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Residual entropy is a key feature associated with emergence in many-body systems. From a variety of
frustrated magnets to the onset of spin-charge separation in Hubbard models and fermion-Z2-flux variables
in Kitaev models, the freezing of one set of degrees of freedom and the establishment of local constraints
are marked by a plateau in entropy as a function of temperature. Yet, with the exception of the rare-earth
pyrochlore family of spin-ice materials, evidence for such plateaus is rarely seen in real materials, raising
questions about their robustness. Following recent experimental findings of the absence of such plateaus in the
triangular-lattice Ising antiferromagnet (TIAF) TmMgGaO4 by Li et al., we explore in detail the existence and
rounding of entropy plateaus in TIAF. We use a transfer-matrix method to numerically calculate the properties
of the system at different temperatures and magnetic fields, with further neighbor interactions and disorder. We
find that temperature windows of entropy plateaus exist only when second-neighbor interactions are no more
than a couple of percent of the nearest-neighbor ones, and they are also easily destroyed by disorder in the
nearest-neighbor exchange variable, thereby explaining the challenge in observing such effects.
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I. INTRODUCTION

Residual entropy is a hallmark of frustrated systems, re-
flecting the emergence of local constraints or new degrees of
freedom distinct from the microscopic ones [1]. One of the
earliest theoretical works in this direction was the calculation
of residual entropy associated with the establishment of ice
rules in water done by Pauling [2]. It is now well established
that such a strongly constrained phase has an analog in mag-
netic systems known as spin-ice [3–5]. Such a classical spin-
liquid exhibits residual entropy [6–8] and supports magnetic-
monopole excitations. Quantum fluctuations in such a system
can lead to a highly resonating quantum spin-liquid phase with
emergent quantum electrodynamics.

In models of geometrically frustrated magnets, such resid-
ual entropy is widespread [9]. But, how robust are they in
real materials? In fact, the issue is much broader than ge-
ometric frustration. In recent years, there has been a lot of
interest in Kitaev materials [10–14]. At a microscopic level,
the honeycomb-lattice Kitaev model describes spins inter-
acting with anisotropic bond-direction-dependent exchange
interactions [15]. Yet, the model can be exactly mapped onto
one of the Majorana fermions and Z2-valued fluxes. As the
fermions reach their degeneracy temperature or freeze-out if
they have a gapped spectrum, an entropy plateau sets in [16].
Indeed, some hints of entropy plateaus have been seen in
experiments [17,18]. The plateaus are far more robust than the
soluble models. For example, spin-S models show even more
interesting possibilities of entropy plateaus [19–22]. When
Kitaev couplings are the same along all three axes, there are
incipient plateaus at an entropy of ln (2S + 1)/2, which keeps
increasing with spin S. The physical mechanism behind such
large entropy values at the plateau with increasing S is not
well understood.

Entropy plateaus are also a prominent feature of correlated
electron Hamiltonians such as the Hubbard and periodic
Anderson models [23–25]. In the regime of strong on-site
interactionU , there are clearly distinct charge and spin energy
scales. At the higher scale, T ∼ U , a drop in entropy occurs
when doubly occupied sites are frozen out. At the lower scale,
T ∼ J = 4t2/U , a second drop occurs that is associated
with the development of antiferromagnetic (AF) correlations.
Studies of the specific heat C(T ) in one dimension [26–28],
and in infinite dimensions, i.e. within dynamical mean-field
theory (DMFT) [29–31], suggested the disappearance of an
entropy plateau as U → t , and hence the two energy scales
merge. However, quantum Monte Carlo calculations for
the half-filled Hubbard model on a two-dimensional square
lattice revealed that the two-peak structure in C(T ) is robust,
surviving even down to U ∼ t . An interesting feature of this
robustness was an apparent interchange in the “driving force”
of the entropy reduction. At strongU , changes in the potential
energy led to the high-T specific-heat peak, while at small U
it is the changes in the kinetic energy that yield the peak at
higher temperature.

Preservation of the entropy plateaus in these systems ap-
pears to be linked to the AF order. On a honeycomb lat-
tice [32], the two peaks inC(T ) merge asU is reduced, with a
resultant destruction of the plateau. The most natural explana-
tion is that, unlike the square lattice where antiferromagnetism
exists down to U = 0, the honeycomb lattice has a quantum
critical point Uc/t ∼ 4, below which antiferromagnetism dis-
appears [25,33].

The Ising antiferromagnet on the triangular lattice is
an iconic problem in frustrated magnetism where an exact
residual ground-state entropy was first calculated by Wan-
nier [34,35]. Several materials, including CeCd3As3 [36],
FeI2 [37], and TmMgGaO4 [38,39], have been identified
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experimentally as triangular-lattice Ising antiferromagnet
(TIAF) systems due to the strong Ising nature of their con-
stituent spins. Despite being of such central interest, there
are few (or no) experimental systems where such residual
entropy has been observed. Very recently, Li et al. [39] inves-
tigated the triangular-lattice Ising antiferromagnetic material
TmMgGaO4. They measured the heat capacity and entropy
of the system as well as the magnetization as a function of
an applied magnetic field. Li et al. found a complete absence
of entropy plateaus and rounded magnetization plateaus, with
roundings that are only partly thermal and partly reflect the
presence of quenched impurities.

The TIAF has been studied over the years using a vari-
ety of analytical and numerical methods. Such studies have
determined the phase diagram, minimum energy spin config-
urations, as well as entropy and specific-heat curves for finite-
size clusters [40–45]. Several numerical studies of disordered
TIAF (and ferromagnetic) systems have also been performed,
including investigations of random site vacancies, diluted
lattices, varying bond lengths, and disorder in the applied
field [46–48].

The purpose of this paper is to explore the rounding or
absence of entropy and magnetization plateaus in the TIAF as
a function of applied field due to further neighbor interactions
and disorder. How large a perturbation can the system tolerate
before the plateaus disappear altogether? We use a numerical
transfer-matrix-based approach to calculate the thermody-
namic properties. We first confirm that, in the absence of
second-neighbor interactions, the magnetization of the pure
TIAF jumps from 0 to 1/3 in an infinitesimal field, and then
at a field of B = 6 it jumps again to full saturation value. The
transition field B = 6 also has a finite ground-state entropy.

We next consider antiferromagnetic second-neighbor in-
teractions, as appropriate for the TmMgGaO4 material. This
interaction is shown to lead to a striped ground-state phase and
a finite-temperature phase transition. The entropy plateaus are
lost rapidly with a fairly small second-neighbor interaction of
only a few percent. They are replaced by sharp drops in the en-
tropy at a first-order transition. This is in contrast to the spin-
ice system, where the entropy plateaus are very robust and
survive even with long-range dipolar interactions [3–5] and
quantum fluctuations [49]. If we consider only the nearest-
neighbor TIAF with disorder in the exchange interactions,
rounded entropy plateaus are quickly destroyed.

When the second-neighbor interaction is about 10% of the
nearest-neighbor value, there are magnetization plateaus at
values 0, 1/3, 1/2, and 1. Thermal rounding of the magneti-
zation plateaus is very gradual. Despite the finite temperature,
the plateaus remain extremely flat, reflecting the energy gap
in the system. The rounding is much stronger with quenched
disorder. We find that strong disorder is needed to obtain
results that look quantitatively like the experiments, with
both plateaus at magnetizations of 1/3 and 1/2 becoming
significantly rounded.

The plan of the paper is as follows: First, an overview of the
model and the numerical methods is given. We then present
entropy S(T ) and specific-heat C(T ) results for the TIAF
system with no magnetic field present, in the absence of any
disorder, for various strengths of the second-nearest-neighbor
interaction J2. Disorder in the nearest-neighbor interaction

J1 is then introduced, and we study its influence on entropy
plateaus in the TIAF. We then show the influence of an applied
magnetic field on the form of S(T ) and C(T ), and we present
magnetization curves for various temperatures and J2 values.
Our final set of results shows the effect of quenched disorder
in both J1 and J2 on the magnetization plateaus observed
in the TIAF. Two disorder types—box and Gaussian—are
compared. We finally present our conclusions.

II. MODEL AND METHODS

We study a triangular lattice of Ising spins. Both nearest-
neighbor (NN) and next-nearest-neighbor (NNN) interactions
are considered in an applied magnetic field B, perpendicular
to the plane of the lattice. The Hamiltonian studied is thus
given by

H = −J1

∑
〈i, j〉

SiS j − J2

∑
〈〈i, j〉〉

SiS j − B
∑
i

Si, (1)

where J1 and J2 denote the NN and NNN coupling strengths,
respectively, and Si = ±1 is the Ising spin at site i of the
lattice, which may be aligned parallel or antiparallel to the
applied field. The first sum is taken over all pairs of NN sites,
and the second is a sum over all NNN pairs. Negative values
of J1 and J2 correspond to antiferromagnetic interactions.

We employ a transfer-matrix approach to obtain values
of the Helmholtz free energy F (T,B) for our TIAF system,
which is found from the largest eigenvalue of a suitably
constructed transfer matrix. We consider a long cylinder-
geometry for our calculations, which implies periodic bound-
ary conditions in the short direction. The second-neighbor in-
teractions demand that the transfer matrix involve two rows of
spins at a time. This is no longer an analytically soluble prob-
lem. It also limits the sizes of systems that can be studied. Fur-
thermore, in order for the system to have compatibility with a
three-sublattice structure of the triangular lattice, and for our
results not to be artificially affected by the periodic boundary
conditions in the short direction, we need to have a multiple of
three spins in each row. Our results are all based on six spins in
a row, which requires a 212 × 212 transfer matrix. We believe
that these results should be reasonably close to the thermo-
dynamic limit, except near phase transitions or points where
the correlation length becomes large. For the nearest-neighbor
Ising model in zero field, the calculated entropy curves are
close, though clearly not identical, to the exact answer.

Since the TIAF with nearest- and second-neighbor inter-
actions shows a first-order phase transition over a range of
parameters, with a jump in the entropy of the system [45],
there will be large finite-size effects near the transition. In a fi-
nite system, all thermodynamic functions must be analytic and
hence no jump in entropy is possible. Instead, one would have
a rounded δ-function in the heat capacity per site, whose peak
for an L × L system scales as L2 and peak-width scales as
1/L2. In the thermodynamic limit, this becomes a δ-function,
whose integral gives a jump in the entropy, per site, at the
transition.

In an L × ∞ transfer-matrix calculation also the largest
eigenvalue of the transfer matrix must be analytic at any
finite temperature and hence there can be no jump in a
thermodynamic property. The correlation length in the infinite
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direction must be finite (set by L) and the jump in entropy
must be rounded over a range of temperatures near the transi-
tion. Since the linear dimension L = 6 of our study is much
smaller than those studied by Monte Carlo simulations of
Rastelli et al. [45], the rounding must be over a wider tem-
perature range. However, we would not expect the transition
temperature to be strongly size-dependent for a first-order
transition, and our conclusions regarding rounding of entropy
plateaus at low temperatures should not be affected by this
behavior near the transition. Comparing our data with those
of Rastelli et al. will allow us to quantify this effect.

Previous Monte Carlo data [45] are only available for a
magnitude of J2 greater than or equal to 0.1, which pushes the
first-order transition temperature outside the plateau region of
the nearest-neighbor model. To accurately evaluate the jump
in entropy �S for smaller J2, we have performed further
Monte Carlo simulations on up to 96 × 96 lattices. At small
J2, the transition temperature is very low. The transition is
strongly first order, with clear evidence for hysteresis. The
internal energy jumps at the transition and �E are easily
read off from the simulations, as is the transition temperature
where the sharp change in energy occurs. At the transition,
we know that the two states must have equal free energy.
Thus we can get the entropy jump by using the relation �S =
�E/Tc. These will also be compared with the transfer-matrix
calculations.

Free energies per site are found for a range of temperatures
(at fixed B), and over a range of magnetic-field values at
fixed temperature, from which the thermodynamic properties
S(T ), C(T ), and M(B) can be computed easily by taking
suitable derivatives. For a triangular lattice N sites wide, with
2P rows of spins (i.e., there are P distinct “blocks” of two
rows, each N sites in width), the partition function is given by
Z = ∑

si
e−βH , where H is as given in Eq. (1) and we take kB

equal to unity, with the sum taken over all spin configurations.
The method relies on the fact that a careful construction
of a particular 22N × 22N matrix M allows one to write the
partition function as Z = ∑

SA
MP(SA; SA) = Tr[MP], where

SA is shorthand for a particular configuration of 2N spins
within a block. The partition function is thus given by

Z = λP
1 + λP

2 + λP
3 . . . , (2)

where λi are the eigenvalues of the transfer matrix M. Taking
λ1 to be the maximum eigenvalue, we have that

Z = λP
1

[
1 +

(
λ2

λ1

)P

+
(

λ3

λ1

)P

+ · · ·
]
, (3)

and so in the limit P → ∞ (i.e., for a semi-infinite triangular
lattice) we have that Z = λP

1 . The free energy is found via F =
−T ln Z = −T ln(λP

1 ) = −TP ln(λ1). Since the total number
of sites is Ntot = 2P × N , the free energy per site is given by

f = F

Ntot
= −T ln(λ1)

2N
. (4)

With this method, we also investigate the influence of
disorder in J1 and J2. To obtain the partition function when
disorder is present, we instead take the trace of the product of
many transfer matrices, each one using a different set of values
for J1 and J2. We show results for which these parameters

are chosen from a uniform distribution and also a Gaussian
distribution.

III. RESULTS AND DISCUSSION

A. Results in zero field with no disorder

The transfer-matrix method outlined above was used to
obtain S(T ) and C(T ) results for the TIAF in the absence of
a magnetic field, with no disorder. To investigate the effect of
the NNN coupling, we calculated S(T ) and C(T ) curves for a
range of J2 values including J2 = 0, i.e., NN interactions only.
Figure 1 shows entropy per site as a function of temperature
for various antiferromagnetic NNN interaction strengths: J2 =
0,−0.01,−0.02,−0.05,−0.10, and −0.25 (with J1 = −1).
As expected, for J2 = 0 (black curve) we observe a nonzero
residual entropy as the temperature tends to zero, since frus-
tration in the triangular lattice produces a degenerate ground
state when only nearest-neighbor interactions are present. The
presence of any nonzero next-nearest-neighbor interaction
removes the ground-state degeneracy, giving an entropy that
tends to zero at low temperature. For small values of J2

(e.g., J2 = −0.01), a plateau in the S(T ) curve is observed
at the value of the residual entropy for the J2 = 0 case, before
sharply dropping to S = 0 as the temperature reaches zero. As
the magnitude of J2 increases, the entropy plateau is gradually
rounded until there is no longer a plateau visible in S(T ) (i.e.,
for |J2| � 0.05).

Finite-size effects can be seen in the inset of Fig. 1. The
entropy function cannot have a jump in a finite system, instead
that change in entropy will happen over a range of tempera-
tures. The Monte Carlo study of Rastelli et al. [45] allows us

FIG. 1. Entropy per site as a function of temperature for the semi-
infinite TIAF geometry, calculated using the transfer-matrix method.
S(T ) curves are shown for six different values of the NNN interaction
J2, with J1 = −1 fixed. At J2 = 0, a residual ground-state entropy
is observed at zero temperature. The inset shows a comparison of
our J2 = −0.1, −0.05, and −0.02 entropy functions with the entropy
jump expected in the thermodynamic limit. The magnitude of the
jump and the transition temperatures are obtained from the hysteresis
of the energy function in the Monte Carlo simulations of up to 96 ×
96 systems.
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FIG. 2. Specific heat as a function of temperature for six different
values of J2, obtained from our S(T ) calculation. Peaks in the specific
heat occur at temperatures at which the corresponding S(T ) curve
sharply drops to zero.

to locate the amount of the entropy jump at the transition and
the transition temperature for J2 = −0.1. These are indicated
in the inset figure by a dashed curve. Previous Monte Carlo
data [45] are only available for a magnitude of J2 greater than
or equal to 0.1, which pushes the first-order transition temper-
ature outside the plateau region of the nearest-neighbor model.
Thus, we have developed further Monte Carlo simulations
for J2 = −0.05 and −0.02 (and also verified the results for
J2 = −0.1 [45]) to study the entropy jump at a temperature
in the plateau region of the nearest-neighbor model. These
jumps are also shown in the inset. The data are consistent
with the absence of an entropy plateau for |J2| � 0.05. For
J2 = −0.02, we calculate an entropy jump that is consistent
with the sharp change in the entropy function observed below
the plateau.

The specific heat per site is found using the relation
C = T ∂S

∂T , and is shown in Fig. 2 for a range of J2 values.
For nonzero values of J2, a peak in the specific heat is
observed at the temperature where S(T ) sharply drops, in-
dicating a transition to an ordered ground state. The J2 =
0 specific-heat curve (shown in black) has no peak, since
ordering to a nondegenerate ground state does not occur. As

FIG. 3. Comparison ofC(T ) calculated using the transfer-matrix
method for our semi-infinite 6 × ∞ lattice with the exact result for
the TIAF in the thermodynamic limit.

FIG. 4. Comparison of S(T ) with the exact result in the thermo-
dynamic limit. We obtain a residual entropy of S(0) ≈ 0.3350 for our
semi-infinite 6 × ∞ lattice, which is slightly greater than the exact
value S(0) ≈ 0.323 06 in the thermodynamic limit.

the magnitude of J2 increases, the peaks in the specific heat
are shifted to higher temperature, consistent with Fig. 1.

The entropy and specific heat of the infinite triangular
lattice (i.e., in the thermodynamic limit) were calculated
exactly by Wannier [34,35]. An exact expression for C(T )
(with NN interactions only) for the TIAF is given in [50],
which is plotted in Fig. 3. The transfer-matrix result for C(T )
for our semi-infinite 6 × ∞ system is plotted for comparison,
indicating our results are in good agreement with the exact
case in the thermodynamic limit. By integrating the specific
heat, we also obtain the exact form of S(T ) in the thermody-
namic limit, which is shown in Fig. 4. The numerical result
for S(T ) for our semi-infinite geometry is also shown, and
the agreement between the numerical and exact results is
even closer than it is for specific heat. The Wannier value
of the residual entropy in the thermodynamic limit is S(0) ≈
0.323 06 [35], and for our semi-infinite 6 × ∞ system we
obtain S(0) ≈ 0.3350.

B. Results in zero field with Gaussian disorder

We observe in Fig. 1 that in the absence of NNN inter-
actions, S(T ) tends toward the residual entropy value as the
temperature is reduced to zero, with a short plateau appearing
at low temperature. With a nonzero J2, we find that a plateau
at the residual entropy value exists for a finite-temperature
window, before S(T ) drops to zero. As the magnitude of J2

increases (i.e., for |J2| � 0.05) this plateau weakens, and we
observe the S(T ) curve smoothly decreasing to zero. To de-
termine the robustness of such entropy plateaus, we now con-
sider the effect of Gaussian disorder (in the nearest-neighbor
variable J1) on the form of the S(T ) curve. Figure 5(a)
shows the effect of increasing levels of Gaussian disorder in
J1 in the absence of next-nearest-neighbor interactions. To
obtain S(T ) values with disorder, the trace of the product
of 101 transfer matrices was taken, each one containing J1

values drawn from a Gaussian distribution for each occur-
rence, i.e., each individual NN coupling in the lattice has
a randomly chosen interaction strength. The particular set
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FIG. 5. (a) S(T ) results with Gaussian disorder in J1 are shown
for various values of σ , with J2 = 0. The mean of the distribution
is fixed at μ = −1 in each case. The entropy curve in the absence of
disorder is shown in black for comparison. (b) The same S(T ) results
as above shown on a logarithmic temperature scale, emphasizing
differences in plateau rounding at low T .

of J1 values used was stored and used for each temperature
increment.

We label Gaussian distributions by G(μ, σ ), where μ and
σ denote the mean and standard deviation, respectively. As σ

is increased, the plateau at the value of the residual entropy
is gradually weakened, and we eventually observe the S(T )
curve approaching zero with no plateau. At all temperatures,
the entropy per site is lower for increasing levels of disorder,
and we also find that for relatively low levels of disorder
[e.g., J1 = G(−1, 0.02)] an entropy plateau persists to quite
low temperatures (T ≈ 0.2). A logarithmic temperature scale
emphasizes the influence of σ on the form of the entropy
plateau at low values of T , as illustrated in Fig. 5(b). For
wider distributions (i.e., σ � 0.05), a short plateau is no
longer observed. Even in the absence of a NNN interaction,
we see that the introduction of any amount of disorder in J1

leads to a nondegenerate ground state with S(T ) approaching
zero at T = 0. Moreover, the presence of weak disorder, i.e.,
with a standard deviation of just a few percent of the mean
J1 value, is enough to remove any sign of a plateau at low
temperatures. This suggests that for the TIAF system, the

existence of entropy plateaus is highly sensitive to disorder
in the nearest-neighbor interaction.

C. Results in magnetic field with no disorder

Introducing a magnetic field aligned parallel to the Ising
axis, the Hamiltonian given by Eq. (1) now has a nonzero
value of B in the final term. Using the same transfer-matrix
procedure with this Hamiltonian, we again obtained S(T ) and
C(T ) plots at different values of B for various values of J2.
Figure 6 shows S(T ) for three NNN interaction strengths:
(a) J2 = 0, (b) J2 = −0.01, and (c) J2 = −0.10. For the

FIG. 6. S(T ) results in the presence of a magnetic field, with no
disorder. Field strengths ranging from B = 0 to the TIAF critical
field value Bc = 6 are shown. The magnitude of the NN interaction
strength J1 is set to 1. Entropy curves are shown for three different J2

values: (a) J2 = 0, (b) J2 = −0.01, and (c) J2 = −0.10.
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J2 = 0 case, we again find that for B = 0, we have a nonzero
residual entropy as the temperature tends to zero. As noted
in [43], a critical field value exists for antiferromagnetic Ising
lattices at Bc = z|J1|, at which there is degeneracy in the
ground state. Here z = 6 for the triangular lattice, and we take
|J1| = 1. Hence we observe a nonzero residual entropy again
at B = 6. For all other magnetic-field values, the entropy tends
to zero at low temperature since the ground-state degeneracy
due to frustration is removed.

When a NNN interaction is introduced, as in Fig. 6(b),
where J2 = −0.01, there is no residual entropy even at B =
0 or 6, since the ground-state degeneracy is removed. For

FIG. 7. C(T ) results in the presence of a magnetic field, with no
disorder. Specific-heat curves are shown for three different J2 values:
(a) J2 = 0, (b) J2 = −0.01, and (c) J2 = −0.10. Low-temperature
peaks in C(T ) are observed for both B = 0 and B = 6 when there is
a small NNN interaction present, i.e., for J2 = −0.01.

small values of J2 we observe a rounded plateau in S(T )
for B = 0 and 6. As the magnitude of J2 increases, we no
longer observe a plateau, and the entropy per site smoothly
falls from ln 2 to zero as the temperature is lowered. As in
the previous section, plots of the specific heat (at various
magnetic-field values) were obtained for J2 = 0, −0.01, and
−0.10, as shown in Figs. 7(a)–7(c). Comparing the B = 0
case in Figs. 7(a) and 7(b), we see that introducing a small
nonzero NNN interaction (i.e., J2 = −0.01) produces a peak
in the specific heat, indicating a transition to a nondegenerate
ground state and the absence of residual entropy at T = 0.
Similarly, we also observe a peak in C(T ) at low temperature

FIG. 8. M(B) results at finite temperature for different values of
J2: (a) J2 = 0, (b) J2 = −0.01, and (c) J2 = −0.10, without disorder.
For J2 = −0.10, steplike magnetization plateaus can be seen at both
M = 1/3 and 1/2. In each plot, M(B) curves for three different
temperatures are shown: T = 0.05, 0.2, and 2.
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FIG. 9. M(B) curves around the M = 1/2 plateau region are
shown for various values of J2 at a fixed finite temperature of T =
0.05. The inset graph shows the dependence of the M = 1/2 plateau
width (in units of B) upon the magnitude of J2.

for B = 6, when J2 = −0.01. Increasing the magnitude of J2

further, we find that the locations of the peaks are shifted to
lower temperature for all values of B between B = 0 and 6.

With a nonzero magnetic field, we can obtain free energies
at a fixed temperature for a range of B values and obtain the
magnetization (per site) using M = − ∂F

∂B . M(B) curves were
obtained at T = 0.05, 0.2, and 2 for three different values
of J2, as shown in Fig. 8: (a) J2 = 0, (b) J2 = −0.01, and
(c) J2 = −0.10. We find that at relatively high temperature
(i.e., T = 2), magnetization per site increases linearly with
magnetic field, and no plateaus occur. As temperature is
lowered, magnetization plateaus are observed. The plateaus
become less rounded and more steplike as the temperature
is lowered further. For J2 = 0 and −0.01, a single plateau is
observed at M = 1/3, but for J2 = −0.1 we observe another
plateau at M = 1/2, suggesting the M = 1/2 plateau phase is
only observed if the NNN interaction is sufficiently strong.
Indeed, the J2 dependence of the width of the M = 1/2
plateau at finite temperature (shown in Fig. 9) illustrates that
a well-defined plateau appears only when |J2| exceeds some
threshold value, with plateau width increasing approximately
linearly with |J2| thereafter. At a temperature of T = 0.05, a
plateau at M = 1/2 is apparent for |J2| � 0.04. Decreasing
the magnitude of J2 gradually rounds the plateau until it is
no longer present, and the magnetization per site increases
smoothly from 1/3 to full saturation. From Fig. 8(c) we can
see that for J2 = −0.10 (at T = 0.2), we have an M = 0 stripe
phase for approximately 0 < B < 1, an M = 1/3 plateau
phase in the region 1.2 < B < 4.1, and an M = 1/2 phase
for 4.2 < B < 6. Greater values of magnetic field produce a
fully spin-polarized phase with M = 1. We also find that as the
temperature increases, the rounding of the M = 1/2 plateau is
more pronounced than at M = 1/3, which at J2 = −0.10 and
T = 0.2 remains steplike, as shown in Fig. 8(c) (red curve).

D. Results in magnetic field with uniform and Gaussian disorder

Although rounding of the magnetization plateaus
in the ideal TIAF system is illustrated here at finite

temperature, at T = 0 the magnetization per site increases
in discrete steps between 0, 1/3, 1/2, and 1. However, in
low-temperature measurements of TIAF materials such as
TmMgGaO4 [38,39], distinct plateaus in magnetization are
absent, which has been ascribed to the presence of disorder in
intersite interactions and coupling to the magnetic field, which
weakens or removes these plateaus entirely. The influence
of disorder on M(B) for the TIAF with both NN and NNN
interactions has been studied previously for a finite 6 × 6
cluster by Li et al. [39], where it was found that introducing
disorder produced magnetization curves in agreement with
experiment. Motivated by this work, we studied the influence
of disorder strength on the form of the magnetization plateaus,
and we also investigated the relative importance of disorder
in J1 and J2.

Using the transfer-matrix approach to obtain M(B), one
introduces disorder in J1 and J2 by generating random values
of these parameters from a chosen distribution. For a given set
of J1 and J2 values (for all individual NN and NNN couplings
in the lattice), we produce the corresponding transfer matrices
as before, however the partition function is now obtained by
taking the trace of the product of P transfer matrices, each
one containing different parameter values. We use P = 101
and parameter values drawn from both a uniform distribution
and a Gaussian distribution in the results presented here,
with temperature fixed at T = 0.2. Uniform distributions

FIG. 10. (a) M(B) results for three different levels of uniform
disorder, in both J1 and J2 combined, with the zero-disorder result
shown in black for comparison. In each case, the uniform distribu-
tions of J1 and J2 used are centered at −1 and −0.1, respectively.
(b) Additional M(B) results are shown for uniform disorder in J1

only [J1 = U (−1.4, −0.6) with J2 = −0.1] and in J2 only [J2 =
U (−0.2, 0) with J1 = −1].
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are denoted by U (Jmin, Jmax), where Jmin and Jmax are the
boundaries of the distribution, which has a width Jmax − Jmin.
As shown in Fig. 10(a), we observe that strong plateaus at
both M = 1/3 and 1/2 remain for J1 = U (−1.2,−0.8) and
J2 = U (−0.16,−0.04), i.e., uniform distributions with mean
values of J1 = −1 and J2 = −0.1. As the distribution width
is increased, the plateaus are rounded further, and we find
that both the M = 1/2 and 1/3 plateaus are eventually no
longer observable, e.g., for J1 = U (−1.4,−0.6) and J2 =
U (−0.2, 0). There is an indication that the M = 1/3 plateau
may be more robust to disorder than the M = 1/2 plateau,
since as the level of disorder increases, the plateau at M = 1/2
is lifted while a short plateau remains observable at M =
1/3, which can be seen for J1 = U (−1.3,−0.7) and J2 =
U (−0.18,−0.02). When the disorder strength is increased
further [i.e., to J1 = U (−1.4,−0.6) and J2 = U (−0.2, 0)],
the weak plateau at M = 1/3 is no longer present, and one
obtains a magnetization curve quite similar to the recent
experimental result for TmMgGaO4 [39].

We also investigated introducing disorder in only one of
the parameters J1 or J2 as shown in Fig. 10(b), using uni-
form distributions J1 = U (−1.4,−0.6) and J2 = U (−0.2, 0),
again with mean values J1 = −1 and J2 = −0.1. We find that
with disorder in J2 only, both plateaus at M = 1/3 and 1/2
are present, and the magnetization curve remains similar to
the zero-disorder case. With disorder in J1 only, both plateaus
are completely removed, and M(B) is essentially identical to
our result with disorder in both J1 and J2 combined. This
suggests that disorder in J1 is only sufficient to eliminate
both magnetization plateaus, giving an M(B) curve similar to
experiment, provided |J1| exceeds |J2| by approximately an or-
der of magnitude, as in this study. In this case, magnetization
plateaus in the TIAF system are robust to disorder solely in
J2, even when the width of the parameter distribution spans
±100% of the mean value, i.e., for J2 = U (−0.2, 0). With
disorder in J2 only, steplike transitions between magnetization
plateaus are still present, and there is only a slight rounding of
the magnetization curve compared to the zero-disorder case,
even for J2 = U (−0.2, 0). We also find that disorder in the
magnetic field is relatively insignificant, and one can obtain a
result qualitatively similar to experiment with disorder in J1

and J2 only.
The form of the M(B) curves in the presence of Gaussian

disorder in J1 and J2 (instead of uniform disorder) was also in-
vestigated, as shown in Fig. 11. The Gaussian distributions for
J1 and J2 were chosen to have mean values of −1 and −0.1,
respectively, with the standard deviation of the distribution of
J2 values fixed at σ = 0.1/

√
3. The width of the distribution

of J1 values was varied and M(B) results compared to the
zero-disorder case. Three Gaussian distributions were used,
which were chosen to have the same standard deviations for
J1 as the three uniform distributions shown in Fig. 10(a),
where we have used σ = (b− a)/

√
12 for any uniform dis-

tribution U (a, b). As with uniform disorder, increasing the
width of the distribution gradually weakens the magnetization
plateaus at M = 1/3 and 1/2 until both are no longer visi-
ble, which occurs when the standard deviation of J1 values
approaches σ = 0.4/

√
3. The strong similarity between our

results for uniform and Gaussian disorder indicates that the
exact form of the distribution used is relatively unimportant in

FIG. 11. M(B) results for three different levels of Gaussian disor-
der, in both J1 and J2 combined, with the zero-disorder result shown
in black for comparison. The standard deviations of the distributions
of J1 values match those used in Fig. 10(a) for the case of uniform
disorder.

determining the robustness of magnetization plateaus in the
TIAF system.

IV. SUMMARY AND CONCLUSIONS

In this work, we have studied the rounding and in some
cases complete absence of entropy and magnetization plateaus
for the triangular lattice antiferromagnet, with both NN and
NNN interactions in a magnetic field, with and without
quenched disorder. In particular, we have found that in the
ideal TIAF, increasing |J2| tends to round and quickly remove
the plateau in S(T ) near the theoretical residual entropy value
at low temperature. The plateaulike feature is replaced by a
sharp drop in entropy at the first-order transition. The strength
of the second-nearest-neighbor interaction also determines if a
magnetization plateau at M = 1/2 is present at finite temper-
ature, and controls the width of the plateau. For sufficiently
large J2, a distinct plateau at M = 1/2 will be visible, which
is gradually rounded as the magnitude of J2 is lowered, until a
plateau no longer remains.

To model realistic TIAF materials such as TmMgGaO4, we
studied the influence of disorder in J1 and J2 on the form of the
entropy and magnetization curves. We find that with nearest-
neighbor interactions alone, rounded entropy plateaus are
quite sensitive to disorder in the exchange variable, and they
are no longer observed when the width of the J1 distribution
exceeds σ ≈ 0.05J1. For weaker levels of disorder, a plateau
at the residual entropy value persists to low temperatures
(around T = 0.2 for σ = 0.02J1). Consequently, we expect
rounded entropy plateaus to be observable in TIAF systems
at low temperatures only if the second-neighbor interactions
are less than a few percent and there is a significant absence
of quenched disorder in the system. Our M(B) results with
disorder are close to recent experimental observations [39],
confirming the presence of second-neighbor interactions and
disorder in the system.

More generally, we conclude that the existence of well-
defined entropy plateaus requires a fair amount of fine-tuning
of the system, so whether they will be observed in a generic
frustrated magnet is unclear. The spin-ice system is clearly
special. The fact that a residual entropy plateau is seen in
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model simulations with arbitrary strength long-range dipolar
interactions in addition to nearest-neighbor exchange inter-
actions [3–5] shows their robustness. One might have ex-
pected these long-range interactions to remove the ground-
state degeneracy and the corresponding zero-point entropy.
But, it has been shown that a “model dipole” interaction can
be constructed that has exactly the same ground states as
the nearest-neighbor model [51,52]. Remarkably, the dipo-
lar interaction on the pyrochlore lattice has the noteworthy
property of differing only slightly from this model interaction,
and at short distances only. This robustness is presumably a
manifestation of the emergent gauge theory.

Independent of the issue of fine-tuning, there are strong
experimental challenges in looking for these entropy plateaus
in real materials. The need to have clean low-disorder material

and to be able to isolate the magnetic contribution to heat
capacity and entropy from phonons and other degrees of
freedom can be formidable. We hope our work will motivate
further work on entropy plateaus in frustrated magnets and
also in strongly correlated electron systems, where a residual
entropy phase may be a precursor to intertwined and compet-
ing orders [53].
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