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ABSTRACT from increasing the reach of influencers’ deceptively promoted

Online Social Network (OSN) Users’ demand to increase their ac-
count popularity has driven the creation of an underground ecosys-
tem that provides services or techniques to help users manipulate
content curation algorithms. One method of subversion that has
recently emerged occurs when users form groups, called pods, to
facilitate reciprocity abuse, where each member reciprocally in-
teracts with content posted by other members of the group. We
collect 1.8 million Instagram posts that were posted in pods hosted
on Telegram. We first summarize the properties of these pods and
how they are used, uncovering that they are easily discoverable by
Google search and have a low barrier to entry. We then create two
machine learning models for detecting Instagram posts that have
gained interaction through two different kinds of pods, achieving
0.91 and 0.94 AUC, respectively. Finally, we find that pods are effec-
tive tools for increasing users’ Instagram popularity, we estimate
that pod utilization leads to a significantly increased level of likely
organic comment interaction on users’ subsequent posts.
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1 INTRODUCTION

Online Social Networks (OSNs) have emerged as one of the primary
forums of personal, political, and commercial discourse. As of 2019,
Facebook, YouTube and Instagram had 4.5 billion combined active
users [24]. To increase users’ engagement with content on their
platforms, most major OSNs reorder the content shown to their
users using undocumented content curation algorithms, which act as
‘gatekeepers’ to the visibility and influence of content. A large-scale
ecosystem of services and techniques has emerged to manipulate
these curation algorithms to artificially amplify the reach of content
on these platforms. The harms of these manipulation attacks range
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content [20] to the amplification of extreme political rhetoric by
nation states to influence elections [8, 21].

OSNs have been deploying ad-hoc mitigation strategies as at-
tacks arise [1]. However, one method of subversion that is not
well-addressed by these defenses is manual reciprocity abuse per-
formed at scale by pods. Pods are online groups designed to fa-
cilitate systematic reciprocity abuse, a term coined by DeKoven et
al. [10] describing an agreement between users to interact with each
other’s content, thereby increasing its popularity and consequent
importance to the content curation algorithm. Reciprocity abuse is
difficult to defend against in general, because the resulting interac-
tion is generated by real users [10]. Reciprocity abuse using pods is
similarly difficult to defend against, but also especially important to
address: as shown in this paper, pods are increasingly prevalent and
provide effective means of quickly gaining influence. The growing
importance of this issue is evident too, in the responses of OSN
platforms themselves: in 2018, Facebook removed 10 Facebook-
hosted pods, which were confirmed to have violated Instagram’s
terms of service by facilitating reciprocity abuse between Instagram
users. [13]. However, despite sporadic efforts by platforms to instate
and enforce regulations against pods, there has been no systematic
study of reciprocity abuse facilitated by pods. In this paper, we
perform the first quantitative characterization of pods as a method
of content curation algorithm manipulation. We study reciprocity
abuse through the lens of Instagram pods, which are pods used to
increase the popularity of users’ Instagram content. Our analysis
shows that the number of posts advertised in pods is increasing
over time, indicating that this type of content curation algorithm
manipulation is growing. We collected 1.8 million Instagram post
URLs that were advertised in pods. Based on our understanding
of how different pods operate, we identify a set of features and
train machine learning models to detect Instagram posts that have
likely gained interaction as a result of reciprocity abuse through
pod usage. Finally, we quantify the efficacy of pods at increasing
the popularity of users’ subsequent content after using a pod. Our
key contributions are:

(1) Pod Landscape Characterization. We provide, to our knowl-
edge, the first characterization of a portion of the pod ecosys-
tem. Having collected a dataset of 1.8 million Instagram posts
advertised across over 400 Instagram pods hosted on Tele-
gram, we summarize these distinguishing features, usage
patterns, and rules of operation.
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(2) Pod Interaction Detection. We present classifiers that pre-
dict, with AUCs greater than 0.9, whether an Instagram post
has been posted pods. With these classifiers, we illustrate
that it is possible to distinguish between Instagram posts
that have and have not been posted in pods, even when the
posts have similar levels of interaction and are posted by
users with similar levels of platform engagement.

(3) Pod Efficacy Assessment. Pods work. Although we do not
have a random experiment to establish causality, we explore
the efficacy of pods at increasing popularity by examining
changes in post interaction over time across Instagram users’
profiles. We show that posting in pods is associated with a
significant profile-level increase in organic post interaction.

2 RELATED WORK

Detecting and mitigating inauthentic engagement is a problem that
OSNs have been working to address for some time. When OSNs de-
ploy new countermeasures against fake engagements, individuals
who are trying to game the platform come up with new approaches
to bypass the current mitigations. Over previous years, the OSN
developers have focused on preventing content curation algorithm
manipulation through the purchase of engagement through fake
accounts and automated actions. Stringhini et al. [25] investigates
Twitter follower markets which sell Twitter follows using auto-
mated methods. De Cristofaro et al.[9] explored the landscape of
“like farms”, a related curation algorithm manipulation technique.
Since these fake engagements occur nearly simultaneously, ap-
proaches that temporally cluster such interactions are successful [6].
Recent advances in scalably detecting this lockstep behaviour (or-
chestrated actions by sets of users which have a very low likelihood
of happening spontaneously or organically) [3] have allowed OSN
platforms such as YouTube to successfully address this problem [16].
While these mitigation methods are effective against automated
engagement, they cannot easily be applied to detect the manual
engagement on posts that comes from pod users.

Another approach to fake engagement uses collusion networks
that collect OAuth access tokens from colluding members and use
them to provide fake likes or comments to their members. A 2017
study by Farooqi et al. [11] first described this thriving ecosystem
of large-scale reputation manipulation services on Facebook that
leverage the principle of collusion. DeKoven et al. [10] characterizes
similar collusion networks on Instagram. Viswanath et al. [27]
proposed a Principal Component Analysis (PCA) based anomaly
detection system that uses temporal features such as like counts
over time and categorical features such as page types to detect
Facebook pages that received likes via similar collusion networks.
Farooqi et al. showed that mitigation strategies based on temporal
clustering are not effective against activity resulting from these
collusion networks because the collusion networks tend to spread
fake engagements originating from the same account over a large
span of time and use a large pool of accounts to engage with a given
post. Furthermore, this study shows that although the interactions
from collusion networks are performed by a third-party service
with access to the user’s OAuth tokens, the fact that the colluding
accounts belong to real users make them difficult to detect, because
these accounts contain a mix of organic and fake activity. Instead,
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their mitigation strategy was to block the IP address subnets used
by the collusion services which would not be effective against pods.

We seek to study a type of manipulation that is even more difficult
to detect: reciprocity abuse performed manually by real OSN users
in pods. Notably, existing mitigation techniques such as access
token or IP-based rate limiting does not work against engagements
from these types of users, because they are not using third-party
Account Automation Services or relying on bot accounts or access
to a user’s OAuth tokens.

There is some anecdotal evidence on reciprocity abuse through
pods [5, 26], in the form of online blog posts and personal expe-
riences of pod users. While this anecdotal evidence suggests that
participating in pod activity does increase the interactions a post
receives, if this activity generates organic interaction as a result
of the increased pod interaction is not known. To our knowledge,
there has been little-to-no public research on the occurrence, char-
acterization, or detection of manual reciprocity abuse through pods.

3 BACKGROUND

Pods are groups of OSN users who have gathered to increase the
popularity of their content by reciprocally interacting with content
posted by other members of the group. To discover pods and better
understand how they are joined, we first played the role of an
individual trying to discover pods and searched for Instagram pods
on Google. These searches led us to numerous blog posts and forums
on this topic, from which we learned that pods are predominantly
hosted on Telegram, a privacy-focused messaging platform.

If a user wants to use one of these pods, they must first join the
Telegram group on which the pod is hosted. Many of these groups
can be found through Google searches for curated lists of Instagram
pods. To receive engagement on an Instagram post from other pod
users, the user must send a message to the group containing the link
to their Instagram post. Before doing so, however, the user must
interact with other users’ posts in the quantity and manner specified
by the pod’s rules. These rules are often enforced by bots, which may
remove pod users for failing to comply with the pod’s specified rules
of reciprocal interaction. Telegram may have become the preferred
pod-hosting platform because there is no member cap for groups
(more specifically Telegram Channels), and because their rich API
allows group admins to deploy custom bots that can moderate the
group activity. These features of Telegram allow pods to scale with
minimum admin effort while maintaining engagement quality.

In our initial exploration, we investigated pods hosted on plat-
forms other than Telegram, such as Facebook, Instagram Direct
Message groups, and Reddit. While Facebook does host some pods,
Facebook is known to remove engagement groups from their plat-
form [13], causing them to be ephemeral and smaller in scale. Insta-
gram Direct Message groups are capped at 50 members, meaning
that these groups also operate at limited scale. Moreover, Insta-
gram direct message groups are private and group members are
vetted manually by group admins, potentially hindering data col-
lection. Reddit is used primarily as a platform to advertise pod
groups hosted on other platforms (most often, Telegram). Given
these considerations and our observation of Telegram’s overwhelm-
ing popularity as a platform for hosting pods, in this study we focus
on Instagram pods hosted on Telegram.
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While many of these pods seem to be operated by individuals,
we also discovered a handful of web-based companies that maintain
multiple pod groups and offer pod-related resources, such as video
tutorials on how to utilize pods to increase popularity. These com-
panies monetize pods by promoting related products such as “auto
likers” and dashboards for measuring profile popularity growth.
They also sell access to “elite” or “VIP” pods, and charge fees to
get un-banned from groups or clear “leach warnings”, which result
from failing to comply with the rules of reciprocal interaction.

There are several terms and concepts specific to the pod ecosys-
tem, which we define here and discuss quantitatively in Section 5:
Quantity of required interaction: Pods require the participants
to make a certain number of interactions with the other users in the
pod. Most commonly, pods use a “Do times N” or “DxN” system,
in which any user who posts an Instagram link on the pod must in-
teract with the previous N links posted on the group. Alternatively,
in other pods users are required to interact with all previous links
posted in the last H hours.

Type of required interaction: Most pods are focused on increas-
ing their participants’ Instagram like and comment counts. There
are pods that are designated as increasing likes only, or comments
only, or likes and comments both. While rare, we also discovered
pods that are designated as follow and save (Instagram allows users
to “save” photos on their feed to a private collection).

Entry requirements: Some pods require their members to have a
minimum follower count. Most companies who manage pods have
multiple pods with varied entry requirements.

Special interest groups: Some pods are designated for Instagram
users who post about specific topics such as fashion, food, travel,
etc, while other pods are generic.

4 DATA COLLECTION

In this section, we describe the multiple datasets we collected from
Telegram (TG) and Instagram (IG). To understand the landscape of
Instagram pods, we started by systematically collecting data from
public pods hosted on Telegram. We identified 1.8 million Instagram
posts that been posted in these Telegram-hosted Instagram pods.
We collected data on all of these Instagram posts as well as the
111,455 Instagram users that had posted them. We also collected
data on posts from a random, activity-matched set of Instagram
users to be used as a control set to train a classifier to predict
whether an Instagram post has received interaction through a pod
(Section 6).

4.1 Telegram-Hosted Pods

Our dataset contains records of 432 Telegram-hosted Instagram
pods. We used an iterative approach to discover Instagram pod
groups by starting with a seed set of pods and related groups dis-
covered via a Google search. The key observation driving this ex-
ploration was that often, pods are advertised on the message boards
of other pods, allowing us to search pod message boards to discover
new pods.

A flow diagram of our data collection method is provided in Fig-
ure 1. On February 26th, 2019, we performed a systematic Google
search (Step(1) on Figure 1) of the following phrases: “Instagram
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(6) Infer Pod
properties

(7) Extract
IG URLs
Figure 1: Data collection flow diagram. Solid gray boxes rep-

resent major steps, dotted boxes represent resulting inter-
mediate data.

engagement pod list,” “Instagram engagement group list,” “Insta-
gram engagement groups telegram,” and “Instagram pods telegram”.
These search terms were designed to employ terminology we had
observed to be commonly associated with pods, and to emulate
what an OSN user seeking to join a pod might search. On the first
four pages of Google search results—we found later pages to be
irrelevant-we visited each page and collected all Telegram group
URLs of Instagram pods and other groups in which individuals
discussed Instagram engagement. We then used the Telegram API
to download the group metadata and all the messages from these
public Telegram groups (Steps (2) and (4) on Figure 1). The group
metadata we collected includes: group username, title, description,
the group creation date, and the number of members in the group.
The message data includes the message content, timestamp, and
the user identifier of the Telegram user who sent the message.
Most groups also include a pinned-message which is displayed at
the top and usually specifies group rules. We discovered 163 Tele-
gram group URLs through this process. Of these URLs, 88 of them
pointed to Telegram groups that were public and valid (un-expired
and referencing a currently-existing group).

After this first search iteration, we collected Telegram group
URLs posted in these groups in search of additional Instagram pods.
Because collecting Telegram group metadata is computationally
costly, we filtered out URLs unrelated to pods in two steps, the
first being a coarser step that required only the Telegram group
URL and the body of the message that mentioned the URL. For
this step, we made use of the fact that the Telegram group URLs
appear in two forms, one with the group’s username in the URL
and one with a join request hashed in the URL. For the URLs that
included the username, it was easy in most cases to determine
whether the group was pod-related from the group’s username.
More information could also be extracted from the content of the
message that was associated with the URL. In Figure 1, this step is
represented by Step (5), in which we used a Random Forest Classifier
and the TF-IDF features of the message content and character n-
grams of the group’s username (if available) to determine whether
a URL linked to a pod-related group. This classifier had a recall of
0.93 and a precision of 0.87. The application of this filter removed
Telegram groups that were obviously not pod-related, such as those
related to pyramid schemes, cryptocurrencies, online gambling, and
porn.
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After removing obviously non-pod-related group URLs, we fil-
tered the remaining Telegram groups by examining their group
metadata, collected using the Telegram APL This filtering step is
depicted in Step (3) in Figure 1, and was done in a semi-automated
manner. We used a heuristics-based filter to decide whether a group
was an Instagram pod based on the group’s username, title, and
description. The heuristic marked groups as pods when these at-
tributes contained phrases such as pod, engagement, like, comment
and the phrase “Dx” followed by digits (Such as Dx5 and Dx10) as
pods. The heuristic excluded groups containing phrases such as
market, porn, sex, crypto, bitcoin, bet, odds. We manually labelled
groups that were not included or excluded based on the above
heuristics. Finally, with this filtered list of newly-discovered pod
URLs, we repeated (Steps (2)-(5)), collecting all the messages posted
in these groups and again searching them for more pods. We re-
peated this process for three iterations, ultimately collecting a total
of 38,000 group URLs. After discarding URLs that were not pod
related based on the predictions of the above classifier, we were
left with 4,425 URLSs. Out of them, 873 belonged to currently active,
public Telegram groups. After the heuristics-based filtering and
manual labelling, we identified 432 Telegram groups as pods.

We inferred additional properties of the identified pods using a
semi-automated approach (Step (6), which used regular expres-
sions based heuristics to infer whether the pod had any entry
requirements, and also its engagement type requirements (com-
ment/like/follow/save), and its engagement level requirements (its
DxN value or time-based requirements). For example, to determine
if a given pod is a likes and comments pod, we searched for strings
such as “Like and Comments,” “Likes & Comments,” and “L+C” in
the group’s username, title, description, and the pinned post. We
manually annotated the remainder of the groups whose properties
could not be inferred via heuristics.

4.2 Instagram Posts by Pod Users

From the message boards of each Telegram-hosted pod identified in
the last section, we extracted the URLs of all Instagram posts that
had been posted in the pod. We collected data on these posts, includ-
ing Instagram post identifier, post caption, likes count, comments
count, date of post creation, and the Instagram identifier of the
user who made the post. Since the Instagram’s Developer API does
not expose any methods to capture post details, we implemented a
scraper that made requests to the Instagram web application and
extracted the post metadata from the page response. We made sure
to retrieve data only from Instagram profiles marked as public.
We collected such data on 1,853,455 unique Instagram posts that
belonged to 111,455 unique Instagram accounts.

4.3 Classifier Control Group

To train a classifier to distinguish between pod-interacting Insta-
gram posts and other Instagram posts, we constructed a dataset
of “other” Instagram posts. The natural definition of “other” posts
would have been those that had not been posted in a pod; however,
we could not ensure that a given post was not posted in a pod
that we had not seen. Instead, we sought to compare pod-affiliated
Instagram posts to the “average” Instagram post.
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Figure 2: CDF of the number of followers of each pod and
random user before and after matching on follower count

We initially tried to capture the “average" Instagram post by pop-
ulating our control group with posts by randomly-chosen Instagram
users. However, as one would expect, these posts had substantially
lower engagement (comments, likes, posts, followers) than those
by pod users. This large discrepancy in engagement between pod
users and non-pod users, captured by follower count, is shown
in Figure 2(a). While this difference illustrates that the level of
engagement would be an excellent heuristic by which to identify
pod-interacting posts, a classifier trained on these datasets would
produce many false-positives among Instagram users who have
high profile engagement but do not use pods. To demonstrate that
it is possible to design a classifier that does not produce these types
of false-positives, we chose control-group posts with engagement
attributes that matched those of pod-affiliated Instagram users. As
such, we show that it is possible to identify pod-interacting posts
even when the posts have similar levels of engagement.

To collect engagement-matched posts, we first randomly sam-
pled the Instagram user identifier space, in which each user is
sequentially assigned an integer upon joining the platform. We
sampled identifiers that were close to the identifiers of pod users,
thereby ensuring that the random users we collected had created
accounts in the same time period as pod users. We downloaded de-
tails only from public profiles with English content and at least five
posts. Language was detected using the Python-ported version of
Google’s language-detector library [23] on the user’s profile descrip-
tion. During this process, we polled nearly 1.5 million identifiers.
After identifying valid and public user identifiers and applying the
language and post-count filters, we were left with 16,669 accounts.

We decided to match random users with pod users by follower
count, using follower count as a proxy for general engagement
attributes. The follower count distribution among random users
was extremely right-skewed, with a large fraction of users having
follower counts much smaller than those of pod users. We therefore
had to poll many random users per pod user to get a reasonable
matching. Due to this imbalance, we could only include 1,800 pod
users in our analysis.

The matching process was formulated as a linear sum assign-
ment problem, where each user in the pod dataset was paired with
random user from the pool (without replacement) such that the sum
of the differences of paired users’ follower counts was minimized.
We used the Hungarian Algorithm as implemented in Scipy [7] to
perform the optimization. The results are shown in Figure 2, which
shows (a) the original imbalance of follower counts and (b) the
quality of our follower-count matching.
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Figure 3: CDF of the number of comments and likes of posts
in the Comment+Like Pods vs Rand. Matched dataset.

To get posts by each of the matched random users, we randomly
selected a post from each user’s top 50% of posts by number of
comments. For each pod user, we collected one of the Instagram
posts we had discovered in a pod. As shown in Figure 3, the posts
collected for pod users and random users had similar levels of
comments and likes, suggesting that follower count was a good
proxy for general engagement attributes.

This process produced two datasets, in which the positive classes
consisted of Instagram posts that were posted in comment and
like pods and like only pods. We focused on these two types of
pods because they were the most commonly observed in the pod
ecosystem (See section 5.1). Each of these two datasets contains
1,800 pod-affiliated Instagram posts and 1,800 matched control
Instagram posts. Throughout the rest of the paper, we will refer to
the dataset pertaining to comment and like pods as Comment+Like
Pods vs Rand. Matched dataset, and that pertaining to likes only
pods as Like Pods vs Rand. Matched dataset.

5 POD LANDSCAPE

In this section, we provide an overview of the general properties
of pods we observed. Most notably, we illustrate the recent rapid
growth of the discovered pod ecosystem, a relatively high intensity
of usage by pod users, and a low barrier to entry to these Tele-
gram groups. We also see heterogeneity in the types of interaction
yielded by these pods, and specifically find that half of discovered
pods require comment interaction. This is promising because, as
discussed in Section 6, the content of comments can be used to
detect pod interaction on Instagram posts.

5.1 Pod Ecosystem Evolution

The ecosystem of 432 Telegram-hosted Instagram pods we observed
came about largely in the past two years. The earliest-created pod
in our dataset became active in late 2016. The ecosystem then
grew steadily throughout the rest of 2016 and early 2017. By the
end of 2017, it had begun growing more rapidly, and it has since
continued to grow at an increasing pace. Figure 4 shows a frequency
histogram of the Instagram posts posted in three major types of
pods: comments only, likes only, and like and comment pods. Note
that the dip in activity during March to July 2019 was due to a data
collection issue where we were unable to collect the full number
of messages from the Telegram API. This figure serves as a lower
bound for the activity level of pods and shows that the activity in
pods is growing rapidly.
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Figure 4: The number of IG posts posted on Comment, Com-
ment+Like, and Like pods on each day.

5.2 Pod Attributes

We first observed that the pods we captured varied on several qual-
itative and quantitative attributes.

Quantity of Required Interaction. Pods require users to inter-
act with different numbers of Instagram posts, and impose this
constraint within three rule frameworks. The most common rule
framework for requiring reciprocal interaction is “Do times N” or
“DxN”. This framework requires that before a pod users sends their
own Instagram post to the pod, they first must interact with the
previous N Instagram posts on the pod. Of the 385 total pods which
specified engagement requirements in their rules, we found that
71% percent were Dx pods. Of these, almost all of them were either
Dx5 or Dx10, comprising 34% and 30% of Dx pods, respectively. The
remaining Dx pods required between 2 and 87 reciprocal interac-
tions. Alternatively to Dx, another 24% of total pods were Time
pods, which require users to interact with all Instagram posts sent
to the pod message board in the previous H hours. 80% of Time pods
required interaction with all posts in the last 24 hours, and the rest
required it in the last 6 or 12 hours. The remaining 5% were Rounds
pods. These operate via scheduled rounds, during which members
are given a one-hour window to reciprocate engagements.

Type of Required Interaction. Pods also varied on the type of
interaction with Instagram posts they require. There were four
main ways pods required users to interact with Instagram posts:
liking a post, commenting on a post, following a user, and saving a
post. Of the 432 pods on which we collected data, 41% were Like
pods, meaning they required users to interact with other pod users’
Instagram posts by simply liking them. Another 37% of pods were
Comment & Like pods, meaning they required either or both types
of interaction. Another 7% were Comment Only pods.

Entry Requirements. Of the 432 pods we discovered, we found
that only 4% required Instagram users to have some minimum
number of followers prior to joining. For those that did have en-
try requirements on follower-count, these requirements ranged
between 1,000 and 100,000 followers.

Special Interest Topics. Of the pods we discovered, we detected
only five that focused on special interest topics such as fashion,
photography, or entrepreneurship.

Quantitative Attributes. We present additional pod attributes in
Table 1. Our dataset includes pods of of varying sizes, with six pods
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Variable Mean Median Range
POD ATTRIBUTES (per pod)

Number of users 918 156 0-17,301
Lifespan of pods (years) 0.98 0.87 0-321
Mean number of pod mes- 41 7 1-1456
sages in a day over lifespan

Max number of pod mes- 165 57 1-4218
sages in a day over lifespan

POD USER ATTRIBUTES (per IG user)

Number of pods used by 2.77 2.0 1-96
each IG user

Number of messages per 11.43 30 1-5838
pod by IG user

Time between IG post and  1.28 hrs 1min 2s-8yrs
pod post

Table 1: Table of pod and pod user features. The pod at-
tributes were computed over 432 pod groups. The pod user
attributes were computed over 111,455 Instagram users we
discovered that participated in pod groups.

having more than 10,000 members and over half having fewer than
350 members. 95% of the pods in our dataset had fewer than 5000
members. The pods that had more than 10,000 members accounted
for nearly 40% of the Instagram posts that we discovered and the
top 25 pods, based on the membership count, accounted for 54% of
the Instagram posts discovered. This suggests that the pod ecosys-
tem is heavily skewed, with a small number of pods accounting
for most of the pod activity. We computed the lifespan of a pod as
the time duration between the first and the last message posted to
its message board. The average pod lifespan was about 0.87 years.
We measured the number of daily messages that were posted on a
given pod to measure its activity and saw that activity in some pods
had died down at the time of data collection while other pods are
gradually increasing in activity. We also observed heterogeneity in
how users use pods. The average user was recorded to have used
more than two separate pods. In each distinct pod a user utilized,
they sent an average of 11 messages, although half of users sent
an average of three or fewer messages per pod. Over half of users
advertised their posts in a pod within an average of one hour after
posting them on Instagram.

6 PREDICTING POD USAGE

In this section, we present our approach to building a classifier
that can detect Instagram posts that received engagement through
pods, specifically when the pod posts and control posts have similar
engagement-level distributions. We designed this classifier based
on the hypothesis that the interactions users received through pods
would be quantitatively and qualitatively different from interactions
that a user would receive from an organic follower base.

6.1 Features Used

Engagement Features: We used the following values to measure
the level of engagement on each post:
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o Comments Count: Number of comments at time of data collec-
tion

e Likes Count: Number of likes at time of data collection

e Comments Count : Likes Count (Ratio)

Comment Timeseries Features: We anticipated that the distri-
bution of interactions a post would receive over time through pods
would be different from that of a post receiving interactions organ-
ically. Since comments were the only time-stamped interactions
available to us, timeseries features were computed only for com-
ments.

e Time until Zero-Equilibrium: Number of seconds until Zero-
Equilibrium, which is defined as the first 24-hour span after
the Instagram post is posted in which it receives zero com-
ments.

o Proportion of Comments Count before Zero Equilibrium: Propor-
tion of total comments (Comments Count) received before
Zero-Equilibrium.

o Seconds until Zero-Equilibrium : Comments Count (Ratio)

o Comments Count in Hour i € {1...24}: Proportion of total com-
ments received in the first, second,..., twenty-fourth hour.

Comment Content Features: We anticipated that the comments
made as a result of reciprocal interaction agreements would have
a different linguistic signature than comments that were made or-
ganically. To capture this difference, we use two topic modeling
approaches, Latent Dirichlet Allocation (LDA) [4] and Non-negative
Matrix Factorization (NMF) [15] to discover the underlying topics
that the commenters use. LDA learns the relationships between
words, topics, and documents by assuming documents are gener-
ated by a particular probabilistic model, whereas NMF learns from
an unnormalized probability distribution over topics [14]. We con-
catenated all the English comments made on each post and ran
both LDA and NMF algorithms on these comments. To evaluate
if the topics learned by these models are stable, we used k-means
clustering with two clusters and measured the purity of the clus-
ters [19]. We trained the LDA and NMF model 100 times to account
for randomness. The purity was consistently between 82.1-85.2%
with an average of 84.1%, demonstrating the stability of the topics.
We noticed that the topics learnt by the two approaches were com-
plementary and decided to include features from both models in to
our feature set. For NMF the regularization mixing parameter was
set to 0.5, alpha was set to 0.1, and initialization was set to Non-
negative Double Singular Value Decomposition. For LDA we set
the maximum number of iterations to 5, used the ‘online’ learning
method, set the learning offset to 50. All other parameters were set
to the default. The posterior probabilities of each topic was used as
a feature. We also computed the diversity of the comments made on
each post. This is similar to the approach taken by Jang et al. [12],
in which they computed the entropy of LDA topic probabilities
to measure the diversity of a user’s posts. Entropy has also been
used to detect spam comments on social media.[2]. We computed
diversity by measuring the entropy of the LDA and NMF topics and
the entropy of the (Term Frequency - Inverse Document Frequency)
TF-IDF values of the comments. The entropy is defined as follows:

N

E(X) = > P(X;)log(P(X;)

i=0
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In the case of the topic models, P(X;) was taken as the posterior
probability given by the model for each topic i. For the TF-IDF
values, P(X;) was taken as the normalized TF-IDF value for ith
token. The following is a list of all the comment content features that
we computed: (1) NMF Topic i € {0....19} (2) LDA Topic i € {0...19}
(3) NMF Entropy (4) LDA Entropy (5) TFIDF Entropy

6.2 Prediction Model and Results

We computed values for the above features on our two datasets
and trained three different supervised classifiers: Support Vector
Machine (SVM) with a Linear Kernel (SVM - Linear), SVM with an
RBF Kernel (SVM - RBF), and a Random Forest Classifier. We report
the performance of the three classifiers on these two datasets in
Table 2.

Model F1 Precision Recall AUC
Like Pods vs Rand. Matched

SVM - Linear 0.75 0.76 0.75 0.83
SVM - RBF 0.81 0.81 0.81 0.88
Random Forest 0.83 0.83 0.83 0.91

Comment+Like Pods vs Rand. Matched

SVM - Linear 0.80 0.80 0.80 0.87
SVM - RBF 0.86 0.86 0.86 0.93
Random Forest 0.87 0.87 0.86 0.94

Table 2: 10-Fold cross-validated classification results.

The results in Table 2 shows that the random forest classifier
performs the best on both datasets. The performance results from
the Comment+Like Pods vs Rand. Matched dataset performs better
across all classifiers. This behaviour is expected since our time-
series and content features are based on comments.

Since we were only able to train our classifier on a smaller dataset
due to the limited number of random IG user accounts we could
collect, we also ran our classifier on known pod posts to determine
the True Positive Rate (TPR) (The number of true positives divided
by the total number of positives) of our classifier on a larger dataset.
To do this, we trained our classifier on the full Comment+Like Pods
vs Rand. Matched dataset and tested it on 5000 posts that were
posted in comment and like pods. The TPR on this bigger test
set was 0.91. For comparison, on our smaller Comment+Like Pods
vs Rand. Matched dataset, we achieved a TPR of 0.87 and a False
Positive Rate (FPR) (The number of false positives, divided by the
total number of negatives) of 0.14. This further indicates that our
classifier would have a comparable-or-better level of performance
to that in Table 2 on larger datasets.

6.3 Feature Analysis

We performed a feature analysis to determine which of the features
were important in making these predictions. We measured the
“importance” of each feature with Shapley Additive Explanations,
or SHAP values [17, 18], which captures the contribution of each
feature based on local explanations [22] and principles of game
theory. The 15 features with the highest SHAP values for both of
our datasets are plotted in Figure 5.
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Most of the important features for the Comment+Like Pods vs
Rand. Matched dataset (Figure 5 (a)), according to their SHAP values,
are NMF or LDA topics. In Table 3, we display the top 10 tokens
that describe several important topics for this dataset. Five topics
fell into the category of “generic support,” which contain words
with positive connotations that are relevant to Instagram posts in
general, but not necessarily to specific posts. Furthermore, most of
the topics identified by NMF was different types of “generic support”
topics. Therefore, having a high NME entropy, which suggests that
the comments were from a variety of these topics, were predictive
of pod affiliated posts. The prevalence of generic support words
such as “shot,” “great,” “nice,” and “love” among important features
indicates that comments high in these types of generic encourage-
ment increases the probability of a positive prediction. It is logical
that this should be the case, as comments by strangers through
obligatory reciprocal interaction agreements are likely to be more
generic than those by organic and voluntary commenters, who are
connected with the user through personal relationships. On the
other hand, topics that describe more conversational language were
important in predicting the control posts. Unsurprisingly, a higher
number of comments, when compared to users in the control group
who had a similar distribution of follower counts, was an important
feature in predicting pod posts.

Figure 5 (b) shows the important features for the Like Pods vs
Rand. Matched dataset. When compared to the Comment+Like Pods
vs Rand. Matched dataset, fewer of the content related features were
ranked as important. However, comments in positive posts of this
dataset too included “generic support” type language and were
predictive of pod affiliation. Apart from these features, having a
high comments and likes count and skewed comments-to-like ratio
were predictive of pod usage.

6.4 Misclassifications Analysis

To identify scenarios in which our classifier made mistakes, we
trained our classifier on 70% of the data, leaving the remaining
30% for testing and misclassification analysis. We then studied the
SHAP values of the misclassified posts to identify which features
contributed the most to push the classifier towards an incorrect
decision. We display these values in SHAP force plots, which show
the contribution of each feature in pushing the classifier probabil-
ity to its predicted value from the baseline, where baseline is the
average of the prediction value in the training set.

We included only six SHAP force plots in Figure 6 for brevity,
but ultimately evaluated a sample of 20 misclassified instances. In
most force plots, false-positive posts had higher SHAP values for
generic support topics (NMF topics 0, 14, and 11, and LDA topic
18). Force plots for false-negative posts show that, although these
posts were posted on a comment pod, they had a low value for
generic support topics probabilities. This suggests that some posts
that were posted on pods did not receive as much comment content
containing generic support topic words. Manual examination of
some of the pods in these misclassified instances revealed that pods
which produced interaction on false-positive posts often required
the participants to post high-quality comments that either related
to the post caption or met a length requirement. We performed
a similar analysis for the Like Pods vs Rand. Matched dataset and
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Figure 5: SHAP values for the most important features.

found that most misclassifications in this dataset were also caused
by similar topic related features.

7 POD EFFICACY ANALYSIS

In this section, we provide evidence suggesting that utilizing pods
increases users’ Instagram popularity. We define an Instagram
user’s “popularity” by the level of interaction they receive that
is not a direct result of pod-based reciprocal interaction agreements.
We refer to interaction of this nature as “organic” interaction. To
measure the effect of pod utilization on the popularity of users,
we compare the average levels of organic interaction each user
receives on their posts before and after they begin posting in pods.
To measure changes in organic interaction, we focus our analysis
on “control” posts — Instagram posts that have not been posted
in a pod. We do so because by definition, all interaction on these
posts is organic, so any measured increase in interaction after pod
utilization must be due entirely to an increase in organic interaction.
In contrast, organic interaction with non-control posts cannot be
separated from interaction they have received through the pods
in which they are known to have been advertised. Importantly, as
previously discussed we cannot observe whether a post is truly
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Topic Top Word Content
NMF 0 (Generic great, shot, post, awesome, good, love,
Support) like, really, photo, picture
LDA 18 (Generic nice, great, wow, cool, shot, amazing,
Support) awesome, like, post, really
NMF 14 (Generic nice, pic, super, photo, sweet, friendship,
Support) fiir, future, funny, fun
LDA 2 (Conversa- cool, work, wow, amazing, people,
tional/Support) beautiful, want, awesome, just, oh
NMF 11 (Generic wow, amazing, looks, dope, crazy, oh,
Support) omg, art, like, incredible
LDA 14 (Conversa- congrats, congratulations, lol, gonna,
tional/Wishes) Imao, right, guys, bad, read, im
LDA 4 (Conversa- happy, birthday, day, year, hope, enjoy,
tional/Wishes) boo, tea, anniversary, bday
LDA 19 just, xx, omg, like, yes, let, thank, come,
(Conversational) good, hi
LDA 0 (Conversa- cute, lol, oh, know, like, omg, haha, just,
tional/Cute) got, adorable
LDA 3 (Conversa- bro, shit, time, guys, man, got, fam,
tional/Slang) couple, stay, like
NMF 15 (Generic cool, really, post, sharing, super,
Support/Slang) interesting, like, dope, friday, fucking
LDA 10 wait, miss, yay, sexy, ha, tysm, excited,
(Conversational) baby, girl, handsome
LDA 11 ya, funny, man, dope, thx, shirt, don, miss,
(Conversational) tbh, dude

Table 3: Top words within the most important NMF and LDA

topics for the Comment+Like Pods vs Rand. Matched dataset

a control post. In order to execute this analysis, we use our clas-
sifier to identify probable control posts and then account for the
uncertainty of our classifier in our analysis.

7.1 Methods

Dataset Construction

We randomly 800 Instagram users for this analysis, all of whom
who had posted in a pod, and collected all posts on their profiles.
On each post, we collected the features necessary for the Random
Forest classifier, as specified in Section 6.

At ground truth, every Instagram post is either a pod post—an
Instagram post that has been posted in one or more pods, or a control
post—a post that has never been posted in a pod. As previously
discussed, we cannot know this ground truth about an Instagram
post unless it was posted a pod that we discovered. To infer this
information, we defined pod posts to be those that are known to
be in a pod and/or are predicted by the random-forest classifier
to have been sent to a pod message board with greater than 0.5
confidence. The remaining posts were defined as control posts.
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Figure 6: SHAP Force plots for three false positive and three
false negative instances in the Comment+Like Pods vs Rand.
Matched dataset that show the top features that are pushing
the prediction from the base value to the model output

We constructed a chronological timeseries of posts for each user,
where each timeseries was separated into two periods. The first
period is the time before the user’s first pod post. All posts in this
period are control posts. This period can be considered a baseline
period, because the average level of interaction attained on the
posts in this period represents a baseline level of interaction the user
received per Instagram post prior to using pods. The subsequent
pod-interacting period spans the time after the user’s first pod post.
The posts made in this time may be control posts or pod posts.

Analysis

We index each user’s posts by i, ordered chronologically in time. We
define the level of interaction on a user’s ith post as the number of
comments received on that post, C;. We define indicator variables
A; and B;, where B; = 1 if post i occurs in the baseline period
(before the user’s first pod post), and A; = 1 if post i occurs in the
pod-interacting period. We represent the classifier’s confidence on
post i as p;. From these variables, we compute a and f, where
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and a are the average number comments per post before and after
a user’s first pod post, respectively. To account for the uncertainty
of the classification, these averages are weighted by the certainty
of prediction on each post.
_ 2 AiCip; _ 2iBiCipi
i Aipi i Bipi

We quantify the increase of activity on a user’s profile due to pod
posting with the ratio «/f, which represents the ratio of activity
on control posts after the user began interacting with pods to that
on control posts before pod interaction began. «/f > 1 indicates
increased interaction on control posts after pod posting began,
a/f < 1indicates a decrease, and a/f = 1 indicates no change.
When computing this ratio, we drop all users for whom either « or
B is computed over fewer than 5 posts. This results in us dropping
283 of our original 800 users.

We also sought to understand whether increased pod utilization
leads to increased organic interaction, a relationship that would
suggest that pods are effective at increasing a user’s popularity.
To examine this, we ran a linear regression with the increased in-
teraction after first pod post (@/f) as the outcome variable. This
regression was designed to test the relationship between this out-
come variable and the proportion of each user’s Instagram posts in
the pod-interacting period that were posted in a pod. We hypoth-
esized that many variables could confound this relationship, and
thus controlled for them in the regression. These variables included
inherent pod properties that could impact efficacy, including the
number of members of the user’s most-used pod and that pod’s
maximum post rate over its lifespan. To account for the possibility
that the number of posts a user made in the past might increase their
“importance” to the content curation algorithm, we included two
additional variables: the proportion of each user’s total posts that
occurred in the baseline period, and the user’s total number of posts.
Finally, we controlled for calendar time, because we suspected that
as the Instagram platform has grown, its increased membership
could mechanically increase the level of overall interaction occur-
ring. To control for this, we implemented as variables the calendar
time of the user’s first and last Instagram posts. After normalizing
each variable through scaling by its mean and variance, we ran a
linear regression on these variables with Y = «/f as the dependent
variable. The resulting coefficients are in Section 7.2.

7.2 Results

As shown in Figure 7, we find that 70% of users experienced a 2-fold
or greater increase in interaction level on control posts after they
began posting in pods, and on average, these users saw a five-fold
increase in comments. This increased interaction is likely to be
organic (not from reciprocal interaction), because these control
posts were, according to the classifier, not posted in pods. Posts
identified as control posts with less certainty were given less weight
in the computation of this ratio.

As shown in Table 4, only two regression coefficients are sig-
nificant at a 5% level. Of these two coefficients, only one has a
magnitude of practical significance: the proportion of IG posts in
the pod-interacting period that were posted in pods. The coefficient
of this variable, 11.79, indicates that, all else held constant, if a user
who had never posted in pods began posting 50% of their posts in
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Frequency among users

Value of a\f

Figure 7: Value of «/f, signifying the ratio of the average
organic activity on a user’s posts after versus before the first
time they utilized a pod. Frequency over all users (n = 577).

pods, they would see a more than 5-fold increase in organic inter-
action with the posts that they did not post in pods. This strong
positive correlation and its practical interpretation suggests that
posting in pods is an effective way of increasing overall organic
interaction with the user’s profile.

Variable Regr. coeff. + 95% CI
Prop. of IG posts in pod-interaction 11.79% £ 2.82

period posted in a pod*

Prop. of total posts in baseline period 0.26 £9.19

(5.04 + 6.28) x 1074

(3.89% £ 2.71) x 1078
(~6.50 £ 7.86) X 10~
(-1.41+1.41)x 107
(-9.47 £ 12.8) x 107%

Pod’s max. post rate over lifespan
User’s last post time
User’s first post time

Number of pod members

Number of posts

Table 4: Linear regression coefficients. * indicates statistical
significance at 5% level.

8 DISCUSSION

8.1 Implications

We explored the ecosystem of Instagram pods hosted on Telegram,
which appears to be the most popular platform for hosting Insta-
gram pods. The ease with which we were able to find these pods via
google search, the low barrier to joining them, and their consistency
in rules and structure all increase the potential for these groups
to continue to be rapidly adopted. Already, there is evidence of re-
cently increasing adoption of this strategy: the pods we discovered
have emerged at an accelerating pace over the last two years.

We find that these pods are not only easy to join, but are actually
effective at increasing the organic interaction users receive. Strik-
ingly, we find that if a user who had not been utilizing pods began
advertising half their Instagram posts in pods, they would see more
than a 5-fold increase in organic interaction with their Instagram
content. The efficacy of these pods and their ease of use threaten
the integrity of OSNs, as they present a method by which users
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can use these platforms to artificially and rapidly gain influence,
potentially for nefarious purposes.

To address this emerging threat, we demonstrate that it is pos-
sible to detect posts that are likely to be getting interactions via
pod usage. Importantly, we show that this detection is possible
even when engagement is high in both groups, because there are
attributes of pod interactions beyond engagement level, such as
style of comments and interaction timing, that can be used to make
these more granular discernments. Our results suggest that a pod
detection tool might use engagement-level features as a screen-
ing heuristic before deploying a classifier trained to distinguish
between high-organic-engagement users and pod users. In prac-
tice, OSN platforms could use this basic paradigm, together with
much richer data and additional information such as topology of
interaction networks, to build more accurate pod detection tools.
These tools could ultimately be deployed to detect and penalizing
pod users, or alternatively as a part of Instagram’s content curation
algorithm itself, where it could help the algorithm account for this
type of interaction by down-voting posts that benefit from it.

8.2 Limitations

Because we studied exclusively English pods, our results likely more
closely reflect English communities. Due to the substantial compu-
tational time required to construct these datasets without back-end
access to the OSNs we studied, we were limited in our investigation
by the scope of our data. Our pod interaction detection classifier
is limited in the sense that it relies heavily on the content of post
comments. While it does learn topics from this content that are
consistent with what one would expect, the reliance of the classifier
on this content makes it less useful in the detection of interaction
with the estimated 50% of pods that do not require comment in-
teractions. Finally, while we show that pod-interacting posts can
be distinguished from posts with high organic engagement, users
with high organic engagement such as artists and influencers still
remain at heightened risk of receiving false-positive predictions.
Some of these false-positives can be mitigated by whitelisting such
users, for example, using the “verified” badge.

9 CONCLUSIONS

In this paper, we show that Telegram-hosted Instagram pods have
become increasingly prevalent, are utilized by many OSN users, for
many reasons, and are likely to continue to be popular. We also show
that pods are effective at increasing the popularity of user content,
which affirms the threat they pose to the integrity, security, and
resilience of OSNs against politically-motivated propaganda and
other implications of artificially-garnered influence. To address this
growing threat, we developed a supervised learning tool to detect
posts with high likelihood of having gained popularity through pod
engagement. We propose that this tool could be deployed as part
of content curation algorithms.
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