Automorphic equivalence within gapped phases in the bulk
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Abstract

We develop a new adiabatic theorem for unique gapped ground states which does not
require the gap for local Hamiltonians. We instead require a gap in the bulk and a smooth-
ness of expectation values of sub-exponentially localized observables in the unique gapped
ground state @4(A). This requirement is weaker than the requirement of the gap of the local
Hamiltonians, since a uniform spectral gap for finite dimensional ground states implies a gap
in the bulk for unique gapped ground states, as well as the smoothness.

1 Introduction

Hastings’s [H] [HW] adiabatic method is a powerful tool in the analysis of gapped Hamiltonians
in quantum many-body systems. Seminal mathematical developments from [BMNS], [NSY], [Y]
and onwards have established a strong mathematical framework of adiabatic theory for quantum
many-body systems. The adiabatic theorems from these works state that for a smooth path of
gapped Hamiltonians, there is an automorphic equivalence between ground state spaces along
the path. Furthermore, these automorphisms are quasi-local.

This framework has proven to be broadly applicable to many situations. In [HM], the long
standing problem of explaining the quantization of the Hall conductance was finally solved with
this method. The Kubo formula was derived in [BDE] using the method.

Another use of the adiabatic theorem is the analysis of symmetry protected topological (SPT)
phase, in [O2] and [O3]. In [O2] and |O3], indices for SPT phases which extend the indices by
Pollmann et.al. [PTBOI],[PTBO2| were introduced. The adiabatic theorem was used to show
the stability of these indices. See [Mo] for the extension of [O2] to interactions with unbounded
interaction range with fast decay.

All of the adiabatic theorems developed so far require a uniform spectral gap for local Hamil-
tonians. Therefore, even if what we are interested in is the bulk, the use of known adiabatic
theorems requires conditions on the gap in finite boxes. This is conceptually unsatisfactory be-
cause bulk-classification of gapped Hamiltonians can be coarser than the classification in finite
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volume [OI]. For this reason, many works have been carried on torus. In this paper, we de-
velop a new adiabatic theorem for unique gapped ground states which does not require the gap
for local Hamiltonians. We instead require a gap in the bulk and a smoothness of expectation
values of sub-exponentially localized observables in the unique gapped ground state ¢s(A). This
requirement is weaker than the requirement of the gap of the local Hamiltonians, since a uniform
spectral gap for finite dimensional ground states implies a gap in the bulk for unique gapped
ground states, as well as the smoothness. (See Remark ) Under such conditions, we show
that there is a smooth path of quasi-local automorphisms «y, such that ws = wg o ag. This ay is
the same as the one given in the literatures [BMNS], [NSY].

Although the result is analogous to those of finite systems, there is a crucial difference for
the proof. For the finite system Ay, there is a Hamiltonian Hs(A) in the C*-algebra Ay. By
considering a differential equation satisfied by the spectral projection Ps(A) of the Hamiltonian
H,(A) corresponding to the lowest eigenvalue, we may explicitly define in this case the auto-
morphisms connecting the ground state spaces. In contrast, for infinite systems, we do not have
a Hamiltonian Hg in the C*-algebra of quantum spin systems. Of course we can consider the
bulk Hamiltonian Hg, but H, depends on the GNS representation, and the meaning of %H s 18
ambiguous. Therefore, we have to find an alternative way to prove our adiabatic theorem.

In particular, for finite systems, the parallel transport condition Py(A)Ps(A)Ps(A) = 0 plays
a crucial role. In infinite systems, this condition is replaced by Proposition 2.2

Let us now give a more precise description of our result. We start by summarizing the
standard setup of quantum spin systems [BR1, [BR2]. Let v € N and d € N. Throughout this
article, we fix these numbers. We denote the algebra of d x d matrices by My.

We denote the set of all finite subsets in Z" by &z». For each X € &z, diam(X) denotes the
diameter of X. For X,Y C Z", we denote by d(X,Y’) the distance between them. The number
of elements in a finite set A C Z" is denoted by |A|. For each n € N, we denote [—n,n]” NZ" by
A,,. The complement of A C Z" in Z" is denoted by A°.

For each z € Z¥, let Ay, be an isomorphic copy of Mg, and for any finite subset A C Z", let
Ap = ®.enAy;), which is the local algebra of observables in A. For finite A, the algebra Ay can
be regarded as the set of all bounded operators acting on the Hilbert space ®,cxC?. We use this
identification freely. If Ay C Ag, the algebra A,, is naturally embedded in Ay, by tensoring its
elements with the identity. The algebra A, representing the quantum spin system on Z” is given as
the inductive limit of the algebras Ay with A € &zv. Note that Ap for A € &z can be regarded
naturally as a subalgebra of A. We denote the set of local observables by A, = J A€y An.

A uniformly bounded interaction on A is a map V¥ : &zv — Ajoc such that

U(X)=9¥(X)" € Ax, X €6y, (1.1)
and
sup ||¥(X)] < 0. (1.2)
XEGZU

It is of finite range with interaction length less than or equal to R € N if U(X) = 0 for any
X € Gz whose diameter is larger than R. We denote by V,, for each n € N the interaction given
by

U(X), if X C Ay,

. (1.3)
0, otherwise.

U, (X):= {



For a uniformly bounded and finite range interaction ¥ and A € &z» define the local Hamil-
tonian

(Ho)p =) W(X), (1.4)

XCA

and denote the dynamics
7-&/71\(14) e eit(H\I/)AAe*'it(H\I/)A, t e R, Ac A. (15)
By the uniform boundedness and finite rangeness of ¥, for each A € A, the following limit exists:

lim 74\ (A) =: 7 (4), teR, (1.6)
A—=zv
and defines the dynamics 7¢ on A. Note that 7y, = 7y a,,. We denote by dg the generator of
Ty.

For a uniformly bounded and finite range interaction ¥, a state ¢ on A is called a Ty-ground
state if the inequality —i p(A*dy(A)) > 0 holds for any element A in the domain D(dy) of dy. Let
¢ be a Tg-ground state, with the GNS triple (H,, 7, §2,). Then there exists a unique positive
operator Hy, g on H, such that e®Hevr (A)Q, = m,(1(A))Qy, for all A € A and t € R. We
call this H, gy the bulk Hamiltonian associated with ¢. Note that (2, is an eigenvector of H, y
with eigenvalue 0. See [BR2] for the general theory.

Let Ex : A — Aj, be the conditional expectation with respect to the trace state. Let us
consider the following subset of A. (See [BDN] and [Ma] for analogous definitions.)

Definition 1.1. Let f : (0,00) — (0, 00) be a continuous decreasing function with lim;_, f(t) =

0. For each A € A, let

A—En(A
4l = 4] + sup (1A=Ex )
NeN

f(N)
We denote by Dy the set of all A € A such that [|Af, < oc.

(1.7)

Properties of Dy are collected in Appendix E The set Dy is a *-algebra which is a Banach
space with respect to the norm ||-||; (see Lemma [B.1).

Assumption 1.2. Let ®(- ;s) : 6z — Ape be a family of uniformly bounded, finite range
interactions parameterized by s € [0,1]. We assume the following:

(i) For each X € &zv, the map [0,1] 5 s — ®(X;s) € Ax is continuous and piecewise Cl. We

denote by ®(X ; s) the corresponding derivatives. The interaction obtained by differentiation
is denoted by ®(s), for each s € [0, 1].

(ii) There is a number R € N such that X € Sz and diam(X) > R imply ®(X;s) = 0, for all
s €10, 1].

(iii) Interactions are bounded as follows

sup sup ([ (X;5) | + X & (X 9)
s€[0,1] X€6zv

) < . (1.8)



(iv) Setting

(I)(Zv S) — (I)(Z750) o (P(Z,So)

b(e) := sup sup
Ze6zv s5,50€[0,1],0<|s—so|<e

S— 50
for each € > 0, we have lim._,o b(e) = 0.
(v) For each s € [0, 1], there exists a unique 7¢(s)-ground state ¢s.

(vi) There exists ay > 0 such that o(H, ¢(5)) \{0} C [27,00) for all s € [0, 1], where o(H,, a(s))
is the spectrum of H,_ gs)-

(vii) There exists 0 < 8 < 1 satisfying the following: Set ((¢) := e~ Then for each A € D,
@s(A) is differentiable with respect to s, and there is a constant C; such that:

[Bs (A < Cc || Al (1.10)
for any A € De.

The main theorem of this paper is that under the Assumption there is a strongly contin-
uous path of automorphisms [0, 1] 3 s — «; such that s = pooas, s € [0,1].
In fact, this ag is the same one as in [BMNS] and [NSY], which is given through some
differential equation. Let us recall it.
We use the function w; introduced in [NSY]. Set
ai

L= >0 1.11
¢ nln(n)? " (1.11)

and choose a; so that >.0°; a, = 3. Let wy(t) € L'(R) be the function on R defined by

c, t=0,

wi(t) == Cﬁ(sin(ant)>27 0 (1.12)

ant

n=1

with normalization factor ¢ > 0 such that

/dtwl(t) — 1. (1.13)

As shown in [BMNS] and [NSY], w; is indeed an even nonnegative L!-function and

—
w1 (t) <c W@ ln(t)27 t>e, (114)
x 2 N
o0 - _ln(a:)2 > 9
Wi () ::/ dtw (t) < “ <ln(m)2) ¢ U (1.15)

1, z <é’

for constants ) = 2a1 € (2,1) and ¢; = (27/14)ce’. We set w,(t) := w1 (yt), where v > 0 is from
Assumption and W, (x) := Wi(yz), for x € R;. The function w, is an even nonnegative
L!-function with

/dtwv(t) =1 (1.16)



We also have
W, () = / dtw, (1), = €Ry. (1.17)

Furthermore, the Fourier transform of w, is supported in the interval [—v,v].(See [NSY].)
For each A € Gy, let Up be the solution of the differential equation

d
—Z'%UA(S) = Dp(s)Up(s), Upr(0)=1. (1.18)
Here, Dy (s) is defined by
00 t d
Dy(s) := / dt w.(t) /0 dutg g A (ds (Hq)(s))A) , sel0,1]. (1.19)
We set
asa(A) :=Un(s)"AUr(s), A€ A, se]0,1]. (1.20)

By the results of [BMNS] and [NSY], conditions (i), (ii) and (iii) of Assumption [1.2|imply that
the thermodynamic limit.

as(A) = lim as;a(A4), A€ A, se]0,1], (1.21)
A—=2v

exists and defines a strongly continuous path of automorphisms [0,1] © s — as. We also have
the limit of the inverse

-1 T -1
o' (4) = lim o }(4), A€A selo1] (1.22)

See [INSY]. Our main theorem is as follows.

Theorem 1.3. Under the Assumption (1.3, we have
¢s =pooas, s€][0,1], (1.23)

for as given in .

Remark 1.4. In fact the conditions (v), (vi), (vil) in Assumption can be relaxed as follows.
Suppose that there is a path of pure states [0, 1] 3 s+ @5 such that

(v) for each s € [0,1], ¢, is a Tg(s)-ground state,

(vi) There exists a v > 0 such that o(H,_ s(s))\{0} C [27,00) for all s € [0, 1], where o(H,,, o(s))
is the spectrum of H,_ (). The eigenvalue 0 of H,_ g(s) is non-degenerate.

(vii) The condition (vii) of Assumption holds for the path.
Then we have ((1.23) for a; given in (1.21]).

Our motivation to develop this bulk version of automorphic equivalence was the index theo-
rems for SPT-phases [02] and [O3]. In [O2] and [O3], the path of interactions was required to
have a uniform spectral gap for corresponding local Hamiltonians. It is a bit unpleasant that we
have to ask for the existence of the gap for local Hamiltonians while what we really would like
to investigate is the bulk. From our Theorem combined with Theorem 2.6, and the proof of
Proposition 3.5 of [O2], we obtain the following version of the index theorem for the time reversal
symmetry.



Theorem 1.5. Let ®(- ;s) : Sz — Ape be a path of time-reversal interactions satisfying
Assumption . Then Zo-indez defined in Definition 3.3 of [O2)] is constant along the path.

From our Theorem combined with Theorem 2.9 of [O3], and the proof of Proposition 3.5
of [O2], we obtain the following version of the index theorem for the reflection symmetry.

Theorem 1.6. Let ®(- ;s): Gzv — Ajoc be a path of reflection invariant interactions satisfying
Assumption . Then Zg-index defined in Definition 3.3 of [O3] is constant along the path.

The rest of the paper is devoted to the proof of Theorem

2 Proof of the Theorem 1.3l

Throughout this Section, we will always assume Assumption For s € [0,1] and A € A, we
set

I, (A) = /dt wv(t)T}i)(s)(A). (2.1)
The integral can be understood as a Bochner integral of (A, ||]).

We need the following Lemma for the proof.

Lemma 2.1. Fiz 0 < 3 =35 < 84 < B3 < Bo < B1 < 1 and set f(t) :=t Lexp(—t), fo(t ) =
exp(—141), fo(t) = exp(—1%2), fo(t) = 1204 exp(~1%), g(t) = exp(—t), C(t) = exp(—15).
(Here (3 is the one in (vii) of Assumption|[1.4) Then we have the following.

1. For any s € [0, 1], we have
(18_1(./4100) CDyCDy, CDy CDy, CDyCDg.

2. We have ch( )(Df) C Dy, and there is a non-negative non-decreasing function on Rxq,
be s (t) such that

[ a0 - brtih < o @2)

sup [|rby (D) <brslie) 4l A€ Dy 03
86[0,1] f1

3. We have D¢ C D(0g(5)) N D(045)) for any s € [0,1].

(1)

4. There is a constant C’f2 ¢>0 such that

sup ||0a(s) (A)||., sup sup 0oy (s SC’(D A 2.4

10 a5 s [ (A < O 141, 2.4)

sup |65, (A)|| , sup sup |[65 . (A)] <tV A 2.5

se[oli] H o) ( ‘ ¢ Ne%se[opl] H i) )HC < Orclidly, (25)
sup d(s)=9(s) A H , Sup sup don()-Pn(s0) g A H

$,50€1[0,1],0<|s—so|<e s=s0 ‘ —<I>(50)( ) ¢ NENs,50€[0,1],0<]s—s0|<e = SON N (s )( ) ¢

1
<b(e)C. 1Al (2.6)

for all A € Dy,. (Here the meaning of the inequality is that each term on the left hand
side is bounded by the right hand side. We use this notation throughout this article.) In
particular, dp(s)(Dy,) C D¢, for any s € [0,1]. (Recall b(e) in Assumption (iv).)



5. For any A € Dy, and (s',u/,s",s") € [0,1] x R x [0,1] x [0,1], we have T(;(Z,,) oau(A) €

10.

’

Dy, C D¢ C D(dgp(sy) N D(%(S,)) and g sy © 7',1:(7;,,) o ai(A), G4 1) © 7‘(;(1;,,) oa_i(A) € De.
For any compact intervals [a,b], [c,d] of R and A € Dy, the maps:

[a,b] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] > (u,s,s",u,s",s") — Ta(s) © Oa(s!) 074:(7;/,,) oan(A) € A,
(2.7)

and

[a, 0] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] 5 (u, s, 8", ', 8", ") = 74 © O (s1) OT(;(Z,IN) can(A) e A
(2.8)

are uniformly continuous with respect to |||, and maps

[0,1] x [ed] x [0,1] x [0,1] 3 (', 8", 5") 1= Sy © Ty © g (A) € D¢ (2.9)

[0, 1] % [e,d] x [0,1] x [0,1] 3 (', ', 8", 8™) 1= G © Tt

(o © agn(A) € D (2.10)

)
are uniformly continuous with respect to |||

For any A € D¢, a;'(A) is differentiable with respect to ||-|| and

d%as—l( A) = / dtoo () /0 Cdurt o Sagey (ratt (07(4))) (2.11)

The right hand side can be understood as a Bochner integral of (A, ||| ).

For any A € Dy, the integral

t
/ dtw (t) /0 duts ) © S (Tq;(g)(A)) (2.12)

t
/dt wv(t)/o du T(%Z;‘S o ((5(1)(8)) o Tzﬁ(s)<A) (2.13)
are well-defined as a Bochner integral with respect to (A, |-]|).

For any A € Dy and s € [0,1], we have I;(A) € Dy,.

For each A € A, R x [0,1] > (u,s) — To(s) (A) € A is continuous with respect to the norm
I-l-

For any A € Dy, the integrals

t t
/dtw’Y(t)/O du&b(s) OTg(s) (A)a /0 dU5<I>(s) o7_':Qﬁ(s) (A)a (214)

are well-defined as Bochner integrals with respect to (D¢, ||-|)-



The proof of Lemma is given in Section {4 Throughout Section [2f and Section [3[ (but not
in Section , we fix 0 < 05 < B4 < 03 < B2 < 1 < 1 and set f, fo, f1, f2,9,(, given in Lemma

and apply Lemma [2.1
In Section [3, we prove the following:

Proposition 2.2. For any A € Dy, we have
s (Is(A)) =0, se€][0,1]. (2.15)

Note that by 8. of Lemma I,(A) belongs to Dy, C D¢, and that ¢ (I;(A)) in Proposition
is well-defined by (vii) of Assumption Note that from its definition, I5(A) does not have
“off-diagonal parts,” which holds for finite systems as well by the equation

VA S AA, |:/dt w'Y(t)T‘g(S),A(A)’ PS(A) =0.7

We now prove Theorem using this proposition. In order to prove the Theorem, it suffices
to show

% (gps o ozs_l(X)) =0, (2.16)

for any X € Ajp.. Note that from Assumption (vii), and 1. of Lemma the function
[0,1] 5 s = @5 0 o} (X) is differentiable for any X € Ajoc and sg € [0,1]. Furthermore, from
6. of Lemma [0,1] 2 s = a;}(X) € A is differentiable with respect to the norm for any
X € Aipe C Dy. Therefore, for any X € Ay, [0,1] 25 = ¢, 0 a; 1(X) is differentiable, the left
hand side of makes sense, and we have

d d
3 (proa (X)) = o0 (X) +ro o (X), X € A (2.17)
For the proof of (2.16)), we use the following Lemma.

Lemma 2.3. For any A € Dy,

AT (A) = — / dtw (t) /0 duda(s) o i) (A). (2.18)

The integrand of the right hand side is continuous with respect to ”HC and the integral can be
understood as the Bochner integral of (De, ||[|)-

Proof. The latter part is 5., 10. of lemma To show (2.18)), recall the Duhamel formula

t
A =Ty (4) :/0 du (—0p(s)) 0 To(s)(A), A€ Dy. (2.19)
Here we used the fact that 7g . (Dy) € Dy, € D¢ C D (0g(s)), which follows from 2.,1,.3. of

80
Lemma 2.1
We multiply (2.19) by w,(t) and integrate over ¢ € R. Then recalling (|1.16)), we obtain

A—1I,(A) = /dt wA (H)A — /dt Wy (t)Tg(5)(A)

. (2.20)
= /dt w,y(t)/o du (_5<I>(s)) OTg(S)(A), A€ Df.



In order to show (2.16)), we need to know ¢, on Dy. From Proposition and Lemma for
any A € Dy, we have

(£ (4) = () () = () (1) = = [t (0) [ dus (S0 omiy(@) . (221)

Here we used the Bochner integrability of the right hand side of (2.18)) with respect to [|-||., and

the continuity of ¢, (1.10) with respect to ||-[|.
As s is the Tg(s)-ground state, we have

s © 5@,(5)(3) =0, Be Df17 s € [0, 1]. (2.22)

(Recall that Dy, C Dy C D(dg(s)), from 1., 3. of Lemma ) Differentiating this by s, we
obtain

Ps O 5@(5)(3) + ps 0 5@(5)(3) =0, BeDy, sc [0, 1]. (2.23)
More precisely, note that
(5@(5) ('Dﬁ) C 5@(3) ('DfQ) C DC’ S € [0, 1], (2.24)
by Lemma 1., 4.. Therefore, for B € Dy,, we have dg(5)(B) € D¢, s € [0,1], and for any
s, 0 € [0, 1] with s # so, we have
= (10 0 B0 (B) + 210 B (B))
©s 0 0a(s) (B) — Psg © Op(s9) (B)

= (02 Bt (B) + 0 081 (B))|

s — 80
5@(3) (B) - 6<1>(s )(B) Ps © 5<I>(s )(B) — Pso © 5<I>(s )(B> .
=¥ ( s — 8o ; N 5‘5(50)(3)) + ; s — 8o ) N ((‘050 © 5¢(50)(B))

+ ‘(‘Ps — Pso) (5<i>(so)(B)> ’ ' ( )
2.25

As 5¢(80)(B) € D¢, the second and the third terms of the last line converge to 0 as s — sg. The
first term of the last line can be bounded as

Sa(s5)(B) — 0a(s0) (B)
e ( 5— 5o : B 6‘i>(80)(B)> ‘ = ‘

< b(ls — so) L IBIl,, = 0, s — so,

5@(8) (B) - 5@(50) (B)

S — 850

RIS H (2.26)

and goes to 0 as s — sg. Here, in the last line, we used 4. of Lemma 2.1 and recalled Dy, C Dy,,

from 1. of Lemma[2.1] and (iv) of Assumption [I.2] Hence we obtain (2.23).
From this and 1' for A € Dy, recalling T(g(s)(A) € Dy, by 2. of Lemma we have

(62 (4) = [ dter (1 /O dup 040, (i) (2.27)

For any X € Ajo, recall that a;1(X) € ag ! (Ajoc) C Dy C D¢ by 1. of Lemma From (2.17)),
(2.27) and 6. of Lemma we have

d d
7 (P00 (X)) = ¢y 007 (X) + g0 -0y (X)

t t
/dtwy(t)/o dups o 5@(5) (Tg(s) ° Oés_l(X)> + /dtwv(t)/o dups (TS(S) © 5<i>(8) (T‘;(Z) (as_l(X)))) =0



Here we used the fact that w, is an even function, and that ¢; is 7¢(s)-invariant because it is the
To(s)-ground state.
Hence we have proven the Theorem

3 Proof of Proposition

Throughout this Section, we keep Assumption We also continue to use the same 0 < § =

Bs < Ba < B3 < P2 <P1<1andset f, fo, f1, f2, 9, ¢, as given in Lemma
Let (Hs, s, 25) be the GNS triple of ¢s. Let Hy := H,_ g(s) be the associated bulk Hamilto-

nian. The key property of I; we use is the following.
Lemma 3.1. For any A € A, we have

s (I (A)) Qs = s (A)Qs. (3.1)

Proof. As the Fourier transform @, of w, has support in [—v,7], (v) and (vi) of Assumption

[1.2]and (1.16) implies:

@y (Hs) ) (sl (3-2)

1
=—|0
V2 12
From the definition of Iy, substituting (3.2)), we have
s (I, (A)) Q= / dt o, (1), (7 (4)) 0

(3.3)
_ / dt w, () ™o, () = Voman (Hy)ms(A) = os( )0,

From this, we immediately obtain the following decoupling.
Lemma 3.2. For any A,B € A and s € [0, 1], we have
ps (B"Is(A)) = 0s(B)ps(A). (3-4)

Lemma 3.3. For each s € [0,1] and A € Dy, the integrand of

¢
Vs(A) = /dt wy(t)/ du 7'(;5“ o (5fi>(s)) 0 Tg(5)(4), (3.5)
0
is continuous and the integral can be understood as a Bochner integral in Banach space (A, ||-|).

For any A € Dy, [0,1] 5 s = I,(A) € A is differentiable with respect to ||-|| and

L1(4) = vi(a). (3.6)

10



Proof. Let A € Dy. That the integrand of (3.5|) is continuous and the integral can be understood
as a Bochner integral in Banach space (A, ||-||), follow from 5. and 7., of Lemma respectively.
Next, recall the Duhamel formula

t
To(s)(A) = To(s) (4) = /0 du 55 © (Ba(s) = Oa(sy)) © Ti(se)(A), A€ Dy (3.7)

Here we used the fact that 75 . (Dg) C D¢ C D (0g(s)), which follows from 2., 1., 3., of Lemma
1l By 5. of Lemma 2.1} the mtegrand on the right hand side is continuous and the mtegral can
be understood as a Bochner integral in Banach space (A, [|-]]).

We multiply by w,(t) and integrate over t € R. Then we obtain

1) = Ly (4) = [ dt w0y (4) = [ dt o017 (4)
(3.8)

t
= /dt wa (t )/0 du T, (s”) o (0 (s) — S (s0)) °Tg(s)(A), A€ Dy

By 5. of Lemma [2.1] all the integrands are continuous and the integral can be understood as a
Bochner integral in Banach space (A, ||-||). For any A € Dy,

V)|

(3.9)

Here and after, f[o 1 du always indicates Lebesgue integral (i.e. without sign) over the measurable
set [0,¢]. From 9. of Lemma for each t,u, we have

lim
S$— S0

(Téfsu) - Té(éﬁ))) ° (5ci>(so)> ° Tg(so)(A)H =0, AeDy. (3.10)

By 4. of Lemma for each ¢, u, we have

lim
S—S0

—u 5<I> s) 5<I> s u .
(S) o (U(O) _ ((5@(50))) o T¢(SD)(A)H < limsupb(|s — so\)C’](cz)

S — S0 S—»S0

S(SO) (A)

=0, AEDf.

b
(3.11)

Here we used 73, )(A) € Dy, C Dy, which follows from Lemmaﬁ, 1.,2. Furthermore, from 2.,
4. of Lemma for A e Dy,

[ (i = i)  (Bogem) © e (]| < 208 [ ()],
<20, <1 +sup gg;) | Tg(so)(A)Hﬁ <20 by 1, (Jul) (1 +sup g%) 1Al (3.12)
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Note that from 0 < 83 < B3 < 1, we have supy

(B =0 AN
t—u (s) ®(s0) ) u (1)
o (PO (5y)) 0 ()| < IS ) (14 sup (N))r Al

(3.13)
Combining this (2.2) in 2. of Lemma from Lebesgue’s convergence theorem, we obtain

LA 1)

L1 (N)
f2(N)

< 00. Similarly, from 2., /. of Lemma

lim
S$—S0

0, AeDy. (3.14)
O

Lemma 3.4. For any A,B € Dy and s € [0,1], A, B*, B*I,(A) belong to D¢ and we have

b5 (BL(A)) + / dt (1) / dupy (BT 0 8300y T (4)
= SDS(B*)SDS(A) + SDS(B )SDS(A)

(3.15)
Proof. Forany A,B € Dy C D¢ and s € [0, 1], B* I, (A) belongs to Dy, C D¢ ( the inclusion 1
1

of Lemma [2.1] ) because of 8., of Lemma [2.1] and Lemma Therefore, by (vii) of Assumption
[0,1] 3 s = @5 (B*I, (A)) €Cis differentiable. For any s, sp € [0,1] with s # sg, we have

(e (BL(4)

— s (B*L5o(A)))

— 50 (B™Vso(A)) — 50 (B 5, (A)) (3.16)
= (5 (ML ) ) = e (B () 4 S = ) (BT (4)
+ (903 - (/780) (B*VSO(A)) :

The right hand side goes to 0 as s — sp, because of Lemma [3.3] and the differentiability of
[0,1] 3 s = s (B*Is, :

(A)) € C. On the other hand, the first part of the left hand side of (3.16]) is
1 . « 1 *

— (s (B*Is(A)) — s, (B™15,(A))) = _ (s (BY) ps (4) —
S S0 S S0

so (BY) s (A)), (3.17)
because of Lemma [3.2] and converges to

Pso(B)@so (A) + @50 (B*) s (A), (3.18)
as s — so. Hence we obtain (3.15)).

For each s € [0,1], we introduce the left ideal L, of A by
Ls:={AecA|ps(A"A) =0}.

(3.19)
Lemma 3.5. For any A € Dy and s € [0,1], I,(A) — @s(A)I belongs to Ls N L; N Dy,

12



Proof. Let A € Dy. Let (Hs,ms, ;) be the GNS triple of ¢g. That I,(A) — ps(A)l € Dy, is
Lemma 8.. To show I5(A) — ps(A)L € L5 N L%, recall Lemma From the latter Lemma,

we obtain
s (Is(A) — ps(A)) Qs = w5 (Is(A") — s(A")) 25 = 0, (3.20)
which means I;(A) — ¢s(A)I € LN LY, because I (A)* = I;(A¥). O

Lemma 3.6. For any A € L, N Dy,, there is a positive sequence un,a € Axy, N € N with
lun.all <1 such that

AL = un,a)ll, =0, (3.21)

and
T, uxa) =0, (3.22)

and
dist (un,4, Ls) = xiélgs |z —unall =0, N — oo. (3.23)

Proof. Choose 84 < ' < B2 and set h(t) := ¢® . Then we have

i 1 = im =
]\}gnoo m =0, ]\}—mo h(N)f1(N) = 0. (3.24)

Let A€ L;NDy,. Set
una = (1+ h(N)En(A*A)) " h(N)EnN(A*A). (3.25)

Clearly, |uny,all <1, and 0 < un.a < 1. Then we have

JEn (A" )" B(N)Ex(A™A) = (1+ h(N)(4*4)) " h(N)(4*4)
JENn(A*A) ™ — (14 h(N)(A*A))*H (3.26)
1+ h N)IEI (A*A)) ™ (A(N) (A*A — En(A*A))) (1 + h(N)(A*A))_lH

JIIA™Ally, =0, N — oo,

from (3.24). As (14 h(N)(A*A)) P h(N)(A*A) € Ly, we obtain (3.22), (3.23). We also have

1AL = un, ) I* < (1 —un A)(A*A —En(A"A)) (L —un )l + [[(1 = un,a)(En(A"A)(1 = un,a)
< | A*Ally, f1(N) + [[(1+ R(N)En(A*A)) 'En(ATA)(1 + h(N)Ey(A*A) 7!
= [|[A%A[ly, 1(N) + W H(l + h(N)En (A" A)) " h(N)ENn(A*A)(1 + h(JVf)EN(A*A))*1 I

1

< |A*Ally, A1(N) + hN) X

(3.27)
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For M > N, we have
[AQ —una) — Ep (AL —un,a))ll _ [[(A—Ep (A)) (1 — una)l

M M
s i1 -
<A sup(1 )::5,—>0, N — .
A, m>n \ 9(M) N
For M < N, we have
JAQL — ) = Bag (A (1= uwa))| _ 2040~ una)ll g(N) _ 20401 —uwa)l| _ 2en
9(M) - g(N) g(M) ~ g(N) TNy
(3.29)
from (3.24]) and 0 < B4 < B2 < 1. Hence we obtain,
I|A(1 — UN,A)Hg — 0, (3.30)
proving the Lemma. ([

Now we can prove Proposition [2.2]

Proof of Proposition 2.2 Fix A € Dy, and s € [0,1]. By Lemma I (A) — ps(A)L €
LN LENDy,. Applying Lemma (3.6 to (I;(A) — ps(A)D)* € LN LEN Dy, we obtain a sequence
uy € Apy, N € N such that |luy|| <1

11— )" (Ts(A) = ou(AD, = [(To(A) = oo(AD* (1 —un)ll, 50, (3.31)

dist(uy, Ls) — 0, (3.32)
as N — 0. Applying Lemma [3.4]to uy € Dy and A € Dy, we have

(:D.s (Ujv (Is (A) — Ps (A)]I))

t
__ / dt w (1) /0 dupy (uy it © 8 © T (A)) + () 6s(A). (3.33)

u

By (3.32)), we have im0 s (u}‘vﬂi{s) o 5¢,(s) o T}ﬁ(s)(A)) = 0. On the other hand, from 2., and
4., of Lemma since ||Jun|| < 1, we have, as in (3.12)), the bound

« t-u u 1 AN
e (ki oG 0 7o ()] < Ot () (14500 BT ) <o a30)
From 2. of Lemma [2.1

[ [ dubgul) < oo (3.35)

Therefore, by Lebesgue’s convergence theorem, we have

t
. * _t—u U —

]\}gnoo dt wy(t)/o dups <uNTq>(S 0 8g5(s) © T¢(s)(A)> =0. (3.36)

We also have limy_,o0 ps(uy)@s(A) = 0, from (3.32)). Therefore, the right hand side of (3.33))
goes to 0 as N — oo. The left hand side of (3.33)) goes to ¢, ((Is(A) — ¢s(A)I)) as N — oo,

because of the continuity (1.10) of ¢4 and (3.31)). Clearly, $s(I) = 0. Therefore, we obtain
s (Is(A)) = 0.
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4 Technical Lemmas

In this Section, we prove various lemmas used in this paper. We assume (i), (ii), (iii) of Assump-
tion throughout this section. For ¢ € R, [¢] indicates the largest integer less than or equal to
t.

4.1 Properties of 74,

First we recall several facts from [BMNS] and [NSY]. Define positive functions F(r) and Fj(r)
on Rsq by F(r) := (1+7r)~W+) Fy(r) := (1 +r)~#*De~". For a path of interactions satisfying
Assumption there exist positive constants C1, v satisfying the following Lieb-Robinson bound:
For any X,Y € Sz, A€ Ax, B€ Ay, A € Gz, s €[0,1] and ¢t € R, we have

| @.B][. || [Fowa@.8]| <ciet S Aa@wianizl. @y

reX,yey

We fix the constant v and call it the Lieb-Robinson velocity. From this and Corollary 4.4. of
INSY] (Proposition [A.1]) we obtain the following.

Lemma 4.1. There is a positive constant Cy > 0 such that

[0y () — Ex (b ()

)

709 (4) = B (7o () || < €1 lAag] e1==20) 4
(4.2)
for any M,N € N with M < N, Ac Ap,, and A € Gzv.
We also have the following (see Corollary 3.6 (3.80) of [NSY].)

Lemma 4.2. There is a constant Cy > 0 such that

b [7atn, (B) = 7l (B)] < Caldurlle™= 0B, 02, weR, BEdn,.

(4.3)
It is standard to derive the following from Lemma [4.2] (cf. [BRI]).
Lemma 4.3. For any A € A,
sup.{|7as a, (4) = Tty (4)]| > 0, (4.4)

s€[0,1]

uniformly in compact u € R. In particular, for each A € A, R x [0,1] > (u,s) — T(I:(Z)(A) e Ais
continuous with respect to the norm |-||.

Lemma 4.4. Suppose fi1, fo : (0,00) — (0,00) are continuous decreasing functions with lim;_,~ f;(t) =
0, for i =1,2. Suppose that we have

A}i_r)noo 72N = 0. (4.5)
and
- A(ED
A}gnoo (V) =0. (4.6)
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Then

— 0, AeDy, (4.7)
f2

sup HT(I) () An (A) — qué)(A)
€[0,1]

uniformly in compact u € R. In particular, for each A € Dy, Rx[0,1] 3 (u,s) — 7'(;(1;) (A) € Dy,
is continuous with respect to the norm |||, .

Proof. Let A € Dy,. From Lemma [4.3] we have

a7 H — T (A)H - 0. (4.8)

Applying Lemma for N < [5], we have
Hrqjg;) (A) = 75(5(A) —Ex (Tq:é) A, (A) — T;(Z)(A)) H
< oy, (Eran () =7 (B () = B (o, (Brz () = 7oy (Brz () )]

B HE[%] - (4.9)
< 20y | Ay | ule = =1BD | 4] + 45y ([2]) Al
On the other hand, from Lemma [@]
7ot an (B () - EN( st (B ()| = Callaliapye--12D, (4.10)

y
7oty (Biyy () =B (ragsy (Biay (40) )| < CallAlia gl =L3D.
Therefore, for N > [2], we have
HT;(U) a,(A) =73 (A) — E (Tq;(g),An(A) _ Tq;g;)(A)> H
< [ahan (B () = 7ay (B () — B (s, (B () = 7oy (Biyy () )]
4By (4) - 4|

< 201HAH]A[%]]e”‘“"(N_[%]) +4f1 ([];[D [ All,

(4.11)
Hence we obtain
( n )
A n e_(n_[f]) n
ulv (5] f1 [7]
204|U’€| | ||A|| ‘ f ([ﬂ ) +4f2 (([Z])) HAHf1 )
sup o, To(s)(A)]|, < max -] ,
s€[0,1] 12 204 4] A le S afi ([5]) 1Ay,
1 sup sup
N>[2] f2(IV) N>[2] f2(IV)
\ 2 /
- sup ||rat) o (4) = i) (4.12)
s€0,1]
and sup,e 1] HT(I)( e (A) 75(1;)(14) converges to 0 as n — 0o, uniformly in compact u
Il
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Lemma 4.5. Let f, f1 : (0,00) — (0,00) be continuous decreasing functions with lim_,o f(t) =
0. Suppose that

2J¢|
dtw~ (t) ——— < o0,
Av|t|>1 TN fa(4olt])

sup 7[%] < 00
NeN J1(N) ’ (4.13)
[¥

A 2]
sup % < 00.

NeN f1(N)

Then Tq)( )(Df) C Dy, and there is a non-negative non-decreasing function on Rxq, by, (t)
such that

[t @150t < . (4.14)
sup sup (74, ()] . swp 7y (A <bpn(e)lAl, AeDy (415)
neN sef0,1] i sef0,1] h

Proof. Let A € Dy. We have to estimate

b () —Ex (rhy () |
J1(N) ’
From Lemma [.1]for A € Dy, N,k € N with k < N, we obtain
7 (4) = B (7 () || < [ () — B (i) i) | + 2114 — @A)
< 2||All; £(k) + C1 || A]|[Agev =N =R,

N eN. (4.16)

(4.17)

For N € N with 4v [t| < N, we use this bound with k := N — [%] to estimate (4.16). Then we
have

N oltl—[ X
[ ) = B (o) | < 21141 (500 = [ 5])) + caatiangert-12
4.18
N 5] L1 (4.18)
< 2[Ally (SN =15 ]) ) + CullAllAnle™ Tz
On the other hand, for N € N with 4v |[t| > N, we simply have
7o (4) = Ex (o ()| < 211411 (4.19)
Hence we obtain
o - [3]) Anle= 344
2 sup 7 (N)2 + Cq sup A |
[rbo@, < |t rmaxs YA vew\ o JAl; = by (®) 114l
2
]I4U|t|>1
fi((4v]t]))
(4.20)

17



for A€ Dyandt € R, s € [0,1]. Here 4> is the characteristic function for {t € R | 4v [t| > 1}.
From the assumptions and (1.16)), by ¢ (t) satisfies the required condition. The inequality for

Tén(s) (A) can be proven in the same way. 0

Lemma 4.6. Let f, f1 : (0,00) = (0,00) be continuous decreasing functions with lim;_,o f(t) =
limyo0 f1(t) = 0. Suppose that

N - [3])
New AV S
sup @ < o0 (4.21)
Nen  fi(IV) ’ '
" (5)
New AN T
(Recall (1.17).) For s € [0,1] and A € A, we set
_ / dt wr (£)7h) (A). (4.22)

The integral can be understood as a Bochner integral of (A, |-||). Then for any A € Dy and
s € [0,1], we have Is(A) € Dy,.

Proof. That the integral can be understood as a Bochner integral of (A, ||-||) is from the conti-
nuity of R > ¢ — T(%(S) (A) € A, Lemma |4.3 and w, € L'(R).
From (4.2)), we obtain

178 (Er(A4)) — By () (B(4))) | < Cr [Ax] =) 4, (4.23)

for any A € Dy, s € [0,1], t € R, N,k € N, with k < N.
For any A € Dy, s € [0,1], N € N, we have

[1s(A) — En (Is(A))]

<[[1: By @) —Bx (1 (Bxpgy@)) | +2 HA ~Exiy(4)|
< [ 1) s Ol B (31 0) ~ B (o (B340 |
31 2Ol B 300) B (s B3 (A0) 121141, 708 - )

N
< %] dtw~ (t)Cq yANyevlt\*[%] | Al + /|>[N] dtwr ()2 [|All + 2 | Al f(N - {2})
>4

F )+ agagw, <[N]>+2||A||f - 5]

o w\z

2
(4.24)
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For the first and the fourth inequality, we used 1) We used l , with k = N — [%], for
the third inequality.
Hence we obtain

115(A) — En (L(A))||

sup

NeN fi(N)
. 3] [Z]) e (4.25)
Anle” 2 _ [N
< C4]||Al| sup +4Asup7+2A sup ———242 < oo,
Al Nen  fi(IV) 4 Nen  fi(IV) | HfNeN fi(N)
for any A € Dy and s € [0, 1]. Hence we obtain I,(Ds) C Dy,, for any s € [0, 1]. O

4.2 Estimates on oy

In the following, we prove estimates on quasi-locality of the automorphisms o and a,a. To do
this, we first recall a theorem from [BMNS] on Lieb-Robinson bounds.
Define h(zx) = % for > 1. Define the weight function as:

7 (02 : < < 2
h(z) = @(e) 1f0_a?_e
h(z)  otherwise
The Lieb-Robinson bound for the automorphisms s is given as follows: there exists a constant
Cy >0, m > 0, a > 0 satisfying the following: setting h(x) := nih(az), we have
Ies (B), AJll, ll[evs,a,, (B), Al] < *HAHHBHIX! ~hXY)) (4.26)

for any A € Ax, B € Ay with X,Y € &z, and s € [0,1]. See Theorem 4.5 of [BMNS| and
Corollary 6.14 of [NSY]. (Note that in [BMNS], Assumption 4.3 about a spectral gap is assumed
but for the proof of (4.26)), this assumption is not used.) From Corollary 3.6 (3.80) of [NSY],
there is a constant C's > 0 such that

sup |lazh (4) - as—l(A)H < Oy |Ay|e MM A, n>M, MeN, and Ac Ay,
o (4.27)
From , we obtain the following.
Lemma 4.7. For any M, N € N with M < N, we have
o5 (4) — En (a3 ()| < Co [Au| Al N2, A€ Ay, (4.28)

Proof. If A € Ay, and B € Ayg, then B = lim, o By in norm for a sequence of local
observables B, € Axg N Ajoc and:

_ . Co _h(N—
1B, e (Al = llas(B), Al < lim sup <2HAHHB = Bull + S IAlAm |l Balle o M))
(4.29)
*\AMHlAllllBHe_h (N=M),
And so by Corollary 4.4. of [NSY] (Proposition [A.1)) we conclude (4.28). O

19



From this Lemma we immediately obtain the following:

Lemma 4.8. Suppose f : (0,00) — (0,00) is a continuous decreasing function with limy_,o f(t) =
0. Suppose that for all M € N, we have

—h(n)
sup < (4.30)
n f(M+mn)
then a; ' (Ap:) C Dy.

Proof. Let M € Nand A € A,,,. From (4.28), we have

a1 (A) — EM+R<a-1<A>>||> e h(R)
su 5 g < su Cy |A —_— Al < . 4.31
RJ&( f(M+R) sup \ G2l sy ) 14 (4:31)
Hence we obtain a;!(A4) € Dy. O

Lemma 4.9. Let f1, fo: (0,00) — (0,00) be continuous decreasing functions with lim;_,~ fi(t) =
0, 1 =1,2. Suppose that

AV -[5])
;1;%( AN) ) <o
DAy (432
Nen ( fa(N) ) =

Then we have a;*(Dy,) C Dy,, a \(Dy,) C Dy, for any s € [0,1] , and A € Gzv. Furthermore
we have the following inequalities:

21 (N~ [3]) + o D ay gy
-1 )
o k@), <laly, (”?V‘;% ( fa(N) |

(4.33)

o fJo ()], sup |
for any A € Dy,.
Proof. This follows from the following inequality: for each N € N and A € Dy,

[l (4) = En (o5 (4))
0 (4= Ey () 4) ~Ev (o (4-Ey_3y())|
o (Ev ) ~En (03" (Ev-y@))] .
<lal, (26 (8= 5] ) + o MED |a, gy

<

|
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Lemma 4.10. Suppose f : (0,00) — (0, 00) is a continuous decreasing function with lim;_,~ f(t) =
0. Suppose that for all M € N, we have

o—h(N—M)
lim su — | =0. 4.35
n—00 NZEL f(N) ( )
Then we have
sup [agh (4) - agl(A)H =0, A€ A (4.36)
s€[0,1] f

In particular, for each A € Ape, R 3 s — ag '(A) € Dy is continuous with respect to the norm
-1l -
Proof. Let A € Ay,,. From (4.27), for n > N > M, we have

Joch ) ot ~Bx (ih )~ @) e
sup < _— . .
scf0.1] f(N) N ()
On the other hand, for M <n < N, from
ok, @) — 001 () — Ex (0, ) =0t )| jazt(a) - By (o (4)
sup ’ ’ = sup +—— 2
s€[0,1] f(N) se[0,1] f(N)
e—h(N-M) e—h(N—-M)
< Oy Ay Al —==— < Oy Ay [|A]| sup | ————] .
< Co Al 141 gy < o arl 141 3w |~y
(4.38)
Furthermore, for n > M > N, we have
sk, () = ast(4) —Ex (a5}, (4) — o (@) |
e (V)
s, A (4.39)
<205 1A 4
< 2C3 | M|W” I
Hence we obtain
. agy, (A) - EI(A)Hf
se|0,
14] 1 204 |A \efh(nfM) Cy [And] MV e A |67ﬁ(n7M) 0
< -+ ma _— sup | ——— |, _— — 0, n— oco.
A P Rl ey Gl T sl =5
(4.40)
|
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Lemma 4.11. Let f, fo, f1 : (0,00) — (0,00) be continuous decreasing functions with limy_,o f(t) =
limy 00 fo(t) = limy—o0 f1(t) = 0. Suppose that for all M € N, we have

o—h(N—M)
lim sup | ———— | =0. 4.41
n—00 NEIZL f(N) ( )
Suppose that
N — [X
qup AV 15D _
NeN f(N) (4.42)
Sup ———— < 00.
New FON) IPN-[3]
Suppose that
fo(N)
im = 4.43
N—oo f1 (N) ( )
Then we have oy (Dy,) C Dy and
sup a;/l\n (A) — as_l(A)H — 0, AecDy,. (4.44)
s€[0,1] f

In particular, for each A € Dy, [0,1] 3 s — o (A) € Dy is continuous with respect to the norm
-1l -
Proof. As

sup fo(IN)
Nen fi(V)

we have Dy, C Dy,. By Lemma with (f1, f2) replaced by (fi, f), we get ag!(Dy,) C Dy.
Hence we have a; ! (Dy,) C Dy. For any A € Dy,

< 00, (4.45)

limsup sup
n—oo  s€(0,1]

ok, () ol ()

= limsup sup
n—oo  se(0,1]

ash, (A—Eu(4) — a7 (A—Ey(A) + o}, Eu(4) - a7 Eu(4))|

S

f

< limsup sup
n—oo  se(0,1]

ok, (Exr(4) — o (Bu ()],

(27 (N = [5]) + Coe ™5V Ay

)

21y (N = [X]) + Coe 5D A, _(w
— 2] A-Ex (), ?V‘é%< — el ) Lo o

(4.46)

For the inequality, we used Lemma 4.9, For the last line we used Lemma As we have

limp/—e0 [[A — Enr(A)[lf, = 0 by Lemma with (f, f1) replaced by (fo, f1), we have proven the
claim. 0
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4.3 Properties of do(s), 04

Lemma 4.12. Let fy: (0,00) — (0,00) be a continuous decreasing function such that
oo
> K fa(k—1) < oo (4.47)
k=2

Let f3:(0,00) — (0,00) be continuous decreasing function with lim;_o f3(t) = 0 such that

Zzo:]v_R k?yfz(k - 1)

lim =0. 4.48
N—oo fg(N) ( )
Then Dy, C D(dg(s)) N D(04s)), and there is a constant C](c;)fg > 0 such that
sup |[dg(s) (A , sup sup |(|0g,(s) (A <coW A 4.49
el o) (Al NeNselo ooy (Dl < s 141 o

o H%(s) (A)

: 5. A <cW 14 4.50
o s o oo G <O Il )

for all A € Dy,, and € > 0. If we assume Assumptz'on (iv) in addition, then we may also take
C’}i?f?) > 0 so that

sup Sa-a6e g (A)|| , sup sup Sen(-2n0) (A)H
$,80€[0,1],0<|s—so|<e s=s0 0= —2(s0) fz  N€ENs,50€[0,1],0<|s—s0|<e B S—SON &~y (s0) f
1
< b)) 1Al - (4.51)

Proof. We prove (4.49). The proof of (4.50) and (4.51)) are same. Note that there exists a
constant C5 > 0 such that

H(H‘I)(S))ANJrRH < Cs |AN+R| , SE&E [0, 1], N e N. (4.52)
Therefore ,we have
deb(s)(AN)H = H [(Hé(s))ANHa’AN] H <2Cs |AN+R| HANH , An € AAN’ s € [07 1]' (4'53)

From this, for any A € Dy, and N, M € N with M > N, we have

M M
[60¢s) En(A) =Ear(A)] = || D o) (Br(A) —Ex1(A)|| <2C5 > [Aprrl [Ex(A) — Epa(A)]
k=N+1 k=N-+1
M
<4Cs || Ally, Y [Akgrl folk = 1). (4.54)
k=N+1

Hence {dg(s) (En(A))}n with A € Dy, is a Cauchy sequence in A, hence there exists a limit
im0 dg(s) (En(A)). On the other hand, Ex(A) converges to A in [|-[|. By the closedness of
da(s)s A € Dy, belongs to the domain D(dg(s)) of dg(s), and

5@(5) (A) = lim 5<I>(s) (EN(A)) . (455)

N—o0
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Hence we get Dy, C D(dg(s)). From (4.54)), we have

|60(s) (A)|| = i [|60(s) (En(A))|| = i |60(s) (En(A) —E1(A) + E1(A))]

<4C5||Alls, > [Akerl fa(k — 1) +2C5 | Ay k| || Al 156
k=2 (4.56)

< (405 Z |Aktr| f2(k —1) 4+ 2C5 A1+R’> Al 4,
k=2

for any A € Dy,.
Next note that
160(5)(A) — En (805 (A)) || = - 00 (s) (Bar(A)) —En (da(s) (Ear(A)))|]
= Jim _{|0g) (Bar(A) = En—r(A) + En-r(4)) = Ex (da(s) (Ear(4) — En-r(A) + Ex_r(4)))|
= Jlim |00(s) (Bar(A) — Ex—r(A)) — Ex (3a(s) (Ear(A) — Ex—r(A)))||

o0

<8G5 Al S0 ksl falk — 1),
k=N—-R+1
(4.57)

for any A € Dy,. Here, in the third line we used the fact that dg () (En-r(A4)) € Apy. In the
fourth line, we used (4.54)). Therefore, we obtain

Y e N—pe1 1Mkt r] f2(k = 1)
f3(IV)

s (1], = (550
k=2

(4.58)

The right hand side is finite from the assumptions. Hence we have shown (4.49)). (I

Lemma 4.13. Let f, f3: (0,00) — (0,00) be continuous decreasing functions with limy_,o f(t) =
limy_00 f3(t) = 0 such that

Zk”\/f(k —1) < oo, (4.59)
2N r KV (k1)
lim (4.60)
N—oo (f3(N ))
Then we have Dy C D (%(S)), d¢(5) (Df) C Dyyand
ngloosi%p” H( S)) (4), =0, 4aeDy (4.61)

In particular, for each A € Dy, [0,1] 5 s — Ogs(s) (A) € Dy, is continuous with respect to the norm
[ ¢, The same statement, with O () Teplaced by dg(s) also holds.
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Proof. We prove the claim for d4,y. The proof for dp(s) is the same. Set fa(t) .=/ f(t) and

fa(t) := (f3(t))%.As we have supy ]{;((N)) < 00, SUpy §4E g < oo we have Dy C Dy, and Dy, C Dy,.
From Lemmawith (f2, f3) replaced by (f2 = /f, fa = f2), we have Dy C Dy, C D(éé(s))’

and 5¢(5)(Df) C ‘5<i>(s)(Df2) C Dy, C Dy,. From Lemma with (fe, f3) replaced by (fa, f1)
for N > R, we have

H( )N~ O > (A)H = H(%(S ~ s )) (A —En—r(4)) H + H (5<i>(s),N - 5@(5)) ENfR(A)H
= H( b(s)N T 5%)) (A—En-r(A H < 20 HA En-r(A)lly,
W |A—En_r(A)]
=20}, + sup |A—En_r(A) —En (A—En_gr(A4))]
MeN f2(M)
|A—En—r(A)]
1 p IA=Eu (]
< 20}23‘4 N—-R<MeN f2(M) ’
+ max
sup |A—En_gr(A)]
| N—r>men  f2lN — R)
f(N = R) Al
f(M)
su Al 5,
< 20}2}4 + max N—RSIJ)V!eNH ||ff (M)
sup [y, L)
| N—R>MeN fa (N R)
=20, (f(N—RHNﬁL;%gL( )) 4], =2¢5, (f(N—R)+ f(N—R)) 1Al -
(4.62)

Here 0}2}4 is a constant independent of N, s. Therefore, we have

Jim, sup | (39 = i) (W] =0, A €Dy (4.63)

Furthermore, for A € Dy, we have

H (5<i>(s),N - 5¢(s>> (A) —Em (<5<i>(s),N - 5¢><s)) (A>> H
f3(M)

QEM; <H6‘i>(5),N(A)Hf4 + Hé@g(A) f4> <208, ﬁ ; 1A]l,, < 2f5(N — R)CS), 1Al
for M > N — R,
= (1) B - " ) _
4Cf2f4 (f(N Ry + VIV R)> A 4Cf2f4 (f(N R) +/f(N R)) 4]
f3<M> H Hf - f3(N—R) fo
for M < N — R.
(4.64)
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For M > N — R, we used Lemma with (f2, f3) replaced by (fe, f1). For M < N — R, we
used (4.62). As

10l (f(N —R)+ /(N — R))

. 1) 1 _
Jim 2f(N = R)CY) A, = lim JAl, =0, (4.65)

fs(N — R)
we get
| ot = 00) (4= B (310,00 = 0) ()
. (s),N D(s) P(s),N D(s)
lim sup =0, AecDy. 4.66
N—oco preN f3(M) f ( )
From this and (4.62)), we have shown the claim of the Lemma. O

4.4 Proof of Lemma [2.7]

Below, we use the following facts repeatedly: for any 0 < 3 < 5/ <1,0<¢,d,0<a,d, s € R,
leN,r=0,1, and k € Z, we have

o pkemh(t=s) ke ([5]) gke—h(t-[5])
fm — = im — o = fim ——— =0, (4.67)
e’
lim < =0, (4.68)
t—00 _(L)
e \2
i the—t? i the—e([5]) ; the—(t=[4])° . L6
ti>rgo e*(t)ﬁ _tigolo e*tﬁ o tiglo e*t/B o ( ’ )
e.)
3" mFeme = < o0, (4.70)
m=1
_ _8 [e'e) _e(N—]—p\8
. Z;.E:N—l mke=clm=r) k ,g(m,r)ﬁ’ . e 5 (N—l=r)
]\}E)noo e_C/NB S Z mee s Z\}E)noo G_C,NB =0 (471)

We also note that for 0 < 8 < 1,0<¢,d,and | € N, ]t]le_i‘(“)/e_(clt)ﬁ is integrable with respect
to t > 0. From this and (|1.14)), for any 0 < 5 < 1, 0 < ¢, and [ € N, we have

/ dteo, (1) |t} < o (4.72)

—0oQ
We also have for any 0 < <1 and ¢ > 0

Wo(e[5])

sup —5 < 00, (4.73)

t>1 e

from (|1.15).

Lemma 4.14. Fiz 0 < 5 < 1 < 1 and set f(t) := CXp(t;tﬁl), and ((t) := exp(—t™). Then for

any A € Dy, and (s',u/,s",s") € [0,1] x R x [0, 1] x [0,1], we have 7'@(1;/,,) oan(A) € Dy, C D C
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D(dg(sy) N D(5<1>(s/)) and dg (s © qu(qé/,,) o au(A), O (51 © Tq:(qél,,) o an(A) € D¢. For any A € Dy
and any compact intervals [a,b], [c,d] of R, the maps

[a,b] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] > (u,s,s",u,s",s") — Ta(s) © Od(s') © T(I:(Z/,,) oa_i(A) €A
(4.74)

and

[a,b] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] > (u,s,s",u,s",s") — To(s) © Oap(sr) © T(I:(Z/,,) oa(A) €A

(4.75)
are uniformly continuous with respect to |||, and the maps
[0,1] x [e,d] x [0,1] x [0,1] 5 (s/, 4/, 5", 5") = Gp(s1) © Tq;(gi,) cat(A) € D¢ (4.76)
and
[0,1] x [e,d] x [0,1] x [0,1] 3 (s',0/, 8", 8") = 8 © Tq;g;’,,) oa n(A) € D¢ (4.77)

are uniformly continuous with respect to HHC For any A € Dy, the integral

t
/ dtuw- (1) /0 dutd(s) © i) (Tq;(g)(A)), (4.78)

and

t
/dt wv(t)/o du T(;:) o <(5¢(S)> o Tg(s)(A), (4.79)

are well-defined as Bochner integrals of (A, ||||). Furthermore, for any A € Dy, a;'(A) and
as(A) are differentiable with respect to ||-|| and

L) = [antt) [ durgy 0840, (ray (03 (4). (4.80)

The right hand side can be understood as a Bochner integral of (A, ||||) and there is a constant
Cy,t > 0 such that

Remark 4.15. As mentioned in the introduction, a; is the same automorphism given in [BMNS]
and [NSY]. In particular, if a C'-path of interactions satisfy Condition B in [02] except for
the time reversal condition (iii) 6, for each s € [0, 1], the unique ground state ¢ is given by
Ys = o o ag, with the ag. Lemma implies for any A € Dy, ¢s(A) = o 0 as(A) is
differentiable and the derivative is bounded by Cy ¢ [|Al| ;, corresponding to Assumption |1.2] (vii).
It is well known that the local gap implies the existence of the gap in the bulk in the sense of
Assumption 1.2 (vi), [O1].

d d
et | Lau] < cornar,. aeoy (4.81)
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Proof. We prove the continuity for and (4.77). The proof for and @ are the
same. We also prove only . The proof for is the same. We prove (]@ only for
az!. The proof for ay is analogous.

Choose real numbers (4, 83, 82 so that 0 < 85 < B4 < 3 < P2 < 1 < 1 and fix. Define
fo(t) := exp(=t7), fi(t) := exp(—t72), fo(t) := t 2+ exp(—t73), g(t) := exp(—t7*).

Note that f1, f, fo : (0,00) — (0, 00) are continuous decreasing functions with lim;_, f1(t) =
limy o0 f(t) = limyy00 fo(t) = 0. From (4.67)), we have

Nooo \ - f1(IN)
)
TN

Furthermore, from (4.69) and 0 < 82 < 1 < 1, we have

e—(N—M)
lim ({ ————| =0, forall M €N, (4.82)

< 0. (4.83)

fo(N = [F])
J%/Ié% RN < o0. (4.84)
We also have
lim (M) = lim L 0. (4.85)

Therefore, from Lemma with (f, fo, f1) replaced by (fi1, f, fo), we have a; (D) C Dy, and

a ) (A) —a; ' (A)

S,An

sup
s€[0,1]

— 0, Ae€Dy. (4.86)
f1
Therefore, for each A € Dy, [0,1] 3 s — a;'(A) € Dy, is continuous with respect to the norm

11, -
Note that f, fi : (0,00) — (0,00) are continuous decreasing functions with lim;, fi(t) =

limy o0 f(t) = 0. From (4.69)), and 0 < 82 < 81 < 1, we have

fv-[5))
;gg( AV ) < 0. (4.87)

From this and (4.83)), Lemma with (f1, f2) replaced by (f, f1) implies the existence of a
constant Cg ¢, > 0 such that

P lost (A}, < CsppilAll;, A€Dy (4.88)
s€l0,

The functions fi, f2 : (0,00) — (0, 00) are continuous decreasing functions with lim;_, fi(t) =

0,7=1,2. From (4.69), we have

(1Al R
A}gnoo (V) =0. (4.89)
From and 0 < B3 < B2 < 1, we have
- A(ED
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Therefore, from Lemma [4.4] we have
sup HT(;(@),A“(A) —rpl @] o, AeDy, (4.91)
s€[0,1] f2

7(1;)(/1) € Dy, is

uniformly in compact v € R. Therefore, for each A € Dy, R x [0,1] > (u,s) — 7

continuous with respect to the norm |[[-[| ;,.
Note that fo,¢ : (0,00) — (0,00) are continuous decreasing functions with lim;_,~ f(t) =
limy_ o0 ((t) = 0. From (4.70)) and (4.71)), and 0 < fB5 < fB3 < 1, we have
> k' fa(k) < o0, (4.92)
k=1
ol k¥ k
S b VEE o)

BT

N—o0

Therefore applying Lemma with (f, f3) replaced by (f2,(), we have O (s (Dy,) C D¢ and
i sup | (%) = P (A)Hc —0, AeDy, (4.94)

Therefore, for each A € Dy,, [0,1] 3 s = 04, (A) € D¢ is continuous with respect to the norm

Note that fa : (0,00) — (0,00) is a continuous decreasing function with lim; . fa(t) = 0

Il
(4.95)

From (4.72)), we have
U
dt w~(t) —————— < 0.
Awm O Ty

We also have
AN =[5])
ETRm < .
(5]
Anfe” = _ (4.97)

Nev ()

from (4.69) with 0 < 3 < 2 < 1 and (4.67). Therefore, from Lemma with (f, f1) replaced

by (f1, f2) we have T(%(s) (Dy,) C Dy, and there is a non-negative non-decreasing function on R,

b1,f,,1,(t) such that
(4.98)

[t 1 bl < o

(4.99)

and

¢ t
sup by ()] ssup sup ||rh o ()| < bugn(th 1Al A€ Dy
s€[0,1] ®(s) f2 NeNseo,1] en(s) f2 J1J2 f1 i
Note that fo,( : (0,00) — (0, 00) are continuous decreasing functions such that lim;_,o fo(t)

limy_00 ((t) = 0. By (4.70) and (4.71) with 0 < 85 < 83 < 1, we have
> K falk— 1) < oo, (4.100)
k=2

lim;up ZgiNg(ijliyﬁ(k) —o.

(4.101)
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Therefore, from Lemma with (f2, f3) replaced by (f2, (), we have Dy, C D(éq)(s))ﬂD((S(b(s))ﬂ
D(das)-a(sg) (s )), and there exists a constant Cé,l}z,c > 0 such that

s—so

sup O0p(s) (A)||., sup sup ||0e.(s SC’(I) A 4.102

s i (s s a0, <G claly, (aao
(1)

sup H5 , sup sup H5 s A’ <C A 4.103

o di - e s iy ] < Al (4.103)

for all A € Dy, and € > 0.
We claim that for any compact intervals [a, b], [c,d] of R and A € Dy,

[a, 8] x [0,1] x [0,1] x [e,d] x [0,1] x [0,1] 3 (u, 5, 8,0/, 5", ") = T ) © gy © Ty © O (A) € A
(4.104)

is continuous with respect to ||-||. We also claim that
[0,1] x [e,d] x [0,1] x [0,1] 3 (5,0, 8", ") = G50y © T (e © g (A) € D (4.105)

is continuous with respect to ||-||..

To see this, let A € Dy and fix any € > 0. Note that from the continuity of [0,1] > s —
a_in(A) € Dy, in [I[l 7, , there exists a finite sequence sp =0 < s < -+ < sy, = 1 such that

)

Ha;,l,(A) —a Y (A, <e forall s €[si_1,8i41),andi=1,...,N. — 1. (4.106)

Hfl

For o '(A) € Dy, i =0,..., Ne, from the continuity of (u/, s”) — Tq:é/,,) oy (A) € Dy, in |||,
Weget§0:O<§1<---<,§stlandu0:c<u1<~-<uM€:dsuchthat

—u' — —1

H (TQ(Z”) - T@(éj-)) °ag (4) f <& (4.107)

for all s” € [§j_1,§j+1],and j=1,.. .,NE —1

for all v’ € [up_1,ups1],and k=1,... . M. — 1
andi=1,...,N. — 1. (4.108)
From the continuity of [0,1] 2 & — O (s % OT(I)( 5o (A) € D for Tq)( )oa 1(4) € Dy, in Il

there exists a finite sequence §o = 0 < §; < --- < §5 = 1 such that
[ oy = Baan) oty Hg

for all " € [3;_1, 8111),and [ = 1,. LN — (4.109)

andyzl,...N l,and k=1,..., M, — 1,
andi=1,...,N. — 1.

Finally, from the continuity of R x [0,1] 3 (u,s) — o (s) (5<I>(sl) o ch( ') o ag 1(A)) € A in the
norm |-||, ( Lemma ) we have finite sequences §p =0 < §; < --- <3y =1land 4 =a <
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ﬁ1<---<ﬁME:bsuchthat

| (i) = 7)) © Baan 0 oy 0 a5 (W) < =
for all s € [3,_1,5y+1],and y =1, .. LN —

)

1
and u € [tip_1,lpq1],and 2 =1,... M, — 1, (4.110)
andl =1,.. LN, — 1,
andjzl,...N—landk—l, LM —1

andi=1,...,N. —1

i

Now for any (u, s,s’,u’,s",s") € [a,b] x [0,1] x [0,1] X [¢,d] x [0,1] x [0, 1], there is (x,y,l, k, j, )
such that

U € [lUg—1,Uz+1), 8 € [8y—1,8y41], 8" € [81-1, i), ' € [up—1, ups1], 8" € [§5-1, 8j41), 8" € [si—1, 8i41)-
(4.111)

For any such (z,y,l,k, j, i), we have
| =7,y 0 Baga) © oty © 05 A+ 7 © By © Ty A
< H(T¥<s>_T§?§y>> © i) © Ta(an) © Vs, A>H+HT<I">(s>O <—5<i>(§z>+5<i>(s'>) © Ta (s © % I(A)H
+ HT% o 5~( " ( (p( ) + T(I,( ,,)> o oz__ A)H + HTg(s) o 5¢)(s,) o qu(zl//) o (—a;_l(A) + a;,l,(A))H
< 2 + C’é ) e+ o) 51[1p]b1 A fo(Jul)e.
€

J2.08 7,f2,¢
(4.112)
We also have
H_6‘1>(31) o T(I:(?;) o a;l(A) + 04 d(s') © T(I)( oo ,,1,(14)HC
< (o + 9o 0708y <A)H<
(4.113)
+[Bawy © (=7afsh + 7aiin) it + [8a o 7aitny  (azt () + i)

ot
<e+C) e+t . ¢ Sup, b1, 11,1 ([ul)e-
c,

As b1 1,1, is an R-valued nondecreasing function, sup,cicq b1,f,,5,(|ul) is finite. Hence we have

proven the continuity of (4.75)) and (4.77)).

Furthermore, for any A € Dy, we have

o | dtw/mH% o5uco (1t o)

= 2o /dt onlt 0. d“C%Z b (u)Cs pp 1Al (4.114)
= Cé}mcc&f,fl ”AHf/dtwy(t)bl’fl’h(‘t‘)]ﬂ < 00.

31



In the last line we used the fact that by y, r, is nondecreasing and (4.98). Therefore, the right

hand side of (4.80) is a well-defined Bochner integral of (A, ||-||) for any A € D;. By the same
argument, (4.78) is a well-defined Bochner integral of (A, ||-||) for any A € Dy. By the definition
of ag p,,, we have

d%a;in(fl) =i [DAn(S)aa;in(A)] = i/dtwv(t) /Ot du [75(5),&1 (ch(s),An) ,a;}\n(A)}

t
_ / dtu (t) /0 Ty, © 0ie) (Tatyn, (054, (D)), A€Dy.

Hence we obtain

s t
g, (A) =gy, (4) = / dv / dtw, () /0 duT (), n, © O, (v) (Tq?@),An <0‘17,1An (A))) , AEeDy.
50

(4.116)

(4.115)

For each (u,v), for any A € Dy, we have

—u

HT:ﬁ(v),An © 06, (1) © T (w),An © a, i, (A) - o () © O (0) © To () © a, ' (4) H

< b, © 0 o Tatn, (00h, () =@ )| + [ 0, 2 00,00 © (it~ Talhy) 0 (4]
+ H%@%An ° (5%@) - 5@@)) (Tifvi) °ay 1<A)> H + H (Tfrf(v),An - Tii(u)) o (%(v) © o) © O 1(A)) H

< O, cbuspa(lul) [ogh, () = a7 @)+ O, || (it a, —matly) 5" )]

+ H ((5@1(1}) — 5<i>(v)) (Tq:(qf)) o a;l(A)> H + H (Tg(u),An — Tg(v)> o <5¢(U) o Tq:g;) o a;l(A)) H )
(4.117)

From (4.86)), (4.91), (4.94) and Lemma the last part converges to 0 as n — oo. Furthermore,
we have

u —u — u —u — 1
78116111\)1 HT@’(v),An ° 5<I>n(v) © T'ID(U),An © av,}\n (A) — T (v) © 5<I>(v) °© 7—<I>('u) © Qy 1(A>H < 2C§,}2,Cb17f17f2(’u‘)c&f,fl HAHf )
(4.118)
with
1
1
[ s farwo 020 b () 14l < o0 (4119)

Therefore, applying Lebesgue’s convergence theorem for (4.116)), we obtain

s t
o H(A) - agol(A) = / dv/dtwy(t)/ dutg ) © O o) (Tq:&) (agl(A))) , AeDy. (4.120)
S0 0

From this, for A € Dy, we get

a; 1 (A) — o, (4) Lo o

1 s m —u —1 Uu —Uu —1
< /dtwv(t) /[O,t] du pa— /SO dv (ch(v) o 5&)(11) (T(I)(U) (av (A))) — Td(s0) © 5(i)(80) (T(D(SO) (ozs0 (A)))) H .
(4.121)
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S

By the continuity of (s,u) — Ta(s) © V() (7‘,;(2) (oz_l(A))) € A with respect to ||-|| for A € Dy,

we have

. 1
lim
s—=s0 8§ — S0

/ v () sy (o (05 () = i By (i (05 (4))) =0,

S0

for each u. On the other hand, we have

1 ° U —u — u —u —
s_so/ v (i) © o) (ol (05" () = Ta) © i (7o (“801<A))>>H (4.123)

S0

1
= 20§,}2,§b1,f1,f2(’UDC&f,fl Al

with (4.119)). From Lebesgue’s convergence theorem, we obtain

[ t(4) — a5, (4) L w
(4.124)
Hence for A € Dy, [0,1] 3 s — a; '(A) is differentiable with respect to ||-||, and we have
d _1 t u —Uu —1
5% (A) = [ dtwy(t) ; dutg () © 0 s) © Ta(s) (o '(A)). (4.125)
From this formula, we obtain
d _ 1
| ot < ( [ [ 0§,}27<b1,f1,f2<ru|>cs,f,f1) Il = Cos Al (4126)
]

Now we prove Lemma [2.1]

Proof of Lemma 2.7

1. The inclusions Dy C Dy, C Dy, C Dy, C Dy C D¢ follow by the monotone choice of the

Bi, i =1,...,5. From (4.67), we can see that f satisfies the condition required in Lemma
Therefore, from Lemma we have o ' (Aje) C Dy for all s € [0,1].

2. This is from Lemma From (4.72), (4.69) (f, f1) satisfies the conditions required in
Lemma,

3. Fix 0 < B¢ < B5 and set (p(t) := et for t > 0. We apply Lemma 4.12L replacing (fa, f3)
in it by (¢, ¢o). To see that (¢, (o) satisfy the required conditions in Lemma[4.12] we recall ([4.70))
and (4.71). Hence from Lemma we obtain D¢ C D(dg(s)) N D(5¢(8)).

4. This also follows by Lemma with (f2, f3) replaced by (f2, (). The required conditions
in Lemma can be checked by (4.70) and (4.71)).

5., 6., and 7. are proven in Lemma [4.14]

33



8. This follows from Lemma for (f, f1). The conditions for (f, fi1) can be checked from
[T69) and (L73).
9. This is Lemma [£3

10. For any A € Dy, from 5. above, (u, s) — dg(s) © To(s) (A) € D¢ is continuous with respect
to H”c Furthermore, from 4., 2., above, as in () we have

H(S‘I’(S) ° T‘g“)(A)Hg < ‘ Ta(s)(A) )

u (1) fi(N)
<
T(b(s)(A)Hfz o sz,C <1 * Js\flé% f2(N) ’ fi

(4.127)

1 f1 (N )
< fbr(ul) (14 sup 243
From 2. above, the inequality (2.2) holds and ([2.14)) is well-defined as the Bochner integral with
respect to (D¢, [|[|)-

]
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A Conditional expectation Ey

We now briefly describe a family of conditional expectations {Ex : A — A, | N € N} are used
extensively in this paper. Let N € N be fixed and let A denote any finite set containing A.
Define:

E% =ida, ® PA\A N (A1)
where px is the product state whose factors are normalized trace:
1
PX = IX] ® trg. (A.2)
zeX

Each E% is bounded and linear, and as A C X implies E]EV] Ay = E%, there exists a unique
bounded map and conditional expectation Ey : A — Ap, such that for all A containing Ay:

Enla, =Ey (A.3)

Furthermore, by the definition (A.1]) of the finite-volume maps, Ex(A*) = Ex(A)* for all A € A
and if M e Nand M > N,

EyEx = ExEy = Ey. (A.4)

The family {Ey} provides local approximations of quasi-local observables. For completeness, we
record this as the following proposition and refer to [NSY] for the proof.
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Proposition A.1. Let ¢ > 0. Suppose A € A is such that for all B € J xea, Ax:
XNAN=0

ITA, B]|| < <l B]. (A-5)
Then ||A —En(A)| < 2e.

Proof. See Corollary 4.4 of [NSY]. O

B Properties of D;

The map ||-[|; : Dy — Rxp is a norm on Dy. Note that [|A*[|; = [|A]|;, and [[Ex(A)[, < [ A]l,-

Furthermore, if sup ycy % < 00, then Dy C D,.

Lemma B.1. Let f: (0,00) = (0,00) be a continuous decreasing function with lim;_,~ f(t) = 0.
The set Dy is a *-algebra which is a Banach space with respect to the norm ||-[| ;.

Proof. That Dy is *-closed is trivial from [[A*[|, = [|A];. To see that Dy is closed under
multiplication, let A, B € Dy. For each NV € N, we have

IAB —En(AB)| < [[(A—En (4)) - Bl +[[-Ex (A — En (4)) - B)|| + [[Ex (A) - (B — En (B))]|

< (2 Al Bl + A ||B||f) F(N) < 3 A[l ¢ [|B]l ¢ f(N).
(B.1)

Hence we obtain AB € Dy, and Dy is closed under the multiplication.

To prove that Dy is complete with respect to |-, let {A,}, be a Cauchy sequence in Dy
with respect to ||| ;. As {An}, is Cauchy with respect to ||-|| as well, there is an A € A such
that lim, o [|[A — Ay|| = 0. This A belongs to Dy because

|4 —En(A)] ( : HAM—EN(AM)\>
sup ——————— = sup (| lim <sup|lA < 0. B.2
NeN f(N) NeN \M—o0 f(N) M | MHf (B.2)
Furthermore, we have
HA_Am_EN(A_Am)H : (”An_Am_EN(An_Am)H> :
su = sup lim < limsup |4, — Al ;.
(B.3)
Therefore, Ay, converges to A € Dy in ||| j-norm. O

Lemma B.2. Let f: (0,00) = (0,00) be a continuous decreasing function with lim; o f(t) =0
with M € N. For any A € Dy and B € Ap,, and M € N we have

Bl < (1 max{ s 351} 181l (B.4)
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Proof. This follows from the following inequality:

|BA ~Ey(BA)|
_[ 2BlIAl, N <M,
“lIBA-Ey@), N> (B.5)

<] 2IBIIALL N <M,
— LIBIIA[l f(N) N > M.

Lemma B.3. Let f, f1 : (0,00) — (0,00) be continuous decreasing functions. Suppose that and

f(N)

im =0. B.6
N—o0 f1 (N) ( )

Then we have
Jim A~ Ea(4)], =0, A€Dy. (B.7)

Proof. Let A € Dy. By the definition of A, we have limp/_o [|[A — Ep(A)]| = 0. We note that
for N € N,

|A—En (4]
[A—Em(A) —En (A-En(A)I _ fi(N
fi(N) |A—Em(A)|

[y

M < N,

)

, M >N,

~— |~ —| —

|A—En (A)] f(N)
f(N)  falN)
|A—Ep(A)|| f(M)
fM)  fA(N)
f(N)
fi(N)’
f(M)
fi(M)’

f(L))
< HAHstguLpeN (fl(L) — 0, M — co.

Hence we obtain . O

N

IN

) Y

M
M >N (B.8)

M <N

)

1Al

M >N
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