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Local entanglement and confinement transitions in the random transverse-field
Ising model on the pyrochlore lattice
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We use numerical linked cluster expansions (NLC) and exact diagonalization to study confinement transitions
out of the quantum spin liquid phase in the pyrochlore-lattice Ising antiferromagnet with random transverse
fields. We calculate entanglement entropies associated with local regions defined by single tetrahedron to observe
these transitions. The randomness-induced confinement transition is marked by a sharp reduction in the local
entanglement and a concomitant increase in Ising correlations. In NLC, it is studied through the destruction of
loop resonances due to random transverse-fields. The confining phase is characterized by a distribution of local
entanglement entropies, which persists to large random fields.
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I. INTRODUCTION

In recent years, many candidate quantum spin-liquid (QSL)
materials have been identified [1–7]. A characteristic of QSLs
is the high degree of quantum entanglement, allowing them
to host fractionalized quasiparticles. However, a convincing
experimental demonstration of QSLs remains elusive. Part of
the difficulty lies in the nature of the phase, which does not
have a measurable order parameter. Emergent, fractionalized
degrees of freedom do not directly couple to external probes.
Thus, with few exceptions, such as the quantized thermal
Hall effect [8], most experimental signatures of QSLs are
indirect and subject to alternative interpretations. Impurities,
which are ever present in condensed-matter systems, play
a significant role in shaping the macroscopic phases, and
understanding them is important for establishing a QSL ex-
perimentally [9–16].

One class of materials that have attracted significant inter-
est are the spin-ice family of rare-earth pyrochlores [17–25].
Magnetic rare-earth ions form a lattice of corner-sharing
tetrahedra. Though these ions typically have large spin, strong
spin-orbit coupling and crystal-field effects map them onto an
effective two-state or spin-half system. The local Ising axis is
defined by the line joining the vertex to the center of the tetra-
hedron. When exchange interactions favor “2-in-2-out” Ising
states in each tetrahedron, this leads to macroscopic ground-
state degeneracy classically with the well-known Pauling
entropy [26]. This classical spin-liquid, also called spin-ice,
is well established in some rare-earth pyrochlores [18].

These materials can be divided into Kramers and non-
Kramers systems [17]. The former consist of an odd number
of electrons per ion, which must have a twofold degeneracy
for every single-ion eigenstate. The latter will typically have
nondegenerate eigenstates, and double degeneracy can only
arise as a result of some lattice symmetry. Thus spin-active
non-Kramers systems can arise from two nearby nondegen-
erate states well separated from the rest, or from a lattice-
symmetry protected doublet ground state that will be split
by impurities. These systems can be modeled by random-

transverse field Ising models [27–32]. Indeed, the material
Pr2Zr2O7 is a realization of this model [33].

Here we study the quantum Ising antiferromagnet on the
pyrochlore lattice by numerical linked cluster (NLC) expan-
sions [34–36] and exact diagonalization (ED). We focus on
the local entanglement properties of the system and examine
their behavior at the confinement transitions. We find that
entanglement of spins of a tetrahedron with the rest of the
system contains sharp changes associated with different con-
fining transitions.

A simple NLC calculation diverges inside the QSL phase.
To obtain convergent results, one must consider each cluster as
embedded in a superposition of spin-ice states. The confine-
ment transition can be observed by studying the destruction
of ring-exchange resonance due to the random fields. A mod-
ification of Benton’s perturbative argument [28] shows that
at the phase boundary the width of the transverse-field distri-
bution scales quadratically with the mean value in agreement
with the NLC results. We also find that the confining phase
[32] is characterized by a broad distribution of local entangle-
ment entropies, a property that persists to high random fields.
This means that even with increasing random fields, there will
be pockets of strong entanglement with local behavior of a
QSL.

II. MODELS AND METHODS

We consider the Hamiltonian

H = J
∑
〈i, j〉

σ z
i σ

z
j −

∑
i

hiσ
x
i , (1)

where J = 1, and the transverse fields hi are independent
Gaussian random variables with mean h and standard devia-
tion w. On a finite cluster with periodic boundary conditions,
we calculate the ground-state wave function of the system.
We divide the system into two parts: A and its complement B.
Let the reduced density matrix of A be ρA. The von-Neumann
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entanglement entropy between A and its complement B is

SA = SB = −Tr ρA ln ρA. (2)

In this work, A is made up of the four spins belonging to any
single tetrahedron, and B is made up of all the remaining spins.
This leads to the definition of single-tetrahedron entanglement
entropy,

ST = [−Tr ρT ln ρT ]. (3)

The square brackets indicate that the quantity is averaged over
the tetrahedra in the cluster and over disorder configurations.
In addition, we study the average moment along the local field,
defined as

mx =
[
1

N

∑
i

∣∣〈σ x
i

〉∣∣]. (4)

Here N is the number of sites, and the angular brackets
throughout this study refer to ground-state expectation values,
while the square brackets refer to an average over disorder
configurations. We also calculate the correlation sum for the
Ising components:

Czz =
⎡
⎣ 1

N (N − 1)

∑
i, j �=i

∣∣〈σ z
i σ

z
j

〉∣∣
⎤
⎦, (5)

where the sum is over all pairs of spins.
To obtain the results in the thermodynamic limit, we turn

to the NLC [34–36]. An extensive property of interest P, per
site, can be calculated by a sum over connected clusters c that
can be embedded in the lattice.

P/N =
∑
c

L(c) ×W (c), (6)

where L(c) is the lattice constant of the cluster, or the number
of times the cluster arises in the lattice per site. The weight
W (c) is defined recursively as

W (c) = P(c) −
∑
s

W (s), (7)

where P(c) is the property for the cluster, and the subtraction
is over subclusters.

To study the property of spin-ice systems, it is useful
to consider clusters made up of full tetrahedra [37,38]. To
fifth order, i.e., up to five tetrahedra, there are a total of
eight clusters. We include a ninth cluster, consisting of six
tetrahedra in a ring, shown in Fig. 1, as it plays a special role
in the spin-ice phase.

III. RESULTS AND DISCUSSION

We begin with results for the uniform system (w = 0). In
Fig. 2, the expectation value of the spin along the transverse
field and the local entanglement entropy associated with a
single tetrahedron are shown as a function of the field. The
fourth- and fifth-order NLC results are indistinguishable in
the plot in the high-field paramagnetic phase, showing that
they represent the results in the thermodynamic limit. The
ED results for 16- and 32-site clusters are also shown. In
the thermodynamic limit, there may be a small discontinuity

FIG. 1. Cluster of six tetrahedra connected in a ring. The six
interior sites of the cluster are denoted by green circles, and the 12
boundary sites are denoted by red circles. The arrows denote one
spin-ice configuration for the cluster.

at the transition [30,31], but finite-size effects are small in
the paramagnetic phase right down to the transition. This
first-order transition point from previous studies [30,31] is
indicated by the vertical black lines.

While the simple NLC converges well in the high-field
phase right up to the transition, it diverges in the QSL phase
and we need to modify it for the QSL. The physics of QSL
is lost by having fluctuating spins at the boundary of the
finite clusters. This is because every spin must be part of two
tetrahedra in order not to mix different ice states by local
fluctuations. But the boundary spins of a cluster belong to only
one. Thus, two boundary spins in the same tetrahedron can be
flipped to go from one ice configuration to another already in
order h2. This is clearly incorrect.

To fix this problem, we adopt a modified NLC scheme. We
envisage local fluctuations in the interior of the QSL. Each
cluster is divided into interior and boundary spins depending
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FIG. 2. (a) Expectation value of spin along the transverse field
mx , and (b) single-tetrahedron entanglement entropy ST , as a function
of the transverse field h with no disorder. The data are for 16-
and 32-site clusters and fourth- and fifth-order NLC. The vertical
black lines denote the transition point [30,31] between QSL and the
paramagnetic phase. NLC does not converge within the QSL phase,
and for this reason NLC results are not shown for small h values.
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on whether the spin belongs to two or one tetrahedron in the
finite cluster (see Fig. 1). The boundary spins feel additional
longitudinal fields, coming from tetrahedra external to the
cluster. It can be shown that the modified NLC in fifth order
gives perturbative properties correct to order h8 except for the
ring exchanges. However, these perturbative terms generate
very small entanglement at small fields, and ring exchanges
are key to the physics of the QSL [21–23].

To capture the physics of ring exchanges, one must con-
sider clusters where tetrahedra form rings. All the order-1
entanglement for small h arises from ring exchanges [23,30].
This resonance can be destroyed by random fields, effectively
killing the superposition and consequential entanglement. For
studying this, cluster 9 consisting of six tetrahedra in a ring
shown in Fig. 1 plays a crucial role.

In this cluster, each tetrahedron has two interior and two
boundary spins. In our modified NLC, the cluster is embedded
in a larger system. The Ising couplings of the spins external to
the cluster result in longitudinal fields on the boundary spins
of the cluster. The problem is divided into different sectors
corresponding to different boundary longitudinal fields. The
key sector is one where in each tetrahedron one boundary
spin has a positive and the other a negative longitudinal field.
At low energies, this sector maps onto an effective two-level
system given by the two alternating spin configurations along
the hexagon of the cluster.

For a uniform system, this leads to an entanglement en-
tropy for each tetrahedron of ln 2 in the sector where the
resonance occurs, and zero in all other sectors apart from
small perturbative corrections. Thus a sum over all tetrahe-
drons gives 6 ln 2 in the resonating sector. The cluster has
730 total spin-ice states, 128 of which lead to the resonat-
ing state. If we assume that each one of the spin-ice states
must be weighted with equal probability in the interior of
the spin-ice as expected at the Rokhsar-Kivelson (RK) point
[39], the weight of this cluster for the entanglement entropy
per tetrahedron becomes (6 × 128/730) ln 2. This cluster
has a count of one per site or two per tetrahedron. Thus,
multiplying the weight by a factor of 2 gives an entanglement
entropy for a tetrahedron in the thermodynamic system to
be approximately 1.5. Our ED estimate for the low-field
entanglement entropy shown in Fig. 2 is less than 20% higher
than this. The comparison suggests that the resonating con-
figurations are enriched relative to others by less than 20%
with respect to the RK point in the model. This is consistent
with the Monte Carlo study of the ring-exchange model
[23].

We now turn to the main focus of our study with random
transverse fields. The Ising correlation sum and tetrahedron
entanglement entropy from ED are shown in Fig. 3, where we
see that an increase in the Ising correlation occurs concomitant
with a decrease in local entanglement entropy. This shows
that the confinement transition is associated with the lifting of
degeneracy in the spin-ice subspace and leads to the develop-
ment of Ising correlations [32]. Figure 4 shows the distribution
of single-tetrahedron entanglement entropies. One finds that
as soon as one enters the confining phase, the entanglement
entropy develops a broad distribution. Figure 4(b) shows a
few cuts through the distribution function. In the QSL phase,
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FIG. 3. (a) Ising correlations Czz, and (b) single-tetrahedron en-
tanglement entropy ST as a function of width of the field distribution
w for different mean values of the field h. Data have been obtained
via ED on a 16-site cluster, and each data point represents an average
over 100 independent disorder configurations. Error bars are from a
finite sampling of disorder.

the entanglement entropy is essentially a δ function. In the
confining phase it is broad. For the finite system, there remains
weight at the largest value until one gets into a paramagnetic
phase around w = 0.5, after which the peak gradually moves
to smaller values. However, the distribution remains broad all
the way up to large randomness. Existence of long range spin-
glass order may lead to further reduction in entanglement.
This deserves further attention.

Note that ED cannot give the correct thermodynamic phase
boundary because our cluster has loops of length 4 coming
from periodic boundary conditions. These small loops lead to
a phase boundary where w scales linearly with h.
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FIG. 4. (a) Distribution of single-tetrahedron entanglement en-
tropy ST for h = 0.1 and various w values. The color scale represents
the normalized intensity I . (b) Several cuts of the intensity I in (a) for
selected w values. For w = 0.01, the intensity is a δ function shown
as a solid black line at ST ∼ 1.77.
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FIG. 5. Single-tetrahedron entanglement entropy ST obtained
from cluster 9 as a function of width w for different h values.
Each data point represents an average over 200 independent disorder
configurations. The horizontal line corresponds to ST = 0.4165. The
inset shows the transition point obtained from these calculations
(diamonds) and from perturbation theory (dashed line).

To study the phase boundary for the thermodynamic sys-
tem, we must use NLC and focus on cluster 9. The tetrahedron
entanglement entropy in the resonating sector of cluster 9 is
shown in Fig. 5. We see that the resonance, which leads to an
entanglement of ln 2, is killed with disorder. To further under-
stand this, we turn to perturbation theory [28]. With disorder,
the two-state problem for the cluster can be described by an
effective Hamiltonian

Heff = aσx + bσz, (8)

where a = 63
256h

6, while

b = 1

48

∑
t

(
h2i1 − h2i2

)(
h2b1 − h2b2

)
, (9)

where the sum is over all six tetrahedra. Here, hi1 and hi2
are the random fields at the interior sites, and hb1 and hb2 are
the random fields at the two boundary sites of the tetrahedra.
Benton had argued [28] that the average degeneracy lifting
perturbation should scale as wh3. However, as seen from
Eq. (8), there are two cancellations in each tetrahedron and
b must vanish as w2. We find that for Gaussian disorder it
scales approximately as 14.7w2h2. Calling the point a = b the
transition point gives the phase boundary w = ch2, with c ≈
0.90. This phase boundary is also shown in the inset of Fig. 5
and agrees well with our calculations, where the transition is
determined by the horizontal dashed line corresponding to an
ST of 0.4165 as appropriate for a = b in Eq. (7).

A sketch of the phase diagram is shown in Fig. 6 with QSL,
paramagnetic (PM), Ising (I), and Griffiths-McCoy (GM)
phases. The Ising phase is characterized by enhanced ran-
dom Ising correlations, whereas the Griffiths-McCoy phase is
characterized by only pockets of entanglement corresponding
to rare regions in the disorder configuration. The PM-QSL
boundary is indicated to be vertical. NLC results differ sharply
from ED, even with nonzero w, around h = 0.6. Whether the
phase immediately to the left of the boundary is a true ther-
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FIG. 6. A sketch of the phase diagram for the random transverse-
field Ising model with QSL, paramagnetic (PM), Ising (I), and
Griffiths-McCoy (GM) phases. The triangles represent a confinement
phase boundary on the finite cluster. The diamonds are obtained from
NLC and represent the phase boundary in the thermodynamic limit.

modynamic QSL or an inhomogeneous Griffiths-McCoy-like
phase [40] with only pockets of high entanglement deserves
further attention. The paramagnetic phase boundary at large
w is roughly horizontal. Various properties collapse on a
single scaling curve at larger w implying a predominantly
local paramagnetic behavior. The confinement transitions due
to randomness, obtained in the finite cluster study from
Ising correlations and entanglement entropy, respectively, are
shown by open and closed triangles. The thermodynamic
phase boundary, where hexagonal loop resonances are lost,
is shown by diamonds, and perturbation theory results are
indicated by a dashed line. The nature of the phase transition
and the possibility of a long-ranged spin-glass phase deserves
further consideration [41].

IV. SUMMARY AND CONCLUSION

To summarize, we have studied the random transverse-field
Ising model on the pyrochlore lattice using NLC and ED.
This model has a deconfined QSL phase, which is subject
to two types of confining transitions [32]. Large transverse
fields lead to confinement where spins are locked along
the field direction. On the other hand, a distribution of random
fields leads to a selection within the ice manifold also leading
to a loss of entanglement and confinement. We have shown
that local entanglement associated with spins in a tetrahedron
contains sharp changes associated with these transitions.

Simple NLC converges well in the high-field phase, right
up to the transition. But it diverges in the QSL. The QSL
phase can be studied within NLC by embedding each cluster
inside a spin ice. Nearly all the entanglement in the QSL phase
arises from ring-exchange resonances. These can be frozen by
random transverse fields leading to confinement.

In the confining phase, there is a distribution of local en-
tanglement entropies, a property that persists to large random
fields. Experiments on Pr2Zr2O7 found rather large random-
ness [33], implying that the system can at best have pockets
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of high entanglement. Improvement in material preparation
should lead to reduced disorder. Our work provides quantita-
tive estimates of how much randomness needs to be lowered
to obtain a true QSL phase.

It would be interesting to extend these studies to random
XXZ and other models of quantum spin ice, where many other
varieties of quantum spin-liquid phases are known to exist
[42].
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