
Compiler for Scalable Construction by the TERMES

Robot Collective

Yawen Deng1, Yiwen Hua1, Nils Napp2, and Kirstin Petersen1

1 Cornell University, Ithaca, NY 14850, USA, kirstin@cornell.edu
2 University at Buffalo, Buffalo, NY 14260, USA

Abstract

The TERMES system is a robot collective capable of autonomous construc-
tion of 3D user-specified structures. A key component of the framework is
an off-line compiler which takes in a structure blueprint and generates a di-
rected map, in turn permitting an arbitrary number of robots to perform
decentralized construction in a provably correct manner. In past work, this
compiler was limited to a non-optimized search approach which scaled poorly
with the structure size. Here, we first recast the process as a constraint sat-
isfaction problem (CSP) to apply well-known optimizations for solving CSP
and present new scalable compiler schemes and the ability to quickly gener-
ate provably correct maps (or find that none exist) of structures with up to
1 million bricks. We compare the performance of the compilers on a range
of structures, and show how the compilation time is related to the inter-
dependencies between built locations. Second, we show how the transition
probability between locations in the structure affect assembly time. While
the exact solution for the expected completion time is difficult to compute,
we evaluate different objective functions for the transition probabilities and
show that these optimizations can drastically improve overall efficiency. This
work represents an important step towards collective robotic construction of
real-world structures.

Keywords: Multi-Robot Systems, Assembly, construction, Autonomy,
Compiler

Preprint submitted to Robotics and Autonomous Systems May 14, 2020

1. Introduction1

Autonomous robots have the potential to revolutionize the construction2

industry enabling rapid fabrication of inexpensive structures, novel designs,3

and construction in novel settings. Researchers and industrial specialists4

have proposed many solutions to these challenges, one of which involves5

collectives of autonomous mobile robots which can assemble structures much6

larger than the size of the individuals [1]. By focusing on distributed scalable7

coordination, such systems may deploy many robots to work efficiently in8

parallel and be tolerant to individual failures. Although robot collectives9

have received a lot of attention over the past couple of decades [2], most10

demonstrations are limited to controlled laboratory settings, relatively small11

assemblies, and/or small collectives. Open challenges range from scalable12

algorithms to capable, low-maintenance hardware. Here, we focus on the13

former, i.e. improving the algorithmic framework in terms of how it scales14

with the size of the structure. We present our results in the context of15

the TERMES system presented in previous literature [3, 4, 5, 6], but our16

approach may generalize to other distributed construction systems.17

The TERMES hardware consists of custom bricks and simple robots capa-18

ble of climbing on, navigating, and adding bricks to the structure (Fig. 1.A).19

Inspired by construction in social insects, the robots coordinate construction20

implicitly through their environment in a scalable manner. Despite this mini-21

malistic approach the system has been shown to assemble 3D structures with22

provable guarantees, by relying on a combination of an off-line compiler and23

an onboard rule set. The compiler converts the structure blueprint to a 2D-24

map with assembly locations, the desired number of bricks at each location,25

and designated travel directions between locations (Fig. 1.B). This map is26

given to an arbitrary number of robots, which follow these instructions and27

add material as determined by the onboard rule set which is dictated solely28

by the limitations of the robot platform used (Fig. 1.C-D). The scalability of29

the TERMES and similar systems is determined by several factors, including30

1) hardware cost and manufacturing complexity; 2) robot reliability and how31

likely failures are to disrupt system progress; 3) how the coordination mech-32

anisms scale with the size of the collective; 4) how the compiler computation33

time scales with the size of the structure; and finally, and 5) how efficiently34

robots can reach the assembly frontier.35

Fabrication and robot reliability (points 1-2) were addressed in [4]. The36

system was designed with minimalism in mind - co-design of robots, bricks,37

2

Figure 1: A) Photo of the TERMES system. B) Example of the map generated by the
compiler (top view). The digits indicate the number of bricks at each location; arrows how
robots can transition between locations. System limitations include that bricks cannot be
added in between others bricks (C, dimetric view), and that robots can climb at most one
brick height between neighboring locations (D, side view). The set of structures which are
compilable are not necessarily intuitive. E) shows a structure which cannot be compiled,
because the only way for a robot to complete the center would be an assembly move of
type C.

and algorithms resulted in a simple robot costing ∼$2K with a 1-week as-38

sembly time. The cost of the mechanics was brought down considerably in a39

a subsequent paper [6]. To support reliability, the focus was not on achiev-40

ing perfect behavior, but rather to enable robots to recognize and fix errors41

before they propagated. Scalability of the collective (point 3) was addressed42

implicitly by relying on the structure as a shared physical database through43

which the robots can coordinate [3, 5, 6]. Here, we focus instead on improv-44

ing the TERMES compiler to make it feasible to compile maps of large-scale45

structures (point 4). The work presented in this paper includes that of the46

conference paper presented at the International Symposium on Distributed47

Autonomous Robotic Systems (DARS) 2018 [7], with an additional contri-48

bution of showing how the transition probabilities between locations in the49

map affect structure assembly time, and how these can be optimized such50

that robots can complete the structure significantly faster (point 5).51

First, we recast the compiler originally described in [3] (Sec. 3) as a back-52

tracking solution to a constraint satisfaction problem (CSP) with pairwise,53

partial, and global constraint checking. We show that the original compiler54

scales poorly with the size of the structure (Sec. 4). By examining the be-55

havior of the original search as a solution to a CSP, we are able to achieve56

significant improvements by formulating a new CSP that better exploits for-57

3

ward checking pairwise constraints during the backtracking search (Sec. 5).58

We then describe and prove an entirely new formulation for generating maps59

that is not based on search, but an iterative method that builds up feasible60

maps by considering locations in a breadth-first manner starting from the61

exit location (Sec. 6). We show the ability of the latter to compile struc-62

tures with up to 1 million bricks in ∼1 min on commodity hardware. We63

compare the performance of these compilers on different sets of structures64

(Sec. 7), including unbuildable ones which are computationally intractable65

for search-based compilers. Finally, we show how, after the map has been66

compiled, construction speed may be improved simply by altering the transi-67

tion probabilities between locations, with examples of a 2 order of magnitude68

improvement in completion time (Sec. 8).69

2. Related Work70

Collective robotic construction can be achieved in a variety of ways, and71

examples include pre-programmed robots for functional structures [8, 9],72

template-based construction [10], centralized controllers that allow for paral-73

lelism [11], communication-based coordination [12, 13], and compiler-based74

systems [3, 14, 15].75

Compilers for generating matter, which take high-level specifications and76

generate parallel assembly steps, are used in a variety of fields, e.g. digital77

materials [16], self-assembly, and modular robots [17]. In the construction78

setting, compilers must take into consideration the physical constraints of79

both building material and the robots that manipulate it. Constraints may80

exist both in mechanisms (e.g. the ability to traverse the structure) and81

perception/cognition (the ability to sense/remember the state of the sur-82

rounding structure). Broadly categorized, there are two ways to approach83

compilers [2]. The first is to define a set of sub-structures for which an assem-84

bly plan is known, and then to decompose new structures into combinations85

of those. The second is to compile based purely on the physical constraints86

of the system. Although the first method makes reasoning and guarantees87

easier, it also limits the set of structures (some structures that robots are88

physically capable of building cannot be compiled). The second method89

does not artificially restrict the set of buildable structures, but makes it hard90

to reason about what is buildable. In case of the latter, it is therefore critical91

that compilers can quickly assess whether or not a structure is buildable, or92

potentially come up with alternative solutions [18, 5].93

4

An example of the first approach include Seo et al. [15] who presented a94

compiler for 2D assembly of simply connected structures of floating bricks95

by boat-like robots, which decomposes structures into linear cells. Another96

example involves that of Lindsey et al. [11, 19] who presented a compiler97

for assembly of strut structures by teams of quadcopters. The struts could98

be assembled into structurally stable cubes. Consequently, the compiler was99

designed to generate assembly rules for any structure which was decompos-100

able into such special cubic structures. Both of these systems have a concise101

definition of the class of compilable structures.102

The TERMES compiler is search-based and uses hardware limitations as103

constraints. As previously mentioned, this makes it harder to infer which104

structures are buildable. Figure 1.B and E shows structures which are build-105

able and unbuildable, respectively, despite the fact that they differ by only106

one location and despite the fact that it is possible for a robot to physically107

assemble each separate location. The issue is that there is no way to consis-108

tently order the assembly steps without violating the constraint shown in C.109

Currently, for TERMES-like constraints, there is no good specification for110

which structures have valid maps, other than when a map is found. This111

is especially problematic if the compiler used is slow and has a long run-112

time before failing. Here, we show that the compiler presented in [3] scales113

poorly with the size and complexity of the structure, and present an alter-114

native compilation method, such that arbitrary structures can be compiled115

and checked quickly.116

The second contribution of the paper concerns construction efficiency:117

i.e. after the offline compilation, how fast can the structure be completed118

by a given number of robots moving stochastically according to the map.119

The randomized execution model makes global state sharing unnecessary120

and thus makes concurrent execution between an arbitrary number of robot121

easy. However, it also introduces inefficiencies because of 1) physical bot-122

tlenecks which limits the number of robots that can simultaneously pass123

through a location and 2) construction order, i.e. the need for some actions124

to be completed before others can take place. Related work on optimizing125

assembly plans for TERMES focus on optimizing the map structure [18].126

Here, we leave the original map in place and instead focus on optimizing the127

probabilities between different paths through the map. Past work on opti-128

mizing stochastic assembly policies under such spatial- and order-constrained129

scheduling is limited. In [20], the authors analyze stochastic assembly algo-130

rithms constrained both by assembly orders and by raw materials through131

5

chemical reaction models. In [21] the problem of optimizing transitions for132

material transport under spatio-temporal constraints is addressed, however,133

the transition probabilities are constrained to a relatively small parameter-134

ized model. Efficient spatial allocation of assembly robots have been shown135

in [22, 23, 14], with the ability to adapt to local failures and shape changes136

through space partitioning.137

3. Problem Formulation138

A structure consists of a finite set of locations L that each have integer139

x and y location, i.e. (lx, ly) = l ∈ L. Two locations l, k ∈ L are said140

to be neighbors when either the x or y differ by one, but not when both141

are different. This type of neighbor relation corresponds to a distance of142

1 with the Manhattan distance metric. A path is a sequence of locations143

p = (l1, l2, .., lN) such that consecutive locations are neighbors. We assume144

that all the locations for a structure are path connected, i.e. every location145

has a path to every other location. Disconnected structures can be treated146

as separate structures. There are two special locations, lSTART ∈ L and147

lEXIT ∈ L, which correspond to the start and exit locations. In a structure,148

each location l has a target height hl ∈ N. We say that a path is traversable149

if each consecutive location differs in height by at most 1, which corresponds150

to the motion limitations of a TERMES robot.151

In order to make a building plan for the TERMES system, we need to152

generate a directed graph on the vertex set L. To avoid the physical assembly153

constraint shown in Fig. 1.C the graph needs to be acyclic and a location154

cannot have two opposing incoming edges. To ensure traversability, the graph155

must have the additional properties that for every l ∈ L there is a directed,156

traversable path from lSTART to reach l and for every l ∈ L there is a directed,157

traversable path to reach lEXIT . lSTART has all outgoing edges; lEXIT has all158

incoming edges.159

In summary, the properties of a valid map are as follows:160

Property 1: The map contains no cycles.
Property 2: The map contains no opposing incoming arrows.
Property 3: All locations can reach an exit on a traversable path that
is consistent with the assigned edges.
Property 4: The start can reach all locations on a traversable path
that is consistent with the assigned edges.

161

6

Properties 3 and 4 imply that, except for lSTART and lEXIT all locations162

must have directed edges that point both in- and outwards. We refer to163

this local check for Properties 3 and 4 as the sink/source-condition. We will164

reference these properties throughout the following sections.165

4. Edge-CSP Compiler166

Past TERMES publications described a procedure for searching through167

the space of available assignments [3]. Here, we recast this compiler as a168

backtracking search to a CSP with pairwise, partial, and global constraint169

checking. The CSP problem consist of variables, domains (the possible val-170

ues for each variable), and constraints (how variable assignments affect each171

other). The goal of backtracking search is to find an assignment, i.e. picking172

from each domain one value for each variable [24, Ch6].173

In accordance with the compiler described in [3], we make variables cor-174

respond to edges between neighboring locations and give them a domain of175

the two possible edge directions. We refer to this compiler as an Edge-CSP176

compiler, further shown in Fig. 2.A. The Edge-CSP tries to pick both a good177

variable ordering and a good domain ordering. The variable ordering is to178

pick variables that are adjacent to already assigned edges and as close to179

lSTART as possible. The domains are ordered to first explore edges that point180

“away” from lSTART in a breadth first manner. This choice is based on the181

observation that most edges in valid maps have this orientation.182

We use three types of constraints. Binary constraints between edges that183

comply with Property 2. Constraints on partial assignments which check184

for cycles, i.e. Property 1, and checks that each location with fully assigned185

edges other than lSTART and lEXIT complies with the sink/source-condition.186

Constraints on the global assignment which checks Property 3-4, that every187

location can be reached from lSTART and that lEXIT can be reached from188

every location. The benefit of the binary checks is that constraints may be189

propagated forward to speed up the search using forward checking [24, Ch6].190

We use the AC3 algorithm to do this [25]. Forward checking with the binary191

constraints enable a behavior equivalent to the “row rule” discussed in [3],192

i.e. a behavior that causes the structure to be built from one point outwards.193

An example of this is shown in Fig. 2.A; if v1 is fixed, v2 and v3 are as well.194

Reversely, the fixed value of v17 does not directly affect those around it.195

Notice that this compiler does not take the height of the structure into196

consideration until the final global check. The search continues until all197

7

Figure 2: Two versions of the CSP compiler applied to a 3×4×1 structure. A) In the
Edge-CSP variables correspond to edges between locations. The domain for v6 are shown
as an example to the right of the structure. We can forward propagate the fixed variables,
v1 and v4 shown in red, to fix v2, v3, and v11 shown in yellow according to property 2.
B) In the Location-CSP variables correspond to all possible combinations of directions to
and from the location. The domain for v6 are shown as an example to the right of the
structure. This scheme produces a fully connected graph in which all constraints affect
each other.

domain combinations have been tried, or have been eliminated early by a local198

or partial check. The total number of possible domain combinations scales199

as O(2n), where n corresponds to the number of edges between locations200

in the structure. However, early termination of partial assignments prunes201

the space significantly. In general, all backtracking search may work well on202

structures that have many feasible solutions, but will scale poorly with large203

structures that have only a few or no solutions, and where bad branches in204

the search tree cannot be pruned early.205

Analyzing the compiler as a CSP shows that the binary constraints for-206

mulated on edges limits the amount of forward checking that can be done,207

since each row or column results in a disconnected component of constraint208

arcs. Furthermore, it is not possible to use the sink/source-condition to for-209

ward propagate because it cannot be expressed as a binary constraint. To210

address these shortcomings we formulate a more efficient CSP to solve the211

same problem in Sec. 5.212

5. Location-CSP Compiler213

To speed up the backtracking search, we change the formulation of the214

CSP such that the variables become the locations and the domains include215

all combinations of travel directions on the 4 edges as illustrated in Fig. 2.B.216

Consequently we refer to this algorithm as a Location-CSP compiler. The217

benefit of this scheme is that it creates a fully connected graph, where con-218

8

straints may more readily affect other variables. Note that like in the Edge-219

CSP, cycles and structure traversability is not checked until after partial or220

full assignment.221

6. BFD Compiler222

The final compiler is not based on search, but instead does an iterative223

assignment of the edge directions in a breadth-first manner starting from224

lEXIT . Essentially, it evaluates if a location may serve as a drain (an exit-225

like location) for the intermediate structures where locations whose travel226

directions have been fully assigned were removed. We refer to this algorithm227

as a Breadth-First Disassembly (BFD) compiler. The process is shown in228

Fig. 3 and Alg. 1. Upon initialization, lEXIT is added to the frontier list,229

Qfrontier. The compiler iteratively takes a location, l0, from Qfrontier and230

checks if it can serve as a drain. To serve as a drain, l0 must have the231

following properties: 1) to comply with Property 2 it cannot be in between232

two unassigned locations, 2) it needs to have a traversable path to lEXIT233

that only uses previously disassembled locations, and 3) it cannot cause a234

disconnect in the structure which would cause a violation of Property 4. If235

these statements are true l0 is added to Qvisited, the edges to all neighbors are236

assigned as ingoing, and traversable neighbors are added to Qfrontier. The237

compiler continues to do this until Qfrontier is empty or no solution is found.238

The biggest overhead in the BFD compiler is the connectivity check which239

happens each time a location is tested as a viable drain. Note that the con-240

nectivity check takes the traversable height of the neighboring locations into241

account. We implement two versions of this check. 1) BFD0: To check242

the connectivity, the compiler conducts a breadth-first search starting from243

lSTART to count the number of reachable locations following unassigned edges.244

If this count is equal to the number of unvisited locations, l0 may serve as a245

drain. This requires a complete check of all remaining locations (L\Qvisited).246

2) BFD: To speed up this process, we cache the connectivity computation247

by generating a spanning tree of unvisited locations. Removing leaves in the248

tree does not disconnect the graph, so the connectivity check can return an249

answer without having to traverse any nodes in the spanning tree. When250

the connectivity check is for a non-leaf node, we perform the original con-251

nectivity check. If l0 does not disconnect the structure we add it to Qvisited252

and recompute the spanning tree. To create a spanning tree that is likely to253

have leaf-nodes in Qfrontier, we add edges in breadth first manner beginning254

9

Algorithm 1 Pseudo code for the BFD Compiler which either returns a
valid map, or identifies that no such map exists. l0 denotes the current
location in question and li its neighboring locations. Qvisited is the set of
visited locations which have been ’disassembled’, i.e. fully determined; and
Qfrontier is the frontier, i.e. locations that have traversable paths to the exit
and could potentially be disassembled next.

1: initialize Qfrontier and Qvisited as empty
2: initialize map to be an empty graph over the vertex set L
3: add LEXIT to Qfrontier

4: while Qfrontier is not empty do
5: remove l0 from Qfrontier

6: if l0 is not in between two other unvisited sites (Property 2)
and removing l0 does not disconnect the structure (Properties 3-4)

then
7: Add l0 to Qvisited

8: for each unvisited neighboring site li of l0 do
9: add edge (li ,l0) to map

10: if ∃ traversable edge from li to lv ∈ Qvisited then
11: add li to Qfrontier

12: if |Qvisited| = |L| then
13: return map
14: else
15: return False

from lSTART following traversable edges. In Sec. 7, we show that the second255

method speeds up the process significantly.256

6.1. Proof of correctness257

This proof refers to the Properties 1-4 of a valid map, described in Sec. 3258

and Algorithm 1. The correctness proof is done by induction on the edges259

of visited locations for Properties 2-4. Property 1 follows from a gradient260

argument.261

Theorem 1, BFD-Compiler Correctness: When the BFD compiler completes262

successfully, it produces a valid map.263

Proof of Theorem 1:264

10

Figure 3: BFD Compiler applied to a 3 × 3 structure. A) Consider lSTART to be (0,0) and
lEXIT to be (2,2); B) the compiler removes (2,1); C) (1,2) cannot be removed because this
would cause a disconnected structure; D) the compiler removes (2,0); E) (1,1) cannot be
removed because of Property 1. The compiler continues in the same manner until lSTART

has been removed at which point it returns a valid map. Notice that the yellow arrows do
not count towards the traversability check, but are needed for the robot rule set.

Property 1: The edge assignment adds directions in such a way that the265

newly added directions point from unvisited locations into visited locations266

(Lines 7–9). By following such a direction (when it is traversable) a robot is267

brought one step closer to lexit. Each location can be labeled with the steps268

left to lEXIT . Since the paths in the map move down the label gradient, they269

cannot contain cycles as that would require a path where the label increases.270

Properties 2-4: The induction hypothesis (IH) is that the edges of visited271

locations have Properties 2-4, as well as the two axillary properties: (Prop-272

erty 5) ∀lq ∈ Qfrontier∃ a traversable path to the exit in the assigned map;273

and (Property 6) L \ Qvisited is traversably path connected, i.e. all unvis-274

ited locations have traversable paths from lSTART that only move over other275

unvisited locations.276

11

Base case: Qfrontier has only lEXIT . Properties 2–4 are true for the empty277

set, Property 5 is true because lEXIT is path connected to itself, and Property278

6 is correct because we assume that L is traversably connected.279

Induction step: When adding another element l0 to Qvisited, Property 2 is true280

because the new element would only have two opposing incoming directions281

if it had two unvisited neighbors. Property 3 is true, because when l0 was282

added to Qfrontier one of its edges was directed to a location in Qvisited (Line283

9) and by Property 5 in IH there is a directed path toward the exit. Property284

4 is true because of Property 6 in IH, l0 can be reached from lSTART and li285

can be reached through l0 after the new edge is added to the map (Line 9).286

Property 5 is true because of (Line 10-11) and Property 3 in IH. Property 6287

is true because of the second condition in Line 6. �288

Beyond proving that the compiler generates valid maps which work with289

the TERMES system, we also believe that the reverse is true; i.e. that the290

structure is unbuildable with the TERMES system if the compiler fails. The291

intuition for this is as follows. The compiler fails when Qfrontier is empty and292

|Qvisited| 6= |L|. This happens when no more locations can be disassembled,293

either because they are not traversable from visited locations (Property 3)294

or because they are in between two other locations (Property 2). In other295

words, the structure formed by unvisited locations could not have been built296

because the last addition to the structure does not exist.297

7. Comparison of Compilers298

We next evaluate how the runtime of the compilers scale with the number299

of locations for different types of structures (Fig. 4). These results are gener-300

ated in a single process on a standard laptop (Intel(R) Core(TM) i7-4720HQ,301

CPU @ 2.60GHz, quad core, 16G of RAM). Note that the compilers can han-302

dle a wide range of structure types, however, for the purposes of analysis, we303

focus only on square footprints in the following.304

Fig. 4.A shows the runtime of each compiler as the number of locations305

grow in a 1-height square structure. The Edge-CSP can compile such simple306

structures with 10,000 bricks in around 100 s; for scale, a standard U.S. family307

house contains around the same amount. As expected the Location-CSP does308

slightly better because the constraints propagate more readily. Notice that309

for small structures both BFD compilers compile about 10 times faster than310

the CSP compilers. The BFD0 compiler converges to quadratic growth (slope311

12

Figure 4: Runtime of compilers versus the number of locations in different types of struc-
tures, including A) square, buildable structures of height 1, B) square, buildable structures
of random height, C) square, unbuildable structures of random height, and D) unbuild-
able structures similar to that shown in Fig. 1.D. Insets indicate how we scale the number
of locations; marks annotate mean of 10 runs (in the case of random height structures,
10 different structures of the same number of locations were tested); error bars indicate
maximum and minimum runtime; and the number in the parenthesis gives the slope of
the best fit line for all data in the curve.

2 in log-log axis), and as the structure size approaches 100,000 locations the312

CSPs will start to outperform it. This happens because their domain-variable313

ordering is especially optimized for these simple square structures so that the314

first tried assignment during the search is usually correct. By adding the im-315

proved connectivity check, the BFD outperforms all other compilers (scaling316

almost linearly) and can easily compile structures with up to 1 million bricks317

(comparable to the number of bricks in the Great Pyramid of Giza according318

to egyptorigins.com). Similar results can be noted when we run the compil-319

ers on buildable structures with randomly generated height profiles up to 7320

bricks tall (Fig. 4.B).321

Fig. 4.C shows the runtime on unbuildable structures with randomly gen-322

13

erated height profiles. The runtime of the Edge-CSP now varies significantly323

because the search only terminates early if it finds a locally checkable error.324

Such errors are more likely to be found with the Location-CSP compiler. The325

new BFD compilers show a similar scalability as before. Fig. 4.D shows the326

runtime for unbuildable structures, also presented in Fig. 1.D, which violate327

Property 2 with any consistent ordering. This structure is especially slow328

to search through, since ordering inconsistencies cannot be detected locally.329

Each internal raft has four connectors, and each of these may, from the raft’s330

perspective, be either a sink or a source. If it is a sink it violates property331

2, and as a result all possible source combinations are tried first. We halted332

compilations that exceeded 24 hours of runtime, which is why both CSP333

compilers are only presented with a single data point. Notice again, how the334

BFD0 compiler scale quadratically with the size of the structure, and the335

improved BFD compiler scales almost linearly.336

8. Transition Probabilities337

During the actual assembly of the structure, individual robots have no338

knowledge of the system assembly state and can therefore not navigate di-339

rectly towards the construction frontier. Instead they move along the directed340

paths in the map at random, looking for open assembly locations. Once an341

open location is encountered, the internal rule set on the robot, based on342

restrictions shown in Fig. 1.C-D, determines whether or not material can be343

added. To explain this rule set and how the combination of the map and rule344

set affect the construction progress, we first introduce several terms related345

to a location, li: 1) neighboring locations that lead to li are parents of li; 2)346

neighboring locations that lead from li are children of li; 3) the visit rate of347

li is the probability per unit time that a robot travels through it; and 4) the348

assembly time of li is average time it takes for the robots to assemble li.349

The TERMES rule set is discussed in detail in previous papers [3, 5]. To350

give an intuitive overview, the rules restrict robots from adding material to351

location li with height hi, until (generally speaking) all parents and children352

are of similar height, if such specified by the structure blueprint. Parents353

of similar height ensures that robots never have to add a brick in between354

two others (Fig. 1.C). Children of similar height ensures traversable paths355

(Fig. 1.D). Because valid assembly steps are dependent on what bricks have356

already been placed, this leads to wasted trips; i.e. cases where the robot357

exits the structure before being able to deposit the brick it is carrying. The358

14

Figure 5: A-B) 15×15 random height structure and its traversal map. C) Construction
progress as a function of robot entries for 20 simulated runs using maps with uniform
transition probabilities. The inset shows a snapshot from the simulation, robots are shown
in green. D) Visit rates, λ, for each location in the structure, based on the map shown in
B. E) Mean assembly time for each location in the structure, based on the 20 simulated
runs. F) Sketch explaining how the exit location completion time, TEXIT , depends on the
completion time of the parent locations, TA and TB , and their transition probability, λ7
and λ8.

combination of the rule set and map, generally speaking, makes tall structures359

grow in forward propagating staircases starting from lSTART .360

Take as an example the structure shown in Fig. 5.A, which has 406 bricks.361

To adhere with the map (Fig. 5.B) and rule set, this structure must grow from362

the upper- and left-most edge towards the exit. The construction progress is363

plotted in blue for 10 simulated runs in Fig. 5.C, where robots choose naively364

between children with equal probability. The visit rate is shown in Fig. 5.D.365

Note that this plot is based purely on the directed travel paths, and does not366

take the structure height into consideration. With such uniform transition367

probability, robots are unlikely to stay by the upper- or left-most edge of the368

structure, and are therefore unlikely to assemble locations that must be in369

place before downstream locations can be filled in. The overflow of robots in370

the center is also likely to cause bottlenecks, which further slows down the371

15

Figure 6: The choice of transition probability may heavily affect completion time. A)
Example of transition probabilities in a 3×3×1 structure. B) Effect of β on structure
completion time over 10,000 simulated runs, expressed in robot entries to the structure.

assembly progress. In Fig. 5.E, the plot of location assembly times clearly372

shows how the locations nearer the bottom- and right-most edge will require373

an excess of robots to file through the structure before they are completed.374

Analogous, the big vertical jumps in the traces in Fig. 5.C indicate times at375

which a robot fills in a perimeter location which is holding everything else up.376

Worst case, structure completion may be exceedingly slow - one run requires377

almost 200,000 robot entries before placing the last brick in the 406-brick378

structure. In the following text we reason about how transition probabilities379

between locations affect the construction process, and explore the potential380

for optimization.381

8.1. Transition Model382

First, we model traversal and assembly as a Poisson splitting process, i.e.383

robots visit a location with a rate λ, and if the location has two children with384

a probability of β and 1 − β, the robot visits the two subsequent locations385

with rates βλ and (1−β)λ respectively. If a location has two parents the rates386

add up. Our experiments show that the completion time of the structure is387

strongly dependent on locations that have small visit rates. In Fig. 6 we388

analyze a simple 3×3×1 structure and the distribution in assembly time as389

a function of the single splitting parameter, β. The assembly times are long390

if the splitting parameter starves either the corner locations or the center of391

visit rates. The shape is asymmetric since the center receives rates from two392

parents, while starving either corner (small βs) affects the overall assembly393

time more dramatically.394

Our goal is to choose splitting probabilities that minimize the expected395

assembly time of the last assembly location, TEXIT . Since each location can396

16

only be assembled after its parent locations have been assembled, completion397

time, T , for each location can be written as the maximum of the parent398

assembly times plus the additional assembly time due to the limited rate of399

visiting the location in question (Fig. 5.F). While a closed form expression for400

the assembly time due to rates is a simple exponential, closed form solutions401

for the maximum of two random variables requires integrating over their joint402

probabilities, for which we were unable to find an easy expression. Fig. 7403

shows a sampled probability density function (PDF) of the assembly time404

for each location in a 5×5×1 structure. The data shows that the PDFs405

are heavy-tailed and that the PDF for two parent assembly times are not406

independent since they depend on a common ancestor, i.e. location (3,4)407

and (4,3) are not independently distributed, since they will both have a long408

tail if any of the location in the square (0,0) to (3,3) happened to have a409

long tail. Therefore, instead of trying to compute the actual assembly time410

to optimize the transition probabilities, we focus on finding visit rates λi for411

each location that produces small assembly times. We discuss this approach412

in the following subsection.413

8.2. Optimization of Transition Probabilities414

To formulate the optimization problem we assume that robots arrive at415

lSTART with a rate of λSTART = 1. This means the visit rate for all other416

locations is between 0 and 1. We tested two different objective functions, one417

aiming for equally distributed visit rates (’equal-visit-rate’) and one aiming418

to avoid visit rates below a certain threshold (’minimum-visit-rate’). We419

demonstrate our approach on the representative example structure shown in420

Fig. 5.A-B. The rate of visiting location li, λi, with parent locations lj and421

visit rates λj, is calculated as:422

λi =
J∑
j=1

λjPji (1)

where Pji denotes the probability of choosing location li from lj and J is423

the total number of parent locations. The choices for Pji have the additional424

constraint that
∑

I Pji = 1 and Pji ∈ [0, 1]. We formulate the optimization425

problem by defining the visit rate for li, λi, and the transition probabilities,426

Pji, as variables, and by expressing Eq. 1 and conditions on Pij as quality427

constraints and bounds on the variables.428

17

Figure 7: Probability density function of assembly time for each location in a 5×5×1
structure, measured in robot entries and generated through 5,000 simulated runs. Blue
bars show the PDF for a uniform transition probability map; red bars for a transition
probability map which was optimized according to a minimum-visit-rate. The vertical
lines show their respective average.

In Fig. 5.D-E, we showed visit rates and assembly times for a map with429

uniform transition probability, which causes excess visits to the center of the430

structure leading to bottlenecks and wasted trips. This observation leads us431

to explore an equal-visit-rate objective. We partition the locations based on432

the number of steps it takes to reach lEXIT (the distance along traversable433

paths in the map) and minimize the cost by:434

Costeq =
∑
dist

∑
Idist

(λi − µdist)2 (2)

where Idist is the set of locations that are equidistant from lEXIT , and µdist is435

the mean visit rate of these. Using the previously formulated constraints and436

18

Figure 8: Optimization of transition probabilities based on uniform visit rates of locations
that are equidistant from lEXIT on all (i) and permanent (ii) edges in the map. These
results are based on the 15×15 random height structure shown in Fig. 5.A-B. A) System
performance with maps of uniform transition probability (blue), and transition probabili-
ties optimized according to (i) (red) and (ii) (yellow). B-C) Location assembly time as an
average of 20 simulated runs, for (i) and (ii), respectively.

this objective we optimize over the transition probabilities Pij and i using437

sequential quadratic programming (SQP)1. We test two maps: (i) one in438

which we include all edges in the map (Fig. 5.B), and (ii) one in which we439

only include edges in the map which are permanently traversible (i.e. without440

the blue arrows in Fig. 5.B). The second map is based on the intuition that441

paths which can be obstructed by locations that eventually reach a height442

difference above 1 restricts robot traversals later in the construction process.443

The results are shown in Fig. 8. Optimizing transition probabilities ac-444

cording to equal visit rate makes the system perform significantly better than445

it does with a uniform transition probability map. The maximum completion446

time out of 20 simulated runs was ∼15,000 robot entries when all edges were447

taken into consideration, and ∼20,000 robot entries when only permanent448

edges were included in the optimization (Fig. 8.A). The latter generally per-449

forms worse than the former (Fig. 8.B-C). By analyzing the plot of assembly450

times, we suspect this decrease in performance occurs because individual low451

rate assignments have a disproportionate effect on the overall assembly time,452

and by enforcing equal visit rate for all locations in Idist, we give equal weight453

to variations of λi that have minimal effect on the overall assembly time. For454

example, the visit rates for a good assignment is shown in Fig. 8.C. In it, the455

1SciPy implementation of optimize.minimize with the SLSQP option.

19

top left corner locations have vastly different rates within an Idist set, but456

still enable critical locations in the middle to have roughly equal visit rates.457

In order to optimize assembly time while taking the structure height458

into consideration, we instead propose the following minimum-visiting-rate459

constraint:460

Costmin =
∑
I

eα(m−λi) (3)

where m is a minimum visit rate threshold defined for the entire structure461

and α is scaling factor of how aggressively this minimum value is enforced462

during optimization. When the visit rate is bigger than the minimum it adds463

little to the overall cost, but locations that have smaller visit rates are heavily464

penalized. For a given structure, we computed m to be the smallest visit rate465

obtained during the equal-visit-rate optimization when all edges are present,466

i.e. the smallest value that should be achievable by every location under467

ideal conditions.468

The results are shown in Fig. 9. The minimum-visit-rate constraint is469

able to achieve significantly better performance than the equal-visit-rate con-470

straint. By taking location heights and non-traversable edges into account,471

it allows other locations to have unequal visit rates in order to feed locations472

that are below the minimum visit rate m. This objective achieves equal visit473

rates for the widest part of the structure and penalizes any other locations474

with a visit rate less than m. With this new optimization, the 406-brick475

structure is finished with an average of 1,200 robot entries. In other words,476

every third robot entering the structure is able to deposit a brick. Notice477

also, that the worst case completion time is much less than for any of the478

other optimization schemes.479

The tradeoff of assembly times between different locations can be seen in480

Fig. 7. While the overall assembly time for location (5,5) of the optimized481

transition probabilities decreases, optimization does increase the assembly482

time of the center location (2,2). Basically, the optimized probabilities re-483

allocate visit rate from the center to low rate locations in the corners. Re-484

moving these low rate locations decreases the mean assembly time, and also485

makes the assembly times more tightly clustered, reducing long outliers.486

On a final note, it is clear that the idea of exploiting parallelism in con-487

struction schemes that have a single point of entry heavily depends on the488

optimization of transition probabilities. We can compare our approach with489

one that produces a single path through the structure such that the structure490

20

Figure 9: A) Optimization of transition probabilities based on a minimum-visit-rate con-
straint (green), as compared to an equal-visit-rate constraint (red), and uniform proba-
bilities (blue). B-C) Visit rate and assembly time per location respectively, based on an
average of 20 simulated runs for the minimum-visit-rate constraint optimization.

grows in a sequential manner and that every robot that enters can deposit491

a brick, in terms of the parallelism offered. With the minimum-visit-rate492

constraint optimization, you can achieve an increase in performance over493

this single-path approach if you can place more than just three robots with494

bricks at the construction frontier at any one point in time, which is true for495

most large scale structures. Another benefit of multi-path structures is that496

robots can take shortcuts to the frontier as opposed to having to travel over497

every location first.498

9. Conclusion and Future Work499

In summary we have presented work to address the scalability of the500

TERMES compiler, and demonstrated a BFD compiler which scales better501

than quadratic with the number of locations in the structure independent502

of whether or not that structure is buildable. We demonstrated this on503

structures with up to 1 million bricks, which were compiled on commodity504

hardware in minutes. We have further shown an approach by which the tran-505

sition probabilities between locations in the generated map can be improved506

for markedly faster construction speed without added hardware complex-507

ity. Future work will involve development of metrics by which to evaluate508

the compiled maps, especially in terms of the parallelism they offer, and509

compilers which can suggest modifications to make unbuildable structures510

buildable.511

21

Acknowledgements512

This work was supported by the GETTYLAB, and partially supported513

by the National Science Foundation grant #1846340.514

22

References515

[1] K. Petersen, R. Nagpal, Complex Design by Simple Robots, Architec-516

tural Design (2017) 44–49.517

[2] K. H. Petersen, N. Napp, R. Stuart-Smith, D. Rus, M. Kovac, A review518

of collective robotic construction, Science Robotics 4 (2019) eaau8479.519

[3] J. Werfel, K. Petersen, R. Nagpal, Designing collective behavior in a520

termite-inspired robot construction team., Science 343 (2014) 754–8.521

[4] K. Petersen, R. Nagpal, J. Werfel, TERMES: An autonomous robotic522

system for three-dimensional collective construction, Robotics: Science523

and Systems Conference VII (2011).524

[5] J. Werfel, K. Petersen, R. Nagpal, Distributed multi-robot algorithms525

for the TERMES 3D collective construction system, in: In Modu-526

lar Robotics Workshop, IEEE Intl. Conference on Robots and Systems527

(IROS).528

[6] Y. Hua, Y. Deng, K. Petersen, Robots Building Bridges, Not Walls,529

in: IEEE International Workshops on Foundations and Applications of530

Self* Systems.531

[7] Y. Deng, Y. Hua, N. Napp, K. Petersen, Scalable Compiler for the532

TERMES Distributed Assembly System, in: Distributed Autonomous533

Robotic Systems, Springer, 2019, pp. 125–138.534

[8] M. S. D. Silva, V. Thangavelu, W. Gosrich, N. Napp, Autonomous535

Adaptive Modification of Unstructured Environments, Robotics: Sci-536

ence and Systems (2018).537

[9] N. Napp, R. Nagpal, Robotic construction of arbitrary shapes with538

amorphous materials, Proceedings - IEEE International Conference on539

Robotics and Automation (2014) 438–444.540

[10] T. Soleymani, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, Au-541

tonomous construction with compliant building material, in: Intelligent542

Autonomous Systems 13, Springer, 2016, pp. 1371–1388.543

[11] V. Lindsey, Q., Mellinger, D., Kumar, Construction of Cubic Structures544

with Quadrotor Teams, Robotics: Science and Systems VII (2011).545

23

[12] C. Jones, M. J. Mataric, Toward a multi-robot coordination formalism,546

Technical Report, DTIC Document, 2004.547

[13] M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in548

a thousand-robot swarm, Science 345 (2014) 795–799.549

[14] D. Stein, T. R. Schoen, D. Rus, Constraint-aware coordinated construc-550

tion of generic structures, in: 2011 IEEE/RSJ International Conference551

on Intelligent Robots and Systems, IEEE, pp. 4803–4810.552

[15] J. Seo, M. Yim, V. Kumar, Assembly planning for planar structures of a553

brick wall pattern with rectangular modular robots, in: 2013 IEEE Inter-554

national Conference on Automation Science and Engineering (CASE),555

pp. 1016–1021.556

[16] C. Coulais, E. Teomy, K. de Reus, Y. Shokef, M. van Hecke, Combina-557

torial design of textured mechanical metamaterials, Nature 535 (2016)558

529.559

[17] T. Tucci, B. Piranda, J. Bourgeois, A Distributed Self-Assembly Plan-560

ning Algorithm for Modular Robots, in: Proceedings of the 17th Inter-561

national Conference on Autonomous Agents and MultiAgent Systems,562

International Foundation for Autonomous Agents and Multiagent Sys-563

tems, pp. 550–558.564

[18] T. S. Kumar, S. J. Jung, S. Koenig, A tree-based algorithm for con-565

struction robots., in: ICAPS.566

[19] V. Lindsey, Q., Mellinger, D., Kumar, Construction with quadrotor567

teams, Autonomous Robots 33 (2012) 323–336.568

[20] L. Matthey, S. Berman, V. Kumar, Stochastic strategies for a swarm569

robotic assembly system, in: 2009 IEEE International Conference on570

Robotics and Automation, IEEE, pp. 1953–1958.571

[21] N. Napp, E. Klavins, Load balancing for multi-robot construction, in:572

Robotics and Automation (ICRA), 2011 IEEE International Conference573

on, IEEE, pp. 254–260.574

[22] M. Schwager, J.-J. Slotine, D. Rus, Decentralized, adaptive control for575

coverage with networked robots, in: Proceedings 2007 IEEE Interna-576

tional Conference on Robotics and Automation, IEEE, pp. 3289–3294.577

24

[23] M. Pavone, E. Frazzoli, F. Bullo, Distributed policies for equitable578

partitioning: Theory and applications, in: 2008 47th IEEE Conference579

on Decision and Control, IEEE, pp. 4191–4197.580

[24] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach,581

Malaysia; Pearson Education Limited,, 2016.582

[25] A. K. Mackworth, Consistency in networks of relations, Artificial Intel-583

ligence 8 (1977) 99 – 118.584

25

