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Due to their computational efficiency, coarse-grained (CG) models are widely adopted

for modeling soft materials. As a consequence of averaging over atomistic details, the

effective potentials that govern the CG degrees of freedom vary with temperature

and density. This state-point dependence not only limits their range of validity, but

also presents difficulties when modeling thermodynamic properties. In this work,

we systematically examine the temperature- and density-dependence of effective po-

tentials for 1-site CG models of liquid ethane and liquid methanol. We employ

force-matching and self-consistent pressure-matching to determine pair potentials

and volume potentials, respectively, that accurately approximate the many-body po-

tential of mean force (PMF) at a range of temperatures and densities. The resulting

CG models quite accurately reproduce the pair structure, pressure, and compress-

ibility of corresponding AA models at each state point for which they have been

parameterized. The calculated pair potentials vary quite linearly with temperature

and density over the range of liquid state points near atmospheric pressure. These

pair potentials become increasingly repulsive both with increasing temperature at

constant density and also with increasing density at constant temperature. Inter-

estingly, the density-dependence appears to dominate, as the pair potentials become

increasingly attractive with increasing temperature at constant pressure. The cal-

culated volume potentials determine an average pressure correction that also varies

linearly with temperature, although the associated compressibility correction does

not. The observed linearity allows for predictions of pair and volume potentials that

quite accurately model these liquids in both the constant NVT and constant NPT en-

sembles across a fairly wide range of temperatures and densities. More generally, for

a given CG configuration and density, the PMF will vary linearly with temperature

over the temperature range for which the entropy associated with the conditioned

distribution of atomic configurations remains constant.

a)Electronic mail: wnoid@chem.psu.edu
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I. INTRODUCTION

By eliminating superfluous atomic details, coarse-grained (CG) models facilitate studies

of phenomena that cannot be effectively simulated with atomistic models.1–7 The poten-

tials governing the interactions in a CG model necessarily reflect averaging over the atom-

istic structures and interactions that have been eliminated from the CG model. Because

these averages depend upon the thermodynamic state point, the resulting effective poten-

tials often demonstrate limited transferability, i.e., potentials that have been parameterized

for a specific thermodynamic state point are not guaranteed to accurately describe other

state points.4,5 Moreover, the state-point dependence of effective potentials also leads to

surprising difficulties for modeling thermodynamic properties,8–14 which have been termed

“representability” problems.15,16 These difficulties are particularly significant for “bottom-

up” coarse-graining approaches that determine effective potentials as approximations to

the many-body potential of mean force (PMF), which is defined by formally integrating

out atomic degrees of freedom.1,17–19 In rare instances these effective potentials and their

state-point dependence can be determined analytically.20–24 Much more commonly, though,

bottom-up approaches determine effective potentials via computational methods that do not

explicitly account for their state-point dependence.5

Consequently, many studies have investigated the temperature-dependence of the ef-

fective potentials obtained from bottom-up approaches. For instance, prior studies have

optimized potentials for a single temperature and then examined the temperature range of

their validity for complex liquids and polymers.25–32 One can imagine employing a variational

principle33 or multistate iterative Boltzmann inversion34 to determine a single temperature-

independent potential that provides an optimal compromise over a specified tempera-

ture range. Other studies have characterized trends in the effective potentials optimized

for specific temperatures.16,35–40 Based upon the observed trends, as well as theoretical

analysis, studies have proposed various functional forms for modeling this temperature

dependence.38–43 Similarly, several studies have employed temperature-dependent dielectric

constants for treating electrostatic interactions in CG models.44–46 It is also interesting

that several recent “top-down” models have adopted temperature-dependent Lennard-Jones

parameters to more accurately describe dynamical or thermodynamic properties.47–49

Many studies have also investigated the density-dependence of effective potentials. For
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instance, recent studies have examined the importance of density for effective potentials

derived from cluster expansion methods50 and from integral equation theories.51 Prior stud-

ies have examined the effects of solute concentration upon effective interactions in implicit

solvent CG models for solutions of small molecules, polymers, and colloids.1,39,52–56 Simi-

larly, several studies have investigated the concentration-dependence of ionic interactions in

implicit solvent CG models.45,57–59 Moreover, effective pair potentials for CG water models

also vary significantly with density.16,37 These considerations have motivated more complex

potentials that depend upon the local environment.60–68

Nevertheless, despite this considerable body of prior work, there exist few practical guide-

lines for either qualitatively understanding or quantitatively predicting the state-point de-

pendence of effective potentials for specific molecular systems. Consequently, in this work we

systematically examine the state-point dependence of effective potentials and, more specif-

ically, the many-body PMF for CG models of molecular liquids. In particular, we employ

the multiscale coarse-graining (MS-CG) method69,70 to determine effective pair potentials

that optimally approximate the configuration-dependence of the many-body PMF at each

state point of interest.71,72 The MS-CG method determines these potentials directly from

the underlying atomic ensemble. In contrast, iterative coarse-graining methods, such as iter-

ative Boltzmann inversion73 or the Inverse Monte Carlo method,74 can suffer from practical

convergence issues29,34,75 that may obscure the state-point dependence of the many-body

PMF.

We consider 1-site CG models for liquid ethane and methanol. These are very simple

systems and rather uninteresting per se, but they present several advantages for examin-

ing the state-point dependence of effective potentials. First of all, although ethane and

methanol lack significant conformational flexibility, the CG model averages over not only

vibrational fluctuations, but also important rotational degrees of freedom. Moreover, the

1-site representation eliminates the need to accurately describe the coupling between intra-

and inter-molecular degrees of freedom in the CG model. Consequently, the MS-CG vari-

ational principle determines pair potentials that provide a very accurate approximation for

the configuration-dependence of the many-body PMF at each state point.76,77 Furthermore,

the generalized-Yvon-Born-Green (g-YBG) theory78,79 provides a particularly transparent

framework for understanding the relationship between the MS-CG pair potential and the

pair potential of mean force (pmf) that is determined by the radial distribution function,
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as well as for understanding the many-body correlations that are relevant for the accuracy

of the CG model.80 Finally, although ethane and methanol have similar shapes, their inter-

actions demonstrate rather different character. Thus, we can distinguish aspects of the CG

potentials that reflect specific hydrogen-bonding interactions present in methanol from the

aspects that reflect non-specific van der Waals-type interactions present in both systems.

We first examine the temperature-dependence of the MS-CG pair potentials at constant

density before examining their density-dependence at constant temperature. We also ex-

amine the state-point dependence of the volume potential that determines corrections to

the pressure and compressibility that are necessary for accurately modeling the volume-

dependence of the many-body PMF.81–83 We observe that the calculated pair potentials

vary quite linearly with temperature and density for state points that correspond to liquids

near 1 bar external pressure. Over this range of state points, the pair potentials become

increasingly repulsive with increasing temperature at constant density, as well as with in-

creasing density at constant temperature. Interestingly, the density-dependence appears

more significant under these conditions, as the pair potentials become increasingly attrac-

tive with increasing temperature at constant pressure. Accordingly, the pressure correction

linearly decreases with increasing temperature, although it remains very large (> 103 bar)

even near the boiling point. We also observe that the pair pmf and the MS-CG pair po-

tentials vary quite differently with temperature, which we examine with the g-YBG theory.

Finally, we demonstrate that the pair potentials and pressure corrections can be quite accu-

rately predicted for modeling other liquid phase state points near atmospheric pressure in

either the constant NVT or constant NPT ensemble.

The remainder of this paper is organized as follows. Section II reviews the basic theory

that is relevant for the state-point dependence of effective potentials. Sections III and IV

describe the details and results of our calculations, respectively. Section V summarizes these

results, discusses their significance, and also provides closing comments.
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II. THEORY

A. Exact coarse-graining

We consider an atomistic model governed by a potential u(r) where r = (r1, . . . , rn)

specifies the configuration for n atoms. The probability for sampling r at constant volume,

V , and temperature, T , is

pr(r;V, T ) = exp [−βu(r)] /z(V, T ) (1)

where β = 1/kBT and z is the configuration integral.84

We consider a CG model that represents the same system with N sites. We assume a

mapping, M = (M1, . . . ,MN), that specifies the configuration, R = (R1, . . . ,RN), of the

N sites as a linear function of atomic coordinates:

MI(r) =
∑
i

cIiri for each I = 1, . . . , N (2)

where the mapping coefficients, cIi are non-negative and normalized such that
∑

i cIi = 1 for

each I.72 Additionally, we assume that each atom is associated with at most one CG site.

The central quantity in bottom-up coarse-graining is the effective potential1,5,8,17,18

exp [−βWN(R, V ;T )] = ωN(R, V )−1

∫
V n

dr exp [−βu(r)] δ(M(r) −R) , (3)

where

ωN(R, V ) ≡
∫
V n

dr δ(M(r) −R) = V n−N (4)

is the volume element of atomic configuration space that maps to R.24 Here we assume that

configuration space is homogeneous, e.g., due to periodic boundary conditions, such that

ωN is independent of R. The probability that the atomistic model samples a configuration

r that maps to R is

pR(R;V, T ) ≡
∫
V n

dr pr(r;V, T )δ(M(r) −R) = V n−N exp [−βWN(R, V ;T )] /z(V, T ). (5)

Consequently, WN(R, V ;T ) is the appropriate potential for properly sampling the CG con-

figuration space at a given V and T .72 Moreover, because

V −N
∫
V N

dR exp [−βWN(R, V ;T )] = V −n
∫
V n

dr exp [−βu(r)] , (6)
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WN(R, V ;T ) preserves the excess thermodynamic properties of the atomic model.14 As

expected for a thermodynamic potential, WN may be decomposed into energetic and entropic

contributions24

WN(R, V ;T ) = UW (R, V ;T ) − TSW (R, V ;T ). (7)

The energetic contribution is a conditioned canonical average of the atomic potential,

UW (R, V ;T ) ≡ ⟨u(r)⟩R;V,T (8)

where the subscripted angular brackets denote an average according to

pr|R(r|R;V, T ) ≡ pr(r;V, T )δ(M(r) −R) /pR(R;V, T ). (9)

The entropic contribution, SW , incorporates into WN the excess configurational entropy

associated with the distribution of atomic configurations that map to a given CG configu-

ration:

SW (R, V ;T ) ≡
⟨
−kB ln

[
pr|R(r|R;V, T )

qr|R(r|R;V, T )

]⟩
R;V,T

≤ 0 (10)

where

qr|R(r|R;V, T ) ≡ δ(M(r) −R) /ωN(R, V ) (11)

is the uniform conditional probability distribution.24 The total differential of WN is

dWN = −
∑
I

f I · (dRI)V − pxsdV − SWdT, (12)

where we have suppressed the arguments for simplicity.14 Here (dRI)V denotes the variation

in each site coordinate at constant V , i.e., (dRI)V ≡ V 1/3dR̂I where R̂I ≡ V −1/3RI is the

scaled CG coordinate,

f I(R;V, T ) ≡ ⟨fI(r)⟩R;V,T (13)

is the conditioned average of the net force on site I, such that WN is a potential of mean

force,1,72,85 and

pxs(R, V ;T ) ≡ ⟨pxs(r, V )⟩R;V,T (14)

is the conditioned average of the atomic excess pressure pxs(r, V ) = − (∂u/∂V )r̂, where

the partial derivative is evaluated at fixed scaled atomic coordinates, r̂ = V −1/3r.81,82 Im-

portantly, Eq. (12) demonstrates that the derivatives of WN with respect to temperature

and volume equal the atomic contributions to the corresponding thermodynamic properties
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that have been transferred from the atomic configuration space into the effective potential.14

Thus, if one could accurately determine SW and pxs, then one could both predict the state-

point dependence of WN and also account for the atomic contributions to the entropy and

pressure. Note that if pr|R is independent of temperature for some R, then SW will also be

independent of temperature and WN will vary linearly with T for this CG configuration.

B. Approximate coarse-graining

We seek to investigate the state-point dependence of WN . Unfortunately, Eqs. (3), (8),

and (10) are not computationally tractable. However, Eqs. (12)-(14) provide computation-

ally feasible means for characterizing variations in WN via variational principles expressed

in terms of mechanical variables, such as forces and pressures.

Accordingly, we approximate WN with the potential,

U(R, V ) = UR(R) + UV (V ) (15)

where the interaction potential, UR, is an explicit function of only the configuration, while

the volume potential, UV , is independent of configuration.81,82 We optimize the interaction

potential in order to approximate the configuration dependence of WN by adopting the

MS-CG force-matching variational principle69,70,72,86 and minimizing

χ2
1[UR] =

⟨
1

3N

∑
I

|fI(r) − FI(M(r))|2
⟩

(16)

where FI = −∂UR/∂RI and the angular brackets denote ensemble averages evaluated for

the atomic model at either constant volume or constant external pressure. Note that, be-

cause it is expressed in terms of forces, χ2
1 is insensitive to aspects of WN that vary with

thermodynamic state point but are independent of, or vary only slowly with, changes in

configuration. Consequently, given UR, Das and Andersen proposed determining UV such

that U = UR + UV optimally approximates the volume-dependence of WN .81 Specifically,

Das and Andersen proposed a pressure-matching variational principle for determining UV

by minimizing

χ2
2[UV |UR] =

⟨
|∆Pid(V ) + pxs(r, V ) − Pxs(M(r), V )|2

⟩
(17)

where ∆Pid(V ) = (n−N)kBT/V is the difference in the ideal contribution to the atomic and

CG pressures, while Pxs = − (∂U/∂V )R̂ = − (∂UR/∂V )R̂ − dUV /dV. Dunn and Noid later
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proposed a self-consistent pressure-matching variational principle that iteratively refines UV

in order to more accurately model the volume-dependence of WN .82 This corresponds to

optimizing UV by minimizing a relative entropy83,87,88

Srel[UV |UR] =

∫
dV

∫
V N

dR pRV (R, V ) ln

[
pRV (R, V )

PRV (R, V ;UV |UR)

]
, (18)

where pRV and PRV are probability distributions for the atomic and CG models to sample

the configuration R and volume V in the constant NPT ensemble.83

C. Pair structure

In the present work we consider the particularly simple case that each molecule is repre-

sented by a single site and UR is pair additive:

UR(R) =
∑
(I,J)

U2(RIJ), (19)

where the sum is performed over all distinct pairs, (I, J), of sites and RIJ = |RI −RJ | is

the distance between the pair. In this case, a particularly useful characteristic of the liquid

structure is given by the pair correlation function84

g2(R1,R2) = ρ−2ρ2(R1,R2), (20)

where ρ = N/V is the density of molecules and ρ2(R1,R2) is the probability density that

any two molecules (or, more precisely, any two CG sites) are at positions R1 and R2. In the

limit that N−1 → 0, the pair correlation function may be expressed

g2(R1,R2) = exp
[
−β

(
W2(R1,R2) − Axs

)]
(21)

where we define

exp [−βAxs] = ω−1
0

∫
V n

dr exp [−βu(r)] (22)

exp [−βW2(R1,R2)] = ω−1
2

∫
V n

dr exp [−βu(r)] δ(R1 −M1(r)) δ(R2 −M2(r)) (23)

as free energy functions of the form given by Eq. (3), while ω0 = V n and ω2 = V n−2 are

corresponding volume elements. Thus, while W2 and Axs both systematically increase with

temperature, the conventional pair potential of mean force (pmf)

w2(R1,R2) ≡ −kBT ln g2(R1,R2) = W2(R1,R2) − Axs (24)
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does not necessarily increase with temperature. For the cases of homogeneous isotropic

liquids that we consider here, g2(R1,R2) = g(R12) is the radial distribution function (rdf)

and w2(R1,R2) = w2(R12).
84

The MS-CG pair potentials, U2, that minimize χ2
1 satisfy a generalized-Yvon-Born-Green

(g-YBG) equation71,77,78,89

− dw2(R)/dR = F2(R) +

∫
dR′K(R,R′)F2(R

′). (25)

In this equation, −dw2(R)/dR is the pair mean force, i.e., the average net force experienced

by a central particle when a second particle is a distance R away,17,90 F2(R) = −dU2(R)/dR

is the MS-CG pair force function, and

K(R,R′) =
1

cR2g(R)

⟨
triples∑
λ

cos θλ δ(RλJ −R) δ(RλK −R′)

⟩
(26)

quantifies three-body correlations in terms of the angle θλ formed by each pair, {J,K}, of

particles around each central particle, λ, as a function of the distances R and R′ from the

pair to the central particle.80 Thus, according to Eq. (25), the MS-CG method determines

the optimal pair potential by first decomposing the pair mean force into direct and indirect

contributions and then assigning the direct contribution to the MS-CG pair potential. This

provides a direct relation between the pair structure in the atomic model, as quantified by

the rdf, and the MS-CG pair potential.

III. METHODS

A. AA model and simulations

We performed all-atom (AA) simulations of 1-component systems of liquid ethane and

liquid methanol in both the constant NVT and constant NPT ensembles. We performed

all atomistic simulations with GROMACS version 4.5.391 with three-dimensional periodic

boundary conditions. We did not rigidly constrain any bonds and employed a 1 fs time

step to propagate dynamics. We modeled all atomistic interactions with the OPLS-AA

force field,92 while switching Lennard-Jones potentials to zero between 1.2 and 1.4 nm.

We accounted for this truncation by employing corresponding dispersion corrections to the

energy and pressure. We modeled electrostatic interactions with the Particle-Mesh-Ewald

method,93 while adopting a real-space cutoff of 1.4 nm and a grid spacing of 0.08 nm.
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Table I summarizes the simulated state points. Simulations of ethane and methanol em-

ployed 793 and 953 molecules, respectively. We employed the stochastic dynamics integrator

with an inverse friction constant of 0.1 ps to control the temperature of each simulation.94

We performed all constant NVT simulations in a fixed cubic box with 4 nm sides. We per-

formed constant NPT simulations at 1 bar external pressure by also employing the Parrinello-

Rahman barostat95 with a time constant of 5.0 ps and compressibility of 4.5 × 10−5 bar−1.

We simulated a set of temperatures that span in increments of 25 K the temperature

range over which the system is liquid at atmospheric pressure. We constructed an initial

configuration for each temperature by first placing the molecules on a lattice in a cubic box

with 4 nm sides. We then annealed and equilibrated the system for each target temperature

at constant volume. Briefly, after minimizing the energy of the lattice configuration, we

annealed the system temperature to 1000 K over the course of 3 ns and then simulated at

1000 K for 2 ns. Starting from this high temperature configuration, we annealed copies of the

system to each target temperature over the course of 3 ns and then equilibrated the system

at constant temperature for 2 ns. The final configuration from this equilibration served as

the initial configuration for 10 ns production simulations in both the constant NVT and

constant NPT ensembles. In the case of the constant NPT simulation, we discarded the first

0.2 ns of this simulation as an additional equilibration period. We sampled configurations

from the production simulations after each picosecond.

We estimated the pressure equation of state from NPT simulations by discretizing the

sampled volume range into bins centered around specific volumes. We determined the aver-

age pressure at each discrete volume from the mean of the instantaneous internal pressures

sampled in the corresponding bin. For both NVT and NPT simulations, we determined the

statistical uncertainty in mean pressures from the standard error: Given Np ≫ 1 samples

for the internal pressure, which are assumed statistically independent, we determined the

statistical uncertainty by δP = σP/N
1/2
p , where σP is the standard deviation in the Np

samples.

B. CG model and simulations

We parameterized a specific CG model for each system in each state point of interest.

While some studies have employed higher resolution representations for methanol,33,70,96,97
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we represented both molecules with a single spherical site corresponding to the mass center.

In each case, we approximated the corresponding many-body PMF, WN , with the potential,

U = UR + UV , of Eq. (15). The interaction potential, UR, consisted of short-ranged central

pair potentials according to Eq. (19). We represented the volume potential

UV (V ) = N
{
ψ1V/v + ψ2 (V/v − 1)2

}
, (27)

where ψ1 and ψ2 are parameters optimized for each atomic ensemble, v is the average volume

of this ensemble, and N is the number of molecules.81,82

We parameterized these models with the bottom-up open-source coarse-graining soft-

ware (BOCS) package version 1.0, which is freely available online at https://github.com/

noid-group/BOCS and has been recently discussed in detail.98 In brief, we first mapped

each AA trajectory to its CG representation. We then determined the optimal pair po-

tentials by solving the normal system of linear equations that minimize χ2
1 in Eq. (16).71,72

We performed these force-matching calculations with the v2/3 reweighting previously sug-

gested by Das and Andersen,81 although our prior studies suggest that this reweighting has

little significance in practice.82,83,98 In this calculation, we represented the pair potentials

with cubic spline basis functions with a grid spacing of 0.02 nm, while truncating the po-

tentials at 1.4 nm and smoothly extrapolating the calculated potentials into the hard core

region. We then optimized the parameters for the volume potential in Eq. (27) via iterative

pressure-matching.82,83,98 This optimization required fewer than 4 iterations to determine

volume potentials that accurately reproduced the corresponding atomic density fluctuations

for each temperature at 1 bar external pressure.

We simulated the CG model in the constant NVT ensemble with the Gromacs 4.5.3 pack-

age, while employing the same parameters described above for the atomistic simulations.

We simulated the CG model in the constant NPT ensemble with a modified version98 of the

LAMMPS package99 that accounts for the pressure correction due to UV in the Martyna-

Tuckerman-Tobias-Klein (MTTK) volume equation of motion.100,101 These LAMMPS simu-

lations employed the velocity verlet algorithm to propagate dynamics with a 1.0 fs timestep,

while employing the modified MTTK barostat with a relaxation time of 1.0 ps to control

the pressure and a Nosé-Hoover chain102 of length three with a relaxation time of 0.1 ps to

control the temperature. We obtained an initial configuration for each CG simulation by

mapping to the CG resolution the final frame of the corresponding atomistic simulation.
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IV. RESULTS

In this section we analyze the sensitivity of CG structure and interactions to changes in

the thermodynamic state. Specifically, we consider 1-site MS-CG models of liquid ethane

and methanol that represent each molecule with its mass center. In order to investigate

the effect of varying temperature at fixed volume, we first consider simulations that sample

the canonical ensemble at different temperatures, but with the same fixed density. In order

to investigate the effect of varying density, we then consider simulations that sample the

isothermal-isobaric ensemble at different temperatures, but a single fixed external pressure

of 1.0 bar. Table I summarizes the simulated state points. Although this is not our primary

focus, the Supporting Information (SI) demonstrates that the MS-CG models accurately

describe the atomic pair structure and pressure-volume equation of state for each state

point considered.

A. Ethane

Figure 1 characterizes the pair structure and effective interactions generated by atomi-

cally detailed simulations of ethane that sample the constant NVT ensemble with a density

ρ0 = 618.7 g/L. In Figs. 1-6(a), the black, red, green, and blue curves present results for

simulations at T = 100 K, 125 K, 150 K, and 175 K, respectively.

Figure 1(a) presents the radial distribution functions (rdfs) obtained by mapping the

atomistic simulations to the 1-site CG representation. The rdfs feature a broad first peak

with a maximum at r ≈ 0.45 nm and a shoulder at r ≈ 0.51 nm, which correspond to

adjacent molecules aligned in parallel and in perpendicular fashions, respectively. The pe-

riodic oscillations in the rdf suggest that well-defined solvation shells exist out to 1.25 nm.

The first peak of the rdf very slightly decreases with increasing temperature. Nevertheless,

the ethane rdf appears essentially temperature-independent, suggesting that the structure

of liquid ethane is similar to the athermal packing of hard dumbbells.

Figure 1(b) presents the pair potential of mean force (pmf), w2(r) = −kBT ln g(r). The

features of the pair pmf, such as the contact minimum and desolvation barrier, clearly mirror

the features of the rdf. Because the rdf is essentially temperature-independent, the pair pmf

varies linearly with temperature. In particular, increasing temperature causes each minimum
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to deepen and each barrier to rise.

Figure 1(c) presents the corresponding MS-CG pair potential, U2, which corresponds

to an optimal pair-additive decomposition of the many-body PMF, WN . The MS-CG pair

potential is strikingly different from the pair pmf. While w2 demonstrates shallow oscillations

corresponding to the peaks and troughs of the rdf, U2 is much larger and almost purely

repulsive. Moreover, U2 is much shorter ranged and essentially vanishes beyond the first

minimum of the rdf. Finally, in contrast to w2, U2 systematically increases with temperature

at each distance. This suggests that the temperature-variation of the MS-CG interaction

potential, UR(R) =
∑

(I,J) U2(RIJ), mimics the temperature-variation in the configuration-

dependence of the many-body PMF, since Eq. (12) indicates that (∂WN/∂T )R;V > 0 in each

configuration, R.

Figure 1(d) presents the difference, wind = w2−U2, between the pair pmf and the MS-CG

pair potential. The (negative) derivative of the pmf gives the pair mean force, which is the

conditioned average force on a central molecule when a second molecule is a distance r away.

This pair mean force can be decomposed into a direct contribution from the second molecule,

as well as an indirect, or solvation, contribution from the surrounding N -2 molecules. The

g-YBG equation, Eq. (25), indicates that U2 can be interpreted as the direct contribution

to w2. Consequently, wind can be interpreted as the indirect contribution to the pair pmf.

This indirect contribution is relatively large and generally cancels the direct force. Impor-

tantly, wind is attractive over the first solvation shell and, thus, is solely responsible for the

contact minimum of the pair pmf. Moreover, this term becomes increasingly attractive with

increasing temperature, giving rise to the corresponding deepening of the contact minimum

of the pair pmf.

The g-YBG theory also further clarifies the physical origin of wind.80 According to Eq. (25),

−dwind/dr equals the conditioned mean force experienced by the central molecule due to

interacting via the MS-CG pair potentials with the surrounding N−2 particles. Figure 2(a)

illustrates the geometry of these solvation forces on the central molecule when a second

molecule is separated by a distance r and one of the surrounding N−2 molecules is separated

by a distance r′. Figure 2(b) presents an intensity plot of the matrix K(r, r′), which encodes

the structural effects that determine these solvation forces.71,77,80 In particular, the negative

band for r ≈ r′ reflects steric effects between pairs of particles in the same solvation shell of

the central molecule, while the alternating bands parallel to the diagonal reflect successive
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solvation shells of the central molecule. Since the MS-CG pair force becomes negligible for

r′ ≥ 0.65 nm, wind(r) primarily reflects the MS-CG pair force from surrounding molecules

that are 0.35 nm ≤ r′ ≤ 0.65 nm from the central molecule, i.e., from surrounding molecules

that are in the first solvation shell of the central molecule. Over this range, the MS-CG

pair force is repulsive (positive) while K(r, r′) is almost always negative. For this reason,

wind generates a net attractive force between the pair due to repulsive interactions with the

surrounding molecules.

Figure 3 quantifies the temperature variation of w2, U2, and wind. We estimate the

temperature derivative of each potential, (∂U/∂T )r,ρ , according to the finite difference:

∂TU(r;T, ρ0) =
U(r;T, ρ0) − U(r;T0, ρ0)

T − T0
(28)

where U(r;T, ρ) indicates the potential determined from constant NVT simulations at the

state point (T, ρ), T0 = 150 K, and ρ0 = 618.7 g/L. The dashed cyan curve presents the

simple mean of the calculated finite differences.

Because the rdf is temperature independent, ∂Tw2 is simply −kB ln g(r), which is small

and oscillates about zero except when r → 0. The MS-CG pair potential, U2, and the

indirect contribution, wind, to the pair pmf also vary quite linearly with temperature. In

particular, the temperature variation, ∂TU2, in the MS-CG potential is positive at almost

all distances, achieves a maximum at contact, systematically decreases with increasing dis-

tance, and essentially vanishes for r ≥ 0.65 nm. Because U2 and wind vary in the opposite

directions with increasing temperature, the pair pmf demonstrates considerably less tem-

perature dependence. In principle, the temperature dependence of wind reflects changes in

both the surrounding many-body structure, which is quantified by K(r, r′) in Fig. 2(b), as

well as changes in the direct interaction between molecules, which is quantified by U2. In

particular, the dotted curve in Fig. 3(c) presents the contribution to ∂Twind that is due to

the temperature-dependence of K(r, r′). Clearly, this contribution is negligible. Thus, it is

interesting that, although the pair and three-body structure of liquid ethane vary little with

temperature, the MS-CG pair potential significantly varies with temperature.

While Figures 1-3 consider temperature variations at constant density, Figure 4 consid-

ers the same temperature variations at a constant external pressure P0 = 1 bar. As the

temperature increases from 100 K to 175 K at atmospheric pressure, the simulated density

decreased by 16%, as indicated in Table I.
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Figure 4(a) presents the rdfs obtained by mapping atomically detailed constant NPT

simulations to the CG representation. The rdfs obtained from constant NPT and constant

NVT simulations are qualitatively similar. However, the rdfs obtained from constant NPT

simulations demonstrate much greater variation with increasing temperature. In particular,

the first peak decreases more significantly with increasing temperature at constant external

pressure. Moreover, the constant NPT rdfs systematically shift to larger distances as the

liquid expands with increasing temperature at constant external pressure.

Figure 4(b) presents the corresponding pair pmfs. With increasing temperature, the

contact minimum deepens to a similar extent at both constant density and constant pressure.

However, in contrast to the constant NVT pair pmfs, the constant NPT pair pmfs shift to

larger distances with increasing temperature.

Figure 4(c) presents the MS-CG pair potentials calculated from these constant NPT sim-

ulations. These MS-CG potentials are qualitatively similar to the corresponding potentials

calculated from the NVT simulations, as they are almost purely repulsive and are negli-

gible for r ≥ 0.65 nm. However, there is one striking difference: While the MS-CG pair

potentials increased with temperature when calculated at constant density, they decrease

with temperature when calculated at constant pressure. Indeed, by T = 175 K, the MS-CG

pair potential includes a noticeable attractive well at r ≈ 0.5 nm. Consequently, the pair

pmfs and MS-CG pair potentials shift in opposite directions with increasing temperature at

constant pressure. Since Fig. 1 indicates that the MS-CG potentials become more repulsive

with increasing temperature at constant density, this opposite trend in Fig. 4(c) reflects the

density-dependence of the pair potentials.

We quantified this density dependence by estimating the partial derivative (∂U/∂ρ)r,T

according to the finite difference:

∂ρU(r;T, ρT ) =
U(r;T, ρT ) − U(r;T, ρ0)

ρT − ρ0
(29)

where ρT = ρ(T, P0) is the equilibrium density at temperature T and external pressure

P0 = 1 bar. In Eq. (29), U(r;T, ρT ) is the pair potential determined from constant NPT

simulations at temperature T with the equilibrium density ρT , while U(r;T, ρ0) is the pair

potential determined from constant NVT simulations at the same temperature and the fixed

density ρ0. Figure 5(a) presents the finite differences calculated for the NPT ensemble at

each temperature, while the cyan curve presents a simple average of these finite differences.

16



The density derivatives are almost everywhere positive. Density increases primarily increase

the short-ranged repulsion and have negligible effect upon the pair potential for r ≥ 0.65 nm.

Figure 5(a) also demonstrates that the MS-CG pair potentials vary approximately linearly

with density over this range, although ∂ρU slightly decreases with increasing temperature.

Note that the marked differences observed in the finite differences for r ≤ 0.35 nm corre-

spond to short distances that are well into the hard-core region of the MS-CG potential.

Consequently, these discrepancies reflect both poor statistics and also the fine details of

the procedure used for extrapolating the calculated potentials into the hard-core region as

r → 0.

Figure 5(b) compares the MS-CG pair potentials calculated in the constant NPT ensemble

at each temperature with potentials obtained by linear extrapolation from a single MS-CG

pair potential, U(r;T0, ρ0), calculated for the constant NVT ensemble at T0 = 150 K and

ρ0 = 618.7 g/L:

Ulin(r;T, ρT ) ≡ U(r;T0, ρ0) + ∂T Ū(r)∆T + ∂ρŪ(r)∆ρ (30)

where ∆T = T − T0 and ∆ρ = ρT − ρ0. In Eq. (30), ∂TU(r) is the mean estimate for

(∂U/∂T )r,ρ determined from constant NVT simulations according to Eq. (28), i.e., the cyan

curve in Fig. 3(b), while ∂ρU(r) is the mean estimate for (∂U/∂ρ)r,T determined from con-

stant NPT simulations according to Eq. (29), i.e., the cyan curve in Fig. 5(a). The linear

extrapolations agree almost quantitatively with the constant NPT MS-CG potentials cal-

culated at T = 100 K, 125 K, and 150 K. The extrapolation also qualitatively agrees with

the constant NPT MS-CG potentials calculated at T = 175 K, although in this case it

overestimates the depth of the attractive well. Nevertheless, these results indicate that the

MS-CG potentials for the 1-site ethane model vary quite linearly over a relatively wide range

of densities and temperatures.

The preceding figures examine the sensitivity of the MS-CG pair potentials to varia-

tions in temperature and density. While the force-matching variational principle deter-

mines pair potentials, U2, that quite accurately approximate the configuration-dependence

of the many-body PMF, force-matching and other structure-based approaches are much less

sensitive to the volume-dependence of the PMF.12,14,62 However, this volume-dependence

must be accurately approximated in order to reproduce the atomic pressure.14,81 Indeed,

structure-based pair potentials typically overestimate the atomistic pressure by several or-
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ders of magnitude.10,12 Consequently, we introduce an additional term to the total potential,

UV , in order to accurately model the density-dependence of the many-body PMF:81,82

UV (V ) = N
{
ψ1V/v + ψ2 (V/v − 1)2

}
,

where v is the average atomic volume, while ψ1 and ψ2 are parameters that we optimized via

self-consistent pressure-matching.82,83 The resulting “volume force” FV (V ) = −dUV (V )/dV

then determines a correction to the pressure of the CG model that compensates for the

highly repulsive pair potentials. In particular, ψ1 is proportional to the average pressure

correction, while ψ2 specifies the correction to the compressibility of the CG model.

Figure 6(a) presents the pressure corrections, FV (V ), that are necessary to reproduce

the pressure-volume equation of state for the atomistic ethane model in the constant NPT

ensemble at an external pressure P0 = 1 bar. A pressure correction of nearly -7 kbar

is necessary to match the volume dependence of the many-body PMF at relatively high

densities near the freezing point. Successively smaller pressure corrections are necessary as

the liquid expands with increasing temperature. Thus, with increasing temperature, the

MS-CG pair potentials alone provide an increasingly accurate approximation to the density-

dependence of the PMF. Nevertheless, at 175 K a pressure correction of approximately

-1.5 kbar is still necessary to accurately model the atomic pressure.

Figure 6(b) presents the temperature-dependence of the pressure-matching coefficients

that have been optimized for modeling the constant NPT ensemble at 1 bar external pres-

sure and the indicated temperatures. The solid black circles and solid red squares indicate

the optimized values for ψ1 and ψ2, respectively. The corresponding lines present fits to these

optimized parameters according to Table II. The average pressure correction, ψ1, varies lin-

early with temperature. Conversely, the correction for the compressibility, ψ2, demonstrates

less systematic temperature-dependence.

Figure 7 assesses the accuracy of the CG potentials for reproducing the structure and

pressure of the AA ethane model at representative state points. The Supporting Information

provides a more comprehensive assessment of the CG models.

Figure 7(a) illustrates the accuracy of the CG potentials for modeling the state points

from which they were derived. Specifically, Fig. 7(a) presents results from constant NPT

simulations at a temperature T0 = 150 K and a fixed external pressure P0 = 1 bar. The solid

black curves in Fig. 7(a) present results for the AA model. The dashed red curves present
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corresponding results for a CG model with pair potentials and a volume potential derived

from these AA simulations. Figure 7(a1) compares the rdfs sampled by the AA and CG

simulations. With the exception of a slight discrepancy in the height of the first peak, the CG

model reproduces the AA rdf with essentially quantitative accuracy. Figure 7(a2) presents

the average pressure sampled by the constant NPT simulations as a function of volume. In

this and subsequent figures, we estimate the statistical uncertainty in the pressure by the

standard error, as defined in Sec. III A.

From the slope of the simulated average pressures, we determine the compressibility to be

κT = 9.439×10−5 bar−1 for the AA model. The compressibility and the average volume, V̄ ,

determine the standard deviation for the volume fluctuations, σV =
√
V̄ kBTκT = 0.372 nm3,

sampled by the AA model at 1 bar external pressure,90 which indeed agrees well with the

distribution of sampled volumes presented in Supporting Fig. S6. When the liquid phase

pressure equation of state is extended over this broad range of volumes sampled at 1 bar

external pressure, the AA model samples a correspondingly broad range of positive and

negative pressures.

More importantly, Fig. 7(a2) demonstrates that the CG model accurately reproduces the

average pressure and also the compressibility of the AA model over the range of volumes that

are sampled with significant probability. Equivalently, Supporting Fig. S6 demonstrates that

the CG model also reproduces the distribution of volumes sampled by the AA model. In

particular, the CG model reproduces to within 0.01% and 5.34%, the average and standard

deviation, respectively, of the volumes sampled by the AA model at 1 bar external pressure.

The SI demonstrates that, more generally, each CG model accurately describes the AA

ethane model at the state point from which it had been derived.

Figure 7(b) illustrates the accuracy of CG potentials that have been predicted for model-

ing new state points. Specifically, Fig. 7(b) presents results from constant NPT simulations

of ethane at a temperature T =110 K and a fixed external pressure P0 =1 bar. The solid

black curves in Fig. 7(b) present results for the AA model. The dashed red curves present

corresponding results for a CG model with predicted pair and volume potentials. In partic-

ular, we predicted the CG pair potential according to Eq. (30) by employing (1) the MS-CG

pair potential U2(r;T0, ρ0) calculated from constant NVT simulations at the temperature

T0 = 150 K and density ρ0 = 618.7 g/L, (2) the estimate ∂TU(r) for its temperature deriva-

tive at constant density, which is presented as the cyan curve in Fig. 3(b), and (3) the
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estimate ∂ρU(r) for its density derivative at constant temperature, which is presented as the

cyan curve in Fig. 5(a). Similarly, we predicted the parameters, ψ1 and ψ2, for the volume

potential according to the lines indicated in Fig. 6 and Table II.

Figure 7(b1) demonstrates that these predicted potentials reproduce the AA rdf quite

accurately. The red curve in Fig. 7(b2) indicates that the predicted potentials also pro-

vide a reasonable description of the AA pressure-volume equation of state. Specifically, the

predicted potentials overestimate the AA density by 0.88%, while underestimating the com-

pressibility by 26%. If a more accurate description of the AA pressure-volume equation of

state is needed, the predicted volume potential can be easily refined by one or two iterations

of self-consistent pressure-matching. The dashed green curve in Fig. 7(b2) presents the CG

pressure-volume equation of state using the predicted pair potentials along with the refined

volume potential. The open symbols in Fig. 6(b) indicate the resulting optimized parame-

ters for the volume potentials. The optimized parameters, ψ1 and ψ2, differ by 0.19 kJ/mol

and 6.7 kJ/mol, respectively, from those predicted by the linear extrapolation. Thus, simple

linear extrapolation provides a fairly accurate prediction for ψ1, but not for ψ2. The SI

demonstrates that the linear extrapolation predicts potentials that provide similar accuracy

for modeling ethane in the constant NPT ensemble at T = 165 K and 1 bar external pressure.

As a final point of comparison, we consider again constant NVT simulations of AA and

CG models at the state point, temperature T0 = 150 K and density ρ0 = 618.7 g/L, that

was employed in determining the reference MS-CG pair potential, U2(r;T0, ρ0). The isolated

black star in Fig. 7(a2) indicates the volume and average pressure of the AA simulation.

The overlapping red triangle in Fig. 7(a2) indicates the volume and average pressure of a CG

model employing the pair and volume potentials that had been determined from constant

NPT simulations at the same temperature T0 and 1 bar external pressure. (The green curves

in Figs. 4(c) and 6(a) correspond to these pair and volume potentials, while the dashed red

curves in Fig. 7(a) present the rdf and pressure equation of state from this constant NPT

simulation.) These CG potentials reproduce the average pressure of the AA simulation to

within 3.5% error. The SI demonstrates that this CG simulation also accurately reproduces

the AA rdf. Conversely, the red asterisk in Fig. 7(a2) presents the average pressure of a

CG simulation when the same volume potential is combined with the reference MS-CG pair

potential that had been optimized from constant NVT simulations at this state point. (This

potential is indicated by the green curve in Fig. 1(c).) Because the reference pair potential is

20



significantly more repulsive than the pair potential parameterized at atmospheric pressure,

the CG model now overestimates the AA pressure by approximately 1500 bar. Thus, pair

and volume potentials that have been parameterized for simulating atmospheric pressure

conditions at a specified temperature appear to provide an accurate description of the AA

pressure over a surprisingly wide density range. However, when combining this volume

potential with a very different pair potential, the resulting CG model does not accurately

describe the AA pressure.

B. Methanol

Figure 8 characterizes the pair structure and effective interactions generated by atomically

detailed simulations of methanol that sample the constant NVT ensemble with a density

ρ0 = 792.3 g/L. In Figs. 8-12(a), the black, red, green, blue, and purple curves present

results for simulations at T = 200 K, 225 K, 250 K, 275 K, and 300 K, respectively.

Figure 8(a) presents the rdfs obtained by mapping the atomistic constant NVT simula-

tions to the 1-site CG representation. While the ethane rdf features a single broad peak

spanning the range 0.3 nm < r < 0.625 nm, the same region of the methanol rdf features

two distinct peaks. While the second peak corresponds to van der Waals contacts, the more

prominent first peak corresponds to hydrogen-bonding interactions that are not present in

ethane. This hydrogen-bonding peak drops significantly with increasing temperature, while

the minimum between these two peaks simultaneously rises. Otherwise, the remainder of

the methanol rdf varies with temperature in a manner that is quite similar to the ethane rdf.

In particular, the van der Waals peak very slightly decreases with increasing temperature,

while the remainder of the rdf is essentially independent of temperature.

Figure 8(b) presents the corresponding pair pmfs. Interestingly, the hydrogen-bonding

minimum demonstrates very little temperature sensitivity, suggesting its energetic origin.

In contrast, the remainder of the methanol pair pmf varies with temperature in a manner

similar to the ethane pair pmf. In particular, the van der Waals minimum deepens with

temperature, while the subsequent extrema slightly grow with temperature.

Figure 8(c) presents the corresponding MS-CG pair potentials. In particular, the po-

tential at T = 300 K agrees nicely with 1-site MS-CG pair potentials previously reported

for the constant NVT ensemble at this temperature.69,103 As observed for ethane, these pair
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potentials are primarily repulsive. However, in contrast to the ethane MS-CG potentials, the

methanol potentials reflect two minima superimposed upon this general repulsion: a narrow

local minimum that corresponds to hydrogen-bonding interactions at short distances and

a broader, lower energy minimum that corresponds to van der Waals interactions at larger

distances. As observed for ethane, the MS-CG pair potentials systematically increase with

increasing temperature. In particular, the two minima gradually disappear with increasing

temperature.

Figure 8(d) presents the indirect contribution to the methanol pair pmf. Interestingly,

wind is quite similar for ethane and for methanol. In both cases the surrounding environment

generates a significant effective attraction that stabilizes the contact minimum of the pmf,

although this solvation force is somewhat weaker for methanol than for ethane. Moreover,

in both cases this effective attraction grows stronger with increasing temperature.

Figure 9 quantifies the temperature variation in the pair pmf, ∂Tw2, the MS-CG pair

potential, ∂TU2, and the solvation potential, ∂Twind, for methanol according to Eq. (28).

The potentials appear to vary quite linearly with temperature over the range 225 K ≤ T ≤

300 K, although the MS-CG potentials appear to behave somewhat differently closer to the

freezing point at T = 200 K. Moreover, this temperature variation is generally similar to

that quantified in Fig. 3 for ethane. As observed for ethane, ∂Tw2 is relatively small and

oscillates around 0, due to the cancellation between ∂TU2 and ∂Twind, which are positive

and negative, respectively. Interestingly, ∂Tw2 demonstrates a rather sharp minima at r ≈

0.4 nm that corresponds to the barrier between the hydrogen-bonding and van der Waals

contact minima of the methanol pmf. For shorter distances that reflect specific interactions,

∂TU2 is considerably smaller for methanol than for ethane. In particular, U2 appears to

vary differently with temperature for distances corresponding to hydrogen-bonding and van

der Waals interactions with a noticeable transition at r ≈ 0.4 nm. Lu and Voth have

previously reported similar results for the temperature variation of the MS-CG pair potential

for methanol at constant density and have interpreted this variation in terms of an entropic

pair potential.38

Figure 10 presents the rdf, pair pmf, and MS-CG pair potential obtained from atomic

simulations of methanol at different temperatures, but the same constant external pressure

of 1 bar. Note that the methanol density decreases by 12% over this temperature range,

which is slightly smaller than the observed density decrease for ethane. As observed at
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constant density, the rdf peaks generally decrease with increasing temperature. Also, as

observed for ethane, the constant NPT rdfs and pair pmfs demonstrate a noticeable shift to

larger distances with increasing temperature that is not observed at constant density. Pre-

sumably due to the specific hydrogen-bonding interactions and the smaller density variation

in methanol, this shift is less pronounced for methanol than for ethane. It is interesting that

the hydrogen-bonding minimum of the methanol pair pmf slightly decreases with increasing

temperature at constant pressure, but not at constant density. It is also interesting that

the hydrogen-bonding minimum of the MS-CG potential does not shift to larger distances

with increasing temperature in either the constant volume or constant pressure ensemble.

Conversely, the barrier between hydrogen-bonding and van der Waals interactions does shift

to larger distances as the liquid expands with increasing temperature at constant pressure.

Most striking, though, is that the MS-CG potentials again become increasingly attractive

with increasing temperature at constant pressure. This is opposite to the trend observed for

methanol at constant density, but is consistent with the preceding observations for ethane

at constant pressure.

Figure 11(a) presents the finite difference estimate, ∂ρU , for the density derivative of the

MS-CG potentials, (∂U/∂ρ)r,T , in analogy to Fig. 5(a). As in Fig. 5(a), the noticeable vari-

ation for r < 0.27 nm reflects poor statistics and numerical extrapolation into the hard-core

region of the potential. As observed for ethane, the methanol MS-CG potentials systemat-

ically increase with density at constant temperature. This density derivative is largest at

small distances and systematically decreases with increasing distance. With the exception

of the results for 200 K, this density dependence appears even more linear for methanol

than for ethane. Interestingly, the deviations from linearity are most pronounced at short

hydrogen-bonding distances. It is also interesting that, presumably due to the formation

of specific short-ranged hydrogen bonds, the MS-CG potentials demonstrate considerably

less density-dependence for methanol than for ethane. Furthermore, the density deriva-

tives for methanol demonstrate an inflection point that corresponds to the barrier between

hydrogen-bonding and van der Waals contacts. Figure 11(b) compares the MS-CG pair po-

tentials calculated from constant pressure simulations at each temperature with potentials

predicted by a linear extrapolation of a single pair potential obtained at constant density,

i.e., according to Eq. (30). This extrapolation appears even more accurate for methanol

than for ethane, although the potential at T = 200 K is slightly underestimated.
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Figure 12 presents the pressure corrections, FV , that have been optimized for simulating

methanol at 1 bar external pressure and the specified temperatures. As observed for ethane,

the magnitude of the pressure correction systematically decreases with increasing tempera-

ture. Moreover, ψ1, which quantifies the mean pressure correction, again varies linearly with

temperature. Interestingly, ψ1 varies less rapidly with temperature for methanol than for

ethane. Consequently, near their freezing points ethane requires a larger pressure correction,

but near their boiling points methanol requires a larger pressure correction. As observed

for ethane, Fig. 12 also demonstrates that the calculated ψ2 parameters do not vary linearly

with temperature. More importantly, though, the SI demonstrates that volume potentials

predicted by this simple linear extrapolation describe methanol density fluctuations with

reasonable, though not quantitative, accuracy.

Finally, Fig. 13 demonstrates the accuracy of the calculated and predicted CG potentials

for methanol in analogy to Fig. 7. The top and bottom rows present results from constant

NPT simulations of AA (solid black curves) and CG (dashed red curves) models at 1 bar

external pressure and temperatures T = 250 K and 210 K, respectively.

Figure 13(a) assesses the accuracy of CG potentials that were explicitly calculated for

modeling the specified state point. The CG potentials accurately reproduce not only the AA

pair structure, but also the AA average pressure as a function of volume over the sampled

volume range. In particular, the CG model reproduces the density and compressibility of

the AA model to within 0.05% and 3.93%, respectively. The SI demonstrates that, more

generally, each CG model accurately describes the AA methanol model at the state point

for which it had been derived.

Fig. 13(b) then assesses the accuracy of CG potentials that were predicted via linear

extrapolation. Fig. 13(b) demonstrates that the predicted potentials accurately reproduce

the AA pair structure and also provide a reasonable approximation for the AA pressure

equation of state. The predicted CG potentials reproduce the density and compressibility

of the AA model to within errors of 1.9% and 8.7%, respectively. The green curve presents

results after further refining the predicted volume potential. The optimized values for ψ1

and ψ2, which are indicated by the open symbols in Fig. 12(b), differ by 1.2 kJ/mol and 4.2

kJ/mol from the values estimated from linear extrapolation. The SI demonstrates that the

linear extrapolation predicts potentials that provide similar accuracy for modeling methanol

in the constant NPT ensemble at T = 290 K and 1 bar external pressure.
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As a final point of comparison, we consider again constant NVT simulations of AA and

CG models at the state point, temperature T0 = 250 K and density ρ0 = 792.3 g/L, that

was employed in determining the reference MS-CG pair potential, U2(r;T0, ρ0). The isolated

black star in Fig. 13(a2) indicates the volume and average pressure of the AA simulation.

The overlapping red triangle in Fig. 13(a2) indicates the volume and average pressure of a

CG model employing the pair and volume potentials that had been determined from constant

NPT simulations at the same temperature T0 and 1 bar external pressure. (The green curves

in Figs. 10(c) and 12(a) correspond to these pair and volume potentials, while the dashed red

curves in Fig. 13(a) present the rdf and pressure equation of state from this constant NPT

simulation.) These CG potentials reproduce the average pressure of the AA simulation to

within 4.8% error, although the SI demonstrates that they provide a somewhat less accurate

description of the AA rdf. Conversely, the red asterisk in Fig. 13(a2) presents the average

pressure of a CG simulation when the same volume potential is combined with the reference

MS-CG pair potential that had been optimized from constant NVT simulations at this state

point. (This potential is indicated by the green curve in Fig. 8(c).) In this case, the CG

model now underestimates the AA pressure by approximately 1500 bar. Thus, as noted for

ethane, pair and volume potentials that have been parameterized for simulating atmospheric

pressure conditions at a specified temperature appear to provide an accurate description of

the AA pressure over a surprisingly wide density range. However, when combining this

volume potential with a very different pair potential, the resulting CG model provides a

poor description of the AA pressure.

V. DISCUSSION

In this work we have carefully examined the state-point dependence of effective pair po-

tentials calculated for 1-site MS-CG models of liquid ethane and methanol. The methanol

pair potential includes a metastable minimum at short distances corresponding to hydrogen-

bonding configurations. Otherwise, the calculated MS-CG pair potentials are quite similar

for these two molecules, being primarily repulsive, quite short-ranged, and essentially van-

ishing for r > 0.65 nm. Consequently, the CG models for both molecules require rather

large pressure corrections in order to stabilize the liquid phase at 1 bar external pressure.

The calculated MS-CG pair potentials vary quite linearly over a fairly wide temperature
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range at constant density. Moreover, the corresponding temperature derivatives, ∂TU , are

qualitatively similar for ethane and methanol. These temperature derivatives are almost

everywhere positive, reach a maximum at contact, decrease with increasing distance, and

become negligible for r > 0.65 nm. For r < 0.5 nm, the temperature derivative is significantly

smaller for methanol for ethane, which is presumably due to the specific hydrogen-bonding

interactions that form at short distances.

Although we did not emphasize this, Figs. 7 and 13, as well as the SI, demonstrate that

the CG models accurately describe the pair structure and pressure-volume equation of state

at each state point considered. Consequently, the MS-CG potentials U = UR + UV appear

to quite accurately approximate the configuration-, temperature-, and volume-dependence

of the many-body PMF, WN . In particular, Eq. (12) indicates that WN increases with tem-

perature in every configuration, while our calculations indicate that the MS-CG interaction

potential, UR, also increases with temperature in every configuration. It is encouraging

that the MS-CG variational principle appears sufficiently sensitive to the configuration-

dependence of the many-body PMF that it at least qualitatively reproduces the variation

of WN with temperature.

Conversely, the pair pmf does not increase at all distances with increasing temperature

at constant density. In fact in the case of ethane, which lacks significant specific attractions,

the contact minimum of the pair pmf becomes increasingly attractive with increasing tem-

perature. This increasing attraction does not reflect the direct interaction between pairs of

molecules. As noted above, the MS-CG pair potential, which quantifies this direct inter-

action, becomes increasingly repulsive with increasing temperature. Instead the increasing

depth of the contact minimum in the ethane pair pmf reflects increasing repulsion from the

surrounding molecules. In this case it is quite interesting that the MS-CG potential and the

many-body PMF both become increasingly repulsive with temperature, although the pair

and three-body correlations appear quite insensitive to temperature.

We also find that the MS-CG pair potentials for ethane and methanol both become

increasingly repulsive with increasing density at constant temperature. Interestingly, the

density derivatives at constant temperature appear qualitatively similar to the temperature

derivatives at constant density. The density derivatives are largest at contact and systemat-

ically decrease with increasing distance, vanishing for r > 0.65 nm. As noted above for the

temperature derivatives, at short distances corresponding to hydrogen-bonding interactions
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the density derivative is considerably smaller for methanol than for ethane.

This density-dependence leads to the striking result that the MS-CG pair potentials

become increasingly attractive with increasing temperature at constant external pressure.

Indeed, similar trends have been previously observed for 1-site CG models of liquid water

that were optimized to match AA rdfs.16,37 This suggests that the density-dependence may,

in some cases, be more important than the temperature-dependence of effective potentials

for CG models of liquids near ambient conditions. It is beyond the scope of this work to

definitively determine the physical origin for this surprising observation. Nevertheless, it

is intriguing to speculate that this may be a general feature of pair potentials that reflect

distinct molecular interactions acting on different length scales. In this case, the dramatic

changes in the effective pair potentials may result from reweighting the contributions of

these interactions.

Additionally, we observe that the volume force necessary for simulating atmospheric

pressure systematically decreases with increasing temperature. This is consistent with the

observation that the MS-CG pair potentials become less repulsive as the liquid expands

with increasing temperature at constant external pressure. In particular, we find that the

mean pressure correction at 1 bar pressure, which is specified by ψ1, varies linearly with

temperature. Interestingly, ψ1 varies more rapidly with temperature for ethane than for

methanol.

These results are quite consistent with the very recent study of Rosenberger and van der

Vegt,104 who parameterized pair potentials for CG models of hexane and perfluorohexane

at a single state point with the structure-based inverse Monte Carlo (IMC) method.74 They

then employed self-consistent pressure-matching82,98 to determine the coefficients, ψ1 and

ψ2, that were necessary for simulating a range of temperatures at 1 bar external pressure.

They observed that both ψ1 and ψ2 linearly decreased with temperature. In contrast, in our

calculations ψ2, which specifies the correction to the compressibility, does not vary linearly

with temperature. This discrepancy most likely results from their use of a single set of pair

potentials, while we considered separate pair potentials for each state point. However, this

discrepancy may also possibly reflect differences between the MS-CG and IMC potentials or

differences between the systems considered.

Finally, our studies also have significant pragmatic consequences. Importantly, in this

work we extrapolated potentials obtained from the NVT ensemble to predict potentials for

27



use in the constant NPT ensemble. Thus, effective potentials can be transferred between

ensembles as long as they appropriately account for the relevant thermodynamic contribu-

tions. In particular, consistency between the NVT and NPT ensembles requires that the CG

potentials account for the volume-dependence of the many-body PMF. This can be easily

achieved in practice by accurately determining the volume potential, UV .

Additionally, while some prior studies have proposed more complex temperature dependence,41,42

our calculations indicate that the effective pair potentials and mean pressure corrections for

1-site CG models of ethane and methanol vary quite linearly with temperature and density

over a fairly wide range of thermodynamic conditions, as noted by several prior studies.38–40

We observe slight deviations from linearity that may reflect either higher order derivatives of

the PMF or statistical uncertainty in our calculations. Nevertheless, a simple linear extrap-

olation quite accurately predicts both the MS-CG pair potential and the average pressure

correction, though not the compressibility correction, for both liquids across a fairly wide

range of temperatures at atmospheric pressure. In particular, Figs. 7 and 13, as well as the

SI, demonstrate that this extrapolation predicts potentials that quite reasonably describe

the pair structure, pressure-volume behavior, and density fluctuations of the atomistic model

for state points that were not employed in developing this extrapolation.

We also demonstrated that pair and volume potentials that have been self-consistently

optimized provide a remarkably accurate description of the AA internal pressure over a

surprisingly broad density range in either the constant NVT or constant NPT ensemble.

In particular, potentials that have been parameterized for modeling atmospheric pressure

and a specified temperature quite accurately approximated AA pressures of +470 bar and

-502 bar that were calculated from constant NVT simulations of ethane and methanol,

respectively. As described above, when both pair and volume potentials are predicted via

linear extrapolation, the resulting CG models provide a reasonably accurate description of

the AA pressure equation of state for state points near atmospheric pressure. However,

when both pair and volume potentials are predicted for state points far from atmospheric

pressure, this simple linear extrapolation provides a poor description of the AA pressure. In

such cases, the predicted volume potential may need to account for the density-dependence

of the predicted pair potentials.

We emphasize that we do not anticipate that effective potentials will always vary linearly

with variations in thermodynamic state point. More generally, we expect that the state-point
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dependence of approximate effective potentials will reflect (1) the state-point dependence of

the many-body PMF and (2) the accuracy with which the effective potentials approximate

the PMF. Equation 12 indicates that (∂WN/∂T )R,V = −SW , which quantifies the “internal”

entropy associated with the conditioned distribution, pr|R, of atomic configurations, r, that

map to R.

If over a specified temperature range, this conditioned distribution varies little, then

SW will be approximately constant and WN will vary approximately linearly with tem-

perature. Because ethane and methanol demonstrate little intramolecular flexibility, one

expects that SW for the 1-site representation will be relatively small in magnitude and

demonstrate relatively little temperature-dependence within the liquid region of the phase

diagram. Moreover, the MS-CG potentials accurately approximate the configuration- and

volume-dependence of the PMF. Thus, one expects that the MS-CG potentials will vary

quite linearly with temperature. Our calculations provide numerical support for this intu-

itive expectation.

Conversely, for molecules with greater internal flexibility and in cases that the CG map-

ping imposes relatively weaker constraints upon the atomic configuration, one expects that

SW will be larger and more sensitive to temperature. In particular, if the CG represen-

tation maps multiple distinct conformations to the same CG configuration, i.e., if the CG

configuration is consistent with multiple “internal states,”105,106 then one expects that SW

will vary rapidly with temperature when the atomic degrees of freedom “switch” between

internal states. In such cases, one expects that both WN and also approximate effective

potentials will vary more dramatically with temperature. Future work is certainly required

to further investigate these more complex situations. Nevertheless, recent work provides

encouraging hints that considerable transferability can be achieved even for very aggressive

coarse-graining of highly charged ionomers.46

In closing, we note several additional directions for future work. In this work we con-

sidered the temperature and density dependence of CG potentials for modeling ethane and

methanol in the liquid phase, while primarily focusing upon conditions at or near atmo-

spheric pressure. Further study is necessary to assess the generality of the trends observed

in this work for modeling the entire liquid phase diagram, as well as for modeling other

chemical systems.33,107,108 Moreover, future work should investigate the importance of this

state-point dependence for modeling phase transitions and dynamical processes. It remains
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very challenging to reproduce phase transitions with bottom-up CG models,25,30 although re-

cent studies have suggested that potentials of the local density may prove useful for modeling

two-phase coexistence.66–68 One generally anticipates that effective potentials will vary dra-

matically across phase boundaries due to significant changes in the conditioned distribution,

pr|R, of atomic configurations for a given CG configuration. For similar reasons, one intu-

itively expects that the state point dependence of effective potentials should also complicate

the dynamics of CG models. For instance, changes in pr|R may alter the “internal energy” of

CG sites in dissipative particle dynamics (DPD) models with energy conservation,109,110 as

well the properties of “fictitious particles” that mimic the random forces due to atoms that

have been eliminated from the CG model.111,112 Thus, considerable work remains for under-

standing the fundamental and practical aspects of the state-point dependence of effective

potentials employed in CG models.

SUPPLEMENTARY MATERIAL

The Supplementary Material presents comparisons of AA and CG rdfs, volume distri-

butions, and pressure-volume equations of state that assess the accuracy of the potentials

presented in the main text, as well as the predictive power of the proposed linear extrapo-

lations.
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TABLES

Table I. State points employed in determining the temperature- and density-dependence of CG

potentials. We present the simulated ensemble and temperature, T , (in units of K), pressure, P ,

(in units of bar), and density, ρ, (in units of g/L). For simulations at constant volume and pressure,

we present the mean internal pressure and density, respectively, observed in AA simulations.

Ethane Methanol

Ensemble T P ρ Ensemble T P ρ

NVT 100 -868 618.7 NVT 200 -1038 792.3

NVT 125 -187 618.7 NVT 225 -880. 792.3

NVT 150 470. 618.7 NVT 250 -502 792.3

NVT 175 1078 618.7 NVT 275 -148 792.3

NVT 300 217 792.3

NPT 100 1 661.78 NPT 200 1 883.24

NPT 125 1 628.16 NPT 225 1 856.50

NPT 150 1 593.49 NPT 250 1 829.92

NPT 175 1 556.92 NPT 275 1 803.04

NPT 300 1 774.74
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Table II. Linear fits to optimized pressure-matching coefficients: ψ = aT + b, where a and b are

presented in units of kJ mol−1 K−1 and kJ mol−1 respectively, while R2 quantifies the quality of

the linear fit.
ψ Molecule a b R2

ψ1 Ethane -0.30329 59.936 0.9776

ψ1 Methanol -0.06655 35.142 0.9873

ψ2 Ethane -0.04867 5.5140 0.3925

ψ2 Methanol -0.04277 12.913 0.3479

42



FIGURES

(a)

(b)

(c)

(d)

Figure 1. Pair structure and interaction potentials calculated from AA simulations in the constant

NVT ensemble at a density ρ0 = 618.7 g/L for a 1-site CG representation of ethane: (a) rdfs, (b)

pair pmfs, (c) MS-CG pair potentials, and (d) indirect contributions to the pair pmf. Potentials

are presented in units of kJ/mol. Black, red, green, and blue curves present results calculated at

100 K, 125 K, 150 K, and 175 K. The inset in panel (a) presents an ethane molecule in atomic

detail with a ball-and-stick representation.
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(a)

(b)

r

r'

Figure 2. Three-body correlations relevant for the MS-CG pair potentials. Panel (a) indicates the

geometry of solvation forces acting on a central molecule (highlighted in dark blue) in the presence

of a second molecule (cyan) separated by a distance r. The third highlighted molecule (dark gray)

separated by a distance r′ is representative of the surrounding N − 2 molecules (light gray) that

contribute to wind. Panel (b) presents an intensity plot of the function K(r, r′) calculated for the

1-site representation of ethane at 150 K and constant density ρ0.
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(a)

(b)

(c)

Figure 3. Finite differences quantifying the temperature variation (at constant density) in the

pair structure and interaction potentials for a 1-site CG representation of ethane: (a) pair pmfs,

(b) MS-CG pair potentials, and (c) indirect contributions to the pair pmf. Finite differences are

presented in units of kJ/(mol K). Black, red, and blue curves present results calculated with T =

100 K, 125 K, and 175 K, respectively. The dashed cyan lines represent the average of the three

finite differences, while the dotted curves in panel (c) present contributions arising from ∂TK.
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(a)

(b)

(c)

Figure 4. Pair structure and interaction potentials calculated from AA simulations in the constant

NPT ensemble at P0 = 1 bar external pressure for a 1-site CG representation of ethane: (a) rdfs,

(b) pair pmfs, and (c) MS-CG pair potentials. Potentials are presented in units of kJ/mol. Black,

red, green, and blue curves present results calculated at 100 K, 125 K, 150 K, and 175 K.
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(a)

(b)

Figure 5. (a) Finite differences quantifying the density variation (at constant temperature) in

the MS-CG pair potentials for a 1-site CG representation of ethane. (b) Comparison of MS-

CG potentials calculated at constant external pressure (solid curves) and potentials obtained via

linear extrapolation from potentials calculated at constant density (dashed curves). Potentials

are presented in units of kJ/mol, while finite differences are presented in units of kJ/(mol (g/L)).

Black, red, green, and blue curves present results calculated at 100 K, 125 K, 150 K, and 175 K.

The dashed cyan line in panel (a) represents the average of the finite differences calculated for the

4 temperatures.

47



(a)

(b)

Figure 6. Volume forces (a) and pressure matching coefficients (b) for 1-site CG models of ethane.

In panel (a) the black, red, green, and blue curves present volume forces optimized for 1 bar external

pressure and temperatures T = 100 K, 125 K, 150 K, and 175 K. The length of each line spans

three standard deviations in the volume distribution about the average volume. In panel (b), the

symbols indicate coefficients optimized for constant NPT simulations at 1 bar external pressure

and the specified temperatures. The lines represent the best fit to the coefficients indicated by the

solid symbols. The open symbols indicate optimized parameters at additional temperatures T =

110 K and 165 K that were not employed in determining the linear fit.
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(a1)
(a2)

(b1) (b2)

Figure 7. Comparison of the rdfs (left) and average pressures (right) obtained from constant NPT

simulations of AA and CG models for ethane at 1 bar external pressure. The top and bottom

rows present results from simulations at T = 150 K and 110 K, respectively. In the top row, the

dashed red curves present results for CG potentials parameterized for the specified state point.

In the bottom row, the dashed red curves present results for CG potentials predicted by linear

extrapolation, while the green curve presents results after further refining the volume potential.

Additionally, the isolated black and red points in panel (a2) present the volume and average pressure

for AA and CG simulations, respectively, in the constant NVT ensemble at the temperature T =

150 K with the constant density ρ0 = 618.7 g/L.
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(a)

(b)

(c)

(d)

Figure 8. Pair structure and interaction potentials calculated from AA simulations in the constant

NVT ensemble at a density ρ0 = 792.3 g/L for a 1-site CG representation of methanol: (a) rdfs, (b)

pair pmfs, (c) MS-CG pair potentials, and (d) indirect contributions to the pair pmf. Potentials are

presented in units of kJ/mol. Black, red, green, blue, and purple curves present results calculated

at 200 K, 225 K, 250 K, 275 K, and 300 K. The inset in panel (a) presents a methanol molecule in

atomic detail with a ball-and-stick representation.
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(a)

(b)

(c)

Figure 9. Finite differences quantifying the temperature variation (at constant density) in the

pair structure and interaction potentials for a 1-site CG representation of methanol: (a) pair pmfs,

(b) MS-CG pair potentials, and (c) indirect contributions to the pair pmf. Finite differences are

presented in units of kJ/(mol K). Black, red, blue, and purple curves present results calculated

with T = 200 K, 225 K, 275 K, and 300 K, respectively. The dashed cyan lines present averages

of the four finite differences.
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(a)

(b)

(c)

Figure 10. Pair structure and interaction potentials calculated from AA simulations in the constant

NPT ensemble at P0 = 1 bar external pressure for a 1-site CG representation of methanol: (a) rdfs,

(b) pair pmfs, and (c) MS-CG pair potentials. Potentials are presented in units of kJ/mol. Black,

red, green, blue, and purple curves present results calculated at 200 K, 225 K, 250 K, 275 K, and

300 K.
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(a)

(b)

Figure 11. (a) Finite differences quantifying the density variation (at constant temperature) in

the MS-CG pair potentials for a 1-site CG representation of methanol. (b) Comparison of MS-

CG potentials calculated at constant external pressure (solid curves) and potentials obtained via

linear extrapolation from potentials at constant density (dashed curves). Potentials are presented

in units of kJ/mol, while finite differences are presented in units of kJ/(mol (g/L)). Black, red,

green, blue, and purple curves present results calculated at 200 K, 225 K, 250 K, 275 K, and 300 K.

The dashed cyan line in panel (a) presents the average of the finite differences calculated for the 5

temperatures.
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(a)

(b)

Figure 12. Volume forces (a) and pressure matching coefficients (b) for 1-site CG models of

methanol. In panel (a) the black, red, green, blue, and purple curves present volume forces opti-

mized for 1 bar external pressure and temperatures T = 200 K, 225 K, 250 K, 275 K, and 300 K.

The length of each line spans three standard deviations in the volume distribution about the aver-

age volume. In panel (b), the symbols indicate coefficients optimized for constant NPT simulations

at 1 bar external pressure and the specified temperatures. The lines represent the best fit to the

coefficients indicated by the solid symbols. The open symbols indicate optimized parameters at

additional temperatures T = 210 K and 290 K that were not employed in determining the linear

fit.
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(a1) (a2)

(b1) (b2)

Figure 13. Comparison of the rdfs (left) and average pressures (right) obtained from constant

NPT simulations of AA and CG models for methanol at 1 bar external pressure. The top (a) and

bottom (b) rows present results from simulations at T = 250 K and at 210 K, respectively. In the

top row, the dashed red curves present results for CG potentials parameterized for the specified

state point. In the bottom row, the dashed red curves present results for CG potentials predicted

by linear extrapolation, while the green curve presents results after further refining the volume

potential. Additionally, the isolated black and red points in panel in panel (a2) present the volume

and average pressure of AA and CG simulations, respectively, in the constant NVT ensemble at

the temperature T = 250 K with the constant density ρ0 = 792.3 g/L.
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