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ABSTRACT

Online Social Network (OSN) Users’ demand to increase their ac-

count popularity has driven the creation of an underground ecosys-

tem that provides services or techniques to help users manipulate

content curation algorithms. One method of subversion that has

recently emerged occurs when users form groups, called pods, to

facilitate reciprocity abuse, where each member reciprocally in-

teracts with content posted by other members of the group. We

collect 1.8 million Instagram posts that were posted in pods hosted

on Telegram. We first summarize the properties of these pods and

how they are used, uncovering that they are easily discoverable by

Google search and have a low barrier to entry. We then create two

machine learning models for detecting Instagram posts that have

gained interaction through two different kinds of pods, achieving

0.91 and 0.94 AUC, respectively. Finally, we find that pods are effec-

tive tools for increasing users’ Instagram popularity, we estimate

that pod utilization leads to a significantly increased level of likely

organic comment interaction on users’ subsequent posts.
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1 INTRODUCTION

Online Social Networks (OSNs) have emerged as one of the primary

forums of personal, political, and commercial discourse. As of 2019,

Facebook, YouTube and Instagram had 4.5 billion combined active

users [24]. To increase users’ engagement with content on their

platforms, most major OSNs reorder the content shown to their

users using undocumented content curation algorithms, which act as

‘gatekeepers’ to the visibility and influence of content. A large-scale

ecosystem of services and techniques has emerged to manipulate

these curation algorithms to artificially amplify the reach of content

on these platforms. The harms of these manipulation attacks range
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from increasing the reach of influencers’ deceptively promoted

content [20] to the amplification of extreme political rhetoric by

nation states to influence elections [8, 21].

OSNs have been deploying ad-hoc mitigation strategies as at-

tacks arise [1]. However, one method of subversion that is not

well-addressed by these defenses is manual reciprocity abuse per-

formed at scale by pods. Pods are online groups designed to fa-

cilitate systematic reciprocity abuse, a term coined by DeKoven et

al. [10] describing an agreement between users to interact with each

other’s content, thereby increasing its popularity and consequent

importance to the content curation algorithm. Reciprocity abuse is

difficult to defend against in general, because the resulting interac-

tion is generated by real users [10]. Reciprocity abuse using pods is

similarly difficult to defend against, but also especially important to

address: as shown in this paper, pods are increasingly prevalent and

provide effective means of quickly gaining influence. The growing

importance of this issue is evident too, in the responses of OSN

platforms themselves: in 2018, Facebook removed 10 Facebook-

hosted pods, which were confirmed to have violated Instagram’s

terms of service by facilitating reciprocity abuse between Instagram

users. [13]. However, despite sporadic efforts by platforms to instate

and enforce regulations against pods, there has been no systematic

study of reciprocity abuse facilitated by pods. In this paper, we

perform the first quantitative characterization of pods as a method

of content curation algorithm manipulation. We study reciprocity

abuse through the lens of Instagram pods, which are pods used to

increase the popularity of users’ Instagram content. Our analysis

shows that the number of posts advertised in pods is increasing

over time, indicating that this type of content curation algorithm

manipulation is growing. We collected 1.8 million Instagram post

URLs that were advertised in pods. Based on our understanding

of how different pods operate, we identify a set of features and

train machine learning models to detect Instagram posts that have

likely gained interaction as a result of reciprocity abuse through

pod usage. Finally, we quantify the efficacy of pods at increasing

the popularity of users’ subsequent content after using a pod. Our

key contributions are:

(1) PodLandscapeCharacterization.Weprovide, to our knowl-

edge, the first characterization of a portion of the pod ecosys-

tem. Having collected a dataset of 1.8 million Instagram posts

advertised across over 400 Instagram pods hosted on Tele-

gram, we summarize these distinguishing features, usage

patterns, and rules of operation.
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(2) Pod Interaction Detection.We present classifiers that pre-

dict, with AUCs greater than 0.9, whether an Instagram post

has been posted pods. With these classifiers, we illustrate

that it is possible to distinguish between Instagram posts

that have and have not been posted in pods, even when the

posts have similar levels of interaction and are posted by

users with similar levels of platform engagement.

(3) Pod Efficacy Assessment. Pods work. Although we do not

have a random experiment to establish causality, we explore

the efficacy of pods at increasing popularity by examining

changes in post interaction over time across Instagram users’

profiles. We show that posting in pods is associated with a

significant profile-level increase in organic post interaction.

2 RELATED WORK

Detecting and mitigating inauthentic engagement is a problem that

OSNs have been working to address for some time. When OSNs de-

ploy new countermeasures against fake engagements, individuals

who are trying to game the platform come up with new approaches

to bypass the current mitigations. Over previous years, the OSN

developers have focused on preventing content curation algorithm

manipulation through the purchase of engagement through fake

accounts and automated actions. Stringhini et al. [25] investigates

Twitter follower markets which sell Twitter follows using auto-

mated methods. De Cristofaro et al.[9] explored the landscape of

łlike farmsž, a related curation algorithm manipulation technique.

Since these fake engagements occur nearly simultaneously, ap-

proaches that temporally cluster such interactions are successful [6].

Recent advances in scalably detecting this lockstep behaviour (or-

chestrated actions by sets of users which have a very low likelihood

of happening spontaneously or organically) [3] have allowed OSN

platforms such as YouTube to successfully address this problem [16].

While these mitigation methods are effective against automated

engagement, they cannot easily be applied to detect the manual

engagement on posts that comes from pod users.

Another approach to fake engagement uses collusion networks

that collect OAuth access tokens from colluding members and use

them to provide fake likes or comments to their members. A 2017

study by Farooqi et al. [11] first described this thriving ecosystem

of large-scale reputation manipulation services on Facebook that

leverage the principle of collusion. DeKoven et al. [10] characterizes

similar collusion networks on Instagram. Viswanath et al. [27]

proposed a Principal Component Analysis (PCA) based anomaly

detection system that uses temporal features such as like counts

over time and categorical features such as page types to detect

Facebook pages that received likes via similar collusion networks.

Farooqi et al. showed that mitigation strategies based on temporal

clustering are not effective against activity resulting from these

collusion networks because the collusion networks tend to spread

fake engagements originating from the same account over a large

span of time and use a large pool of accounts to engage with a given

post. Furthermore, this study shows that although the interactions

from collusion networks are performed by a third-party service

with access to the user’s OAuth tokens, the fact that the colluding

accounts belong to real users make them difficult to detect, because

these accounts contain a mix of organic and fake activity. Instead,

their mitigation strategy was to block the IP address subnets used

by the collusion services which would not be effective against pods.

We seek to study a type of manipulation that is even more difficult

to detect: reciprocity abuse performed manually by real OSN users

in pods. Notably, existing mitigation techniques such as access

token or IP-based rate limiting does not work against engagements

from these types of users, because they are not using third-party

Account Automation Services or relying on bot accounts or access

to a user’s OAuth tokens.

There is some anecdotal evidence on reciprocity abuse through

pods [5, 26], in the form of online blog posts and personal expe-

riences of pod users. While this anecdotal evidence suggests that

participating in pod activity does increase the interactions a post

receives, if this activity generates organic interaction as a result

of the increased pod interaction is not known. To our knowledge,

there has been little-to-no public research on the occurrence, char-

acterization, or detection of manual reciprocity abuse through pods.

3 BACKGROUND

Pods are groups of OSN users who have gathered to increase the

popularity of their content by reciprocally interacting with content

posted by other members of the group. To discover pods and better

understand how they are joined, we first played the role of an

individual trying to discover pods and searched for Instagram pods

onGoogle. These searches led us to numerous blog posts and forums

on this topic, from which we learned that pods are predominantly

hosted on Telegram, a privacy-focused messaging platform.

If a user wants to use one of these pods, they must first join the

Telegram group on which the pod is hosted. Many of these groups

can be found through Google searches for curated lists of Instagram

pods. To receive engagement on an Instagram post from other pod

users, the user must send a message to the group containing the link

to their Instagram post. Before doing so, however, the user must

interact with other users’ posts in the quantity andmanner specified

by the pod’s rules. These rules are often enforced by bots, whichmay

remove pod users for failing to comply with the pod’s specified rules

of reciprocal interaction. Telegram may have become the preferred

pod-hosting platform because there is no member cap for groups

(more specifically Telegram Channels), and because their rich API

allows group admins to deploy custom bots that can moderate the

group activity. These features of Telegram allow pods to scale with

minimum admin effort while maintaining engagement quality.

In our initial exploration, we investigated pods hosted on plat-

forms other than Telegram, such as Facebook, Instagram Direct

Message groups, and Reddit. While Facebook does host some pods,

Facebook is known to remove engagement groups from their plat-

form [13], causing them to be ephemeral and smaller in scale. Insta-

gram Direct Message groups are capped at 50 members, meaning

that these groups also operate at limited scale. Moreover, Insta-

gram direct message groups are private and group members are

vetted manually by group admins, potentially hindering data col-

lection. Reddit is used primarily as a platform to advertise pod

groups hosted on other platforms (most often, Telegram). Given

these considerations and our observation of Telegram’s overwhelm-

ing popularity as a platform for hosting pods, in this study we focus

on Instagram pods hosted on Telegram.
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Variable Mean Median Range

POD ATTRIBUTES (per pod)

Number of users 918 156 0 ś 17,301

Lifespan of pods (years) 0.98 0.87 0 ś 3.21

Mean number of pod mes-

sages in a day over lifespan

41 7 1 ś 1,456

Max number of pod mes-

sages in a day over lifespan

165 57 1 ś 4,218

POD USER ATTRIBUTES (per IG user)

Number of pods used by

each IG user

2.77 2.0 1 ś 96

Number of messages per

pod by IG user

11.43 3.0 1 ś 5,838

Time between IG post and

pod post

1.28 hrs 1 min 2 s ś 8 yrs

Table 1: Table of pod and pod user features. The pod at-

tributes were computed over 432 pod groups. The pod user

attributes were computed over 111,455 Instagram users we

discovered that participated in pod groups.

having more than 10,000 members and over half having fewer than

350 members. 95% of the pods in our dataset had fewer than 5000

members. The pods that had more than 10,000 members accounted

for nearly 40% of the Instagram posts that we discovered and the

top 25 pods, based on the membership count, accounted for 54% of

the Instagram posts discovered. This suggests that the pod ecosys-

tem is heavily skewed, with a small number of pods accounting

for most of the pod activity. We computed the lifespan of a pod as

the time duration between the first and the last message posted to

its message board. The average pod lifespan was about 0.87 years.

We measured the number of daily messages that were posted on a

given pod to measure its activity and saw that activity in some pods

had died down at the time of data collection while other pods are

gradually increasing in activity. We also observed heterogeneity in

how users use pods. The average user was recorded to have used

more than two separate pods. In each distinct pod a user utilized,

they sent an average of 11 messages, although half of users sent

an average of three or fewer messages per pod. Over half of users

advertised their posts in a pod within an average of one hour after

posting them on Instagram.

6 PREDICTING POD USAGE

In this section, we present our approach to building a classifier

that can detect Instagram posts that received engagement through

pods, specifically when the pod posts and control posts have similar

engagement-level distributions. We designed this classifier based

on the hypothesis that the interactions users received through pods

would be quantitatively and qualitatively different from interactions

that a user would receive from an organic follower base.

6.1 Features Used

Engagement Features: We used the following values to measure

the level of engagement on each post:

• Comments Count: Number of comments at time of data collec-

tion

• Likes Count: Number of likes at time of data collection

• Comments Count : Likes Count (Ratio)

Comment Timeseries Features: We anticipated that the distri-

bution of interactions a post would receive over time through pods

would be different from that of a post receiving interactions organ-

ically. Since comments were the only time-stamped interactions

available to us, timeseries features were computed only for com-

ments.

• Time until Zero-Equilibrium: Number of seconds until Zero-

Equilibrium, which is defined as the first 24-hour span after

the Instagram post is posted in which it receives zero com-

ments.

• Proportion of Comments Count before Zero Equilibrium: Propor-

tion of total comments (Comments Count) received before

Zero-Equilibrium.

• Seconds until Zero-Equilibrium : Comments Count (Ratio)

• Comments Count in Hour i ∈ {1...24}: Proportion of total com-

ments received in the first, second,..., twenty-fourth hour.

Comment Content Features: We anticipated that the comments

made as a result of reciprocal interaction agreements would have

a different linguistic signature than comments that were made or-

ganically. To capture this difference, we use two topic modeling

approaches, Latent Dirichlet Allocation (LDA) [4] and Non-negative

Matrix Factorization (NMF) [15] to discover the underlying topics

that the commenters use. LDA learns the relationships between

words, topics, and documents by assuming documents are gener-

ated by a particular probabilistic model, whereas NMF learns from

an unnormalized probability distribution over topics [14]. We con-

catenated all the English comments made on each post and ran

both LDA and NMF algorithms on these comments. To evaluate

if the topics learned by these models are stable, we used k-means

clustering with two clusters and measured the purity of the clus-

ters [19]. We trained the LDA and NMF model 100 times to account

for randomness. The purity was consistently between 82.1-85.2%

with an average of 84.1%, demonstrating the stability of the topics.

We noticed that the topics learnt by the two approaches were com-

plementary and decided to include features from both models in to

our feature set. For NMF the regularization mixing parameter was

set to 0.5, alpha was set to 0.1, and initialization was set to Non-

negative Double Singular Value Decomposition. For LDA we set

the maximum number of iterations to 5, used the ‘online’ learning

method, set the learning offset to 50. All other parameters were set

to the default. The posterior probabilities of each topic was used as

a feature. We also computed the diversity of the comments made on

each post. This is similar to the approach taken by Jang et al. [12],

in which they computed the entropy of LDA topic probabilities

to measure the diversity of a user’s posts. Entropy has also been

used to detect spam comments on social media.[2]. We computed

diversity by measuring the entropy of the LDA and NMF topics and

the entropy of the (Term Frequency - Inverse Document Frequency)

TF-IDF values of the comments. The entropy is defined as follows:

E(X ) =

N∑

i=0

P(Xi )loд(P(Xi )
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In the case of the topic models, P(Xi ) was taken as the posterior

probability given by the model for each topic i . For the TF-IDF

values, P(Xi ) was taken as the normalized TF-IDF value for ith

token. The following is a list of all the comment content features that

we computed: (1) NMF Topic i ∈ {0....19} (2) LDA Topic i ∈ {0...19}

(3) NMF Entropy (4) LDA Entropy (5) TFIDF Entropy

6.2 Prediction Model and Results

We computed values for the above features on our two datasets

and trained three different supervised classifiers: Support Vector

Machine (SVM) with a Linear Kernel (SVM - Linear), SVM with an

RBF Kernel (SVM - RBF), and a Random Forest Classifier. We report

the performance of the three classifiers on these two datasets in

Table 2.

Model F1 Precision Recall AUC

Like Pods vs Rand. Matched

SVM - Linear 0.75 0.76 0.75 0.83

SVM - RBF 0.81 0.81 0.81 0.88

Random Forest 0.83 0.83 0.83 0.91

Comment+Like Pods vs Rand. Matched

SVM - Linear 0.80 0.80 0.80 0.87

SVM - RBF 0.86 0.86 0.86 0.93

Random Forest 0.87 0.87 0.86 0.94

Table 2: 10-Fold cross-validated classification results.

The results in Table 2 shows that the random forest classifier

performs the best on both datasets. The performance results from

the Comment+Like Pods vs Rand. Matched dataset performs better

across all classifiers. This behaviour is expected since our time-

series and content features are based on comments.

Since wewere only able to train our classifier on a smaller dataset

due to the limited number of random IG user accounts we could

collect, we also ran our classifier on known pod posts to determine

the True Positive Rate (TPR) (The number of true positives divided

by the total number of positives) of our classifier on a larger dataset.

To do this, we trained our classifier on the full Comment+Like Pods

vs Rand. Matched dataset and tested it on 5000 posts that were

posted in comment and like pods. The TPR on this bigger test

set was 0.91. For comparison, on our smaller Comment+Like Pods

vs Rand. Matched dataset, we achieved a TPR of 0.87 and a False

Positive Rate (FPR) (The number of false positives, divided by the

total number of negatives) of 0.14. This further indicates that our

classifier would have a comparable-or-better level of performance

to that in Table 2 on larger datasets.

6.3 Feature Analysis

We performed a feature analysis to determine which of the features

were important in making these predictions. We measured the

łimportancež of each feature with Shapley Additive Explanations,

or SHAP values [17, 18], which captures the contribution of each

feature based on local explanations [22] and principles of game

theory. The 15 features with the highest SHAP values for both of

our datasets are plotted in Figure 5.

Most of the important features for the Comment+Like Pods vs

Rand. Matched dataset (Figure 5 (a)), according to their SHAP values,

are NMF or LDA topics. In Table 3, we display the top 10 tokens

that describe several important topics for this dataset. Five topics

fell into the category of łgeneric support,ž which contain words

with positive connotations that are relevant to Instagram posts in

general, but not necessarily to specific posts. Furthermore, most of

the topics identified by NMFwas different types of łgeneric supportž

topics. Therefore, having a high NME entropy, which suggests that

the comments were from a variety of these topics, were predictive

of pod affiliated posts. The prevalence of generic support words

such as łshot,ž łgreat,ž łnice,ž and łlovež among important features

indicates that comments high in these types of generic encourage-

ment increases the probability of a positive prediction. It is logical

that this should be the case, as comments by strangers through

obligatory reciprocal interaction agreements are likely to be more

generic than those by organic and voluntary commenters, who are

connected with the user through personal relationships. On the

other hand, topics that describe more conversational language were

important in predicting the control posts. Unsurprisingly, a higher

number of comments, when compared to users in the control group

who had a similar distribution of follower counts, was an important

feature in predicting pod posts.

Figure 5 (b) shows the important features for the Like Pods vs

Rand. Matched dataset. When compared to the Comment+Like Pods

vs Rand. Matched dataset, fewer of the content related features were

ranked as important. However, comments in positive posts of this

dataset too included łgeneric supportž type language and were

predictive of pod affiliation. Apart from these features, having a

high comments and likes count and skewed comments-to-like ratio

were predictive of pod usage.

6.4 Misclassifications Analysis

To identify scenarios in which our classifier made mistakes, we

trained our classifier on 70% of the data, leaving the remaining

30% for testing and misclassification analysis. We then studied the

SHAP values of the misclassified posts to identify which features

contributed the most to push the classifier towards an incorrect

decision. We display these values in SHAP force plots, which show

the contribution of each feature in pushing the classifier probabil-

ity to its predicted value from the baseline, where baseline is the

average of the prediction value in the training set.

We included only six SHAP force plots in Figure 6 for brevity,

but ultimately evaluated a sample of 20 misclassified instances. In

most force plots, false-positive posts had higher SHAP values for

generic support topics (NMF topics 0, 14, and 11, and LDA topic

18). Force plots for false-negative posts show that, although these

posts were posted on a comment pod, they had a low value for

generic support topics probabilities. This suggests that some posts

that were posted on pods did not receive as much comment content

containing generic support topic words. Manual examination of

some of the pods in these misclassified instances revealed that pods

which produced interaction on false-positive posts often required

the participants to post high-quality comments that either related

to the post caption or met a length requirement. We performed

a similar analysis for the Like Pods vs Rand. Matched dataset and
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False Positives

False Negatives

Figure 6: SHAP Force plots for three false positive and three

false negative instances in the Comment+Like Pods vs Rand.

Matched dataset that show the top features that are pushing

the prediction from the base value to the model output

We constructed a chronological timeseries of posts for each user,

where each timeseries was separated into two periods. The first

period is the time before the user’s first pod post. All posts in this

period are control posts. This period can be considered a baseline

period, because the average level of interaction attained on the

posts in this period represents a baseline level of interaction the user

received per Instagram post prior to using pods. The subsequent

pod-interacting period spans the time after the user’s first pod post.

The posts made in this time may be control posts or pod posts.

Analysis

We index each user’s posts by i , ordered chronologically in time. We

define the level of interaction on a user’s ith post as the number of

comments received on that post, Ci . We define indicator variables

Ai and Bi , where Bi = 1 if post i occurs in the baseline period

(before the user’s first pod post), and Ai = 1 if post i occurs in the

pod-interacting period. We represent the classifier’s confidence on

post i as ρi . From these variables, we compute α and β , where β

and α are the average number comments per post before and after

a user’s first pod post, respectively. To account for the uncertainty

of the classification, these averages are weighted by the certainty

of prediction on each post.

α =

∑
i AiCiρi∑
i Aiρi

β =

∑
i BiCiρi∑
i Biρi

We quantify the increase of activity on a user’s profile due to pod

posting with the ratio α/β , which represents the ratio of activity

on control posts after the user began interacting with pods to that

on control posts before pod interaction began. α/β > 1 indicates

increased interaction on control posts after pod posting began,

α/β < 1 indicates a decrease, and α/β = 1 indicates no change.

When computing this ratio, we drop all users for whom either α or

β is computed over fewer than 5 posts. This results in us dropping

283 of our original 800 users.

We also sought to understand whether increased pod utilization

leads to increased organic interaction, a relationship that would

suggest that pods are effective at increasing a user’s popularity.

To examine this, we ran a linear regression with the increased in-

teraction after first pod post (α/β) as the outcome variable. This

regression was designed to test the relationship between this out-

come variable and the proportion of each user’s Instagram posts in

the pod-interacting period that were posted in a pod. We hypoth-

esized that many variables could confound this relationship, and

thus controlled for them in the regression. These variables included

inherent pod properties that could impact efficacy, including the

number of members of the user’s most-used pod and that pod’s

maximum post rate over its lifespan. To account for the possibility

that the number of posts a user made in the past might increase their

łimportancež to the content curation algorithm, we included two

additional variables: the proportion of each user’s total posts that

occurred in the baseline period, and the user’s total number of posts.

Finally, we controlled for calendar time, because we suspected that

as the Instagram platform has grown, its increased membership

could mechanically increase the level of overall interaction occur-

ring. To control for this, we implemented as variables the calendar

time of the user’s first and last Instagram posts. After normalizing

each variable through scaling by its mean and variance, we ran a

linear regression on these variables with Y = α/β as the dependent

variable. The resulting coefficients are in Section 7.2.

7.2 Results

As shown in Figure 7, we find that 70% of users experienced a 2-fold

or greater increase in interaction level on control posts after they

began posting in pods, and on average, these users saw a five-fold

increase in comments. This increased interaction is likely to be

organic (not from reciprocal interaction), because these control

posts were, according to the classifier, not posted in pods. Posts

identified as control posts with less certainty were given less weight

in the computation of this ratio.

As shown in Table 4, only two regression coefficients are sig-

nificant at a 5% level. Of these two coefficients, only one has a

magnitude of practical significance: the proportion of IG posts in

the pod-interacting period that were posted in pods. The coefficient

of this variable, 11.79, indicates that, all else held constant, if a user

who had never posted in pods began posting 50% of their posts in
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