Disruption of gene co-expression network along the
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Abstract—Alzheimer’s disease (AD) is one of the most common
brain dementia characterized by gradual deterioration of cogni-
tive function. While it has been affecting an increasing number
of aging population and become a nation-wide public health
crisis, the underlying mechanism remains largely unknown. To
address this problem, we propose to investigate the gene co-
expression network changes along AD progression. Unlike extant
work that focus on cognitive normals (CNs) and AD patients, we
aim to capture the network changes during the full range of
disease progression, from CN, early mild cognitive impairment
(EMCI) to late MCI (LMCI) and AD. In addition, many existing
differential co-expression network analyses estimate the network
of each group independently, which may possibly lead to sub-
optimal results. Assuming that the gene co-expression patterns
should be largely similar in consecutive disease stages, we propose
to apply a modified joint graphical lasso model to estimate
the networks of multiple diagnostic groups simultaneously. The
permutation results shows that JGL model is much less likely
to generate false positives with the similarity constraint. By
comparing the estimated gene co-expression networks of all
disease stages, we identified 8 clusters showing gradual changes
during the progression of AD.

Index Terms—Alzheimer’s disease, differential co-expression,
early detection.

I. INTRODUCTION

Alzheimer’s disease (AD) is a major neurodegenerative
disorder that has been characterized by gradual memory loss
and brain behavior impairment. According to the latest report
[1], an estimated number of 5.7 million aging Americans are
living with Alzheimer’s and this number is expected to escalate
in coming years given the rapid increase of aging population.
To prevent this public health crisis, tremendous effort has been
dedicated to discovery of effective AD biomarkers. In addition
to APOE e4 alleles known as major genetic determinant [2],
large-scale genome-wide association studies (GWAS) have
led to identification of many novel genetic risk loci [3].
However, extant work largely investigated genetic variations
or individual genes associated with AD. Very few studies paid
attention to the interactions and associations among the gene
products and how they are gradually disrupted during AD
progression [4], [5].
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To bridge this gap, we propose to perform a differential
co-expression analysis across all the stages of AD, including
cognitively normal (CN), early mild cognitive impairment
(EMCI), late MCI (LMCI) and AD. One common method
for generating co-expression networks is through pairwise
Pearson’s correlation. Though easy to implement, these simple
strategies are very likely to generate false positives and many
links are from indirect interactions. Other techniques such
as least absolute error regression, Bayesian approach and
graphical lasso model have also been used in construction
of co-expression networks [6]. However, all of these methods
can only estimate one network at a time. When applied to
differential co-expression analysis, they estimate the network
for each group separately by treating them as independent.
This assumption clearly does not hold in disease study since
disease formation is a progressive procedure. Co-expression
networks in consecutive disease stages should be largely
similar. For example, co-expression networks in CN group and
EMCI group are expected to be largely similar with critical
differences. Toward this, we propose to employ joint graphical
Lasso [7] for simultaneous estimation of co-expression net-
works in multiple disease stages. We modified the traditional
JGL algorithm to better model our assumption of similarity
between consecutive disease stages.

In the present study, we focused our analysis on top AD-
enriched pathways [8]. We estimated the co-expression net-
works of all diagnosis groups using modified JGL model and
subsequently performed a comprehensive comparison analysis
of co-expression networks using edge-level, node-level and
network-level metrics. We used global clustering coefficient to
identify structural property of each network. Node and edge
centrality were calculated to allow comparison of individual
interactions present in the network and identification of critical
network entities. Finally, we were able to identify eight gene
clusters showing gradual changes during the progression of
AD. Five of them shows significant change from CN to EMCI
and therefore have the potential to serve systems biomarkers
for early screening of AD.
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II. METHODS
A. Dataset

Quality controlled plasma microarray data used in this study
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) project (http://adni.loni.usc.edu). Detailed
preprocessing steps can be found in [9]. We focused our anal-
ysis on genes involved in AD-enriched pathways highlighted
in [8]. In total, 75 genes were included in this study. In the
microarray data, if there are multiple probes corresponding to
the same gene, we chose the probe with the maximum mean
expression to represent the gene. Gene level expression was
adjusted for RNA integrity Number (RIN), baseline age and
sex with the weights derived from cognitive normals. Finally,
662 subjects without missing gene expression values were
included (Table. I).

TABLE I
DEMOGRAPHIC INFORMATION OF PARTICIPANTS

Groups Total(N) Gender (M/F) Age (Mean+ Std)
CN 225 113/112 76.65+6.16
EMCI 193 105/88 79.26+£7.35
LMCI 202 127775 76.38+7.89
AD 42 27/15 75.69+9.46

Joint Graphical Lasso

Let us denote the gene expression data as X =
[x1, 29, -, 2], Where 2, C RP. n is the number of subjects
and p is the number of genes. To reconstruct a co-expression
network among p genes, we assume that the xq, 29, -+, 2,
are independent and identically distributed with the positive
definite p X p covariance matrix . The inverse covariance
matrix X! indicates the conditional independence between
pairs of genes. Joint graphical lasso (Eq.1) estimates inverse
covariance matrix of multiple groups together through maxi-
mizing penalized log likelihood [7]. Here, S is the empirical
covariance matrix.
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Here, {®} = {®W ... ©%)} and ®®) is the estimated
inverse covariance matrix of k£ —th group. The sparsity within
each matrix and the similarity across matrices in K groups
are encouraged by penalty P({@®}). A\; and A\ are two non-
negative parameters to control the enforcement of sparsity and
similarity. In [7], it is assumed that the networks across all
pair of groups should be similar. However, this assumption
does not always hold, especially for discovery of disease stage-
specific networks. AD is a slowly progressive brain disorder
that networks are expected to gradually dissolve or rewire
during the progression. Gene co-expression network in the AD
patients may have become very different compared to that of
cognitive normals after years of progression. Therefore, we
modified the penalty term P({®}) to Eq. 2 such that the

similarity among networks is only enforced for consecutive
disease stages. For example, networks between CN and EMCI
are encouraged to be similar.
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To solve the modified JGL model, we followed the steps
in [7] using alternating directions method of multipliers
(ADMM) algorithm. With the constraints er =z (k), the

dual variables U®) are introduced to form scaled augmented

Lagrangian [10].
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The exact solution steps can be referred to [7]. We modified
the step to update {Z} (Eq.4).
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We found that this minimization problem is completely sepa-
rable for each elements(i,j) in the matrices,
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The last penalty term is known as 1-d fused lasso and

penalizes the absolute differences in adjacent values of [

[Zgjl), . .,ZZ(.K)]. If we first consider \; as zero and set

[AS)7...,A§;()]. The convex optimization problem be-

comes a simple 1-d fused lasso problem and can be easily

solved with soft-thresholding technique [11].

B. Performance Evaluation

We compared the performance of JGL with graphical lasso,
which estimates the co-expression network for each group
separately. Using the permuted data, we generated 1000 co-
expression networks using JGL and derived a frequency net-
work for each group, where each edge has a value between
0 and 1000 indicating the times it is observed to be nonzero.
Similarly, we generate another frequency network for each
group using the results from graphical lasso. Since all the
gene expressions are random, all edges should be zero. Any
nonzero values will be considered as false positives. To ensure
fair comparison, all the parameters in both models are tuned
to achieve the best performance using Akaike information
criterion (AIC).
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C. Construction of Co-expression Network

We applied the modified JGL to estimate co-expression
network for 4 disease stages. To evaluate the significance, we
permuted the data 1000 times for each group. Permuted data
was fed into the modified JGL model to estimate 4000 co-
expression networks. For each group, edges with empirical P
value >0.05 were considered insignificant and were removed
from subsequent network comparison analysis. All edges were
found to be significant except 5 edges in AD group.

D. Network Comparison

We compared co-expression networks across stages using
edge level, node level and network level metrics. For each
edge, its weight indicates the partial correlation between two
connecting genes. Edges with absolute differences >0.01 be-
tween consecutive stages (e.g., EMCI -LMCI) were considered
as potential biomarkers. We manually clustered these edges
based on their patterns of change across disease stages. For
every node, four centrality values were calculated: degree, be-
tweenness, closeness and clustering coefficient. Finally, arith-
metic mean measure was used to calculate the global clustering
coefficient of the network. For all of these measures, we
compared four networks by looking for values with continuous
increasing or decreasing patterns from CN to AD.

ITI. RESULTS
A. Comparison of JGL and graphical lasso

With the permuted data sets, it is expected that none of
the genes are correlated. So all the edges in the estimated
networks should have zero weight. However, with networks
estimated using graphical lasso, we observed that 419 edges
in CN, 420 edges in EMCI, 381 edges in LMCI and 250 edges
were frequently (i.e., > 100 out of 1000) estimated with non
zero weights (i.e., false positives). With JGL, the weight of all
estimated edges in CN, EMCI and LMCI are zero (Fig.1). In
AD, 299 edges were occasionally (i.e., < 100 out of 1000)
estimated to be nonzero. This indicates that the similarity
constraints on co-expression networks of consecutive stages
can help effectively control the false positives. Therefore, the
differential co-expression patterns identified through JGL will
provide more accurate information of the altered biological
system during disease formation.

B. Nodal Centrality Change during AD progression

For clustering coefficient, C3, MAPKI, PAKI, PRKCH
and SLA showed continuously increasing pattern from CN
to AD. In contrast, CALM3, MAPKS and RASAI showed a
decreasing pattern. For degree centrality, MAPKS and RHOA
were found to increase and GRB2, PAKI, PRKCD, PRKCH,
PRKCI, SORT] were found to decrease when subjects progress
to a more severe stage. For betweenness, CRI, GRB2 and
RPS6KBI demonstrated a decreasing pattern. For closeness,
DLG4 and SRC were observed to increase while PRKCD,
RAPIA and RPS6KA1 showed a decreasing pattern. However,
most of these are minor changes, except for RPS6KBI whose
betweenness drops notably from CN to EMCL

C. Pairwise Co-expression Change during AD progression

There are 66 gene pairs that demonstrated a continuously
decreasing or increasing pattern from CN to AD and their
patterns fall into eight clusters. Among these, five of them
showed significant change from CN to EMCI. We combined
these five clusters and formed a gene module as shown in
Fig. 2, which is represented as early network. RPS6KBI was
found to be the hub gene, followed by GRINA, MAPK3,
PRKCD, MAPKS and SORTI. Many of these genes have
been previously associated with AD already as individuals
[12], [13]. However, this is the first study to reveal how their
relationship changes during AD progression. Given that the
co-expression patterns in this early network start to change in
the CN stage, this network has great potential to serve as a
systems biomarker to capture the biological alterations in the
very early stage of AD.

D. Network Topology and Cluster identification across groups

When comparing the global network structure, network level
clustering coefficient remains relatively stable from CN to
LMCI, but drops significantly when progressing from LMCI
to AD. This strong structural property indicates the resilience
of the co-expression network in the prodromal stage of AD.

IV. CONCLUSION

We employed a modified JGL to borrow the strength of the
relatedness across disease stages and jointly estimated multiple
co-expression networks. Our results on permuted data sets
showed that JGL is less likely to generate false positives. In
the subsequent differential co-expression analysis, we found
a significant change of clustering coefficient when subjects
progress from LMCI to AD, but not in early stages. Node
wise and edge wise comparison have led to eight gene clusters
that demonstrated continuous changes from CN to EMCI,
LMCI and AD. Particularly, five of them showed pairwise
co-expression changes notably from CN to EMCI. Genes in
these modules could be used as systems biomarkers for early
screening in AD. More efforts are warranted to validate their
function.
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Fig. 1. Performance comparison of JGL and Graphical lasso on permuted data set.
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