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Abstract

We present the BOCS toolkit as a suite of open source software tools for param-

eterizing bottom-up coarse-grained (CG) models to accurately reproduce structural

and thermodynamic properties of high resolution models. The BOCS toolkit comple-

ments available software packages by providing robust implementations of both the

multiscale coarse-graining (MS-CG) force-matching method and also the generalized-

Yvon-Born-Green (g-YBG) method. The g-YBG method allows one to analyze and to

calculate MS-CG potentials in terms of structural correlations. Additionally, the BOCS

toolkit implements an extended ensemble framework for optimizing the transferabil-

ity of bottom-up potentials, as well as a self-consistent pressure-matching method for

accurately modeling the pressure equation of state for homogeneous systems. We illus-

trate these capabilities by parameterizing transferable potentials for CG models that

accurately model the structure, pressure, and compressibility of liquid alkane systems

and by quantifying the role of many-body correlations in determining the calculated

pair potential for a one-site CG model of liquid methanol.
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Introduction

By representing systems in reduced detail, coarse-grained (CG) models provide the necessary

computational efficiency for investigating length- and time-scales that cannot be effectively

addressed with all-atom (AA) models.1,2 Of course, CG models must be carefully constructed

to faithfully describe the relevant physical forces if they are to provide useful predictions and

insight. While one can imagine many approaches for constructing CG models, they are often

developed via “top-down” or “bottom-up” approaches.3–6

Top-down approaches commonly parameterize relatively simple interaction potentials to

reproduce macroscopic thermodynamic properties. Because top-down approaches often ad-

dress multiple chemical systems and thermodynamic states, the resulting parameters can be

used to define a general purpose force field. For instance, the Martini,7,8 SDK,9, PLUM,10,11

and OxDna12,13 force fields each employ a single set of parameters that is quite transferable,

i.e., the parameters reasonably describe thermodynamic properties for a fairly broad range

of systems and environments.

In contrast, bottom-up approaches commonly parameterize relatively complex interaction

potentials to reproduce the structural properties of a high resolution model for a single chem-

ical system in a single thermodynamic state point. Consequently, bottom-up approaches do

not usually provide transferable force fields, but rather system-specific potentials that may

require re-parameterization for each system and state-point of interest.3,4 Accordingly, the

practical application of bottom-up methods requires appropriate software for parameterizing

these potentials. Fortunately, several software packages14–17 have been released for imple-

menting bottom-up approaches according to, e.g., iterative Boltzmann Inversion,18 Inverse

Monte Carlo,19 and the multiscale coarse-graining (MS-CG) methods.20–24

Unsurprisingly, bottom-up approaches are currently limited by two common deficiencies.

As emphasized above, bottom-up models generally provide limited transferability.25–36 Sim-

ilarly, because they often focus on reproducing structural properties, bottom-up approaches

generally provide a rather poor description of thermodynamic properties, such as the pres-
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sure.27,37,38 Recently, we have examined the fundamental origin and interrelation between

these transferability and representability limitations.39 Moreover, we have developed rig-

orous computational methods for addressing these limitations in practice. In particular,

the extended ensemble framework provides a principled bottom-up approach for developing

potentials that accurately describe multiple chemical systems or thermodynamic states.31,40

Additionally, self-consistent pressure-matching provides a straight-forward approach for con-

structing CG models that accurately model the pressure and compressibility of homogeneous

systems.41,42

In this work, we present the Bottom-up Open-source Coarse-graining Software (BOCS )

toolkit to complement the software packages that are currently available for parameterizing

bottom-up CG models. The BOCS toolkit includes software written in C, C++, and python

for use with the GROMACS43,44 and LAMMPS45 simulation packages. The BOCS toolkit

includes a robust and stable implementation of the MS-CG force-matching method20,22 for

determining CG potentials directly from atomistic forces. Additionally, the BOCS toolkit

implements the generalized Yvon-Born-Green (g-YBG) framework46,47 for calculating MS-

CG potentials directly from structural data. Based upon the g-YBG framework, the BOCS

toolkit provides tools for interpreting the physical origin of these potentials in terms of

structural correlations generated by the high resolution model.48 Moreover, the BOCS toolkit

implements both the extended ensemble framework31 and also the self-consistent pressure-

matching method.41,42

We are releasing the BOCS toolkit as open source software under the GPLv3 license in

the hope that the CG modeling community will use and modify these tools according to

its needs. Open source software is vital to reproducible computational research, since it

facilitates not only the examination of calculations performed with the software, but also

of the software itself. The ‘many eyes’ effect of open source software can help to more

quickly identify and correct errors in the software, while also providing opportunity for other

researchers to review and improve the underlying algorithms. Finally, open source software
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lowers the barrier for researchers entering the field of CG modeling, since new researchers

can then leverage and build upon prior work, rather than having to start from scratch.

The remainder of this manuscript is organized as follows. Section II outlines the theoreti-

cal basis for the BOCS toolkit, while Section III describes its computational implementation.

Section IV illustrates the capabilities of the BOCS toolkit in the context of parameterizing

transferable interaction potentials for CG models that reasonably describe the structure and

pressure-volume thermodynamics of butane, heptane, decane, and a butane-decane mixture.

We also present some diagnostic capabilities of the BOCS toolkit using a one-site model of

methanol as a representative example. Finally, Section V presents concluding remarks.

Theory

In this section, we briefly outline the theoretical foundation that is employed by the BOCS

software package in parameterizing the potentials for a CG model from a high resolution

simulation. The BOCS software package can employ statistics sampled from either the con-

stant NVT or constant NPT ensemble to determine the CG interaction potential. However,

CG models will generally require an additional volume-dependent potential to accurately

calculate the pressure and to sample the correct density in the constant NPT ensemble.32,41

High resolution AA model

We first consider a high resolution model with n particles, i = 1, . . . , n, which we shall

refer to as atoms.49 We indicate the atomic microstate by (r,p, v), where the configuration

r = (r1, . . . , rn) indicates the Cartesian coordinates of each atom, p = (p1, . . . ,pn) indicates

the corresponding set of momenta, and v indicates the volume. We assume an atomic

Hamiltonian:

h(r,p, v) = κ(p) + u(r, v) (1)
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where the kinetic energy κ(p) =
∑

i p
2
i /2mi, mi is the mass of atom i, and the potential,

u(r, v), may explicitly depend upon v, e.g., due to long-ranged interactions.50–52 The poten-

tial determines a force fi = − (∂u/∂ri)v on each atom i and also a force on the wall, i.e.,

the instantaneous excess pressure, pxs = − (∂u/∂v)r̂, where the latter partial derivative is

performed at constant scaled coordinates, r̂. The fluctuating internal pressure of the AA

model is then49,53

pint(r,p, v) =
2

3v
κ(p) + pxs(r, v). (2)

Low resolution CG model

We next consider a low resolution model with N ≤ n particles, I = 1, . . . , N , which we shall

refer to as CG sites. We indicate the CG microstate by (R,P, V ), where the configuration

R = (R1, . . . ,RN) indicates the Cartesian coordinates of each site, P = (P1, . . . ,PN) in-

dicates the corresponding set of momenta, and V indicates the volume. We assume a CG

Hamiltonian:

H(R,P, V ) = K (P) + U(R, V ) (3)

where the kinetic energy K (P) =
∑

I P
2
I/2MI , MI is the mass of site I, and the potential,

U(R, V ), may depend upon both R and also V , as indicated below.32,41,54 The potential

determines a force FI = − (∂U/∂RI)V on each site I and also the instantaneous excess

pressure, Pxs = − (∂U/∂V )R̂, where the latter partial derivative is performed at constant

scaled CG coordinates, R̂. The fluctuating internal pressure of the CG model is then

Pint(R,P, V ) =
2

3V
K (P) + Pxs(R, V ). (4)

Mapped Ensemble

We intend for the CG model to reproduce the structural and thermodynamic properties of

the AA model that can be observed at the resolution of the CG model. Accordingly, we
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define a mapped ensemble by mapping each AA microstate (r,p, v) to a CG microstate

(R,P, V ). The mapping preserves the volume of the AA microstate, i.e., V = v.32,41 The

mapped configuration, R = M(r), and momenta, P = MP (p), are specified by determining

the Cartesian coordinates, RI , and momenta, PI , of each site, I, as a linear combination of

atomic coordinates, ri, and momenta, pi:

RI = MI(r) =
∑
i

cIiri (5)

PI = MPI(p) = MI

∑
i

cIipi/mi. (6)

Note that Eq. (6) is equivalent to employing the same linear coefficients for mapping both

the coordinates and the velocities.22

In principle, the mapping coefficients can be arbitrary positive constants that are appro-

priately normalized,
∑

i cIi = 1 for each I = 1, . . . , N .22 This normalization ensures that

if each atom is displaced by a constant vector, then each CG site is displaced by the same

vector. However, for simplicity, the BOCS package requires that each atom is associated

with at most one CG site, i.e., for each atom i, cIi is non-zero for at most one CG site I.

Given this restriction, the mapped atomistic force on each CG site may be expressed

fI(r) =
∑
i∈I

fi(r) (7)

where the sum is performed over all atoms i that are “involved” in CG site, I, i.e., the atoms

i for which cIi > 0.22

Consistency and the many-body potential of mean force

It is straightforward to ensure that the CG model samples the mapped momentum dis-

tribution. (Of course, this does not imply that the CG model accurately describes any

other dynamical property.55,56) Because we have assumed that the CG sites correspond to
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disjoint atomic groups, the mapped CG momenta are statistically independent Gaussian

random variables.57 The CG model will be consistent with this mapped distribution if the

site masses are given by

MI
−1 =

∑
i∈I

c2Iimi
−1, (8)

which corresponds to ensuring that the Boltzmann distribution for the CG momenta has

the appropriate variance.22 Note that, if the mapping coefficients cIi determine the CG

coordinates as the mass center of each corresponding atomic group, then MI =
∑

i∈I mi.

In order for the CG model to sample the mapped distribution for the configuration and

volume, the Boltzmann weight for each CG configuration, R, must equal the net Boltzmann

weight for the atomic configurations, r, that map to R at the given volume, V . Accordingly,

the appropriate potential is the many-body potential of mean force (PMF), W :

exp[−βW (R, V, T )] = V N−n
0

∫
V n

dr exp[−βu(r, V )] δ(R−M(r)), (9)

where V0 is an arbitrary reference volume that ensures dimensional consistency.32,41,54,58–60

The BOCS software package employs two variational principles to determine the potential

U for the CG model. The force-20,61 and pressure-32,41 matching functionals are defined

χ2
1[U ] =

⟨
1

3N

∑
I

|fI(r) − FI(M(r))|2
⟩

(10)

χ2
2[U ] =

⟨⏐⏐⏐pint(r,p, v) − Pint(M(r),MP (p), v)
⏐⏐⏐2⟩ , (11)

where the angular brackets denote an equilibrium ensemble average for the high resolution

model. In practice we typically approximate these ensemble averages with configurations

sampled from high resolution simulations. By minimizing the functionals χ2
1 and χ2

2, the

BOCS toolkit determines U to approximate the configuration- and volume-dependence of

the PMF, respectively.22,32,41,62,63

Das and Andersen (DA) originally proposed weighting each configuration in χ2
1 by a
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factor of v2/3 in developing the pressure-matching method for systems in which the volume

isotropically fluctuates.32 Accordingly, the BOCS toolkit allows for the option of including

this scaling in χ2
1. However, this factor has no effect at constant V and appears to have little

practical significance for condensed phase systems undergoing isotropic volume fluctuations

at constant external pressure. Also, we note that the equivalence of Eq. (11) to the original

pressure-matching functional proposed by Das and Andersen requires that the CG masses

are consistently treated according to Eq. (8).

Approximate Potentials

We assume the following form for the CG potential:

U(R, V ) = UR(R) + UV (V ), (12)

where the interaction potential, UR, and volume-dependent potential, UV , are optimized

to approximate the configuration- and volume-dependence of the many-body PMF, respec-

tively.32,41

Interaction potential

The interaction potential, UR, is expressed as a sum of terms corresponding to different

interactions, ζ, involving groups of particles, λ, that depend on scalar functions, ψζ , of the

corresponding CG coordinates, Rλ:

UR(R) =
∑
ζ

∑
λ

Uζ(ψζλ(R)) (13)
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where ψζλ(R) = ψζ(Rλ).23,46 The Appendix illustrates this general potential form for a

typical molecular potential. The resulting force on site I is then

FI(R) =
∑
ζ

∑
λ

Fζ(ψζλ(R))∇Iψζλ(R), (14)

where Fζ(x) = −dUζ(x)/dx and ∇I = ∂/∂RI . We represent each force function as a linear

combination of basis functions, fζd(x), with constant coefficients ϕζd:

Fζ(x) =
∑
d

ϕζdfζd(x). (15)

Given this representation of the force functions, we define force field “basis vectors”23,46

GI;ζd(R) =
∑
λ

fζd(ψζλ(R))∇Iψζλ(R) (16)

such that the force on each site may be expressed:

FI(R) =
∑
ζ

∑
d

ϕζdGI;ζd(R) =
∑
D

ϕDGI;D(R) (17)

where, in the last expression, D is a “super-index” that specifies a combination ζd. Given

Eq. (17) for the CG forces, χ2
1 becomes a simple quadratic form in the force field parame-

ters. The parameters that minimize χ2
1 and, thus, provide an optimal approximation to the

configuration-dependence of the PMF are determined by solving the normal system of linear

equations23,47,63 ∑
D′

GDD′ϕD′ = bD (18)
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where

bD =

⟨
1

3N

∑
I

fI(r) · GI;D(M(r))

⟩
(19)

GDD′ =

⟨
1

3N

∑
I

GI;D(M(r)) · GI;D′(M(r))

⟩
. (20)

Equation (18) can be interpreted as the projection of either the atomic force field or the

many-body PMF (more precisely, the corresponding force field) onto the space of force fields

spanned by the basis defined by Eq. (17).22,23,46,62,64 Note that, if χ2
1 scales each configuration

by v2/3, then bD and GDD′ both inherit this scaling in Eqs. (18)-(20). In practice we then

divide bD and GDD′ by
⟨
v2/3

⟩
in order to preserve their original scale and dimensions.

Volume-dependent potential

According to Eq. (12), the pressure of the CG model may be expressed:

Pint(R,P, V ) = P 0
int(R,P, V ) + FV (V ) (21)

where

P 0
int(R,P, V ) =

2

3V
K (P) −

(
∂UR(R)

∂V

)
R̂

(22)

includes the kinetic and virial contributions to the pressure from UR, and FV (V ) = −dUV (V )/dV

is a “pressure correction” for the CG model. Since UR is optimized without regard to the

pressure, P 0
int will tend to dramatically overestimate the pressure of the underlying atomistic

model.21,32,38,41,65 Consequently, UV can be adjusted to ensure that the CG model provides

appropriate Boltzmann weight for each volume and, equivalently, that it accurately repro-

duces the pressure of the atomistic model. Importantly, UV does not impact the configuration

distribution at a fixed volume.66
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Das and Andersen32 suggested representing the volume-dependent potential as a sum of

basis functions:

UV (V ) =
∑
d

ψduV d(V ). (23)

where ψd act as parameters for UV , uV d are basis functions of the form

uV d(V ) =

⎧⎪⎪⎨⎪⎪⎩
N(V/v̄), for d = 1

N(V/v̄ − 1)d, for d ≥ 2

(24)

and v̄ is the average volume of the reference AA ensemble. The BOCS toolkit can also

employ other basis functions for representing UV . However, in practice Eq. (24) is quite

convenient, since often only two basis functions are required to accurately model equilibrium

density fluctuations at constant external pressure.32,41 The two coefficients then correspond

to corrections for the pressure and the compressibility:

∆Pint = −Nψ1/v̄ (25)

∆κ−1
T = 2Nψ2/v̄. (26)

Given the interaction potential, UR, determined from Eq. (18), UV is then determined

by minimizing the pressure-matching functional χ2
2 in Eq. (11). Given Eqs. (21)-(23) for the

pressure of the CG model, this pressure-matching variational principle reduces to a linear

least squares problem for the parameters ψd, which is then solved by a normal system of

equations analogous to Eq. (18). The resulting UV significantly reduces the pressure of the

CG model and will often provide a qualitatively reasonable description of the AA pressure

equation of state.32,41

The BOCS toolkit implements an iterative self-consistent pressure-matching method to

further refine UV such that the CG model quantitatively reproduces the AA pressure equation

of state, pint(V ).41 In this method, one first simulates the CG model in the constant NPT
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ensemble with a fixed interaction potential, UR, and a trial estimate for UV . This simulation

provides a local estimate of the CG equation of state, Pint(V ). The discrepancy between

the CG and AA equations of state then determines a correction to FV (V ) in analogy to

iterative Boltzmann inversion: δFV (V ) = pint(V )−Pint(V ). In practice this procedure often

quickly converges such that pint(V ) ≈ Pint(V ) quite accurately. This procedure corresponds

to determining UV by minimizing a relative entropy41,67,68 describing the overlap of AA and

CG distributions for the constant NPT ensemble:

Srel[U ] =

∫
dV

∫
V

dR pRV (R, V ) ln [pRV (R, V )/PRV (R, V ;U)] (27)

where pRV and PRV are the distributions for the mapped ensemble and for the CG model,

respectively.

g-YBG formulation

In the canonical ensemble at constant volume, the normal equations for the MS-CG potential

parameters are equivalent to a generalization of the Yvon-Born-Green equation from liquid

state theory.69,70 This can be seen by representing the CG force field with a continuous set

of basis functions such that Eq. (17) can be expressed46,47

FI(R) =
∑
ζ

∫
dx Fζ(x)GI;ζ(R;x). (28)

The normal MS-CG equations may then be expressed:

bζ(x) = ḡζ(x)Fζ(x) +
∑
ζ′

∫
dx′ Ḡζζ′(x, x

′)Fζ′(x
′) (29)

where

bζ(x) =
1

3N

⟨∑
λ

(∑
I

fI(r) · ∇Iψζλ(M(r))

)
δ (ψζλ(M(r)) − x)

⟩
(30)
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may be interpreted as an average atomic force along the ψζ order parameter, while

ḡζ(x) =
1

3N

⟨∑
λ

(∑
I

|∇Iψζλ(M(r))|2
)
δ (ψζλ(M(r)) − x)

⟩
(31)

Ḡζζ′(x, x
′) =

1

3N

⟨∑
λ̸=λ′

(∑
I

∇Iψζλ(M(r)) · ∇Iψζ′λ′(M(r))

)

× δ (ψζλ(M(r)) − x) δ (ψζ′λ′(M(r)) − x′)

⟩
(32)

are ensemble averages describing equilibrium structural correlations. Eq. (29) can provide

insight into the physical origin of the calculated potential, Uζ(x), since it decomposes bζ(x)

into a direct contribution from Uζ(x) and correlated indirect contributions from every other

interaction in the system.48,70

Moreover, we have previously demonstrated that bζ(x) can be directly calculated from

structures46,47

bζ(x) = kBT [dḡζ(x)/dx− Lζ(x)] (33)

where

Lζ(x) =
1

3N

⟨∑
λ

(∑
I

∇2
Iψζλ(M(r))

)
δ (ψζλ(M(r)) − x)

⟩
. (34)

In particular, if Uζ(x) is a central pair potential, then

bζ(r) = −(2r2/cζ)w
′
ζ(r)gζ(r) (35)

where gζ(r) is the radial distribution function, wζ(r) = −kBT ln gζ(r) is the corresponding

pair potential of mean force,71 and cζ is a dimensioned normalization constant. In this simple

case, Eq. (29) may be re-expressed

− dwζ(r)/dr = Fζ(r) +
∑
ζ′

∫
dx ḡ−1

ζ (r)Ḡζζ′(r, x)Fζ′(x), (36)

in direct analogy to the YBG equation.70
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These results also hold in the constant NPT ensemble as long as bζ and Gζζ′ are defined

according to Eqs. (19) and (20), respectively. However, if bζ and Gζζ′ include the v2/3

rescaling proposed in Ref. 32, then this analysis only approximately holds in the constant

NPT ensemble.

Extended Ensemble Formulation

The extended ensemble approach provides a simple framework for determining interaction

potentials that are transferable to multiple systems.31 An extended ensemble is defined as

a collection of multiple conventional ensembles that may differ in chemical identity or in

thermodynamic conditions. We assign a label, γ, and a probability, pγ, for each ensemble.

We define extended ensemble averages

⟨aγ(rγ)⟩ =
∑
γ

pγ ⟨aγ(rγ)⟩γ (37)

where rγ indicates a configuration for ensemble γ and ⟨· · ·⟩γ indicates the corresponding

conventional equilibrium ensemble average. In practice, we simply assign equal weight to each

γ included in the extended ensemble. For each ensemble, γ, we define a CG representation,

Γ = µ(γ), and a corresponding configuration mapping: RΓ = Mγ(rγ). This mapping then

determines a weight, pΓ =
∑

γ pγδγ,µ(γ), and also a many-body potential of mean force, WΓ,

for each Γ. In practice, the CG representation typically provides a one-to-one relationship

between the atomistic and CG ensembles, i.e., each CG ensemble Γ corresponds to a single

atomistic ensemble γΓ and pΓ = pγΓ

We seek to determine potentials UΓ that provide an optimal approximation to WΓ for

each Γ. The MS-CG force-matching variational principle can be readily extended for this

purpose by simply interpreting Eqs. (10) and (18)-(20) in terms of extended ensemble aver-

ages. If the potentials UΓ are treated independently for each Γ, then the extended ensemble

approach determines independent MS-CG models for each Γ. However, if the potentials
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share transferable parameters, then these parameters are determined to provide an optimal

approximation across the entire extended ensemble.

Computational Methods

The BOCS toolkit provides software tools for parameterizing the potential, U(R, V ), for a

CG model based upon information from an AA trajectory. Table 1 summarizes the primary

input and output for these tools. Figure 1 outlines the workflow for determining the interac-

tion potential, UR, while Fig. 2 outlines the workflow for determining the volume-dependent

potential, UV .

The cgmap tool generates a mapped ensemble as the CG representation of an AA en-

semble. The cgmap tool requires an AA trajectory file that contains atomically detailed

configurations and, optionally, the corresponding velocities and forces. The cgmap tool also

requires 1) a plain text file that determines the mapping coefficients, {cIi}, by specifying the

CG representation for each type of molecule in the system; and 2) a CG topology file that

specifies the type and connectivity of the sites in the CG model. Based upon the specified

mapping coefficients, the cgmap tool determines the CG representation of each AA configu-

ration according to Eq. (5). If the AA trajectory file includes velocity and force information,

the cgmap tool determines the mapped velocities and forces according to Eqs. (6) and (7).

The cgmap tool then provides a mapped CG trajectory file that can be analyzed using

standard GROMACS tools.

The cgff tool calculates the parameters for UR from the mapped CG trajectory file. The

cgff tool requires a plain text input file to specify the types of potentials, Uζ , included in UR

and also the basis functions, fζd, employed to represent each Uζ . The cgff tool also requires a

CG topology file to specify the instances, λ, of each interaction. Assuming that the mapped

CG trajectory contains explicit force information, the cgff tool calculates the force correlation

function, bD, and structural correlation function, GDD′ , according to Eqs. (19) and (20),
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respectively, for each pair of basis functions D = ζd and D′ = ζ ′d′. If forces are not present

in the mapped trajectory, the cgff tool calculates bD directly from structural information

according to Eq. (33). Although force-based calculations (i.e., via Eq. (19) ) require less

sampling to accurately determine bD, structure-based calculations (i.e., via Eq. (33) ) yield

equivalent results for sufficiently well sampled systems31,47,72 and have proven quite useful

for several applications.40,73 The cgff tool then solves the normal system of linear equations,

Eq. (18), for the potential parameters, ϕD. Finally, the cgff tool outputs these parameters,

as well as, bD, GDD′ , and additional supplemental files that characterize the system and

provide diagnostic information about the calculation.

The cgff tool treats a fairly wide range of CG potentials that can be represented according

to Eq. (13), i.e., bond-stretch potentials, bond-angle potentials, dihedral potentials, and

short-ranged pair potentials. The cgff tool can represent each of these potentials with either

piecewise constant functions, piecewise linear functions, or B-spline functions. The cgff

tool also implements several standard analytic functional forms, including harmonic bond-

stretch or bond-angle potentials, Fourier-series dihedral potentials, and Lennard-Jones-type

pair potentials. Additionally, the cgff tool allows for fixed “reference potentials,” URef
R , that

are specified by the user and can be of arbitrary complexity.23,74 In this case, the user must

supply an additional trajectory file specifying the resulting reference force, FRef
I , on each CG

site in each mapped AA configuration. The cgff tool computes a corresponding contribution

to each force projection, bRef
D , from the reference potential, i.e., using FRef

I in the place of fI

in Eq. (19). The cgff tool then optimizes the remaining terms in UR to match the remainder

of each force projection, δbD = bD − bRef
D . In particular, if Coulombic or other long-ranged

potentials are defined as reference potentials, then the cgff tool will determine the short-

ranged potentials that, when combined with the specified long-ranged potentials, provide an

optimal approximation to the many-body PMF.

The cgff tool provides several additional options for the calculation of ϕD and the resulting

output. The cgff tool can precondition the normal equations, Eq. (18), by normalizing the
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GDD′ matrix according to the norm of each column, the max of each row, the total variance

in each column, or the variance in bD. The cgff tool can solve these normal equations

via single value, Cholesky, UU, or LU decomposition.75 The cgff tool can regularize these

methods according to Bayesian inference76 or a simpler uncertainty estimation.77 The cgff

tool also provides several options for specialized diagnostic output, including error estimates,

eigendecomposition of ḠDD′ , and also decomposition of bD into contributions from different

interactions according to the g-YBG theory, i.e., Eq. (29).

Because it quantifies many-body structural correlations, the calculation of GDD′ can be

quite time-consuming for large systems with many interacting CG sites. As indicated by

Eq. (32), the cgff tool calculates the correlation between the forces generated on each site, I,

from each pair, λ and λ′, of nonbonded interactions. The cgff tool performs this calculation by

looping over all triples of interacting particles. For a CG model with N sites, this calculation

scales as O(N3). We have expedited this calculation by exploiting the symmetry of this loop

and by employing the OpenMPI framework to distribute the frames of the mapped trajectory

over multiple processors. This parallelization scales perfectly because each frame is treated

independently in calculating GDD′ and because this nested triple loop typically dominates

the time required for calculating ϕD.

We note that the MSCGFM code15 implements the normal equations, Eq. (18), as well

as several other numerical methods for minimizing χ2
1 to determine the MS-CG force field.

Lu et al. have provided an excellent discussion of various numerical methods for minimiz-

ing χ2
1, including methods for solving an over-determined system of linear equations with a

block-averaging approximation.15 In comparison to this block-averaging approach, the nor-

mal system of equations is more time consuming, due to the nested triple loop discussed

above, and also requires the numerical inversion of a matrix with a relatively high condition

number. Nevertheless, we find that, with proper choices of solution method, precondition-

ing, and regularization, our implementation performs well and, in test cases that we can

rigorously test, accurately determines the MS-CG potential. Additionally, because they cor-
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respond to a g-YBG integral equation that is explicitly expressed in terms of equilibrium

ensemble averages, the normal equations facilitate molecular insight into the system and

the resulting CG potentials.48,70 Moreover, the normal equations allow for the calculation of

these potentials directly from structural information.40,46,47,72

The cgff tool separates the calculated potential parameters, {ϕD}, into files corresponding

to different interactions. For interactions represented with simple functional forms, such as

bond-stretch interactions represented with harmonic potentials, the resulting parameters can

be immediately employed as input for CG simulations. However, for potentials represented

with more flexible functional forms, such as non-bonded interactions represented with spline

functions, the calculated parameters may require additional processing. The tables tool

performs the necessary smoothing, extrapolation, and interpolation to generate input files

for use in GROMACS simulations.43,44 The lammps tables.py script converts these files for

use in LAMMPS simulations.45

The cgff tool also implements the extended ensemble framework31 to determine transfer-

able potentials that provide an optimal approximation to the many-body PMF’s for multiple

mapped ensembles, Γ, that correspond to distinct chemical systems or distinct thermody-

namic state points. In this case, the cgff tool requires a mapped CG trajectory file for each

AA ensemble, as well as plain text and CG topology files that specify the contributions to

the interaction potential, UΓ, for modeling each Γ. The cgff tool also requires the user spec-

ify the weight, pγ, for each AA ensemble, γ, included in the extended ensemble. Given this

input, the cgff tool calculates bD and GDD′ as extended ensemble averages and determines

the optimal potential parameters, ϕD, from Eq. (18), as in the case of a single system.

The cgmap and cgff tools have been historically developed for use with GROMACS and

currently employ several functions and data structures from the GROMACS libraries.43,44

In particular, we currently employ GROMACS functionality to read and write GROMACS

trajectory and topology files, as well as for some aspects of the user interface employed by

the cgmap tool. In order to buffer these tools from the GROMACS source code and in
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order to facilitate future compatibility, we developed an interface that wraps all references

to GROMACS functions and addresses changes to relevant GROMACS libraries and files.

The BOCS toolkit is currently natively compatible with GROMACS 4.5.x, 4.6.x, 5.0.x, and

5.1.x.

The BOCS toolkit also provides tools for determining UV in order to simulate CG models

that sample isotropic volume fluctuations under constant external pressure. The first step

in this process is to estimate UV via pressure-matching.32,41 This calculation requires a fixed

CG interaction potential, UR, and a mapped CG trajectory file containing the mapped

configuration, M(rt), mapped momentum, MP (pt), and volume, Vt, for each time t. We

then evaluate, for each t, the pressure, P 0
int, that is defined by Eq. (22) and accounts for

the kinetic and interaction contributions to the instantaneous pressure of the CG model.

In practice, this can be done by post-processing the mapped CG trajectory file using the

‘-rerun’ option with the standard GROMACS mdrun tool. (Note that, if the CG potential

includes table files, then these files must be specified in the topology files for this post-

processing calculation and for subsequent CG simulations with GROMACS, as indicated by

* in Fig. 2.) Given the resulting set of CG pressures, {P 0
int(t)}, as well as the corresponding

AA pressures and volumes, {pint(t), Vt}, the pmatch tool then determines UV to minimize

χ2
2.

The resulting CG potential, U(R, V ) = UR(R) + UV (V ), can then be simulated with

lmp pmatch, which is a modification of the LAMMPS distribution45 from 17 June 2013 that

includes the contributions from UV in the barostat equation of motion. These simulations de-

termine an estimate for the pressure-volume equation of state, Pint(V ), for the CG model. In

practice, this CG model does not perfectly reproduce the pressure equation of state, pint(V ),

of the AA model.32,41,42 This discrepancy presumably arises due to differences between the

mapped and simulated configurational distributions at each V . Consequently, if necessary,

we perform iterative self-consistent pressure-matching in order to refine UV .41,42 The CG

and AA pressure equations of state are provided as input to the pmatch tool, which then
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estimates the necessary correction for UV (V ). This process can be iterated until the CG

model adequately reproduces the AA pressure equation of state. In practice, this usually

requires fewer than 10 iterations.41,42

There is no special workflow for determining UV for transferable potentials obtained via

the extended ensemble approach. In practice, we perform self-consistent pressure-matching

to determine a separate potential UV Γ for each mapped ensemble, Γ. In principle, it may be

possible to generalize the extended ensemble approach to determine a transferable pressure

correction for modeling multiple state points or chemically distinct systems with similar

interaction potentials. However, we have not yet tested this possibility.

Results and Discussion

In this section we illustrate the capabilities of the BOCS toolkit for parameterizing bottom-up

CG models. In particular, we determine system-specific MS-CG potentials that accurately

describe the structure of butane, heptane, and decane. We employ the extended ensemble

(XN) approach to determine a single set of transferable XN potentials for modeling the struc-

ture of all three liquids. Additionally, we determine volume potentials, UV , for accurately

modeling the pressure-volume behavior of each alkane system. Finally, we also employ the

BOCS toolkit to characterize many-body correlations in liquid methanol and to investigate

their contribution to the pair potential of mean force.

We performed atomistic MD simulations of three alkane systems with 267 butane, hep-

tane, or decane molecules in order to parameterize three corresponding system-specific MS-

CG potentials as well as a single set of transferable XN potentials. We also performed an

atomistic MD simulation of a mixture with 134 butane molecules and 134 decane molecules

in order to assess the predictive capability of the XN potential. We performed these sim-

ulations according to the procedures described in Ref. 42, which we briefly summarize in

the following. We performed all atomistic simulations with GROMACS 4.5.343, while using
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double-precision and a 1.0 fs timestep. We employed the OPLS-AA force field78 to describe

all interactions and employed the particle mesh Ewald method with a grid spacing of 0.08 nm

to model electrostatic interactions.79 In order to equilibrate these systems, we first heated

each system to 1000 K and then cooled the system back to room temperature at constant

volume. We next equilibrated each system at constant pressure, while employing the Berend-

sen thermostat and barostat.80 Finally, we simulated each system at 1.0 bar pressure and an

external temperature of 300 K, using the Parrinello-Rahman barostat81 and the stochastic

dynamics thermostat82 with an inverse friction constant of 0.1 ps. The production runs of

the pure systems were 45 ns in duration, while the production run of the mixture system was

70 ns. We note that, although we performed these simulations in double precision, BOCS

can parameterize CG potentials from either single- or double-precision simulations.

We first employed the cgmap tool to map these AA trajectories to their CG representa-

tion. Figures 3a, 3b, and 3c present the CG representations for butane, heptane, and decane

molecules, respectively. In each case, we represented terminal CH2CH3 groups with ‘CT’

sites and internal CH2CH2CH2 groups with ‘CM’ sites. We employed a standard molecu-

lar mechanics CG potential to model each system. The intramolecular potentials included

bond-stretch and bond-angle potentials between each pair and triple, respectively, of con-

secutive sites in the same molecule. The intermolecular potentials included short-ranged

pair potentials between each pair of sites in distinct molecules. Table 2 lists the interactions

included in the CG models for each liquid. The interactions that are highlighted in bold font

were described by transferable potentials in the XN models, i.e., the XN models employed

the same potential function for modeling these interactions in each alkane system. Note that

the CG sites were not charged and that the intramolecular potential for the CG model of

decane did not include a dihedral potential.

We next employed the cgff tool to determine system-specific MS-CG potentials20,22 for

each pure alkane system. Additionally, we also defined a parameterization extended ensemble

by assigning a weight pγ = 1/3 to each pure alkane system. We then employed the cgff tool
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to determine a single set of transferable XN potentials for optimally approximating the

many-body PMF for all three systems. We note that we employed the v2/3 rescaling in these

calculations, although this appears to have minimal impact upon the resulting potentials.

The Supporting Information section presents the calculated intramolecular potentials.

Figure 4 presents the calculated nonbonded pair potentials for CT-CT, CT-CM, CM-

CM pairs in panels a, b, and c, respectively. The red, blue, and green solid curves in

Fig. 4 indicate the system-specific MS-CG pair potentials for butane, heptane, and decane,

respectively. Each MS-CG potential reflects two characteristic distances of approximately

0.5 nm and 0.8 nm. The CM-CM and CT-CM MS-CG potentials demonstrate relatively weak

attraction and are quite similar for heptane and decane. The XN potentials are quite similar

to the MS-CG potentials for these interactions. In comparison to the CM-CM and CM-CT

potentials, the CT-CT potentials tend to be much more attractive and demonstrate much

greater variation between different liquids. In particular, the CT-CT MS-CG potentials

for butane and heptane are much more attractive than the CT-CM or CM-CM MS-CG

potentials. The XN CT-CT potential is most similar to the corresponding MS-CG potential

for butane.

We then employed the pmatch tool to determine the volume potential, UV , via pressure-

matching.32,41 In particular, for each of the three pure liquid alkane systems, we determined

two distinct volume potentials for compatibility with the system-specific MS-CG potential

and the transferable XN potential. In each case, we represented UV according to Eq. (24) with

two basis functions that correspond to corrections for the mean pressure and the compress-

ibility according to Eq. (25) and (26). The resulting potentials, UV , provided a qualitative,

but not quantitative description of the AA pressure-volume fluctuations. Consequently, we

employed the self-consistent pressure-matching approach described in Section III to itera-

tively refine UV .41,42 Table 3 expresses the final parameters for UV in terms of corrections

to the mean pressure and compressibility. Table 3 also presents the number of iterations re-

quired to optimize UV for each potential and each system. In almost all cases, self-consistent
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pressure-matching converged within 6 iterations.

However, butane required special treatment during this pressure matching procedure.

Because the CG model adopts a particularly high resolution for butane, the necessary pres-

sure correction is quite small and requires special care. In particular, the first 10 iterations of

self-consistent pressure-matching did not converge upon a pressure correction for the MS-CG

butane model that simultaneously reproduced both the mean pressure and the compressibil-

ity of the AA model. Consequently, we selected the ψ1 and ψ2 coefficients from two different

iterations that accurately modeled the mean pressure and the compressibility, respectively.

Because the XN potential for butane is more attractive than the corresponding MS-CG po-

tential, the XN butane model requires an even smaller pressure correction. Indeed, given

the XN interaction potential, the volume potential that minimized χ2
2 resulted in the XN

butane model vaporizing. Consequently, in order to accurately reproduce the AA pressure-

volume behavior with the XN butane model, we discarded the parameters {ψ1, ψ2} obtained

directly from pressure matching and performed iterative pressure matching starting from the

trial potential UV = 0. Starting from this trial potential, the iterative pressure-matching

determined a satisfactory pressure correction with a single iteration.

All simulations of CG models were performed with the lmp pmatch program included

in the BOCS toolkit. These CG simulations employed the MTTK barostat51,83 and Nose-

Hoover chain thermostat84 with the default chain length of 3. Otherwise, these simulations

employed equivalent parameters to the AA simulations. Figures 5-7 quantify the equilibrium

structure and pressure-volume behavior of the CG models for the pure alkane liquids. The

Supporting Information more exhaustively compares the AA and CG models.

The system-specific MS-CG and transferable XN potentials reasonably describe the equi-

librium structure for each pure liquid. Panels a, b, and c of Fig. 5 present the CT-CT non-

bonded radial distribution functions for butane, heptane, and decane, respectively. In each

panel, the dashed line presents results for the mapped AA ensemble, while the solid lines

present results for the CG models. The MS-CG models reproduce the AA CT-CT rdfs with
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nearly quantitative accuracy. In particular, the MS-CG models describe the asymmetry in

the first peak of the AA butane rdf and also accurately reproduce the increasing structure in

the rdf that is observed with increasing chain length. Importantly, although the XN models

employ the same transferable potentials for modeling each liquid, the XN models also repro-

duce the AA CT-CT rdfs with nearly quantitative accuracy. The Supporting Information

demonstrates that the MS-CG and XN models provide a slightly less accurate, although still

very satisfactory, description of the AA rdfs for CM-CM and CM-CT pairs.

Figure 6 compares simulated distributions of the radius of gyration, RG, for each pure

alkane system. In each case, the MS-CG and XN models generate almost identical distri-

butions. In the case of butane, RG corresponds to the bond between CG sites, which is

accurately described by the CG models. In the cases of heptane and decane, the CG models

reasonably reproduce the overall shape of the AA distributions and, moreover, reproduce the

average RG of the AA models to within approximately 1% error. However, the CG models

fail to reproduce the fine details of the AA distributions. In particular, the AA distributions

are multimodal with relatively sharp peaks at large RG, which correspond to all atomic

torsions sampling trans conformations, and long tails toward more compact conformations.

In contrast, the CG distributions are simpler unimodal distributions and, in particular, fail

to reproduce the sharp peaks of extended conformations. This discrepancy reflects the ten-

dency of the CG models to sample smaller angles (between triples of bonded sites) than

the AA models, as seen in Supporting Figures 7b and 8c. Ultimately, this error reflects

the inability of the simple molecular mechanics potential to capture correlations between

the bond-stretch and bond-angle in the mapped ensemble.77,85 Interestingly, as the alkane

chains become progressively longer, one expects that the AA distribution will become in-

creasingly simple as more dihedral angles contribute to RG and, consequently, more similar

to the CG distribution.

Figure 7 presents the average internal pressure of each model as a function of the volume.

As a consequence of the iterative self-consistent pressure-matching approach, the CG models
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quantitatively reproduce the AA pressure-volume relations.

We briefly assessed the predictive power of the XN approach by considering a 50:50 bu-

tane:decane mixture, which was not considered in parameterizing the XN potential. Figure 8

presents the intermolecular CT-CT rdfs obtained from AA simulations and from CG simu-

lations with the XN potential as the dashed black and solid red curves, respectively. Panels

a, b, and c of Fig. 8 correspond to CT sites from butane-butane pairs, from butane-decane

pairs, and from decane-decane pairs. Although the XN potential was parameterized without

information about the interactions or packing in butane-decane mixtures, the XN model de-

scribes the structure of this mixture quite accurately. The XN model overestimates the AA

CT-CT rdf for butane-butane pairs, but almost quantitatively reproduces the AA CT-CT

rdfs for butane-decane and decane-decane pairs. The Supporting Information demonstrates

that the XN model also accurately reproduces the AA CT-CM rdf for butane-decane and

decane-decane pairs, as well as the CM-CM rdf for decane-decane pairs. Figure 9 presents

the results of self-consistent pressure matching for this mixture. The CG model accurately

reproduces the pressure-volume behavior of the AA model by construction.

In addition to determining the interaction potential, UR, the cgff tool also characterizes

many-body correlations in the mapped AA ensemble and quantifies their contribution to UR.

In order to illustrate these features, we consider a system of 968 methanol molecules. As

illustrated in Fig. 3d, we represent each methanol with a single site that corresponds to its

mass center. We choose this smaller molecule and simpler representation for convenience,

since the many-body correlations in the mapped ensemble are then simpler to analyze and

interpret. We performed AA simulations for the methanol system in the same manner as

described above for the alkane systems, except that the AA production simulation lasted

only 5 ns. We did not simulate the resulting CG potential, although previous studies have

demonstrated that the MS-CG 1-site model quite accurately describes the structure of liquid

methanol.21

Panel a of Fig. 10 employs Eq. (36) to decompose the pair mean force, −w′(r), between
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methanol molecules into the direct force, F (r) = ϕ(r), between the pair and an indirect

“three-body” contribution from correlated interactions with other particles in the environ-

ment. The pair mean force can be directly calculated from the pair potential of mean force,

w(r) = −kBT ln g(r), while the direct force is determined via force-matching. The cgff tool

uses Eq. (36) to decompose the indirect contribution to the pair mean force into contribu-

tions from every other type of interaction in the system.70 Note that the 3-body contribution

is attractive at short ranges, indicating that the environment forces particles closer together

once the pair approaches 0.6 nm of one another. It is also interesting that the 2-body MS-

CG force function includes a relatively large repulsion corresponding to a desolvation barrier

near 0.4 nm that is not so pronounced in the pair mean force. This desolvation barrier in the

2-body force function is partially offset by the contributions of correlated interactions from

the environment, as described by the the metric tensor, Ḡζζ′(r, z). We note that, although

we included the v2/3 rescaling in calculating bζ and Ḡζζ′ , we find that Eq. (35) remains valid

to within the numerical precision of the calculations.

Because the one-site CG methanol model considers only one type of interaction, the

metric tensor reduces to a single block matrix that depends upon the distances, r and r′, of

a pair of sites from a single central site. Panel b of Fig. 10 presents an intensity plot of this

metric tensor, Ḡ(r, r′). As defined by Eq. (32), Ḡ(r, r′) describes the contribution to the pair

mean force at r from correlations with particles a distance r′ away. In particular, Ḡ(r, r′)

corresponds to the average cosine of the angle formed between such triplets of particles.48

Red and blue regions of this intensity plot indicate positive and negative elements of Ḡ, which

in turn correspond to acute and obtuse angles between triplets, respectively. As previously

described,48 the negative blue band along the diagonal r′ ≈ r indicates the tendency of

equidistant particles to form obtuse angles due to their excluded volume. The positive red

off-diagonal stripes along r′ ≈ r ± σ correspond to correlated forces arising from molecules

in adjacent solvation shells about a central molecule, where σ characterizes the size of the

molecules. The alternating red and blue bands moving out from the diagonal reflect the
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successive solvation shells of methanol molecules.

Conclusions

We are releasing the BOCS toolkit as open source software for parameterizing bottom-up CG

models. As we illustrated for alkane mixtures, the BOCS toolkit provides a robust imple-

mentation of both the MS-CG and g-YBG methods for determining interaction potentials.

In principle, the g-YBG approach may be used for determining potentials directly from ex-

perimentally determined structure ensembles.72 In this context, the g-YBG framework may

prove useful for interpreting and possibly improving the reference states employed in knowl-

edge based potentials that are empirically inferred from known protein structures.70,86,87

Moreover, the BOCS toolkit implements an extended ensemble approach for optimizing the

transferability of these potentials and also a self-consistent pressure-matching method for

accurately modeling isotropic volume fluctuations at constant external pressure. We have

recently demonstrated that the resulting volume potential can also be adapted88 as a function

of the local density89–92 in order to model inhomogeneous systems. Finally, the BOCS toolkit

provides unique capabilities for interpreting CG potentials and their relation to many-body

correlations in condensed phases.

At the same time, it is worth noting several limitations of the BOCS toolkit. First and

most fundamentally, in contrast to iterative methods, such as Iterative Boltzmann Inver-

sion,18 the Inverse Monte Carlo method,19 or relative entropy minimization,67,68 the MS-

CG20–24 and g-YBG methods46,47 do not guarantee that the CG interaction potential will

necessarily reproduce any particular structural features of the underlying mapped ensem-

ble.93 In practice, the MS-CG and g-YBG models often provide a very good description of

intermolecular structure, as illustrated in this work. More generally, though, the structural

fidelity of MS-CG and g-YBG models depends upon the adequacy of the approximate po-

tential to account for the relevant many-body correlations in the mapped ensemble.70,77,85
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Consequently, we intend in future work to implement more complex potentials into the

BOCS toolkit and also develop more predictive tools for identifying appropriate CG rep-

resentations. Furthermore, it may be fruitful to develop an iterative wrapper for the cgff

tool in order to take advantage of iterative versions of the MS-CG/g-YBG method that can

provide improved accuracy for modeling complex structure ensembles.77,94–96 Similarly, while

the BOCS toolkit is currently useful for accurately modeling the pressure equation of state

for homogeneous systems, we anticipate developing tools for modeling other thermodynamic

properties. Additionally, the BOCS toolkit is currently limited by the requirement for simple

CG representations in which sites correspond to disjoint atomic groups and by the restriction

to systems that are either at constant volume or that sample isotropic volume fluctuations.

These limitations clearly motivate future work to further develop the BOCS toolkit. More-

over, in future work we envision implementing more efficient methods for calculating the

GDD′ matrix, as well as checkpointing methods for saving the results of partial calculations.

Finally, we note that the current version of the BOCS toolkit is incompatible with the

most recent versions of GROMACS and LAMMPS, as well as with the trajectory formats

of other MD engines. However, we are currently developing the next version of the BOCS

toolkit, which will eliminate all GROMACS dependencies from the cgmap and cgff codebase.

Instead, these tools will employ a simpler topology file format and be compatible with both

plain text and binary trajectory file formats. These formats can then be readily translated

for use with Gromacs2016 or other MD engines. Moreover, we are also developing software

for employing barostats with CG pressure corrections in current and future distributions of

the LAMMPS package. These developments should significantly extend the utility of the

BOCS toolkit.

Nevertheless, despite the aforementioned limitations, we hope that the BOCS toolkit will

provide a useful complement to the software already available for developing bottom-up CG

models. The source code, as well as documentation and tutorials, for the BOCS toolkit are

available for download at https://github.com/noid-group/BOCS under the terms of the
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GPLv3 license.

Appendix

The theory section employs rather abstract notation in order to address a correspondingly

general class of interaction potentials, UR. This appendix provides a more concrete and

explicit treatment of UR for a common molecular mechanics potential with contributions

from bond-stretch, bond-angle, dihedral, and pair potentials. The potential in configuration

R may be expressed

UR(R) =
∑
ζ

∑
λ

Uζ(ψζλ(R))

=
bonds∑
α

U
(b)
tb(α)

(bα) +

angles∑
α

U
(θ)
tθ(α)

(θα) +
dihedrals∑

α

U
(ψ)
tψ(α)

(ψα) +

pairs∑
(I,J)

U
(2)
t2(I,J)

(RIJ).(38)

The first term in Eq. (38) describes all contributions from bond-stretch interactions. In this

first term, α is a label indexing each bond, the sum ranges over all bonds, tb(α) indicates

the type of bond α, U
(b)
tb(α)

is the bond-stretch potential governing all bonds of type tb(α),

and bα indicates the length of bond α in configuration R. The second and third sums in

Eq. (38) describe similar contributions from bond-angles and dihedral angles with α indexing

the bond-angles and dihedral angles, respectively. Finally, the fourth term describes all non-

bonded contributions from pair potentials. In this fourth term, (I, J) indicates a particular

pair of sites, the sum is performed over all non-bonded pairs, t2(I, J) specifies the particular

non-bonded potential, U
(2)
t2(I,J)

, describing the interaction between the pair, and RIJ is the

distance between the pair in configuration R. Given this potential, the force on each site K
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may be expressed

FK(R) =
∑
ζ

∑
λ

Fζ(ψζλ(R))
∂ψζλ(R)

∂RK

=
bonds∑
α

F
(b)
tb(α)

(bα)
∂bα
∂RK

+

angles∑
α

F
(θ)
tθ(α)

(θα)
∂θα
∂RK

+
dihedrals∑

α

F
(ψ)
tψ(α)

(ψα)
∂ψα
∂RK

+

pairs∑
(I,J)

F
(2)
t2(I,J)

(RIJ)
∂RIJ

∂RK

, (39)

where F
(b)
tb(α)

(x) = −dU
(b)
tb(α)

(x)/dx is the bond-force function, while F
(θ)
tθ(α)

(x), F
(ψ)
tψ(α)

(x), and

F
(2)
t2(I,J)

(x) are corresponding force functions governing angles, dihedrals, and pair non-bonded

interactions, respectively. Each of these force functions is represented by a linear combination

of basis functions. For instance, if tb specifies a particular type of bond governed by the

potential function U
(b)
tb

, then the corresponding bond-force function is represented

F
(b)
tb

(x) =
∑
d

ϕ
(b)
tbd
f
(b)
tbd

(x), (40)

where d indexes parameters, ϕ
(b)
tbd

, that describe the bond force function F
(b)
tb

(x), while f
(b)
tbd

(x)

indicates the corresponding basis function of a single variable. Similar expansions are adopted

for the angle, dihedral, and non-bonded force functions.

Given this expansion the total force on site K may be expressed

FK(R) =
∑
D

ϕDGK;D(R)

=

b−types∑
tb

∑
d

ϕ
(b)
tbd
GK;tbd(R) +

θ−types∑
tθ

∑
d

ϕ
(θ)
tθd

GK;tθd(R)

+

ψ−types∑
tψ

∑
d

ϕ
(ψ)
tψd

GK;tψd(R) +

pair−types∑
t2

∑
d

ϕ
(2)
t2d

GK;t2d(R). (41)

In Eq. 41, the first double sum describes contributions from bond-stretch forces. In this

term, the first sum is over all types, tb, of bonds, while the second sum ranges over the
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parameters ϕ
(b)
tbd

describing the potential for bonds of type tb. The corresponding force field

basis vectors may be expressed

GK;tbd(R) =
∑
α∈tb

f
(b)
tbd

(bα)
∂bα
∂RK

, (42)

where the sum is performed over all bonds α of type tb. The remaining terms represent

corresponding contributions from bond-angle, dihedral, and pair potentials.

Supporting Information Available

Details of simulated potentials, as well as additional comparison of AA and CG models.
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semble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643.

(85) Das, A.; Lu, L.; Andersen, H. C.; Voth, G. A. The multiscale coarse-graining method. X.

Improved algorithms for constructing coarse-grained potentials for molecular systems.

J. Chem. Phys. 2012, 136, 194115.

(86) Sippl, M. J. Calculation of conformational ensembles from potentials of mean force: An

approach to the knowledge-based prediction of local structures in globular proteins. J.

Mol. Biol. 1990, 213, 859–883.

(87) Skolnick, J. In quest of an empirical potential for protein structure prediction. Curr.

Opin. Struct. Biol. 2006, 16, 166–171.

41



(88) DeLyser, M. R.; Noid, W. G. Extending pressure-matching to inhomogeneous systems

via local-density potentials. J. Chem. Phys. 2017, 147, 134111.

(89) Pagonabarraga, I.; Frenkel, D. Dissipative particle dynamics for interacting systems. J.

Chem. Phys. 2001, 115, 5015–5026.

(90) Moore, J. D.; Barnes, B. C.; Izvekov, S.; Ĺısal, M.; Sellers, M. S.; Taylor, D. E.;
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Tables

Table 1: Tools included in the BOCS toolkit with their primary inputs and
outputs

Tool Purpose Input Output

cgmap Maps AA trajectory
AA trajectory, CG
and map topologies

Mapped CG
trajectory

cgff
Determines
interaction potential,
UR

Mapped CG
trajectory, CG
potential definition

Interaction potential
parameters, ϕD

tables
Converts CG
potentials to
GROMACS format

CG potential
parameters

GROMACS table files

trans-
late table.py

Converts CG
potentials to
LAMMPS format

GROMACS table files LAMMPS table files

pmatch
Determines volume
potential, UV

AA, CG pressures
and volumes

Volume potential
parameters, ψd

lmp pmatch
Simulates CG model
with U = UR + UV

LAMMPS table files,
pressure correction

Simulated CG
trajectory
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Table 2: Contributions included in the interaction potential for each alkane
system. Highlighted interactions correspond to XN potential functions that are
employed in multiple alkane systems.

Molecule Bonds Angles Nonbonded
Butane CT-CT - CT-CT
Heptane CT-CM CT-CM-CT CT-CT

- - CT-CM
- - CM-CM

Decane CT-CM CT-CM-CM CT-CT
CM-CM - CT-CM

- - CM-CM

Table 3: Average corrections for the pressure and inverse compressibility, as
well as the number of iterations required by self-consistent pressure-matching.
Pressures and inverse compressibilities are given in units of 103 bar. The asterisk
(*) indicates that the pressure correction did not converge within 10 iterations
and was manually determined according to the procedure described in Section .

⟨FV ⟩ ∆κ−1
T NIter

System MS-CG XN MS-CG XN MS-CG XN
Butane -0.36 0.033 -0.86 -0.67 * 1
Heptane -0.77 -1.59 -1.57 -2.93 6 6
Decane -3.15 -2.46 -6.23 -6.23 4 6
But/Dec Mix - -1.55 - -3.50 - 3

44



Figures

Figure 1
Workflow for the force-matching/g-YBG component of the BOCS toolkit. Boxes with

sharp corners denote files, while boxes with rounded corners indicate operations performed
on these files. Boxes filled with gray represent software tools provided in the BOCS toolkit.
The dashed box indicates the major output of this workflow: the CG interaction potential,

UR.
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Figure 2
Workflow for the pressure-matching component of the the BOCS toolkit. See legend of
Figure 1 for the meaning of the box shapes and outlines. The dashed box indicates the

major output of this workflow: the CG volume potential, UV .
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Figure 3
Mapping schemes for CG models superimposed upon the corresponding all-atom models,
which are indicated in ball-and-stick representation. The CG sites (transparent spheres)

are associated with the mass centers for the corresponding atomic groups, which are
enclosed by the dashed circles. The size of the CG spheres indicates the distance at which
the corresponding site-site radial distribution function vanishes, providing an estimate of

the excluded volume for each site.

47



-1.4

0

U
 (

k
J 

m
o
l-1

)
Butane

Heptane

Decane

XN

-0.7

0

U
 (

k
J 

m
o
l-1

)

0.5 1 1.5

r (nm)

-0.7

0

U
 (

k
J 

m
o
l-1

)

a)

b)

c)

Figure 4
Calculated nonbonded potentials for a) CT-CT, b) CT-CM, c) CM-CM pair interactions.

The solid red, blue, and green curves present MS-CG potentials calculated for butane,
heptane, decane, respectively. The dashed black curves present the transferable XN

potentials.
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Figure 5
Radial distribution functions for the CT-CT pair interactions in a) butane, b) heptane, and

c) decane. The dashed black, solid blue, and solid red curves present results for the
mapped atomistic ensemble, the system-specific MS-CG model, and the transferable XN

model, respectively.
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Figure 6
Probability distributions for the radius of gyration in a) butane, b) heptane, and c) decane.
The dashed black, solid blue, and solid red curves present results for the mapped atomistic
ensemble, the system-specific MS-CG model, and the transferable XN model, respectively.
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Figure 7
Simulated pressure-volume equations of state for a) butane, b) heptane, and c) decane.
The error bars indicate the standard error of the corresponding bin. The dashed black,
solid blue, and solid red curves present results for the mapped atomistic ensemble, the

system-specific MS-CG model, and the transferable XN model, respectively.
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Figure 8
CT-CT radial distribution functions in the 50:50 butane-decane mixture for CT sites in a)
butane-butane, b) butane-decane, and c) decane-decane pairs. The dashed black and solid

red curves present results for the atomistic model and for the extended ensemble CG
model, respectively.
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Pressure-volume equations of state for 50:50 butane-decane mixture. The error bars
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curves present results for the atomistic model and for the extended ensemble CG model,
respectively.
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curve presents the MS-CG pair force, F (r) = ϕ(r), that minimizes χ2
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presents the 3-body (indirect) contributions to the pair mean force. Panel b) presents the
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