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Abstract

The TERMES system is a robot collective capable of autonomous construc-
tion of 3D user-specified structures. A key component of the framework is
an off-line compiler which takes in a structure blueprint and generates a di-
rected map, in turn permitting an arbitrary number of robots to perform
decentralized construction in a provably correct manner. In past work, this
compiler was limited to a non-optimized search approach which scaled poorly
with the structure size. Here, we first recast the process as a constraint sat-
isfaction problem (CSP) to apply well-known optimizations for solving CSP
and present new scalable compiler schemes and the ability to quickly gener-
ate provably correct maps (or find that none exist) of structures with up to
1 million bricks. We compare the performance of the compilers on a range
of structures, and show how the compilation time is related to the inter-
dependencies between built locations. Second, we show how the transition
probability between locations in the structure affect assembly time. While
the exact solution for the expected completion time is difficult to compute,
we evaluate different objective functions for the transition probabilities and
show that these optimizations can drastically improve overall efficiency. This
work represents an important step towards collective robotic construction of
real-world structures.

Keywords: Multi-Robot Systems, Assembly, construction, Autonomy,
Compiler
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1. Introduction

Autonomous robots have the potential to revolutionize the construction
industry enabling rapid fabrication of inexpensive structures, novel designs,
and construction in novel settings. Researchers and industrial specialists
have proposed many solutions to these challenges, one of which involves
collectives of autonomous mobile robots which can assemble structures much
larger than the size of the individuals [1]. By focusing on distributed scalable
coordination, such systems may deploy many robots to work efficiently in
parallel and be tolerant to individual failures. Although robot collectives
have received a lot of attention over the past couple of decades [2], most
demonstrations are limited to controlled laboratory settings, relatively small
assemblies, and/or small collectives. Open challenges range from scalable
algorithms to capable, low-maintenance hardware. Here, we focus on the
former, i.e. improving the algorithmic framework in terms of how it scales
with the size of the structure. We present our results in the context of
the TERMES system presented in previous literature [3, 4, 5, 6], but our
approach may generalize to other distributed construction systems.

The TERMES hardware consists of custom bricks and simple robots capa-
ble of climbing on, navigating, and adding bricks to the structure (Fig. 1.A).
Inspired by construction in social insects, the robots coordinate construction
implicitly through their environment in a scalable manner. Despite this mini-
malistic approach the system has been shown to assemble 3D structures with
provable guarantees, by relying on a combination of an off-line compiler and
an onboard rule set. The compiler converts the structure blueprint to a 2D-
map with assembly locations, the desired number of bricks at each location,
and designated travel directions between locations (Fig. 1.B). This map is
given to an arbitrary number of robots, which follow these instructions and
add material as determined by the onboard rule set which is dictated solely
by the limitations of the robot platform used (Fig. 1.C-D). The scalability of
the TERMES and similar systems is determined by several factors, including
1) hardware cost and manufacturing complexity; 2) robot reliability and how
likely failures are to disrupt system progress; 3) how the coordination mech-
anisms scale with the size of the collective; 4) how the compiler computation
time scales with the size of the structure; and finally, and 5) how efficiently
robots can reach the assembly frontier.

Fabrication and robot reliability (points 1-2) were addressed in [4]. The
system was designed with minimalism in mind - co-design of robots, bricks,
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Figure 1: A) Photo of the TERMES system. B) Example of the map generated by the
compiler (top view). The digits indicate the number of bricks at each location; arrows how
robots can transition between locations. System limitations include that bricks cannot be
added in between others bricks (C, dimetric view), and that robots can climb at most one
brick height between neighboring locations (D, side view). The set of structures which are
compilable are not necessarily intuitive. E) shows a structure which cannot be compiled,
because the only way for a robot to complete the center would be an assembly move of
type C.

and algorithms resulted in a simple robot costing ~$2K with a 1-week as-
sembly time. The cost of the mechanics was brought down considerably in a
a subsequent paper [6]. To support reliability, the focus was not on achiev-
ing perfect behavior, but rather to enable robots to recognize and fix errors
before they propagated. Scalability of the collective (point 3) was addressed
implicitly by relying on the structure as a shared physical database through
which the robots can coordinate [3, 5, 6]. Here, we focus instead on improv-
ing the TERMES compiler to make it feasible to compile maps of large-scale
structures (point 4). The work presented in this paper includes that of the
conference paper presented at the International Symposium on Distributed
Autonomous Robotic Systems (DARS) 2018 [7], with an additional contri-
bution of showing how the transition probabilities between locations in the
map affect structure assembly time, and how these can be optimized such
that robots can complete the structure significantly faster (point 5).

First, we recast the compiler originally described in [3] (Sec. 3) as a back-
tracking solution to a constraint satisfaction problem (CSP) with pairwise,
partial, and global constraint checking. We show that the original compiler
scales poorly with the size of the structure (Sec. 4). By examining the be-
havior of the original search as a solution to a CSP, we are able to achieve
significant improvements by formulating a new CSP that better exploits for-
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ward checking pairwise constraints during the backtracking search (Sec. 5).
We then describe and prove an entirely new formulation for generating maps
that is not based on search, but an iterative method that builds up feasible
maps by considering locations in a breadth-first manner starting from the
exit location (Sec. 6). We show the ability of the latter to compile struc-
tures with up to 1 million bricks in ~1 min on commodity hardware. We
compare the performance of these compilers on different sets of structures
(Sec. 7), including unbuildable ones which are computationally intractable
for search-based compilers. Finally, we show how, after the map has been
compiled, construction speed may be improved simply by altering the transi-
tion probabilities between locations, with examples of a 2 order of magnitude
improvement in completion time (Sec. 8).

2. Related Work

Collective robotic construction can be achieved in a variety of ways, and
examples include pre-programmed robots for functional structures [8, 9],
template-based construction [10], centralized controllers that allow for paral-
lelism [11], communication-based coordination [12, 13|, and compiler-based
systems [3, 14, 15].

Compilers for generating matter, which take high-level specifications and
generate parallel assembly steps, are used in a variety of fields, e.g. digital
materials [16], self-assembly, and modular robots [17]. In the construction
setting, compilers must take into consideration the physical constraints of
both building material and the robots that manipulate it. Constraints may
exist both in mechanisms (e.g. the ability to traverse the structure) and
perception/cognition (the ability to sense/remember the state of the sur-
rounding structure). Broadly categorized, there are two ways to approach
compilers [2]. The first is to define a set of sub-structures for which an assem-
bly plan is known, and then to decompose new structures into combinations
of those. The second is to compile based purely on the physical constraints
of the system. Although the first method makes reasoning and guarantees
easier, it also limits the set of structures (some structures that robots are
physically capable of building cannot be compiled). The second method
does not artificially restrict the set of buildable structures, but makes it hard
to reason about what is buildable. In case of the latter, it is therefore critical
that compilers can quickly assess whether or not a structure is buildable, or
potentially come up with alternative solutions [18, 5.

4
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An example of the first approach include Seo et al. [15] who presented a
compiler for 2D assembly of simply connected structures of floating bricks
by boat-like robots, which decomposes structures into linear cells. Another
example involves that of Lindsey et al. [11, 19] who presented a compiler
for assembly of strut structures by teams of quadcopters. The struts could
be assembled into structurally stable cubes. Consequently, the compiler was
designed to generate assembly rules for any structure which was decompos-
able into such special cubic structures. Both of these systems have a concise
definition of the class of compilable structures.

The TERMES compiler is search-based and uses hardware limitations as
constraints. As previously mentioned, this makes it harder to infer which
structures are buildable. Figure 1.B and E shows structures which are build-
able and unbuildable, respectively, despite the fact that they differ by only
one location and despite the fact that it is possible for a robot to physically
assemble each separate location. The issue is that there is no way to consis-
tently order the assembly steps without violating the constraint shown in C.
Currently, for TERMES-like constraints, there is no good specification for
which structures have valid maps, other than when a map is found. This
is especially problematic if the compiler used is slow and has a long run-
time before failing. Here, we show that the compiler presented in [3] scales
poorly with the size and complexity of the structure, and present an alter-
native compilation method, such that arbitrary structures can be compiled
and checked quickly.

The second contribution of the paper concerns construction efficiency:
i.e. after the offline compilation, how fast can the structure be completed
by a given number of robots moving stochastically according to the map.
The randomized execution model makes global state sharing unnecessary
and thus makes concurrent execution between an arbitrary number of robot
easy. However, it also introduces inefficiencies because of 1) physical bot-
tlenecks which limits the number of robots that can simultaneously pass
through a location and 2) construction order, i.e. the need for some actions
to be completed before others can take place. Related work on optimizing
assembly plans for TERMES focus on optimizing the map structure [18].
Here, we leave the original map in place and instead focus on optimizing the
probabilities between different paths through the map. Past work on opti-
mizing stochastic assembly policies under such spatial- and order-constrained
scheduling is limited. In [20], the authors analyze stochastic assembly algo-
rithms constrained both by assembly orders and by raw materials through
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chemical reaction models. In [21] the problem of optimizing transitions for
material transport under spatio-temporal constraints is addressed, however,
the transition probabilities are constrained to a relatively small parameter-
ized model. Efficient spatial allocation of assembly robots have been shown
in [22, 23, 14], with the ability to adapt to local failures and shape changes
through space partitioning.

3. Problem Formulation

A structure consists of a finite set of locations L that each have integer
x and y location, ie. (l,,l,) =1 € L. Two locations [,k € L are said
to be neighbors when either the x or y differ by one, but not when both
are different. This type of neighbor relation corresponds to a distance of
1 with the Manhattan distance metric. A path is a sequence of locations

u p = (l1,la,..,Iy) such that consecutive locations are neighbors. We assume
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that all the locations for a structure are path connected, i.e. every location
has a path to every other location. Disconnected structures can be treated
as separate structures. There are two special locations, lsrarr € L and
lgxir € L, which correspond to the start and exit locations. In a structure,
each location [ has a target height h; € N. We say that a path is traversable
if each consecutive location differs in height by at most 1, which corresponds
to the motion limitations of a TERMES robot.

In order to make a building plan for the TERMES system, we need to
generate a directed graph on the vertex set L. To avoid the physical assembly
constraint shown in Fig. 1.C the graph needs to be acyclic and a location
cannot have two opposing incoming edges. To ensure traversability, the graph
must have the additional properties that for every [ € L there is a directed,
traversable path from ls74rr to reach [ and for every [ € L there is a directed,
traversable path to reach lgx 7. lsTarr has all outgoing edges; lgxr has all
incoming edges.

In summary, the properties of a valid map are as follows:

Property 1: The map contains no cycles.

Property 2: The map contains no opposing incoming arrows.
Property 3: All locations can reach an exit on a traversable path that
is consistent with the assigned edges.

Property 4: The start can reach all locations on a traversable path
that is consistent with the assigned edges.
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Properties 3 and 4 imply that, except for lsrarr and [gx;r all locations
must have directed edges that point both in- and outwards. We refer to
this local check for Properties 3 and 4 as the sink/source-condition. We will
reference these properties throughout the following sections.

4. Edge-CSP Compiler

Past TERMES publications described a procedure for searching through
the space of available assignments [3]. Here, we recast this compiler as a
backtracking search to a CSP with pairwise, partial, and global constraint
checking. The CSP problem consist of variables, domains (the possible val-
ues for each variable), and constraints (how variable assignments affect each
other). The goal of backtracking search is to find an assignment, i.e. picking
from each domain one value for each variable [24, Ch6].

In accordance with the compiler described in [3], we make variables cor-
respond to edges between neighboring locations and give them a domain of
the two possible edge directions. We refer to this compiler as an Edge-CSP
compiler, further shown in Fig. 2.A. The Edge-CSP tries to pick both a good
variable ordering and a good domain ordering. The variable ordering is to
pick variables that are adjacent to already assigned edges and as close to
lstarT as possible. The domains are ordered to first explore edges that point
“away” from lsprarr in a breadth first manner. This choice is based on the
observation that most edges in valid maps have this orientation.

We use three types of constraints. Binary constraints between edges that
comply with Property 2. Constraints on partial assignments which check
for cycles, i.e. Property 1, and checks that each location with fully assigned
edges other than lgragr and lgx ;7 complies with the sink/source-condition.
Constraints on the global assignment which checks Property 3-4, that every
location can be reached from lgrapr and that {gxrr can be reached from
every location. The benefit of the binary checks is that constraints may be
propagated forward to speed up the search using forward checking [24, Ch6].
We use the AC3 algorithm to do this [25]. Forward checking with the binary
constraints enable a behavior equivalent to the “row rule” discussed in [3],
i.e. a behavior that causes the structure to be built from one point outwards.
An example of this is shown in Fig. 2.A; if vy is fixed, v, and vz are as well.
Reversely, the fixed value of v7 does not directly affect those around it.

Notice that this compiler does not take the height of the structure into
consideration until the final global check. The search continues until all
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Figure 2: Two versions of the CSP compiler applied to a 3x4x1 structure. A) In the
Edge-CSP variables correspond to edges between locations. The domain for vg are shown
as an example to the right of the structure. We can forward propagate the fixed variables,
v1 and vy shown in red, to fix vs, v3, and v1; shown in yellow according to property 2.
B) In the Location-CSP variables correspond to all possible combinations of directions to
and from the location. The domain for vg are shown as an example to the right of the
structure. This scheme produces a fully connected graph in which all constraints affect
each other.

domain combinations have been tried, or have been eliminated early by a local
or partial check. The total number of possible domain combinations scales
as O(2"), where n corresponds to the number of edges between locations
in the structure. However, early termination of partial assignments prunes
the space significantly. In general, all backtracking search may work well on
structures that have many feasible solutions, but will scale poorly with large
structures that have only a few or no solutions, and where bad branches in
the search tree cannot be pruned early.

Analyzing the compiler as a CSP shows that the binary constraints for-
mulated on edges limits the amount of forward checking that can be done,
since each row or column results in a disconnected component of constraint
arcs. Furthermore, it is not possible to use the sink/source-condition to for-
ward propagate because it cannot be expressed as a binary constraint. To
address these shortcomings we formulate a more efficient CSP to solve the
same problem in Sec. 5.

5. Location-CSP Compiler

To speed up the backtracking search, we change the formulation of the
CSP such that the variables become the locations and the domains include
all combinations of travel directions on the 4 edges as illustrated in Fig. 2.B.
Consequently we refer to this algorithm as a Location-CSP compiler. The
benefit of this scheme is that it creates a fully connected graph, where con-
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straints may more readily affect other variables. Note that like in the Edge-
CSP, cycles and structure traversability is not checked until after partial or
full assignment.

6. BFD Compiler

The final compiler is not based on search, but instead does an iterative
assignment of the edge directions in a breadth-first manner starting from
lgxir- Essentially, it evaluates if a location may serve as a drain (an exit-
like location) for the intermediate structures where locations whose travel
directions have been fully assigned were removed. We refer to this algorithm
as a Breadth-First Disassembly (BFD) compiler. The process is shown in
Fig. 3 and Alg. 1. Upon initialization, [gx;r is added to the frontier list,
Q frontier- The compiler iteratively takes a location, ly, from @ frontier and
checks if it can serve as a drain. To serve as a drain, [y must have the
following properties: 1) to comply with Property 2 it cannot be in between
two unassigned locations, 2) it needs to have a traversable path to lgx;r
that only uses previously disassembled locations, and 3) it cannot cause a
disconnect in the structure which would cause a violation of Property 4. If
these statements are true [y is added to Qyisiteq, the edges to all neighbors are
assigned as ingoing, and traversable neighbors are added to @ frontier- The
compiler continues to do this until @ fyontier is empty or no solution is found.

The biggest overhead in the BFD compiler is the connectivity check which
happens each time a location is tested as a viable drain. Note that the con-
nectivity check takes the traversable height of the neighboring locations into
account. We implement two versions of this check. 1) BFDy: To check
the connectivity, the compiler conducts a breadth-first search starting from
lsTarT to count the number of reachable locations following unassigned edges.
If this count is equal to the number of unvisited locations, |y may serve as a
drain. This requires a complete check of all remaining locations (L \ Quisited)-
2) BFD: To speed up this process, we cache the connectivity computation
by generating a spanning tree of unvisited locations. Removing leaves in the
tree does not disconnect the graph, so the connectivity check can return an
answer without having to traverse any nodes in the spanning tree. When
the connectivity check is for a non-leaf node, we perform the original con-
nectivity check. If [y does not disconnect the structure we add it to Quisited
and recompute the spanning tree. To create a spanning tree that is likely to
have leaf-nodes in @ frontier, We add edges in breadth first manner beginning



255

256

257

259

21

=)

0

261

262

21

=3

3

264

Algorithm 1 Pseudo code for the BFD Compiler which either returns a
valid map, or identifies that no such map exists. [y denotes the current
location in question and [; its neighboring locations. @isiteq is the set of
visited locations which have been ’disassembled’, i.e. fully determined; and
Q frontier 1s the frontier, i.e. locations that have traversable paths to the exit
and could potentially be disassembled next.

1:

7
8:
9:
10:
11:
12:
13:
14:
15:

initialize @ frontier aNd Quisited as empty
initialize map to be an empty graph over the vertex set L
add Lexrr to @ frontier
while Q) rontier is not empty do
remove [y from Q) ¢rontier
if [y is not in between two other unvisited sites (Property 2)
and removing [y does not disconnect the structure (Properties 3-4)
then
Add lO to Qm’sited
for each unvisited neighboring site I; of [y do
add edge (I; ,ly) to map
if 3 traversable edge from [; to [, € Quisiteq then
add lz to erontier
if ’Qvisited‘ = ’L’ then
return map
else
return False

from lgragr following traversable edges. In Sec. 7, we show that the second
method speeds up the process significantly.

6.1. Proof of correctness

This proof refers to the Properties 1-4 of a valid map, described in Sec. 3

and Algorithm 1. The correctness proof is done by induction on the edges
of visited locations for Properties 2-4. Property 1 follows from a gradient
argument.

Theorem 1, BFD-Compiler Correctness: When the BFD compiler completes
successfully, it produces a valid map.

Proof of Theorem 1:

10
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Figure 3: BFD Compiler applied to a 3 x 3 structure. A) Consider g4 g7 to be (0,0) and
lpx T to be (2,2); B) the compiler removes (2,1); C) (1,2) cannot be removed because this
would cause a disconnected structure; D) the compiler removes (2,0); E) (1,1) cannot be
removed because of Property 1. The compiler continues in the same manner until lg7 4 gt
has been removed at which point it returns a valid map. Notice that the yellow arrows do
not count towards the traversability check, but are needed for the robot rule set.

Property 1: The edge assignment adds directions in such a way that the
newly added directions point from unvisited locations into visited locations
(Lines 7-9). By following such a direction (when it is traversable) a robot is
brought one step closer to l..;. Each location can be labeled with the steps
left to lgx 7. Since the paths in the map move down the label gradient, they
cannot contain cycles as that would require a path where the label increases.

Properties 2-4: The induction hypothesis (IH) is that the edges of visited
locations have Properties 2-4, as well as the two axillary properties: (Prop-
erty 5) Vi, € Qfrontierd & traversable path to the exit in the assigned map;
and (Property 6) L \ Quisitea 1S traversably path connected, i.e. all unvis-
ited locations have traversable paths from ls7 g7 that only move over other
unvisited locations.

11
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Base case: Q frontier has only lgxir. Properties 2-4 are true for the empty
set, Property 5 is true because [gx 7 is path connected to itself, and Property
6 is correct because we assume that L is traversably connected.

Induction step: When adding another element [y to (Q.;siteq, Property 2 is true
because the new element would only have two opposing incoming directions
if it had two unvisited neighbors. Property 3 is true, because when [, was
added to @ frontier One Of its edges was directed to a location in Qyisitea (Line
9) and by Property 5 in IH there is a directed path toward the exit. Property
4 is true because of Property 6 in IH, [y can be reached from ls7arr and [;
can be reached through [, after the new edge is added to the map (Line 9).
Property 5 is true because of (Line 10-11) and Property 3 in IH. Property 6
is true because of the second condition in Line 6. [J

Beyond proving that the compiler generates valid maps which work with
the TERMES system, we also believe that the reverse is true; i.e. that the
structure is unbuildable with the TERMES system if the compiler fails. The
intuition for this is as follows. The compiler fails when @ ¢ontier is empty and
|Quisitea| # |L|. This happens when no more locations can be disassembled,
either because they are not traversable from visited locations (Property 3)
or because they are in between two other locations (Property 2). In other
words, the structure formed by unvisited locations could not have been built
because the last addition to the structure does not exist.

7. Comparison of Compilers

We next evaluate how the runtime of the compilers scale with the number
of locations for different types of structures (Fig. 4). These results are gener-
ated in a single process on a standard laptop (Intel(R) Core(TM) i7-4720HQ),
CPU @ 2.60GHz, quad core, 16G of RAM). Note that the compilers can han-
dle a wide range of structure types, however, for the purposes of analysis, we
focus only on square footprints in the following.

Fig. 4.A shows the runtime of each compiler as the number of locations
grow in a 1-height square structure. The Edge-CSP can compile such simple
structures with 10,000 bricks in around 100 s; for scale, a standard U.S. family
house contains around the same amount. As expected the Location-CSP does
slightly better because the constraints propagate more readily. Notice that
for small structures both BFD compilers compile about 10 times faster than
the CSP compilers. The BFD, compiler converges to quadratic growth (slope

12
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Figure 4: Runtime of compilers versus the number of locations in different types of struc-
tures, including A) square, buildable structures of height 1, B) square, buildable structures
of random height, C) square, unbuildable structures of random height, and D) unbuild-
able structures similar to that shown in Fig. 1.D. Insets indicate how we scale the number
of locations; marks annotate mean of 10 runs (in the case of random height structures,
10 different structures of the same number of locations were tested); error bars indicate
maximum and minimum runtime; and the number in the parenthesis gives the slope of
the best fit line for all data in the curve.

2 in log-log axis), and as the structure size approaches 100,000 locations the
CSPs will start to outperform it. This happens because their domain-variable
ordering is especially optimized for these simple square structures so that the
first tried assignment during the search is usually correct. By adding the im-
proved connectivity check, the BFD outperforms all other compilers (scaling
almost linearly) and can easily compile structures with up to 1 million bricks
(comparable to the number of bricks in the Great Pyramid of Giza according
to egyptorigins.com). Similar results can be noted when we run the compil-
ers on buildable structures with randomly generated height profiles up to 7
bricks tall (Fig. 4.B).

Fig. 4.C shows the runtime on unbuildable structures with randomly gen-
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erated height profiles. The runtime of the Edge-CSP now varies significantly
because the search only terminates early if it finds a locally checkable error.
Such errors are more likely to be found with the Location-CSP compiler. The
new BFD compilers show a similar scalability as before. Fig. 4.D shows the
runtime for unbuildable structures, also presented in Fig. 1.D, which violate
Property 2 with any consistent ordering. This structure is especially slow
to search through, since ordering inconsistencies cannot be detected locally.
Each internal raft has four connectors, and each of these may, from the raft’s
perspective, be either a sink or a source. If it is a sink it violates property
2, and as a result all possible source combinations are tried first. We halted
compilations that exceeded 24 hours of runtime, which is why both CSP
compilers are only presented with a single data point. Notice again, how the
BFDy compiler scale quadratically with the size of the structure, and the
improved BFD compiler scales almost linearly.

8. Transition Probabilities

During the actual assembly of the structure, individual robots have no
knowledge of the system assembly state and can therefore not navigate di-
rectly towards the construction frontier. Instead they move along the directed
paths in the map at random, looking for open assembly locations. Once an
open location is encountered, the internal rule set on the robot, based on
restrictions shown in Fig. 1.C-D, determines whether or not material can be
added. To explain this rule set and how the combination of the map and rule
set affect the construction progress, we first introduce several terms related
to a location, [;: 1) neighboring locations that lead to l; are parents of I;; 2)
neighboring locations that lead from I; are children of l;; 3) the wvisit rate of
l; is the probability per unit time that a robot travels through it; and 4) the
assembly time of [; is average time it takes for the robots to assemble [;.

The TERMES rule set is discussed in detail in previous papers [3, 5]. To
give an intuitive overview, the rules restrict robots from adding material to
location [; with height h;, until (generally speaking) all parents and children
are of similar height, if such specified by the structure blueprint. Parents
of similar height ensures that robots never have to add a brick in between
two others (Fig. 1.C). Children of similar height ensures traversable paths
(Fig. 1.D). Because valid assembly steps are dependent on what bricks have
already been placed, this leads to wasted trips; i.e. cases where the robot
exits the structure before being able to deposit the brick it is carrying. The
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Figure 5: A-B) 15x15 random height structure and its traversal map. C) Construction
progress as a function of robot entries for 20 simulated runs using maps with uniform
transition probabilities. The inset shows a snapshot from the simulation, robots are shown
in green. D) Visit rates, A, for each location in the structure, based on the map shown in
B. E) Mean assembly time for each location in the structure, based on the 20 simulated
runs. F) Sketch explaining how the exit location completion time, Tgx 7, depends on the
completion time of the parent locations, T4 and T, and their transition probability, A7
and Asg.

combination of the rule set and map, generally speaking, makes tall structures
grow in forward propagating staircases starting from lg7agr-

Take as an example the structure shown in Fig. 5.A, which has 406 bricks.
To adhere with the map (Fig. 5.B) and rule set, this structure must grow from
the upper- and left-most edge towards the exit. The construction progress is
plotted in blue for 10 simulated runs in Fig. 5.C, where robots choose naively
between children with equal probability. The visit rate is shown in Fig. 5.D.
Note that this plot is based purely on the directed travel paths, and does not
take the structure height into consideration. With such uniform transition
probability, robots are unlikely to stay by the upper- or left-most edge of the
structure, and are therefore unlikely to assemble locations that must be in
place before downstream locations can be filled in. The overflow of robots in
the center is also likely to cause bottlenecks, which further slows down the
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Figure 6: The choice of transition probability may heavily affect completion time. A)
Example of transition probabilities in a 3x3x1 structure. B) Effect of 5 on structure
completion time over 10,000 simulated runs, expressed in robot entries to the structure.

assembly progress. In Fig. 5.E; the plot of location assembly times clearly
shows how the locations nearer the bottom- and right-most edge will require
an excess of robots to file through the structure before they are completed.
Analogous, the big vertical jumps in the traces in Fig. 5.C indicate times at
which a robot fills in a perimeter location which is holding everything else up.
Worst case, structure completion may be exceedingly slow - one run requires
almost 200,000 robot entries before placing the last brick in the 406-brick
structure. In the following text we reason about how transition probabilities
between locations affect the construction process, and explore the potential
for optimization.

8.1. Transition Model

First, we model traversal and assembly as a Poisson splitting process, i.e.
robots visit a location with a rate A, and if the location has two children with
a probability of 8 and 1 — 3, the robot visits the two subsequent locations
with rates S\ and (1— )\ respectively. If a location has two parents the rates
add up. Our experiments show that the completion time of the structure is
strongly dependent on locations that have small visit rates. In Fig. 6 we
analyze a simple 3x3x1 structure and the distribution in assembly time as
a function of the single splitting parameter, 5. The assembly times are long
if the splitting parameter starves either the corner locations or the center of
visit rates. The shape is asymmetric since the center receives rates from two
parents, while starving either corner (small fs) affects the overall assembly
time more dramatically.

Our goal is to choose splitting probabilities that minimize the expected
assembly time of the last assembly location, Tgx ;7. Since each location can
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only be assembled after its parent locations have been assembled, completion
time, T, for each location can be written as the maximum of the parent
assembly times plus the additional assembly time due to the limited rate of
visiting the location in question (Fig. 5.F). While a closed form expression for
the assembly time due to rates is a simple exponential, closed form solutions
for the maximum of two random variables requires integrating over their joint
probabilities, for which we were unable to find an easy expression. Fig. 7
shows a sampled probability density function (PDF) of the assembly time
for each location in a 5x5x1 structure. The data shows that the PDFs
are heavy-tailed and that the PDF for two parent assembly times are not
independent since they depend on a common ancestor, i.e. location (3,4)
and (4,3) are not independently distributed, since they will both have a long
tail if any of the location in the square (0,0) to (3,3) happened to have a
long tail. Therefore, instead of trying to compute the actual assembly time
to optimize the transition probabilities, we focus on finding visit rates A; for
each location that produces small assembly times. We discuss this approach
in the following subsection.

8.2. Optimization of Transition Probabilities

To formulate the optimization problem we assume that robots arrive at
lsrapr With a rate of Agrapr = 1. This means the visit rate for all other
locations is between 0 and 1. We tested two different objective functions, one
aiming for equally distributed visit rates ("equal-visit-rate’) and one aiming
to avoid visit rates below a certain threshold (‘'minimum-visit-rate’). We
demonstrate our approach on the representative example structure shown in
Fig. 5.A-B. The rate of visiting location [;, A;, with parent locations /; and
visit rates J;, is calculated as:

J
A=Y AP (1)

j=1
where P;; denotes the probability of choosing location /; from [; and J is
the total number of parent locations. The choices for Pj; have the additional
constraint that ), P;; = 1 and Pj; € [0,1]. We formulate the optimization
problem by defining the visit rate for [;, A;, and the transition probabilities,
Pj;, as variables, and by expressing Eq. 1 and conditions on F;; as quality

constraints and bounds on the variables.
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structure, measured in robot entries and generated through 5,000 simulated runs. Blue
bars show the PDF for a uniform transition probability map; red bars for a transition
probability map which was optimized according to a minimum-visit-rate. The vertical
lines show their respective average.

In Fig. 5.D-E, we showed visit rates and assembly times for a map with
uniform transition probability, which causes excess visits to the center of the
structure leading to bottlenecks and wasted trips. This observation leads us
to explore an equal-visit-rate objective. We partition the locations based on
the number of steps it takes to reach [ gy 77 (the distance along traversable
paths in the map) and minimize the cost by:

COSteq = Z Z(/\z - ,Ulalist)2

dist Idist

—
)
SN~—

where 14 is the set of locations that are equidistant from g x 7, and pg;s is
the mean visit rate of these. Using the previously formulated constraints and
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Figure 8: Optimization of transition probabilities based on uniform visit rates of locations
that are equidistant from /gy on all (i) and permanent (ii) edges in the map. These
results are based on the 15x15 random height structure shown in Fig. 5.A-B. A) System
performance with maps of uniform transition probability (blue), and transition probabili-
ties optimized according to (i) (red) and (ii) (yellow). B-C) Location assembly time as an
average of 20 simulated runs, for (i) and (ii), respectively.

this objective we optimize over the transition probabilities P;; and ; using
sequential quadratic programming (SQP)'. We test two maps: (i) one in
which we include all edges in the map (Fig. 5.B), and (ii) one in which we
only include edges in the map which are permanently traversible (i.e. without
the blue arrows in Fig. 5.B). The second map is based on the intuition that
paths which can be obstructed by locations that eventually reach a height
difference above 1 restricts robot traversals later in the construction process.

The results are shown in Fig. 8. Optimizing transition probabilities ac-
cording to equal visit rate makes the system perform significantly better than
it does with a uniform transition probability map. The maximum completion
time out of 20 simulated runs was ~15,000 robot entries when all edges were
taken into consideration, and ~20,000 robot entries when only permanent
edges were included in the optimization (Fig. 8.A). The latter generally per-
forms worse than the former (Fig. 8.B-C). By analyzing the plot of assembly
times, we suspect this decrease in performance occurs because individual low
rate assignments have a disproportionate effect on the overall assembly time,
and by enforcing equal visit rate for all locations in I j;.;, we give equal weight
to variations of \; that have minimal effect on the overall assembly time. For
example, the visit rates for a good assignment is shown in Fig. 8.C. In it, the

1SciPy implementation of optimize.minimize with the SLSQP option.
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top left corner locations have vastly different rates within an I, set, but
still enable critical locations in the middle to have roughly equal visit rates.

In order to optimize assembly time while taking the structure height
into consideration, we instead propose the following minimum-visiting-rate
constraint:

Costyin = Z em=>:) (3)
I

where m is a minimum visit rate threshold defined for the entire structure
and « is scaling factor of how aggressively this minimum value is enforced
during optimization. When the visit rate is bigger than the minimum it adds
little to the overall cost, but locations that have smaller visit rates are heavily
penalized. For a given structure, we computed m to be the smallest visit rate
obtained during the equal-visit-rate optimization when all edges are present,
i.e. the smallest value that should be achievable by every location under
ideal conditions.

The results are shown in Fig. 9. The minimum-visit-rate constraint is
able to achieve significantly better performance than the equal-visit-rate con-
straint. By taking location heights and non-traversable edges into account,
it allows other locations to have unequal visit rates in order to feed locations
that are below the minimum visit rate m. This objective achieves equal visit
rates for the widest part of the structure and penalizes any other locations
with a visit rate less than m. With this new optimization, the 406-brick
structure is finished with an average of 1,200 robot entries. In other words,
every third robot entering the structure is able to deposit a brick. Notice
also, that the worst case completion time is much less than for any of the
other optimization schemes.

The tradeoff of assembly times between different locations can be seen in
Fig. 7. While the overall assembly time for location (5,5) of the optimized
transition probabilities decreases, optimization does increase the assembly
time of the center location (2,2). Basically, the optimized probabilities re-
allocate visit rate from the center to low rate locations in the corners. Re-
moving these low rate locations decreases the mean assembly time, and also
makes the assembly times more tightly clustered, reducing long outliers.

On a final note, it is clear that the idea of exploiting parallelism in con-
struction schemes that have a single point of entry heavily depends on the
optimization of transition probabilities. We can compare our approach with
one that produces a single path through the structure such that the structure
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Figure 9: A) Optimization of transition probabilities based on a minimum-visit-rate con-
straint (green), as compared to an equal-visit-rate constraint (red), and uniform proba-
bilities (blue). B-C) Visit rate and assembly time per location respectively, based on an
average of 20 simulated runs for the minimum-visit-rate constraint optimization.

grows in a sequential manner and that every robot that enters can deposit
a brick, in terms of the parallelism offered. With the minimum-visit-rate
constraint optimization, you can achieve an increase in performance over
this single-path approach if you can place more than just three robots with
bricks at the construction frontier at any one point in time, which is true for
most large scale structures. Another benefit of multi-path structures is that
robots can take shortcuts to the frontier as opposed to having to travel over
every location first.

9. Conclusion and Future Work

In summary we have presented work to address the scalability of the
TERMES compiler, and demonstrated a BFD compiler which scales better
than quadratic with the number of locations in the structure independent
of whether or not that structure is buildable. We demonstrated this on
structures with up to 1 million bricks, which were compiled on commodity
hardware in minutes. We have further shown an approach by which the tran-
sition probabilities between locations in the generated map can be improved
for markedly faster construction speed without added hardware complex-
ity. Future work will involve development of metrics by which to evaluate
the compiled maps, especially in terms of the parallelism they offer, and
compilers which can suggest modifications to make unbuildable structures
buildable.
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