 5. Scatterplots for (a) D, and k, (b) I'y; and &, (c) k and k, for planar and cellular
interfaces are presented. These phase-field data are extracted from two different domain
sizes. Simulations with the small domain resulted into a planar interface, and the
simulations with the larger domain resulted into either cellular or planar interface. The
lines of best fit estimated from the simulation outputs from two independent runs
overlap, signifying the same output distribution of microsegregation, on average.

3.3. Sensitivity analysis

For a sensitivity analysis, the scatterplots representing k, versus X = {G, V, D, I, k} are
considered (figures 4 and 5). The effects of LPBF solidification conditions X* = {G, V} onk,
are shown in figure 4. The lines of best fit of the k, data extracted from both planar and
cellular interfaces are presented. On average, k, varies between 0.5 and 0.9, which defines the
microsegregation range of a Ni-Nb alloy during LPBF solidification. The k, data are plotted

11



Modelling Simul. Mater. Sci. Eng. 27 (2019) 034002 S Ghosh et al

0.8 T T T T T 1 T T T
©)
m 0.75 9 ™ 09 O
(7] (7]
K o
8 s
2 @ ©)
g o7r O O ©) 1 208 | E
5 o 5
s s 0
x> x>
n n
> 0.65 | R >07rO O O R
©)
0.6 1 1 1 1 1 0-6 1 1 1
0.2 0.4 0.6 0.8 1 0.1 1 10
Mesh size (nm) Interface thickness (nm)

(a) (b)

Figure 6. Phase-field simulations are performed for the maximum value of the velocity
V=25ms"" (for which maximum deviation from the interface equilibrium is
expected) to illustrate the effect of the (a) mesh size and (b) interface width on Nb
microsegregation. Simulated output k, values become grid-independent below a mesh
size of 0.5 nm and interface thickness of 0.5 nm. Although not shown here, such a
convergence study using the extreme values of other input parameters in table 1
resulted in a similar observation.

against the material parameters X = {D, I', k} in figure 5. Note that the line of best fit of the
k, distribution remains ‘flat’ for the changes in X" = T (figure 5(b)) and, also for, X* = G
(figure 4(a)), meaning that there is no discernible pattern between each of these model inputs
and the output. This is quantified using the correlation coefficient pyy.

Pxy defines the direction and strength in a relationship between each input and the output.
In order to quantify the sources of input uncertainty on k,, we estimate py, following the
procedure described in section 2.5. The calculated py, value for each source of uncertainty is
shown using a bar chart in figure 7. Note that the values of py, for G and I are close to 0,
which signify a negligible correlation between k, and X = {G, I'} and explain the ‘flat’
distributions in figures 4(a) and 5(b). Thus k, is not related in a meaningful way to the scores
of G and I and it would be virtually impossible to predict &, simply by knowing the values of
G and T". On the other hand, the relationships between k, and (X* = V and X = {D, k}) are
found to be correlated and are considered to be significant. The correlation between k, and
X = {V, k} is positive, meaning that &, increases for the increase in X and vice versa. In
contrast, D exhibits a negative correlation with k,, meaning that k, increases when D
decreases and vice versa. Niobium partitioning at the solid-liquid interface increases with the
increasing rate of diffusion, decreasing k,.

A liner regression analysis is used to predict the phase-field output for any given value
of X. Following the procedure described in section 2.5 and the calculation of pyy, it is
now possible to obtain the regression equations (the units of X are in SI metric) that are
expressed as:
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Figure 7. A bar chart shows the calculated values of the correlation coefficient between
various sources of uncertainty and the output. The solidification velocity, liquid
diffusivity, and segregation coefficient are strongly correlated with the output, while
temperature gradient and Gibbs—Thomson coefficient are not.

k,=0.047V + 0.6625,
k,=—10"D; + 0.77, and
k,=0.78 k + 0.24. ®)

These equations represent the lines of least square which are essentially the ‘fitted’ lines in the
scatterplots in figures 4 and 5. The slopes and intercepts of the regression lines are given in
equation (5). Note the nearly ‘flat’ lines in figures 4(a) and 5(b), which signify that the k, data
points are strongly scattered and bear no correlation with the input X. Whereas in figure 5(c),
k, is aligned with a slope, meaning k, is less scattered and a strong correlation between k and
k, exists.

3.4. Surrogate analysis

The above correlation and regression analyses qualitatively predict the first order relationship
between X and Y. For a quantitative analysis of higher order relationships, brute force Monte
Carlo simulations may be performed. However, the Monte Carlo method is computationally
intensive for most computer simulation models. A surrogate model can be used instead for a
quantitative assessment of the uncertainty in phase-field model inputs. Surrogate models often
consist of GP or polynomial chaos emulators that provide computationally inexpensive
approximations to the original computer model [13, 49]. We adopted a GP surrogate model in
this work to substitute for the phase-field model and employed the framework described in
[40], as implemented in [SO]. A brief outline of the GP model and the procedure required to
obtain the surrogate predictions are presented in appendix.

The surrogate model is constructed to predict the output k, for a given input X. Two
different GP surrogate models run N computational experiments with varying values of two
different input sets, one with five variable inputs X = {G, V, D, I, k} and the other with
three inputs X = {V, D, k}, the parameters of which were considered significant after the
correlation analysis. The corresponding surrogate model predictions and their confidence
intervals are presented in figure 8(a), along with the ideal case (red line) that represents

13
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Figure 8. (a) A Gaussian process surrogate model predicts microsegregation using three
uncertain inputs X = [V, D, k]. The horizontal axis represents the phase-field model
predictions and the vertical axis represents the surrogate model predictions. The red
line represents the ideal case when surrogate model predictions are in full agreement
with the phase-field predictions. Each surrogate prediction is plotted with a confidence
interval that represents the standard deviation around the mean. On average, the
difference between the surrogate model and the phase-field predictions is satisfactory.
(b) Percentage error between these predictions is shown as a function of the training
data size. As expected, the difference between the training data (i.e. phase-field) and
surrogate prediction decreases with increasing data size.

Table 2. Mean absolute predictive and percent errors of the surrogate model

predictions.

Statistics GP with three inputs ~ GP with five inputs
Mean absolute predictive error (MAPE) 0.0273 0.0287
Observed range in simulation 0.39 0.39

Mean absolute percent error 3.9% 4.1%

the phase-field predictions. We do not present the results of the five-parameters surrogate
model, which shows a similar behavior as in figure 8(a); the statistical quantities estimated
using both models are given in table 2. For a quantitative assessment, the computed mean
absolute predictive (equation (4)) and percentage errors for both surrogate models are
reported, the statistical measures of which indicate satisfactory performance of the surrogate
models used. Note that the error metrics determined for the surrogate model with three inputs
and the surrogate model with five inputs are similar, signifying that the effects of variability
regarding the two additional inputs in the five-parameters model are negligible, on average.
The GP surrogate model with five inputs has a slightly lower performance compared to the
model with three inputs, which may be due to the over-fitting caused by more inputs com-
pared to the model with three inputs. These results signify that the three parameters, V, D, and
k, represent the primary sources of uncertainty in the simulation of LPBF solidification
process, whereas the variability in two inputs, G and I, can be neglected safely in order to
reduce computational effort required for quantification.

14
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Figure 9. (a) Calculated cumulative distribution of the phase-field simulated &, population
(N = 100) is fitted against different target CDFs. (b) Maximum ‘log-likelihood’ of each
fitted CDF against the empirical CDF is shown.

Table 3. Ranked ordered phase-field measurements.

Rank (m) Output (k,) Relative rank (F)

1 0.504 062 0.01
2 0.514 948 0.02
3 0.517 629 0.03
4 0.540 556 0.04
5 0.553 158 0.05
95 0.842911 0.95
96 0.845 357 0.96
97 0.849 884 0.97
98 0.869 146 0.98
99 0.879 405 0.99
N =100 0.892838 1.0

The mean absolute percent difference between the phase-field and surrogate model
outputs is 3.9% (table 2). One of the primary reasons for this discrepancy can be due to a
small number (N = 100) of samples used to train the surrogate model. Figure 8(b) shows the
effect of the training data size on the percent error, which can be expressed using an empirical
power law of percent error = 0.266 x size ****. In our opinion, N = 100 represents the
lower limit of the number of samples required to apply uncertainty analysis in materials
research. More training samples are needed for a more accurate prediction of the surrogate
model used in the present study.

3.5. Frequency analysis

We used cumulative distributions and probability densities to analyze the k, distribution
obtained from our phase-field simulations. Following the procedure described in section 2.5,
k, measurements are ranked in the ascending order, as presented in table 3, where F is the
cumulative distribution. The corresponding empirical CDF is presented in figure 9(a). To gain
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Figure 10. Phase-field simulated microsegregation distribution is fitted against different
target CDFs for two samples of size i = 10 (left bar) and i = 20 (right bar).
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Figure 11. Histogram of the microsegregation data and the fitted PDF using a normal
kernel is illustrated.

statistical insights from the &, data, we have fitted our empirical CDF with several theoretical
CDFs that include normal, log-normal, gamma, beta, and Weibull functions. Weibull and beta
functions produced maximum ‘log likelihood’ with the empirical k, (figure 9(b)). Further, to
test the effects of sampling, we have used these target CDFs to fit two different random
samples of k, of size i = 10 and i = 20. We use an objective function: %ZZN [E — Fit]z, where

F; is the empirical CDF value and ﬁit is the corresponding fitted CDF value of a distribution ¢,
to measure how good the average ‘fit’ is between the two. The corresponding statistical
measurements are presented in figure 10. Clearly, the median of the variance for the log-
normal and normal distributions is closest to the k, distribution for i = 10 and i = 20
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samples, respectively. However, the spread and the range of the k, distribution are closest to a
beta CDF, on average.

Figure 11 plots the histogram of the k, data and the associated fitted PDF using a normal
kernel. The peak of the histogram is close to the nominal k, that represents the characteristics
microsegregation value of an as-built Ni-Nb alloy during the LPBF process. The significance
of such a PDF is twofold. The distribution can be compared with experimental measurements
for a calibration of the model parameters in an inverse UQ approach (figure 1). Also, it can be
used to model the subsequent heat treatment processes to aid the microstructural design in a
forward UQ problem.

4. Discussion

4.1. General remarks

We present a case study illustrating how different sources of model uncertainty at the
mesoscale can be identified and subsequent frequency analysis can be performed to under-
stand the microsegregation statistics that result during the microstructure evolution in the
LPBF process. We used an alloy phase-field model [26] as a reference to simulate the
solidification behavior of a dilute Ni-Nb alloy (far away from Ni—Nb eutectic composition).
The model explicitly tracks the solidification front, from where the Nb composition was
extracted to determine the microsegregation number k,. Note that our phase-field model is
based on significant simplifications of the LPBF process and ignores the effects of several
melt pool physics, such as the diffusion of heat and the convection in the liquid, on k,. A
justification for the use of these approximations to keep our phase-field simulations tractable
is discussed in [23]. Ours is a baseline reference study to understand the variability of the
model inputs on the microstructural features in LPBF solidification regime. Although there
are process parameter (G, V) uncertainties that originate during FEA simulations, we do not
perform a multi-model-level UQ [51] in this work and focus only the influence of phase-field
single-model-level UQ on microstructure statistics.

The computational requirements of the phase-field model depend on the approximations
used and the domain size employed to make the simulations tractable. For example, simu-
lating multicomponent solidification with the incorporation of additional physics such as fluid
flow cost significantly more computational resources compared to simulating binary alloy
solidification with reasonable approximations. Although the phase-field equations of motion
(equations (1) and (2)) scale well on large parallel computer architectures, these simulations
often run for days on a multi-node multi-core supercomputing framework to reach a steady
state with a statistically appreciable number of microstructural features that further depend on
the domain size used in the simulations.

Validation of our phase-field model against both analytical solutions and, where avail-
able, experimental measurements in the LPBF solidification limit have been reported pre-
viously [23, 52] and are therefore not repeated here. In these previous works, the
concentration variation of Nb in the solidified melt pool could not be resolved during a
scanning electron microscopy analysis since the beam spot size was quite large with respect to
the extremely fine microsegregation features. Niobium concentration at the solid—liquid
interface varies roughly between 5 wt% and 12 wt% in our simulations (figure 3). As far as
we are aware, the most closely related experimental measurement of elemental distribution
during LPBF is reported in figure 9(a) within [53]. These experiments however correspond to
a fixed G and V, for which Nb varied between 5 wt% and 10 wt% along the traces of the
solid-liquid interface in a solidified IN718 molten pool. When its binary analog is considered,
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as in the present case, Nb partitioning across the interface can be more pronounced since the
interactions among other alloying elements via solidification range, diffusivity, and partition
coefficient are absent.

4.2. Influence of parameters

The majority of our phase-field simulations resulted in planar solidification, and the remaining
simulations predicted cellular solidification. In the literature [54—57], LPBF experiments were
performed for a single set of laser parameters, for which the resulting solidification conditions
yielded a primarily cellular microstructure. The ranges of laser parameters that provided the
ranges of solidification conditions in our phase-field simulations are large when compared to
an experimental study that uses a single set of laser parameter. As a result, the resultant ranges
of G and V were large enough to produce combinations of cellular and planar interfaces. The
simulated morphologies are consistent with the conditions of V., and V,, (discussed in
section 3.1); since the majority of the V samples are higher than V,,, the corresponding
interface morphology is planar. Such broad distributions of laser parameters and the resultant
solidification conditions, on average, approximate the LPBF process and solidification maps
of a generic alloy. Our results will be valuable when compared directly with uncertainties in
cellular and dendritic morphologies that result for the LPBF solidification conditions. Work in
these directions is currently in progress.

G and V are estimated together at a particular location in the melt pool and are therefore
correlated regarding the location-specific microstructural requirements during solidification.
Single-track or multiple-track laser melting processes affect the solidification conditions as
the neighboring melt pools interact. In reality, there is also a certain probability of finding the
same value of either/both G and V at several locations in the melt pool, since these conditions
primarily vary as a function of the melt pool height in a single molten pool within multiple
melt pools (figure 2(c)). As a consequence, when these melt pools solidify into a micro-
structure, the key microstructural features may remain similar across microscopic distances.
Similarly, when multiple melt pool microstructures are considered in that both of the soli-
dification conditions may be repeated across these microstructures. Further, our analysis
proves that in the high-velocity limit (or, at least where the majority of our simulation
condition falls) G has only a minor contribution to the time-dependent solidification process.
In this limit, on average, independent distributions of G and V can effectively assess the
microstructure space that forms during LPBF. For a more accurate description of solidifi-
cation, however, G and V may be shuffled together with a correlation during LHS.

Epistemic model solution uncertainties include numerical parameters such as interface
width and mesh size. Convergence studies were performed in order to use appropriate values
of interface width of 0.5 nm and mesh size of 0.3 nm, for which the simulated microstructures
became grid independent. This way, numerical uncertainties were kept to a minimum. Model
input uncertainty sources can have significant contributions to output uncertainties, and the
inputs to which model and/or microstructure are sensitive are V, D, and k. These are the
aleatoric sources present in the modeling framework considered here. The temperature gra-
dient G and the Gibbs—Thomson coefficient I' do not relate to &, in any meaningful way, and
hence they can be fixed at certain specific values, e.g. mean, without considering their
variability in practice (epistemic uncertainties).

The contribution of solidification conditions on the microstructure evolution in LPBF
solidification regime can be ranked after the measurements of Pearson correlation. This
analysis shows that V (pyy = 0.42) is the most important process parameter and the effects of
G are negligible (pyy = 0.03). This explains why many researchers [52, 58] ignored the
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variability in G and varied the value of V during the modeling of solidification at the high-
velocity LPBF limit. Note that, in this first approach, we have only determined the contrib-
ution of an individual input on the output Qol without considering the mutual interactions
among the inputs. One can use the Sobol’ variance analysis [59] to estimate such mutual
statistical interactions among the inputs which is given by:

Ex_ (Var, (kX))

T
=1
Si Var(k,) ’ ©

where x; is the ith input variable, X.; is the vector of variables excluding x;, Var() is the
variance, and Var,,(k,|X.;) is the variance by freezing x;. Note that the Sobol’ method would
require an unaffordable amount of phase-field simulations that consume significant
computational time and resources. Therefore, a suitable surrogate model such as GP model
[18] and polynomial chaos expansion [60] may be used to approximate the expensive phase-
field calculations. Following the correlation analysis, a regression analysis was used to
represent the linear relationships between each input and the output. Regression equations
give an intuitive experience by providing the formula for calculating the predicted value of
the output when an actual value of the input variable is known. This is our first approach, and
hence we ignored statistical interactions among the input variables that can be estimated using
multiple regressions [61].

4.3. Surrogate modeling perspectives

A GP surrogate model was used previously to replace the FEA simulations in [17, 40]. There
has been no attempt yet to use a surrogate model to quantify the process—structure—property
linkages that develop during an AM process [62, 63]. Our approach to approximate the phase-
field model using a GP regression model is the first step in that direction. The surrogate model
predictions are satisfactory (at least for the given sample size) as they successfully replicate
our phase-field predictions (figure 8). A polynomial chaos expansion [60] may be used
instead of GP as a surrogate base. However, a GP surrogate model is more efficient compared
to the polynomial chaos expansion in terms of capturing local structures, flexibility, and
quantifying uncertainty [49].

Constructing our surrogate model was based on approximating a physics-based model
using a multivariate GP model [40]. To achieve this, a number of simulations from the
computationally expensive physics-based model must be generated first that uses a sampling
technique such as the Latin hypercube design. One direction in the literature to improve the
prediction of the surrogate model is to construct it using a combination of high-fidelity and
low-fidelity simulations, rather than only using high-fidelity simulations. For example, con-
struction of a surrogate model that uses complex high-fidelity phase-field solidification model
and lower-fidelity simulations from an analytical model may train the surrogate model faster
compared to generating the training points only from a high-fidelity model. Even though low-
fidelity simulations on their own do not provide good predictions like the original high-
fidelity physics-based model, they can be very beneficial in obtaining better surrogate model
predictions than the case that only bases the surrogate model on high-fidelity simulations
[64, 65]. Further, to optimally improve the predictive capability of the GP surrogate model
over the domain we could develop sequential full model sampling policies based on max-
imizing the Kullback-Liebler divergence (equation (8)) between the current surrogate model
and a surrogate model with one extra data point [66, 67]. In this sense, the process would
maximize the information gained on every query to the expensive full model.
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Figure 12. The map of Nb partitioning at the solid-liquid interface during LPBF is
illustrated as a function of V. On average, the magnitude of solute trapping or the
deviation from the local equilibrium (proportional to k, — k) increases with increasing
V that is superimposed on the phase-field data using a color map. A linear regression
model is fit to the data following the Aziz model [70].

4.4. Microsegregation perspectives

Obtaining a quantitative basis of the microsegregation during LPBF solidification is far from
straightforward. In this regime, a finite level of microsegregation is expected that is confirmed
by our phase-field simulations. The estimated levels of microsegregation, however, may
depend on how the anti-trapping flux term (equation (2)) is implemented in the present model.
Anti-trapping flux was introduced by Karma [27] using a thin interface analysis to eliminate
the artifacts due to the use of large numerical interface width during the phase-field simulation
for a ‘magic’ value of a, = 1/ (2/2). A value of a, larger than this may lead to the measured
k, to be lower than its equilibrium value k and therefore becomes unphysical. To a good
approximation, the results presented here can be considered close to the lower limit when the
phase-field model in [26, 27] was used as a reference to simulate the ranges and distribution
of k, in the LPBF regime. A more systematic work is necessary, as analyzed in [68, 69], to
explore how the inclusion of a, within our phase-field model affects the measured levels of k,
for a more accurate, physical description of solute trapping.

In experimental solidification studies, the microsegregation coefficient k, is used to
determine the characteristic interface diffusion velocity V, = D/W, where D (equation (2)) is
the diffusivity of the liquid and W (equation (1)) is the physical width of the solid—liquid
interface. Vp, determines the solute trapping behavior of an alloy and can be estimated by the
Aziz function [70] given by: k, = (k + V/Vp) /(1 + V /Vp). When our phase-field k, pre-
dictions are compared to this relationship, we obtain a solute trapping map (figure 12) where
the quantity ((k — k,) /(1 — k,)) is plotted against V and a linear regression model is fit to the
data to obtain the solute trapping gradient 1/V, = W/D. On average, the magnitude of solute
trapping, i.e. (k, — k), increases with increasing V with maximum absolute uncertainty of 0.3
is predicted by our simulations (figure 12).
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We numerically optimize an objective function:

N
arg minVD%Z(kVi — ki(Vp))? Vie{l,.., N}, ©)
i=1

to find the root for Vp, which is estimated to be on the order of 6.4 m s~!. When simulations
were performed with the same phase-field model but with a limited input ¢ < 10) of V, the
V), obtained was on the order of 0.5 m s~ ' [23]. Clearly, the size and distribution of the model
inputs affect the calculation of interfacial properties, i.e. V. Experiments [71] determined the
V) to be on the order of 9.0m s~ in Ni-Nb alloys. We wish to note that a generalization of
the Gulliver—Scheil model [47] and Aziz model [70] could also indicate the influence of the
inputs—V, k, and D—on k, for rapid planar solidification at a much-reduced complexity
compared to phase-field simulations. A comparison of the uncertainty treatments based on the
analytical and phase-field methods is an interesting future research direction.

Frequency analysis of k, distribution was performed using CDFs and PDFs. Through an
analysis of CDF, it was found that the estimated CDF that fits closely to the empirical CDF
was Weibull and beta, with their differences being negligible. Representation of our micro-
segregation dataset using such a distribution not only reduces the amount of information
conveyed by the dataset, but also describes the trends in the microsegregation patterns that
develop during LPBF solidification. The uncertainty of such a distribution can be determined
using an entropy function H(k,), which uses the probability p that is discretized into K states
to represent the k, distribution. The estimated H(k,) can then be used to calculate the
Kullback-Leibler divergence [72] to assess the dissimilarity between two probability dis-
tributions, say k,, and k,,, using

K
H(k,) £ =Y p(k, = t)logp(k, = t) and

t=1
t

K k
KL(ky|lky,) £ > k/ log k—, (8)
t=1 Vo

In the literature, a Weibull distribution best described the macro-segregation behavior in the
low-velocity solidification experiments and simulations [73, 74]. A lognormal distribution
was shown to fit best the grain size distribution (a consequence of microsegregation) that
resulted during AM experiments on Ti—-6A1-4V [75]. In our calculations of a Ni-Nb alloy,
estimated CDFs such as lognormal, normal and gamma are found to be either overestimating
or underestimating in the tail, middle, or the top regions of the empirical CDF (figure 9(a)).
When experimental measurements will be available, our analysis will be used to validate our
simulations.

5. Summary and outlook
Our work is summarized as follows.

» Forward propagation of process and alloy parameter uncertainties through mesoscale
phase-field simulations has been conducted to study the LPBF solidification process of a
Ni—Nb alloy.

e Uncertainty in model parameters leads to significant variability in microstructural
features. The sample size and distribution of the model parameters severely affect the Qol
distribution in the LPBF solidification regime.
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¢ Following the correlation measurements, we recommend that some less important
parameters, G and T', to be fixed at certain specific values (e.g. mean), and the variability
in V, D, and k needs to be considered.

* A GP surrogate model satisfactorily approximates the phase-field predictions and hence
can be used as a substitute for the phase-field method.

* A frequency analysis identifies and quantifies the microsegregation distribution in the
LPBF regime that affects the built material properties at the macroscale.

AM has the potential to be the technology for the future, and the quality control in LPBF
can be achieved through variation control of the Qol [6, 15]. To achieve this, a better
understanding of the UQ of the LPBF process is essential. Our model and approach, in its
current form, can be used as a first step towards microstructural engineering by providing
users with computationally inexpensive predictions to explore the effects of model inputs on
LPBF microstructures. The same approach could potentially be applied to investigate the
variability on other key microstructural features, such as the dendrite arm spacing and the
misorientation between dendrites. Future work will expand the proposed approach to an
inverse problem on reducing the uncertainty by calibrating the model parameters using
experimental measurements. The surrogate model can then be used to replace the expensive
multi-scale, multi-physics phase-field model to meet the requirements of LPBF micro-
structures rapidly. Our ultimate goal is to build an efficient yet inexpensive framework for
quantification of the datasets and distributions of the process and microstructure features in
the AM solidification regime.
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Appendix. GP surrogate model

We construct a GP surrogete model that has been detailed in [40, 76, 77]. A GP model
assumes that given a finite input vector of n variables, X = {x, ..., x,,}, the model outputs
Y= {y,....y,} follow a g-dimensional GP. Therefore, their joint probability distribution
becomes a matrix normal distribution

Y|® ~ MN, (m, C), (A.1)

where m is the mean matrix and C is the covariance matrix, which are fully defined by a set of
hyper-parameters ®. The multivariate GP is expressed as

Y|® ~ GF(m(), c(-,) %), (A.2)

where m (-) is the mean function, c(-,-) is a correlation function and X is a correlation matrix.
Mean and correlation functions evaluated at i = j = N number of (X, Y) training points are
defined as:

m(x) = BTh(x) and (A.3)
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Figure A1. Histograms and kernel density estimates of the posterior distributions for the
roughness parameters r for the surrogate model with three input parameters: X =

(D, V, k).
c(xi, x) = exp[—(x — %) R(x; — x)], (A4)

where h are regression functions that maps the input space to m basis functions with
regression coefficients B, x; = {x,-,l,u-,xi,n}fil the ith training point, and R = diag(r) a
diagonal matrix of positive roughness parameters with r = {r, ..., r,}. r signifies the
smoothness of the function. With the help of these functions, the GP model is fully defined as
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®= (B, X, r). (A.5)

It is described in [77] that the conditional posterior distribution of ¥ given r (after
integrating out B and X)) is a multivariate g-dimensional T process f (-) such that the resultant
probability density follows a matrix-variate 7 distribution with a degrees of freedom
(N — m):

O, Y, r~ TRORE), 66, N — m). (A.6)
The m and ¢ functions are defined by

) = B h(x) + (Y — HBYA 't(x) and (A7)

e, x) =c(x;, x;) — T (x)A 't (x;)

+ [h(x;) — H'A 't ()] (HTA'H) " '[h(x;) — H'A 't (x))], (A.8)

respectively. H' = [h(x)), ..., h(xy)l, A = c(x;, x), t7 () =[c(x;, %1, ..., c(x;, x3)], B=
(H'A'HY 'H'A'Y, and 3 = (N — m)"'(Y — HBYA"'(Y — HB). Equations (A.6)~(A.8)
are used as a surrogate for the phase-field model.

To estimate the roughness parameter r, the Bayesian approach is used given a positive,
log-logistic prior distribution. Using the single-component Metropolis—Hastings algorithm,
the posterior distributions of ¥ were generated after 20 000 iterations with 25% burn-in period
and thinning every fifth sample. Two separate surrogate models were trained: one surrogate
model that uses three inputs X = {V, D, k} and another surrogate model that uses five inputs:
X ={G, V, D, T, k}. Figure Al shows the histograms and kernel density estimates of the
posterior distributions for these inputs. We observe that the posteriors are unimodal, the
modes of which were used as the estimates for r. At this stage, the surrogate model in
equation (A.6) is fully defined, and the output of the phase-field model at any given x; can be
estimated using equation (A.7). A confidence interval for this estimate can also be determined
using equation (A.8).

When all the components of ® (equation (A.5)) are estimated, we assess the performance
of the GP surrogate model through a p-fold cross validation (CV) to ensure that the pre-
dictions obtained using the surrogate model are close to those obtained using the phase-field
model. Our CV procedure separates the training dataset (X, Y) into p disjoint partitions,
among which (p — 1) of these partitions are used to train the surrogate model, and then the
predictions are made on the left-out partition using equation (A.7). These predictions are then
compared with the phase-field predictions. This process is iterated p times, such that at each
iteration, a different partition is left out and after p iterations all partitions have been left out
only once. The comparison between surrogate and phase-field predictions is given in
section 3.4.
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