
Journal of Number Theory 210 (2020) 373–388
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

General Section

A stronger connection between the Erdős-Burgess 

and Davenport constants

Noah Kravitz a, Ashwin Sah b,∗

a Grace Hopper College, Yale University, New Haven, CT 06510, USA
b Massachusetts Institute of Technology, Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 September 2018
Received in revised form 19 August 
2019
Accepted 4 September 2019
Available online 15 October 2019
Communicated by A. Pal

MSC:
11B30
05D05

Keywords:
Erdős-Burgess constant
Davenport constant
Zero-sum problem
Idempotent element

The Erdős-Burgess constant of a semigroup S is the smallest 
positive integer k such that any sequence over S of length 
k contains a nonempty subsequence whose terms multiply 
to an idempotent element of S. In the case where S
is the multiplicative semigroup of Z/nZ, we confirm a 
conjecture connecting the Erdős-Burgess constant of S and 
the Davenport constant of (Z/nZ)× for n with at most two 
prime factors. We also discuss the extension of our techniques 
to other rings.
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1. Introduction and main results

The Erdős-Burgess constant is an invariant which measures how much a semigroup 
avoids idempotent products. An element x of a multiplicative semigroup is called idem-
potent if x2 = x. We offer the following formal definition.
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Definition 1.1. The Erdős-Burgess constant of a multiplicative semigroup S (denoted 
I(S)) is the smallest positive integer k such that any sequence of k (not necessarily 
distinct) elements of S contains a nonempty subsequence (preserving relative order) 
whose terms multiply to an idempotent element of S. If no such k exists, we say that 
I(S) = ∞.

We remark that the Erdős-Burgess constant as defined here is often called the strong 
Erdős-Burgess constant (see, e.g., [13,18]). For noncommutative semigroups, which we 
will not consider here, there is also a notion of a weak Erdős-Burgess constant in which 
the relative order of the terms need not be preserved.

The most interesting cases arise for the multiplicative semigroup (R, ×) of a finite 
commutative ring, in which case we let I(R) denote the Erdős-Burgess constant of (R, ×). 
When R = Z/nZ, clearly the idempotent elements of R are exactly those elements which 
are equivalent to 0 or 1 modulo each prime power dividing n.

The problem of computing these constants originated in a question of Erdős: Is it 
always true that I(S) ≤ |S| for a finite semigroup S? In 1969, Burgess [4] answered this 
question in the affirmative when S is commutative or contains only a single idempotent 
element. In 1972, Gillam, Hall, and Williams [11] proved the stronger result that I(S) ≤
|S| − |E| + 1 for all finite semigroups S, where E is the set of idempotent elements of S. 
They also showed that this bound is sharp in the sense that for any positive integers 
m < n, there exists a semigroup S with |S| = n, |E| = m, and I(S) = |S| − |E| + 1.

The computation of Erdős-Burgess constants is closely related to the study of zero-sum 
problems. (See [5,8] for an overview of this field.) For a finite additive abelian group 
G, a typical zero-sum problem asks for the smallest positive integer k such that any 
sequence of k elements of G contains a nonempty subsequence whose terms sum to 0
while also fulfilling certain other properties. The most celebrated result in this area is the 
Erdős-Ginzburg-Ziv Theorem [7], published in 1961, which says that in any set of 2n −1
integers, there are n whose sum is divisible by n, whereas the same is not true of all sets 
of 2n − 2 integers. Popular zero-sum group invariants include the Erdős-Ginzburg-Ziv, 
Olson, Harborth, and Davenport constants. The last of these will be the most relevant 
to our study of Erdős-Burgess constants.

Definition 1.2. The Davenport constant of a finite abelian group G (denoted D(G)) is 
the smallest positive integer k such that any sequence of k elements of G contains a 
nonempty subsequence whose terms sum to 0.

The study of this group invariant traces back to a 1963 paper of Rogers [16] and has 
appeared more recently in a variety of contexts. (See, e.g., [1,2,6,9,19].)

The connection between the Erdős-Burgess and Davenport constants first appeared 
in a recent paper of Wang [18] on maximal sequences over semigroups that avoid idem-
potent products. When S is a finite abelian group, for instance, the identity is the only 
idempotent element, so I(S) = D(S) trivially. In two papers in 2018, Hao, Wang, and 
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Zhang [12,13] studied this connection for the multiplicative semigroups of Z/nZ and 
Fq[t]/a, where a is an ideal of Fq[t]. For any integer n > 1, let Ω(n) denote the total 
number of primes in the prime factorization of n (with multiplicity), and let ω(n) de-
note the number of distinct primes dividing n. Recall that the unit group of a ring R is 
denoted R×. Hao, Wang, and Zhang prove the following theorem.

Theorem 1.3 ([12, Theorem 1.1]). For any integer n > 1, we have

I(Z/nZ) ≥ D((Z/nZ)×) + Ω(n) − ω(n).

Moreover, equality holds if n is either a prime power or a product of distinct primes.

They also conjecture that this inequality is an equality for all n > 1.

Conjecture 1.4 ([12, Conjecture 3.2]). For any integer n > 1, we have

I(Z/nZ) = D((Z/nZ)×) + Ω(n) − ω(n).

In [13], they derive analogous results relating I(Fq[t]/a) and D((Fq[t]/a)×) and pose 
the corresponding conjecture. Wang [17] has investigated other aspects of the Erdős-
Burgess constant, especially in the context of infinite semigroups.

In this paper, we resolve Conjecture 1.4 for some classes of positive integers and make 
progress on others. In Section 2, we derive an upper bound on I(Z/nZ) for the case where 
n has only a single repeated prime factor. We let φ denote Euler’s totient function.

Theorem 1.5. Let n = spk, where s > 1 is a squarefree integer, p is a prime not dividing s, 
and k is a positive integer. Then

I(Z/nZ) ≤ D((Z/nZ)×) + (k − 1) + (φ(s) − 1).

We remark that this upper bound is φ(s) − 1 greater than the conjectured value of 
I(Z/nZ). In Section 3, we relate I(Z/2mZ) to I(Z/mZ) when m is odd.

Theorem 1.6. Let m > 1 be an odd integer. Then

I(Z/2mZ) = I(Z/mZ).

In particular, this implies that if an odd integer m > 1 satisfies Conjecture 1.4 then 
so does 2m. Thus Conjecture 1.4 holds for n twice a prime power, using Theorem 1.3. 
In Section 4, we confirm Conjecture 1.4 for the case where exactly two distinct primes 
appear in the prime factorization of n. This is our main result.

Theorem 1.7. Let n = pkq�, where p and q are distinct primes and k and � are positive 
integers. Then
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I(Z/nZ) = D((Z/nZ)×) + (k − 1) + (�− 1).

Taken together, the previous two results confirm Conjecture 1.4 for n = 2pkq�, where 
p and q are distinct odd primes.

In Section 5, we generalize Theorem 1.3 to both unique factorization domains and 
Dedekind domains, which are the rings with a notion of unique prime factorization of 
elements and ideals, respectively. In Section 6, we make some concluding remarks and 
pose a few questions for future research.

2. An upper bound when only one prime is repeated

Before we prove Theorem 1.5, we choose some notation.

Definition 2.1. Given a sequence S over a multiplicative semigroup, let 
∏

≥k(S) denote 
the set of all products of at least k terms of S. In other words, 

∏
≥k(S) is the set of 

elements that appear as the product of the terms of some subsequence T in S of length 
at least k. By convention, let 1 ∈

∏
≥0(S) in all cases.

The following lemma will be useful in both this and the following sections.

Lemma 2.2. Let S = a1, . . . , ak+t be a sequence over an abelian group (G, ×) of length 
k + t for some integers k > 0 and t ≥ 0. Let P =

∏
≥k(S). Then either 1 ∈ P or 

|P | ≥ t + 1.

Proof. The statement |P | ≥ 1 is trivially true for t = 0, so we restrict our attention to 
the case t ≥ 1. Suppose |P | ≤ t. We will show that this implies 1 ∈ P . Consider the 
t + 1 products 

∏k+j
i=1 ai for 0 ≤ j ≤ t. (By definition, these are all in P .) The Pigeonhole 

Principle tells us that some two of these products are equal, so there exist integers 
0 ≤ c < d ≤ t such that 

∏k+c
i=1 ai =

∏k+d
i=1 ai and hence 

∏k+d
i=k+c+1 ai = 1.

Now, we re-order the terms of S to obtain the sequence S′ = a′1, . . . , a
′
k+t, where

a′i =

⎧⎪⎪⎨
⎪⎪⎩
ak+c+i, 1 ≤ i ≤ d− c

ai−(d−c), d− c + 1 ≤ i ≤ k + d

ai, k + d + 1 ≤ i ≤ k + t.

In other words, we have moved the 1-product subsequence of length d −c to the beginning 
of our sequence and shifted the displaced terms to the right. If d −c ≥ k, then we are done. 
Otherwise, we can repeat the process described above, which gives us a new 1-product 
subsequence of length d′ − c′ in front of the 1-product subsequence of length d − c. Once 
again, we are done if (d −c) +(d′−c′) ≥ k because these terms have product 1. Otherwise, 
we continue iterating this process until our 1-product subsequences have total length at 
least k, which shows that 1 ∈ P , as desired. The process must terminate because the 
1-product prefix of our sequence gets strictly longer at each iteration. �
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The following adaptation of the methods of [12,13] allows us to restrict our attention 
to sequences that do not contain certain elements.

Lemma 2.3. Suppose n = p1p2 · · · prm, where the pi’s are distinct primes that do not 
divide m, and let (Z/nZ)∗ denote the set of elements of Z/nZ that are relatively prime 
to all of p1, . . . , pr. If every sequence of length t over (Z/nZ)∗ contains a nonempty 
subsequence whose terms multiply to an idempotent element of Z/nZ, then every sequence 
of length t over Z/nZ also contains a nonempty subsequence whose terms multiply to an 
idempotent element of Z/nZ.

Proof. Assume for the sake of contradiction that there exists a sequence S = a1, . . . , at
over Z/nZ such that there is no nonempty subsequence of S whose terms multiply to 
an idempotent element of Z/nZ. For each aj, let a′j be the unique element of Z/nZ
that is equivalent to 1 (mod pi) if pi divides aj and aj (mod pi) otherwise for each 
1 ≤ i ≤ r and that is also equivalent to aj modulo m. Such a unique element exists by 
the Chinese Remainder Theorem. Thus, S′ = a′1, . . . , a

′
t is a sequence of length t over 

(Z/nZ)∗. By assumption, S′ contains a nonempty subsequence T ′ = a′j1 , . . . , a
′
j�

such 
that the idempotent product a′j1 · · · a′j� is equivalent to either 0 or 1 modulo each prime 
power dividing n.

Consider the product aj1 · · · aj� (which appears as a subsequence T of S). Since aj ≡ a′j
(mod m) for all j, it follows that aj1 · · · aj� is still equivalent to 0 or 1 modulo each prime 
power dividing m. We also know that a′j1 · · · a′j� is equivalent to 1 modulo each pi. If no 
ajk is divisible by pi, then each ajk ≡ a′jk (mod pi), and we can conclude that aj1 · · · aj�
is equivalent to 1 modulo pi. If any ajk is divisible by pi, then the product aj1 · · · aj� is 
equivalent to 0 modulo pi. So, in both cases, aj1 · · · aj� is equivalent to 0 or 1 modulo 
each prime power dividing n, and in fact aj1 · · · aj� is an idempotent element of Z/nZ. 
This yields the desired contradiction. �

Lemma 2.3 tells us that if we want to establish some t as an upper bound for I(Z/nZ)
(with n as in the lemma), it suffices to show that every sequence of length t over (Z/nZ)∗
contains a nonempty subsequence whose terms multiply to an idempotent element. In 
other words, we do not have to worry about sequences containing elements divisible by 
any of the pi’s. (The same is not true for primes that divide n multiple times.) We are 
now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let (Z/nZ)∗ denote the set of elements of Z/nZ that are rel-
atively prime to s. We will show that any sequence over (Z/nZ)∗ of length N =
D((Z/nZ)×) +(k−1) +(φ(s) −1) contains a nonempty subsequence whose terms multiply 
to an idempotent element of Z/nZ. By Lemma 2.3, this will be sufficient to establish 
the result.

Let S = a1, . . . , aN be a sequence over (Z/nZ)∗ where, without loss of generality, 
exactly the first t terms are divisible by p. We note that the remaining D((Z/nZ)×) +
(k − 1) + (φ(s) − 1) − t terms are all units of Z/nZ. Now, if t ≤ (k − 1) + (φ(s) − 1), 
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then S contains at least D((Z/nZ)×) units. By the definition of the Davenport constant, 
this guarantees the existence of a nonempty subsequence of S whose terms multiply to 1, 
which is certainly idempotent. If t > (k−1) +(φ(s) −1), then we will find a subsequence of 
a1, . . . , at of length at least k whose product is equivalent to 1 modulo s. Such a product 
is idempotent: it is automatically divisible by pk because these ai’s are all divisible by 
p. Consider the sequence a′1, . . . , a

′
t over (Z/sZ)× that is obtained by reducing each ai

modulo s. Lemma 2.2 tells us that either 1 ∈
∏

≥k(a′1, . . . , a′t) (in which case we are 

done) or 
∣∣∣∏≥k(a′1, . . . , a′t)

∣∣∣ ≥ t − k + 1 ≥ φ(s). In the latter case, 
∏

≥k(a′1, . . . , a′t) is the 

entire group (Z/sZ)× (since |(Z/sZ)×| = φ(s)), and hence 1 ∈
∏

≥k(a′1, . . . , a′t). So, in 
all cases, S contains a nonempty subsequence whose product is an idempotent element 
of Z/nZ, and we can conclude that D((Z/nZ)×) +(k−1) +(φ(s) −1) is in fact an upper 
bound for I(Z/nZ). �

As mentioned in Section 1, the upper bound in this lemma is φ(s) − 1 greater than 
the conjectured actual value of I(Z/nZ).

3. The case n = 2m for odd m

This short section is devoted to proving Theorem 1.6 and discussing its ramifications 
for Conjecture 1.4.

Proof of Theorem 1.6. First, we see that I(Z/2mZ) ≥ I(Z/mZ) due to the fact that 
any idempotent product-free sequence in Z/mZ lifts to one in Z/2mZ. This is a special 
case of [17, Lemma 2.6].

Now, assume for the sake of contradiction that I(Z/2mZ) > I(Z/mZ). Let N =
I(Z/mZ). Then there exists a sequence S = a1, . . . , aN over Z/2mZ of length I(Z/mZ)
such that there is no nonempty subsequence of S whose terms multiply to an idem-
potent element of Z/2mZ. Consider the sequence S′ = a′1, . . . , a

′
N over Z/mZ where 

each a′i is equivalent to ai modulo m. But S′ must contain some nonempty subsequence 
T ′ = b′1, . . . , b

′
� whose product x′ is idempotent in Z/nZ. We see that the corresponding 

subsequence T = b1, . . . , b� of S with product x satisfies x ≡ x′ (mod m). Hence, x re-
mains equivalent to either 0 or 1 modulo each prime power dividing m, and, furthermore, 
x is trivially equivalent to either 0 or 1 modulo 2. This means that x is idempotent in 
Z/2mZ, which yields a contradiction. So we conclude that I(Z/2mZ) = I(Z/mZ). �

The following consequence of this result holds particular interest.

Corollary 3.1. For any odd integer m > 1, let cm be the integer such that

I(Z/mZ) = D((Z/mZ)×) + Ω(m) − ω(m) + cm.

Then we also have

I(Z/2mZ) = D((Z/2mZ)×) + Ω(2m) − ω(2m) + cm.
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Proof. Note that

(Z/2mZ)× ∼= (Z/2Z)× × (Z/mZ)× ∼= 1 × (Z/mZ)× ∼= (Z/mZ)×.

Hence,

D((Z/2mZ)×) = D((Z/mZ)×).

It is also clear that Ω(2m) − ω(2m) = Ω(m) − ω(m) since m is odd. Combining these 
two equalities with Theorem 1.6 establishes the result. �

This corollary tells us that whenever an odd integer m > 1 satisfies Conjecture 1.4
(i.e., cm = 0), 2m also satisfies Conjecture 1.4. As such, we can immediately confirm 
Conjecture 1.4 for n twice a prime power.

Corollary 3.2. Let n = 2pk, where p is an odd prime and k is a positive integer. Then

I(Z/nZ) = D((Z/nZ)×) + (k − 1).

Proof. This follows immediately from Theorem 1.3 and Corollary 3.1. �
4. The cases n = pkq� and n = 2pkq�

In this section, we prove Theorem 1.7 and an immediate corollary for the case n =
2pkq�. As usual, we begin with some notation.

Definition 4.1. Given a sequence S = a1, . . . , ak over a multiplicative semigroup and any 
element x of the semigroup, let xS denote the sequence a′1, . . . , a

′
k where each a′i = xai. 

When we speak of the elements of S as a set (respectively, multiset), the set (multiset) 
xS is defined in the same fashion.

We require a lemma on the structure of subset products in abelian groups.

Lemma 4.2 (Stabilizer bound). Let S = a1, . . . , a|S| be a sequence of non-identity elements 
over an abelian group (G, ×), and let P =

∏
≥0(S). If the stabilizer subgroup StabG(P ) =

{x ∈ G : xP = P} contains only the identity, then we have that |P | ≥ |S| + 1.

Proof. Let Pi =
∏

≥0(a1, . . . , ai) for each 1 ≤ i ≤ |S|, so that P1 = {1, a1} and P|S| = P . 
(Note that |P1| = 2 since a1 �= 1.) Clearly, each Pi ⊆ Pi+1. We will show that this 
containment is proper, which in turn implies that |Pi| ≥ i + 1 for all i.

Assume for the sake of contradiction that Pi = Pi+1 for some 1 ≤ i ≤ |S| − 1. Writing 
Pi+1 = Pi ∪ ai+1Pi, we see that ai+1Pi ⊆ Pi. Since |Pi| = |ai+1Pi|, we must have 
ai+1Pi = Pi, i.e., ai+1 ∈ StabG(Pi). We claim that
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StabG(Pj) ⊆ StabG(Pj+1)

for all 1 ≤ j ≤ |S| − 1. To see this, let x ∈ StabG(Pj). Then xPj = Pj and
x(aj+1Pj) = aj+1Pj , which implies that

xPj+1 = x(Pj ∪ aj+1Pj) = (xPj) ∪ (xaj+1Pj) = Pj ∪ aj+1Pj = Pj+1.

Thus, we have ai+1 ∈ StabG(P ), but this contradicts the assumption that StabG(P )
consists of only the identity. �

We will also use the following result of Olson [14,15].

Theorem 4.3 ([14,15, Theorem 1.1]). For an abelian group G = Cn1 × · · · × Cnr
, where 

each ni divides ni+1, define M(G) = 1 +
∑r

i=1(ni − 1). Then D(G) ≥ M(G). Moreover, 
equality holds whenever r ≤ 2 or |G| is a prime power.

We specialize to a case that will be useful in the proof of Theorem 1.7.

Corollary 4.4. For any positive integers a, b ≥ 2, we have

D(Ca × Cb) = (gcd(a, b) − 1) + (lcm(a, b) − 1) + 1.

Proof. The corollary follows from noting that Ca×Cb
∼= Cgcd(a,b)×Clcm(a,b) and gcd(a, b)

divides lcm(a, b). �
Finally, we will need the following simple inequality.

Proposition 4.5. For any positive integers a, b, and c such that b divides c, we have

(gcd(a, c) + lcm(a, c)) − (gcd(a, b) + lcm(a, b)) ≥ c

b
− 1.

Proof. Note that lcm(a, b) divides lcm(a, c). We treat the cases lcm(a, b) = lcm(a, c) and 
lcm(a, b) < lcm(a, c) separately.

If lcm(a, b) = lcm(a, c), then cb = gcd(a,c)
gcd(a,b) since gcd(x, y) lcm(x, y) = xy for all positive 

integers x and y. Since gcd(a, b) ≥ 1, we find

gcd(a, c) − gcd(a, b) ≥ gcd(a, c) − gcd(a, b)
gcd(a, b) = c

b
− 1,

and combining this with lcm(a, b) = lcm(a, c) establishes the desired inequality.
If lcm(a, b) < lcm(a, c), then in fact lcm(a, b) ≤ lcm(a,c)

2 because lcm(a, b) divides 
lcm(a, c). When b ≥ 2, we get

lcm(a, c) − lcm(a, b) ≥ lcm(a, c) ≥ c ≥ c ≥ c − 1,
2 2 b b
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and combining this with gcd(a, c) ≥ gcd(a, b) establishes the result. When b = 1, we get 
gcd(a, b) = 1 and lcm(a, b) = a. Using lcm(a, c) = ac

gcd(a,c) , we also have

0 ≤ gcd(a, c)
(

a

gcd(a, c) − 1
)(

c

gcd(a, c) − 1
)

= lcm(a, c) − a− c + gcd(a, c).

Rearranging gives

(gcd(a, c) + lcm(a, c)) − (1 + a) ≥ c

1 − 1,

and substituting 1 = gcd(a, b) and a = lcm(a, b) completes this last case. �
We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. We already know from Theorem 1.3 that

I(Z/nZ) ≥ D((Z/nZ)×) + (k − 1) + (�− 1),

so it remains to show only that this lower bound is also an upper bound. To this 
end, assume for the sake of contradiction that there exists some sequence S of length 
D((Z/nZ)×) +(k−1) +(� −1) over Z/nZ such that S has no nonempty subsequence the 
product of whose terms is idempotent. Recall that an element of Z/nZ is idempotent 
exactly when it is equivalent to either 0 or 1 modulo pk and modulo q�.

If S contains at least k terms divisible by p and � terms divisible by q, then the product 
of all of the terms of S is idempotent, which yields a contradiction. So, without loss of 
generality, we can restrict our attention to the case where S contains at most � −1 terms 
divisible by q. As such, S contains at least D((Z/nZ)×) + (k− 1) terms not divisible by 
q. We restrict our attention to these terms since the terms divisible by q cannot be used 
in any idempotent product.

If S contains at most k− 1 terms divisible by p, then it contains at least D((Z/nZ)×)
terms that are not divisible by p, i.e., that are units of Z/nZ. But then, by the definition 
of the Davenport constant, S contains a nonempty subsequence whose terms multiply 
to 1, which is certainly idempotent. So we can further restrict our attention to the case 
where S contains k + t terms divisible by p, for some t ≥ 0.

Let N = D((Z/nZ)×). We know that S contains the disjoint subsequences A =
a1, . . . , ak+t and B = b1, . . . , bN−t−1, where all of the ai’s are divisible by p but not by q
and all of the bi’s are units of Z/nZ (i.e., are divisible by neither p nor q). We will now 
focus on the residues of the ai’s and bi’s modulo q�. Our goal is to show that there exist 
x ∈ Q1 =

∏
≥k(A) and y ∈ P1 =

∏
≥0(B) such that xy ≡ 1 (mod q�). Then the product 

xy will be idempotent in Z/nZ because xy ≡ 0 (mod pk) by construction.
Let P2 be the set of residues modulo q� induced by the elements of P1. Note that P2 is 

a subset of G = (Z/q�Z)×, and let H = StabG(P2) be the stabilizer of P2 in (Z/q�Z)×. 
Furthermore, let P3 be the set of residues in G/H induced by the elements of P2. Define 
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the sequence B′ = b′1, . . . , b
′
N−t−1, where each b′i is the image of bi in G/H under the 

quotient map (after passing through an intermediate element in G, if one likes). Note 
that P3 =

∏
≥0(B′).

In a similar fashion, let Q2 be the set of residues modulo q� induced by the elements 
of Q1, and let Q3 be the set of residues in G/H induced by the elements of Q2. Also, 
as above, let A′ = a′1, . . . , a

′
k+t be the image of A in G/H, where Q3 =

∏
≥k(A′). By 

Lemma 2.2, we know that either 1 ∈ Q3 or |Q3| ≥ t + 1.
If 1 ∈ Q3, then there exists some x ∈

∏
≥k(A) such that the image of x in G/H is 

the identity, i.e., x′ ∈ StabG(P2), where x′ is the residue of x modulo q�. We know that 
1 ∈ P1 (from the empty product) and hence 1 ∈ P2. Because x′ stabilizes P2 in G, there 
exists some y ∈ P1 such that its image y′ in G satisfies x′y′ = 1, i.e., xy ≡ 1 (mod q�). 
But then xy is idempotent, as desired. For the remainder of the proof, we consider the 
case |Q3| ≥ t + 1.

Consider x ∈ StabG/H(P3) satisfying xP3 = P3. Lift this equation to G such that x
is lifted to x′. We see that

x′P2 ⊆
⋃

y∈P2

yH =
( ⋃

y∈P2

y

)
H = P2H = P2

implies x′P2 = P2 and x′ ∈ StabG(P2) = H. Thus, x′ must reduce to the identity 
in G/H, so StabG/H(P3) = {1}. Let g be the number of non-identity terms of B′. By 
applying Lemma 4.2 to these terms of B′, we get |P3| ≥ g + 1.

If (t +1) +(g+1) > |G/H|, then the sets {x−1 : x ∈ Q3} and P3 intersect in G/H by 
the Pigeonhole Principle. In other words, there exist x ∈ Q1 and z ∈ P1 such that the 
image of x−1 in G/H equals the image of z in G/H. Letting x′ and z′ be the images of 
x and z in G, we see that (x′)−1 ∈ z′H ⊆ P2, where the last inclusion follows from the 
discussion of the previous paragraph. Hence, there exists some y ∈ P1 with image y′ in 
G such that (x′)−1 = y′ and x′y′ = 1. But this means that xy ≡ 1 (mod q�), in which 
case we are done.

We now treat the case where (t + 1) + (g + 1) ≤ |G/H|. Recall that when the se-
quence B is reduced modulo q�, exactly g terms end up outside H. So the remaining
(D((Z/nZ)×) − t −1) − g terms of B reduce to elements of H. Let C be the subsequence 
of these terms, in Z/nZ. Recall the decomposition

(Z/nZ)× ∼= (Z/pkZ)× × (Z/q�Z)× ∼= Cpk−1(p−1) × Cq�−1(q−1).

Corollary 4.4 tells us that

D((Z/nZ)×) = gcd(pk−1(p− 1), q�−1(q − 1)) + lcm(pk−1(p− 1), q�−1(q − 1)) − 1.

Because they reduce to elements of H modulo q�, the terms of C must actually be 
in a subgroup of (Z/nZ)× that is isomorphic to Cpk−1(p−1) × C|H|. (Note that H is 
cyclic because it is a subgroup of the cyclic group (Z/q�Z)×.) In the next paragraph, 
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we will show that |C| ≥ D(Cpk−1(p−1) ×C|H|). This will imply that there is a nonempty 
subsequence of C whose terms multiply to the identity, which is, of course, idempotent 
in Z/nZ.

Because

|C| = D((Z/nZ)×) − ((t + 1) + (g + 1)) + 1 ≥ D((Z/nZ)×) − q�−1(q − 1)
|H| + 1,

it remains only to show that

D((Z/nZ)×) − q�−1(q − 1)
|H| + 1 ≥ D(Cpk−1(p−1) × C|H|).

Corollary 4.4 tells us that

D(Cpk−1(p−1) × C|H|) = gcd(pk−1(p− 1), |H|) + lcm(pk−1(p− 1), |H|) − 1,

and an application of Proposition 4.5 with a = pk−1(p − 1), b = |H|, and c = q�−1(q− 1)
establishes the desired inequality. This completes the proof. �

This theorem also lets us confirm Conjecture 1.4 for the case n = 2pkq�.

Corollary 4.6. Let n = 2pkq�, where p and q are distinct odd primes and k and � are 
positive integers. Then

I(Z/nZ) = D((Z/nZ)×) + (k − 1) + (�− 1).

Proof. This corollary follows immediately from Corollary 3.1 and Theorem 1.7. �
5. Other rings

We now turn to a more general discussion of Erdős-Burgess constants in rings. We 
focus on the rings in which we can define analogs of Ω(n) and ω(n): unique factoriza-
tion domains (UFDs), which have unique prime factorization of elements, and Dedekind 
domains, which have unique prime factorization of ideals. We remark that even though 
UFDs and Dedekind domains are both extensions of principal ideal domains (PIDs), 
there exist both UFDs that are not Dedekind domains and Dedekind domains that are 
not UFDs. We remark also that UFD and PID are equivalent in a Dedekind domain. 
Many of the arguments presented in the previous sections still apply in these more general 
settings, which unify the cases presented in [12,13].

In order to apply the techniques of [12,13] and the previous sections of this paper, 
we will use the Chinese Remainder Theorem for general rings as stated in the standard 
algebra text of Atiyah and MacDonald [3, Proposition 1.10].
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We first show that the results of [12,13] mostly generalize to UFDs. For any element 
a of a UFD R, let Ω(a) denote the total number of primes in the prime factorization of 
a (with multiplicity), and let ω(a) denote the number of distinct primes (up to multipli-
cation by units) in this prime factorization.

Theorem 5.1. Let R be a UFD, and let a = (a) for some a ∈ R such that R/a is a finite 
ring. Then

I(R/a) ≥ D((R/a)×) + Ω(a) − ω(a).

Moreover, equality holds whenever a is a prime power. If R is a PID, then equality also 
holds whenever a is a product of distinct primes, i.e., a is not divisible by the square of 
any prime.

Proof. We begin with the lower bound. We remark that the Davenport constant 
D((R/a)×) is finite because R/a is finite. Following the example of [12,13], we sim-
ply construct a sequence S of length D((R/a)×) + Ω(a) −ω(a) − 1 that does not contain 
a nonempty subsequence whose terms multiply to an idempotent element of R/a. Write 
a =

∏n
i=1 p

ki
i as a product of powers of distinct primes in R. By the definition of the 

Davenport constant, there exists a sequence T over (R/a)× of length D((R/a)×) −1 that 
does not contain a nonempty subsequence the product of whose terms is idempotent (i.e., 
equals the identity). We obtain the sequence S of length D((R/a)×) +Ω(a) −ω(a) −1 by 
augmenting T by ki − 1 terms with representative pi for each 1 ≤ i ≤ n, and we claim 
that this S works. It is clear that any idempotent element of R/a must be equivalent 
to either 0 or 1 modulo each prime power dividing a, so there cannot be an idempotent 
product that includes any terms of S that are not in T . But we know that we cannot 
make an idempotent product using only the terms of T , so we conclude that S does 
not contain any nonempty subsequence whose terms multiply to an idempotent element. 
This establishes the lower bound.

Next, we show that equality holds whenever a = pk is a prime power. Let

N = D((R/a)×)

and let S = a1, . . . , aN+k−1 be a sequence over R/a of length D((R/a)×) +k−1. We will 
show that S contains a nonempty subsequence the product of whose terms is idempotent. 
If at least k terms of S are divisible by p, then the product of these terms in R/a is 0, 
which is certainly idempotent. If fewer than k terms of S are divisible by p, then at least 
D((R/a)×) terms of S are in (R/a)×.

We must justify the assertion that non-divisibility by p is sufficient for an element 
x ∈ R/a to be a unit. The quotient R/(p) is an integral domain because p is prime. 
Furthermore, R/(p) is finite (because it is a quotient of R/a) and hence a field. Since 
x /∈ (p), its image in R/(p) is nonzero and hence a unit, so (in the lift to R/a) there exist 
y, z ∈ R/a such that xy = 1 + zp. Then
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xy(1 − (zp) + · · · + (−1)k−1(zp)k−1) = (1 + zp)(1 − (zp) + · · · + (−1)k−1(zp)k−1)

= 1 + (−1)k−1zkpk = 1

shows that x is in fact a unit in R/a.
Now, by the definition of the Davenport constant, some nonempty product of these 

units is 1, which is idempotent. Hence, in both cases, S contains a nonempty subsequence 
the product of whose terms is idempotent, which shows that the lower bound is also an 
upper bound.

Finally, we show that equality holds when R is a PID and a = p1 · · · pn is a product 
of distinct primes in R, i.e., a is squarefree. Because any nonzero prime ideal is maximal 
in a PID, we see that {(p1), . . . , (pn)} is a set of pairwise coprime ideals in R, so we can 
use the Chinese Remainder Theorem. By the argument of Lemma 2.3, we can establish 
the upper bound by considering only sequences whose terms are not divisible by any 
of the pi’s, i.e., sequences of units of R/a. As above, we must justify the claim that 
non-divisibility by the pi’s is sufficient for x ∈ R/a to be a unit. Let x′ be any lift of x
to R. We know that x′ has an inverse modulo each ideal (pi), i.e., for each 1 ≤ i ≤ r, 
there exist yi, zi ∈ R such that x′yi = 1 + zipi. By the Chinese Remainder Theorem, 
there exists y ∈ R/a such that xy = 1 in R/a, as desired. Now, similar to above, any 
sequence S over (R/a)× of length D((R/a)×) contains a nonempty subsequence whose 
terms multiply to 1 by the definition of the Davenport constant. This completes the 
proof. �

We now prove the analogous result for Dedekind domains. For any ideal a of a 
Dedekind domain R, let Ω(a) denote the total number of prime ideals in the prime 
ideal factorization of a (with multiplicity), and let ω(a) denote the number of distinct 
prime ideals in this factorization.

Theorem 5.2. Let R be a Dedekind domain and a an ideal of R such that R/a is a finite 
ring. Then

I(R/a) ≥ D((R/a)×) + Ω(a) − ω(a).

Moreover, equality holds if a is either a power of a prime ideal or a product of distinct 
prime ideals.

Proof. Once again, we begin with the lower bound. Write a =
∏n

i=1 p
ki
i as a product of 

powers of distinct prime ideals of R. As in the proof of Theorem 5.1, let T be a sequence 
over R/a of length D((R/a)×) − 1 that does not contain a nonempty subsequence the 
product of whose terms is idempotent. For each 1 ≤ i ≤ n, note that pki

i ⊆ p
ki−1
i but 

these two ideals are not equal because Dedekind domains have unique prime factorization 
of ideals. (We let p0

i = R.) Hence, the inclusion is proper. Since pki−1
i is generated by 

products of the form r1 · · · rki−1 with each rj ∈ pi, there exists some xi ∈ p
ki−1
i \pki

i
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of the form xi = ai,1 · · · ai,ki−1, where each ai,j ∈ pi. We now obtain a sequence S of 
length D((R/a)×) + Ω(a) − ω(a) − 1 by augmenting T by these ai,j ’s (or, rather, their 
images in R/a, which retain the inclusion and exclusion properties mentioned above). We 
require the following two observations for our claim that S does not contain a nonempty 
subsequence the product of whose terms is idempotent.

First, we can choose ai,1, . . . , ai,ki−1 not to be in any other ideal pj. Since nonzero 
prime ideals are maximal in Dedekind domains, pi and pj are coprime in R, i.e., there 
exist x ∈ pi and y ∈ pj such that x + y = 1. Moreover, pki

i and pj are coprime since 
xki ∈ pi

ki and 1 − (1 − y)ki ∈ pj satisfy

(xki) + (1 − (1 − y)ki) = 1.

This lets us apply the Chinese Remainder Theorem to the set of ideals

{p1, . . . , pi−1, p
ki
i , pi+1, . . . , pn},

and we can guarantee that each ai,� = 1 in the quotient R/pj for all i �= j.
Second, suppose x ∈ R/a is an idempotent element that is also in the image of some 

pi. We will show that in fact x is in the image of pki
i . Let x′ be the image of x in the 

(further) quotient R/pki
i . Since x2 = x in R/a, we also have x′(1 − x′) = 0 in R/pki

i . We 
compute

0 = x′(1 − x′)(1 + x′ + · · · + (x′)ki−1) = x′(1 − (x′)ki) = x′,

which implies that x is in the image of pki
i , as desired.

The remainder of the argument proceeds as expected. Assume for the sake of contra-
diction that there is some nonempty subsequence U of S the product of whose terms 
(call it y) is idempotent. Because of the construction of T and the fact that the only 
idempotent unit is 1, it is clear that U includes some term x ∈ pi for some i with ki ≥ 2. 
Hence, y ∈ pi. As shown in the previous paragraph, this implies that y ∈ p

ki
i and, more-

over, the product π of all of the terms of S is also in pki
i . Since ideal containment in 

Dedekind domains corresponds to ideal divisibility, (π) ⊆ p
ki
i implies that there are at 

least ki factors of pi in the prime factorization of (π). However, the only terms of S that 
generate ideals divisible by pi are ai,1, . . . , ai,ki−1, and their product is not in pki

i . This 
yields the required contradiction.

When a = pk is a prime power, the Pigeonhole Principle argument from the proof of 
the corresponding part of Theorem 5.1 applies with no modifications.

Finally, when a = p1 · · · pn is a product of distinct prime ideals, the corresponding 
argument from the proof of Theorem 5.1 works here, too, because all we needed was the 
Chinese Remainder Theorem. �
6. Concluding remarks and open problems

In this paper, we have confirmed Conjecture 1.4 for many positive integers n. In 
particular, the conjecture is now known to hold in the following cases:
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• n is a product of distinct primes ([12, Theorem 1.1]).
• n is a prime power ([12, Theorem 1.1]).
• n is twice a prime power (Corollary 3.2).
• n has exactly two distinct prime divisors (Theorem 1.7).
• n is double the product of two odd prime powers (Corollary 4.6).

We wish to emphasize that the general conjecture for all integers n > 1 is still open 
and seems quite difficult. We consider the following cases particularly approachable for 
future research:

• n has exactly three distinct prime factors.
• n is the product of a squarefree integer and a prime power (as discussed in Section 2).

One might also investigate extension results in the style of Theorem 1.6—for instance, if 
some m not divisible by 3 satisfies Conjecture 1.4, is it always true that 3m also satisfies 
Conjecture 1.4?

Our proofs of upper bounds in the previous sections suggest a structure result about 
the “most difficult” sequences. Write n = pk1

1 · · · pkr
r as a product of powers of distinct 

primes. If we want a product x that is equivalent to either 0 or 1 modulo each prime 
power, then factors of pi are “useful” only when x has at least ki such factors. For this 
reason, it is strictly harder to find an idempotent product when the terms of our se-
quence S over Z/nZ are squarefree with respect to the pi’s, and, in fact, we can consider 
only sequences of such quasi-squarefree terms in our proofs of upper bounds. This prop-
erty could be of use for future computational and experimental work on Erdős-Burgess 
constants.

The inverse Erdős-Burgess problem is also of interest: given some integer n > 1, 
characterize all sequences S over Z/nZ of length I(Z/nZ) − 1 for which no nonempty 
subsequence has an idempotent product. (For some recent work in this direction, see 
[18,19].) In light of Lemma 2.3 and the discussion in the previous paragraph, we present 
the following question.

Question 6.1. Fix any n > 1, and write n = pk1
1 · · · pkr

r as a product of powers of distinct 
primes. Let S be a sequence over Z/nZ of length I(Z/nZ) − 1 that does not have the 
Erdős-Burgess property. Is it true all terms of S are squarefree with respect to each 
pi and relatively prime to each pi for which ki = 1? How else can we characterize the 
structure of S?

For the sake of completeness, we must mention some irregularities in the values of 
the Davenport constant. The proof of Theorem 1.7 depends on explicit evaluations of 
Davenport constants, namely, D(G) = M(G) for the relevant rank-2 groups G. Although 
it is known [10] that D(G) = M(G) for a few classes of abelian groups beyond what we 
mention in Theorem 4.3, it is also known that this formula fails for infinitely many abelian 
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groups of rank at least 4. Hence, an approach that uses explicit values of the Davenport 
constant seems to fail in general but may work when n has three prime factors since the 
problem of determining the Davenport constant for all rank-3 groups remains open. If 
Conjecture 1.4 turns out to be false, it may be possible to construct counterexamples 
using these anomalous Davenport constants.

Finally, it would be interesting to see how the results of Sections 2, 3, and 4 generalize 
to UFDs and Dedekind domains.
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