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Conspectus

Low-resolution coarse-grained (CG) models provide the necessary efficiency for sim-
ulating phenomena that are inaccessible to more detailed models. However, in order
to realize their considerable promise, CG models must accurately describe the rele-
vant physical forces and provide useful predictions. By formally integrating out the
unnecessary details from an all-atom (AA) model, “bottom-up” approaches can, at
least in principle, quantitatively reproduce the structural and thermodynamic proper-
ties of the AA model that are observable at the CG resolution. In practice, though,
bottom-up approaches only approximate this “exact coarse-graining” procedure. The
resulting models typically reproduce the intermolecular structure of AA models at a
single thermodynamic state point, but often describe other state points less accurately

and, moreover, tend to provide a poor description of thermodynamic properties. These
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two limitations have been coined the “transferability” and “representability” problems,
respectively. Perhaps, the simplest and most commonly discussed manifestation of the
representability problem regards the tendency of structure-based CG models to dra-
matically over-estimate the pressure. Furthermore, when these models are adjusted to
reproduce the pressure, they provide a poor description of the compressibility. More
generally, it is sometimes suggested that CG models are fundamentally incapable of
reproducing both structural and thermodynamic properties. After all, there is no such
thing as a “free lunch” - any significant gain in computational efficiency should come
at the cost of significant model limitations.

At least in the case of structural and thermodynamic properties, though, we opti-
mistically propose that this may be a false dichotomy. Accordingly, we have recently
re-examined the “exact coarse-graining” procedure and investigated the intrinsic con-
sequences of representing an AA model in reduced resolution. These studies clarify
the origin and inter-relationship of representability and transferability problems. Both
arise as consequences of transferring thermodynamic information from the high resolu-
tion configuration space and encoding this information into the many-body potential
of mean force (PMF), i.e., the potential that emerges from an exact coarse-graining
procedure. At least in principle, both representability and transferability problems
can be resolved by properly addressing this thermodynamic information. In particu-
lar, we have demonstrated that “pressure-matching” provides a practical and rigorous
means for addressing the density-dependence of the PMF. The resulting bottom-up
models accurately reproduce the structure, equilibrium density, compressibility, and
pressure equation of state for AA models of molecular liquids. Additionally, we have
extended this approach to develop transferable potentials that provide similar accu-
racy for heptane-toluene mixtures. Moreover, these potentials provide predictive accu-
racy for modeling concentrations that were not considered in their parameterization.
More generally, this work suggests a “van der Waals” perspective on coarse-graining,
in which conventional structure-based methods accurately describe the configuration-

dependence of the PMF, while independent variational principles infer the thermo-



dynamic information that is necessary to resolve representability and transferability

problems.




1 Introduction

Low resolution coarse-grained (CG) models play an important and rapidly growing role in
science.™? By eliminating unnecessary details, CG models provide the necessary efficiency
for simulating length- and time-scales that remain inaccessible to more detailed models.”
CG models also empower more systematic investigations of the relevant experimental con-
ditions, while simultaneously providing superior statistical precision in simulated quantities.
Furthermore, CG models more effectively harness the intellectual horsepower of researchers
by focusing attention on the essential details of a particular phenomenon, which atomically
detailed models can easily obscure.®®

Historically, CG models have been extensively employed for investigating the emergent
consequences of basic physical principles.® More recently, though, many coarse-graining ap-
proaches have been developed for modeling specific systems.” By formally integrating out
unnecessary atomic details, “bottom-up” approaches can, at least in principle, quantita-
tively reproduce the structural and thermodynamic properties of a high resolution model
that can be observed at the resolution of the CG model, although thermodynamic properties
require careful consideration.®® Of course, this “exact coarse-graining” procedure cannot
be accomplished in practice. Rather, bottom-up models are often parameterized to accu-
rately describe the structure of a high resolution model at a single thermodynamic state
point.® Unfortunately, the resulting models often prove accurate over a relatively limited
range of thermodynamic conditions and, moreover, tend to provide a surprisingly poor de-
scription of thermodynamic properties.” These difficulties are termed “transferability” and
“representability” problems, respectively.

Transferability problems are not surprising. CG potentials are constructed to incorporate
the effects of atoms that have been eliminated from the CG model. These effects will
certainly vary with thermodynamic state point. Thus, one intuitively expects that CG
potentials should depend upon thermodynamic conditions. Indeed, many previous studies

have documented the sensitivity of bottom-up potentials to variations in state point.”1?



Consequently, one expects that any approximate potential will accurately describe these
effects only over a relatively limited range of thermodynamic conditions.

Representability problems are more subtle. While recent studies introduced the term to
describe thermodynamic inconsistencies in CG models,“%#! representability problems are re-
lated to inconsistencies observed much earlier for effective potentials employed in liquid state
theories.*#23 Perhaps the simplest and most commonly discussed representability problem
regards the pressure-volume behavior of structure-based CG models. Indeed, many stud-
ies have observed that structure-based CG models generate unrealistically high pressures.*4
For instance, under ambient conditions, structure-based CG models overestimate the internal
pressure of liquid water by almost four orders of magnitude.?!**> Moreover, when these models
are modified to reproduce the pressure, they then provide a poor description of the isother-
mal compressibility.“® Similarly, previous studies have also demonstrated that CG models
poorly describe the energetic and entropic contributions to free energy differences.“"¥ [t
has been suggested that representability problems reflect fundamental limitations of state-
point-dependent effective potentials and that, more simply, CG models cannot accurately
describe multiple conflicting observables, such as the pressure and the compressibility. 43"
Alternatively, it has been proposed that representability problems may be resolved by con-
sidering the effects of the missing atomic degrees of freedom upon the CG representation of
thermodynamic observables.™! In particular, Guenza and coworkers have demonstrated the
importance of these effects for low resolution polymer models.#2 54

This account summarizes our recent studies of representability and transferability chal-
lenges." =% We have adopted the optimistic hypothesis that both challenges can be resolved
by carefully considering exact coarse-graining and the intrinsic consequences of representing
a system in reduced detail. Our analysis clarifies both the origin and inter-relation of rep-
resentability and transferability problems. Moreover, our work demonstrates an extended

ensemble pressure-matching approach®®3 for determining transferable potentials that accu-

rately model the structure, pressure, and compressibility of molecular liquids in practice.



2 Exact coarse-graining

2.1 Atomic model

We first consider the canonical ensemble for an all-atom (AA) model that represents a system
with n atoms labelled i = 1,...,n in a volume, V, at a temperature, 7.%” We indicate the
atomic configuration, r = (ry,...,r,). The atoms interact according to a conservative
potential, u(r; V'), that generates a force, f;(r; V'), on each atom i, as well as a force on the

volume, i.e., the fluctuating internal pressure:
Pint (T3 V, T) = nkgT/V — (Ou(r; V) /OV), . (1)

The canonical ensemble average of pi(r; V,T') equals the thermodynamic internal pressure
of the AA model, p;,(V,T).

The first term in Eq. (??7) describes the kinetic, i.e., ideal, contribution to the pressure.
The second term defines the instantaneous excess (xs) pressure, py(r; V) = — (Qu(r; V') /0V ),
while # = (V=3ry,...,V~13r,) denotes the “scaled configuration.” This contribution is

often calculated from the virial expression:

pxs r; V 3V Zf r; V BVZfQZ] Tz] rl]) (2)

(4,9)

where the second sum is performed over all intra- and inter-molecular pairs (i, 7) that are
separated by a distance r;; and interact with a force of magnitude fa.;;(r;;). Both expressions
for ps(r; V) assume that the atomic potential does not explicitly depend upon the volume,

e., (Ou/0V), = 0. The second expression also assumes that the nonbonded potential is
pair-additive. While angle-dependent bonded potentials do not contribute to the virial,
36140

more complex non-bonded interactions may introduce additional contributions.

Finally, we consider the total differential describing variations in the atomic potential,



i.e., work:

du(r; V) = — Z fi(r; V) - (drs), — pus(r; V)V, (3)

where (dr;),, = V'/3d¢;. The first term in Eq. (??) quantifies changes in potential energy
due to configuration changes at constant volume. The second term quantifies changes in

potential energy due to isotropic compression or expansion.

2.2 Coarse-grained model

We next consider the canonical ensemble (at the same V and T) for a CG model that
describes the same system with N “sites” that are labelled I = 1,..., N. We indicate
the CG configuration, R = (R4,...,Ry). The sites interact according to a conservative
potential, U(R, V), that generates a force, F;(R, V'), on each site I, as well as a fluctuating

internal pressure:
PR, V;T5U) = NkgT/V — (OU(R, V) /OV ) - (4)

The canonical ensemble average of P (R, V;T;U) equals the thermodynamic internal pres-
sure of the CG model, P (V,T;U).

As above, the first term in Eq. (??) describes the ideal contribution for the N < n
remaining CG particles. The second term defines the instantaneous excess pressure of the
CG model, P(R,V) = — (QU(R,V)/dV)g , while R = (V-'/3R,,..., V"/3Ry) denotes
the scaled CG configuration. Our objective is to parameterize U for accurately describing

the structural and thermodynamic properties of the atomic model.

2.3 The many-body Potential of Mean Force

In order to relate the AA and CG models, we introduce a mapping, M, that determines the

CG configuration as a function of the AA configuration: R = M(r).*¥ For simplicity, we



assume the mapping associates the CG sites with the mass centers of disjoint atomic groups.
The central quantity in our analysis is the many-body potential of mean force (PMF), which

is the effective potential that results from “exact coarse-graining” in the canonical ensemble:
exp [-W(R; V,T)/kpT) = V="~ / dr exp[—u(r;V)/kgT] 6 (M(r) =R), (5
v

where the integral is performed over the volume-dependent configuration space.#4#4 The
PMF is the appropriate potential for ensuring that the CG model samples configurations
according to the probability implied by the atomistic model and the mapping at the given
V and T.*Y Moreover, the PMF encodes all information and thermodynamic properties that
are observable at the resolution of the CG model. In particular, the PMF ensures that the
CG model reproduces the excess free energy of the AA model:

% 4R o[- (R V. T] - % /V dr exp|—u(r; V) /kuT). (6)

2.4 Energetic and entropic contributions

The PMF is not a conventional potential, but rather a free energy that depends upon both
the configuration and also the thermodynamic state.” In collaboration with the Shell group,?
we have examined the thermodynamic character of the PMF and, in particular, derived its

energetic, Uy, and entropic, Sy, components:

WR;V,T) = Up(R;V,T) = TSw(R; V. T) (7)
Uy (R; V. T) = <u(r§v)>R;V,T (8)
Sw(R;V,T) = (—kgln [Q@MR(r\R;V,T)DRMT, (9)

where Q; = V"% is the volume element of atomic configurations r that map to R, prr(r|R;V,T)

is the conditioned probability density for AA configurations r satisfying M(r) = R, and the



subscripted angular brackets indicate corresponding conditioned canonical averages.

The energetic contribution to the PMF, Uy, (R; V, T'), is simply the conditioned average of
the atomic potential for the atomic configurations that map to R. This energetic contribution
generates forces that bias the CG model to sample low-energy configurations. The entropic
contribution, Sy (R;V,T), quantifies the excess entropy that is stored in the Boltzmann
distribution of atomic configurations that map to R. Thus, Sy quantifies the information
about the atomic distribution that is “lost” when viewing this distribution at the CG res-
olution. By the Gibbs inequality,*> —TSy > 0, and only vanishes when p,z = Qe
when all atomic configurations that map to R have equal Boltzmann weight. Consequently,
—T' Sy generates forces that bias the CG model to sample high-entropy configurations, i.e.,
CG configurations for which the underlying atomic Boltzmann distribution, p, g, is more
uniform.

This simple decomposition is fundamentally important for representing thermodynamic
properties with CG models. Since W is a free energy and incorporates an entropic compo-
nent, W cannot be directly employed to estimate atomic energies. Similarly, the configu-
rational entropy of the atomic model cannot be directly estimated from the configuration
distribution sampled by the CG model.#® Nevertheless, at least in principle, Uy and Sy, can
be employed to quantify the excess energy and excess entropy, respectively, of the atomic
model, albeit at the resolution of the CG model.

In order to illustrate these considerations, we analytically derived the exact PMF for the
Gaussian Network model (GNM) as a function of the CG resolution.®® The GNM describes
protein fluctuations away from an equilibrium structure with a system of linear springs
between nearby residues.*” For each of 7 proteins, we constructed a high resolution GNM
that explicitly represented 120 o carbons of the protein. For each protein, we determined
W for a series of N-site CG models in which we mapped each consecutive 120/N « carbons
to their mass center.

Figure [1] illustrates the impact of resolution upon W, Uy,, Sw, and sg, i.e., the excess



entropy present in the configuration space. In the absence of coarse-graining, i.e., N = 120,
the PMF is simply the atomic potential, W = u, Sy = 0, and the excess entropy is stored
in the atomic configurational distribution. Because Uy, is simply a conditioned average of
the atomic potential, its average magnitude does not vary with coarsening, as indicated by
the dashed horizontal line. However, with successive coarsening, configurational entropy
and, equivalently, information is eliminated from the atomistic configuration space. The
excess entropy is transferred into Sy, which results in a systematic increase in W with
coarsening. In the extreme limit of coarse-graining, N — 0, sg — 0, and the PMF becomes
the configuration-independent, excess Helmholtz potential of the atomic model. In this limit,

Uw and Sy become the thermodynamic excess energy and excess entropy, respectively.

2.5 Variation in the PMF

Further insight into representability and transferability issues can be gleaned from the total

differential of the PMF:

AWRV,T) = =) £;(R;V,T) (dRy)y — P (R; V. T) dV — Sy (R; V. T) dT' (10)
FI(Pl; V.T) = (fi(r; V)>R;V7T (11)
ﬁxs(R; ‘/7 T) = <pxs(r; V)>R;V,T (12)

where f;(r; V) is the force on site I and (dR;),, = V'/3dR; indicates changes in the CG
configuration at constant volume. While Eq. (?77) describes variations in an energy, Eq.
describes variations in a free energy, including both energetic and entropic contributions.

A few points should be noted:

1. Most importantly, Eq. equates the configuration-, volume-, and temperature-
derivatives of the PMF to conditioned averages of the excess forces, excess pressure,
and excess entropy of the atomic model. Consequently, the state-point dependence

of the PMF, e.g., with respect to temperature or volume change, is determined by

10



the contributions of the missing atomic degrees of freedom to the conjugate excess
thermodynamic quantity, i.e., the excess entropy or excess pressure, respectively. This

is the origin of both transferability and representability problems.

2. The third entropic contribution to Eq. is unique to the CG model. Since Sy < 0,
increasing temperature will cause the PMF to increase at each R. In particular, the
PMF will vary more rapidly with temperature for CG configurations that correspond

to highly structured atomic distributions.

3. Finally, these three contributions are all inter-related via Maxwell-type relations for

mixed second derivatives of the PMF. For instance:
(of;(R; V,T)/0T) ry = (OSw(R V. T)/ OR) 7y, (13)

which suggests that the temperature-transferability of CG force fields can be maximized

by minimizing the configurational dependence of Sy .

2.6 Pressure and the constant NPT ensemble

According to Eq. (??7), W accounts for the excess, but not the ideal, contributions to the
Helmholtz potential from the atoms that have been eliminated from the CG model. Con-
sequently, W does not reproduce the internal pressure and does not provide appropriate
Boltzmann weight for sampling different volumes at constant external pressure, Pq.. Ac-
cordingly, the PMF must be slightly modified in order to model the atomic pressure and the

constant NPT ensemble:

where V4 is an arbitrary reference volume. The second term in Eq. (?7) accounts for the

ideal contributions to the free energy from the missing atomic degrees of freedom. Although

11



this term does not impact the configuration-distribution at a given V', it ensures that Wp

provides the correct Boltzmann weight for each CG microstate, (R, V):

exp [— 8 (Wp(R,V;T) + P V)] = Vg ™) /V dr exp[—f (u(r;V) 4+ PextV)] 6 (M(r) — R),
(15)

where 3 = 1/kgT 2% Because
— (OWp(R,V;T)/0V)gp == (OW(R;V,T)/OV)g 1 + (n — N)kT/V, (16)

according to Eq. (?77?), Wp is the appropriate potential for reproducing the average pressure

of the atomic model in each CG microstate,
Puo(R, VT Wp) = (pins (13 VaT))R;V,T ) (17)
and each thermodynamic equilibrium state:

-Pint(v7 T7 WP) - pint(v7 T) (18)

3 Approximate coarse-graining

The preceding analysis not only clarifies their common origin, but also suggests practical

computational methods for resolving representability and transferability challenges.

3.1 Pressure-matching

In practice, CG models commonly employ a relatively simple effective potential that is

independent of both temperature and volume, i.e., U = Ur(R).™ The excess pressure of

12



the CG model is then

Py(R;V) = —(0Ur(R)/0V)g (19)

1 1

= W : F](R) ‘R] = W;J)FZ;IJ(RIJ)RIJ’ (20)

where the last expression sums over each pair (/,.J), assuming that each nonbonded inter-
action is modeled with a pair force function Fj,;; as a function of the pair distance, Ry ;.

Leading bottom-up methods parameterize Ui to reproduce atomic structural distribu-
tions, such as radial distribution functions (RDFs), at a single thermodynamic state point.®
While this structure-based approach addresses the configuration-dependence of the PMF,
it provides little or no insight into the volume- and temperature-dependence of the PMF.
Consequently, there is no reason to expect that the resulting model will accurately describe
thermodynamic properties or provide an accurate description at other state points.

In particular, in order for the CG model to accurately describe the pressure of the
atomic model, it is necessary that P%(R;V), given by Eq. , accurately approximates
— (OWp(R,V;T)/0V )g.p. However, while Eq. (20 assumes that the CG interactions are
pair-additive and do not explicitly depend upon the volume, Wp describes many-body in-
teractions that explicitly depend upon the volume. In fact, one expects that contributions
to Wp that vary only weakly with (or are independent of) CG configuration provide cohe-
sion that significantly reduces the pressure.##® These contributions are effectively invisible
to structure-based methods that focus on reproducing RDFs, which are primarily deter-
mined by short-ranged, rapidly varying repulsive potentials.*? Thus, it is unsurprising that
bottom-up CG models tend to dramatically over-estimate the internal pressure.2420

Following Das and Andersen (DA),"*® we have adopted a more general form for the ap-

proximate potential in order to model the volume-dependence of the PMF36

U(R, V) = UR(R) + Uv(V) (21)
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The interaction potential, Ug, is optimized to approximate the configuration dependence of
the PMF via standard structure-based methods.® Since Ur does not explicitly depend upon
V and is (usually) pair-additive, it contributes P to the pressure according to Eq. .
Conversely, Uy does not impact the equilibrium configuration distribution of the CG model,

but directly contributes to the pressure:

Ps(R,V) = P2(R; V) + Fy(V), (22)
where Fy = —dUy /dV is a “pressure correction.” Similarly, because
oV - oV ] dvz

the second derivative of Uy directly contributes to the (inverse) compressibility. Conse-
quently, Uy can be constructed to accurately model the pressure, the compressibility, and
more generally the pressure equation of state for the atomic model. Note that employing a
potential that “actively” varies with the density can introduce modifications to the chemical
potential, which must be considered to reconcile the virial and compressibility routes for
calculating the pressure.”!

Given a fixed interaction potential, Ug, DA proposed optimizing Uy by minimizing a

“pressure-matching” functional:
XG0T = ([pina (1, V. T) = Ban(M(x), Vi T3 U)[) (24)

in which the average is evaluated over the constant NPT ensemble for the atomic model.
Subsequently, we developed a self-consistent pressure-matching approach that optimizes Uy,
to quantitatively reproduce the atomic pressure equation of state.®" This iterative pressure-

matching approach corresponds to variationally minimizing a relative entropy™" with respect
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to Uy =1

Sral[U] = /dV/VdRpRV(Ra V)In[prv(R,V)/Prv (R, V;U)], (25)

where pry(R,V) and Pgy(R,V;U) are equilibrium distributions for the atomic and CG
models, respectively, at constant P and 7'. It should be noted that Wp minimizes both
X2 and S,. However, given the approximate potential in Eq. (??), minimizing S.¢ ensures
that the CG model reproduces the atomic pressure equation of state, while minimizing 3

does not ensure such consistency.

3.2 Numerical results

Recently, we tested the pressure-matching approach for molecular liquids.®® Figures [2] and
compare the density fluctuations, pressure equations of state, and pressure-volume fluctu-
ations obtained from constant NPT simulations of the OPLS-AA model for heptane®® and
from simulations of several 3-site CG models. The black points in Fig. present a scat-
ter plot of the volume and instantaneous pressure sampled by the OPLS-AA model. The
corresponding black curves in Figs. 2] and [3h present the simulated volume fluctuations and
pressure equation of state, respectively.

Given these atomic simulations, we employed the multiscale coarse-graining (MS-CGQG)
variational principle**3°% to determine an interaction potential, Ug, for 3-site CG mod-
els. This MS-CG potential quite accurately described the structure of liquid heptane,
but dramatically overestimated the pressure of the OPLS-AA model. The cyan points in
Fig. present a scatter plot of the instantaneous pressure that is generated by applying
the MS-CG interaction potential to the configurations sampled by the OPLS-AA model,
i.e., NkgT/V + P2%(M(r); V). Consequently, constant NPT simulations with the MS-CG
interaction potential (without including a pressure correction) overestimated the volume of
the OPLS-AA model by more than 10%, as indicated by the blue curve in Fig. [2|

Given this MS-CG interaction potential, we then employed the DA pressure-matching

15



variational principle®® to determine a volume-dependent potential, Uy,. As indicated by the
green curves in Figs. [2 and [3] the resulting DA model much more accurately described the
OPLS-AA pressure-volume behavior. Finally, we iteratively refined Uy via self-consistent
pressure-matching. The red curves in Figs. [2|and |3|demonstrate that the resulting DN model
reproduced the equilibrium density, pressure, and compressibility of the OPLS-AA model
with nearly quantitative accuracy.

Figures [2| and |3] also provide instructive comparisons with experiment and with a top-
down model. The orange curves present results inferred from experimental measurements of
the equilibrium density and compressibility of heptane.®® The purple curves present results
for a top-down model, which Shinoda, Devane, and Klein (SDK) parameterized to reproduce
the bulk density and liquid-vapor surface tension, but not the compressibility, of heptane.?®
Because it accurately describes the volume-dependence of the PMF, the bottom-up DN
model reproduces experimental measurements of the equilibrium density and compressibility
with comparable, if not better, accuracy than the top-down SDK model. Thus, Figs. [2and
demonstrate the promise of bottom-up CG methods for accurately describing both structural
and thermodynamic properties.

We have performed self-consistent pressure-matching for 1-, 2-, and 3-site CG heptane
models, for 1- and 3-site toluene models, and for 3-site models of heptane-toluene mixtures.
In each case, we reproduced the atomic density, compressibility, and pressure equation of
state with nearly quantitative accuracy. Interestingly, the optimized pressure correction
always dramatically reduced the internal pressure of the CG model, while the ideal kinetic
contribution from the “missing atoms” corresponded to a much smaller increase in pressure.
As illustrated in Fig. [, increasingly large pressure corrections are required with increased
coarsening, as the MS-CG interaction potentials systematically lose cohesion, due to the
increasingly entropic character of the PMF #? as reflected by reduced structure in the site-
site RDFs.?” Figure demonstrates the same correlation between cohesion and pressure

correction among MS-CG models for heptane-toluene mixtures of varying composition. Thus,
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the pressure correction appears to compensate for the cohesion that is lost in structure-based

potentials, as suggested by the classic van der Waals picture. 4248

3.3 Transferability for mixtures

The state-point dependence of the PMF limits the transferability of approximate CG poten-
tials. We previously proposed an extended ensemble approach for determining transferable
potentials that optimally approximate the PMF across a range of thermodynamic condi-
tions.?? We have recently combined the extended ensemble and pressure matching approaches
to develop predictive CG models for accurately modeling the structure and pressure-volume
behavior of heptane-toluene mixtures.”"

We first employed a global force-matching variational principle to determine a single set of
system-independent, i.e., transferable, interaction potentials that accurately approximate the
configuration-dependence of the PMF for a range of mixtures. Given this set of transferable
interaction potentials, we then performed self-consistent pressure-matching to determine an
optimal pressure correction for each mixture. Importantly, this pressure correction can be
accurately predicted as a function of the mixture composition. Figure |5 demonstrates that
the resulting CG models accurately reproduced the pressure-volume behavior not only for
the mixtures employed in the parameterization, but also for two additional mixtures that

were not included in the parameterization.

4 Conclusion: van der Waals perspective

In closing, we hope that this work helps clarify the origin and inter-relationship of the repre-
sentability and transferability problems that plague bottom-up coarse-graining approaches.
Both arise as a consequence of thermodynamic information that has been extracted from
the atomic configuration space and encoded into the many-body PMF. The key to resolv-

ing these problems lies in quantifying this information and then incorporating it into the
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calculation of thermodynamic properties and the prediction of transferable potentials. In
particular, pressure-matching provides a practical and rigorous way for determining the den-
sity dependence of the PMF in order to accurately model the pressure equation of state.
Thus, bottom-up approaches can develop predictive, transferable potentials that accurately
model the structure, density fluctuations, pressure, and compressibility of atomic models.
More generally, this work suggests a “van der Waals” perspective for bottom-up coarse-
graining. From this perspective, current bottom-up approaches provide a powerful means
for approximating the configuration-dependence of the PMF, such that the resulting models
accurately model atomic structure. At the same time, these approaches do not effectively
address the thermodynamic information that determines both the state-point dependence of
the PMF and also the missing atomic contribution to thermodynamic properties. Comple-
mentary variational principles, such as pressure-matching, may provide an effective means for
determining this information, both to predict the transferability of approximate potentials

and to model thermodynamic properties.

Acknowledgments

W.G.N. gratefully acknowledges very productive collaborations with M. Scott Shell that
contributed to part of the work reviewed herein, as well as very helpful comments on this
manuscript from Markus Deserno, Lasse Jensen, Ard Louis, and Christine Peter. This
work has been financially supported by the National Science Foundation (NSF Grant Nos.
MCB-1053970, CHE-1565631), by the Alfred P. Sloan Foundation, and by a Camille Dreyfus
Teacher-Scholar Award. This work was also supported by ACS PRF under Grant No. 52100-
ND6. We gratefully acknowledge the Donors of the American Chemical Society Petroleum
Research fund for support of this research. This work was partially supported by funding
from the Penn State Materials Computation Center. Portions of this research were conducted

with Advanced CyberInfrastructure computational resources provided by The Institute for

18



CyberScience at The Pennsylvania State University (http://ics.psu.edu).

Biographical Information

Nicholas J.H. Dunn was born in 1988 in Portland, ME. In 2011, he earned a B.S. in
chemistry from Union College. His research focuses on the thermodynamic properties of CG

models and on asphaltene aggregation.

Thomas T. Foley was born in 1989 in Marysville, CA. In 2010, he earned a B.S. in
physics from the University of California, Santa Barbara. His research focuses on the role of

representation on modeling information and physical systems..

William G. Noid was born in 1978 in Knoxville, TN. In 2000, he earned a B.S. in chem-
istry from the University of Tennessee, Knoxville. In 2005, he earned a Ph.D. in chemistry
from Cornell University. He then spent two years as a postdoctoral research fellow at the
University of Utah, Salt Lake City. Since arriving at Penn State in 2007, he has lead a
research group that develops multiscale modeling methods and investigates the biophysical

properties of disordered proteins.

19



References

10

Saunders, M. G.; Voth, G. A. Coarse-Graining Methods for Computational Biology.
Annu. Rev. Biophys. 2013, 42, 73-93.

Brini, E.; Algaer, E. A.; Ganguly, P.; Li, C.; Rodriguez-Ropero, F.; van der Vegt, N. F. A.
Systematic coarse-graining methods for soft matter simulations - a review. Soft Matter

2013, 9, 2108-2119.

Peter, C.; Kremer, K. Multiscale simulation of soft matter systems. Faraday Disc. 2010,
144, 9-24.

Deserno, M. Mesoscopic Membrane Physics: Concepts, Simulations, and Selected Appli-
cations. Macromol. Rapid Comm. 2009, 30, 752-771.

Hyeon, C.; Thirumalai, D. Capturing the essence of folding and functions of biomolecules

using coarse-grained models. Nat. Commun. 2011, 2, 487.

Miiller, M.; Katsov, K.; Shick, M. Biological and synthetic membranes: What can be

learned from a coarse-grained description? Phys. Rep. 2006, /34, 113—-176.

Noid, W. G. Perspective: Coarse-grained models for biomolecular systems. J. Chem.

Phys. 2013, 139, 090901.

Noid, W. G. Systematic methods for structurally consistent coarse-grained models. Meth-

ods Mol Biol 2013, 924, 487-531.

Lyubartsev, A. P.; Laaksonen, A. Osmotic and activity coefficients from effective poten-

tials for hydrated ions. Phys. Rev. E 1997, 55, 5689-5696.

Louis, A. A.; Bolhuis, P. G.; Hansen, J. P.; Meijer, E. J. Can polymer coils be modeled
as “soft colloids”. Phys. Rev. Lett. 2000, 85, 2522-5.

20



11

12

13

14

15

16

17

18

19

20

Vettorel, T.; Meyer, H. Coarse graining of short polyethylene chains for studying polymer

crystallization. J. Chem. Theor. Comp. 2006, 2, 616-629.

Ghosh, J.; Faller, R. State point dependence of systematically coarse-grained potentials.
Mol. Sim. 2007, 33, 759-767.

Allen, E. C.; Rutledge, G. C. A novel algorithm for creating coarse-grained, density

dependent implicit solvent models. J. Chem. Phys. 2008, 128, 154115.

Krishna, V.; Noid, W. G.; Voth, G. A. The multiscale coarse-graining method. IV.
Transferring coarse-grained potentials between temperatures. J. Chem. Phys. 2009, 151,
024103.

Chaimovich, A.; Shell, M. S. Anomalous waterlike behavior in spherically-symmetric
water models optimized with the relative entropy. Phys. Chem. Chem. Phys. 2009, 11,
1901-1915.

Farah, K.; Fogarty, A. C.; Bohm, M. C.; Miiller-Plathe, F. Temperature dependence of
coarse-grained potentials for liquid hexane. Phys. Chem. Chem. Phys. 2011, 13, 2894—
902.

Lu, L.; Voth, G. A. The multiscale coarse-graining method. VII. Free energy decomposi-

tion of coarse-grained effective potentials. J. Chem. Phys. 2011, 134, 224107.

Izvekov, S. Towards an understanding of many-particle effects in hydrophobic association

in methane solutions. J. Chem. Phys. 2011, 134, 034104.

Mirzoev, A.; Lyubartsev, A. P. Effective solvent mediated potentials of Na+ and CI-
ions in aqueous solution: temperature dependence. Phys. Chem. Chem. Phys. 2011, 13,

5722-5727.

Louis, A. A. Beware of density dependent pair potentials. J. Phys.: Condens. Matter
2002, 14, 9187-206.

21



21

22

23

24

25

26

27

28

29

30

Johnson, M. E.; Head-Gordon, T.; Louis, A. A. Representability problems for coarse-

grained water potentials. J. Chem. Phys. 2007, 126, 144509.

Barker, J.; Henderson, D.; Smith, W. Pair and triplet interactions in argon. Mol. Phys.
1969, 17, 579-592.

van der Hoef, M. A.; Madden, P. A. Three-body dispersion contributions to the thermo-
dynamic properties and effective pair interactions in liquid argon. J. Chem. Phys. 1999,

111, 1520-1526.

Guenza, M. Thermodynamic consistency and other challenges in coarse-graining models.

Eur. Phys. J. ST 2015, 22/, 2177-2191.

Lyubartsev, A.; Mirzoev, A.; Chen, L. J.; Laaksonen, A. Systematic coarse-graining of

molecular models by the Newton inversion method. Faraday Disc. 2010, 144, 43-56.

Wang, H.; Junghans, C.; Kremer, K. Comparative atomistic and coarse-grained study of

water: What do we lose by coarse-graining? Eur. Phys. J. E 2009, 28, 221-229.

Baron, R.; de Vries, A. H.; Hiinenberger, P. H.; van Gunsteren, W. F. Configurational
Entropies of Lipids in Pure and Mixed Bilayers from Atomic-Level and Coarse-Grained

Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110, 15602-15614.

Baron, R.; Molinero, V. Water-Driven CavityLigand Binding: Comparison of Thermody-
namic Signatures from Coarse-Grained and Atomic-Level Simulations. J. Chem. Theor.

Comp. 2012, 8, 3696-3704.

Lu, J.; Qiu, Y.; Baron, R.; Molinero, V. Coarse-Graining of TIP4P /2005, TIP4P-Ew,
SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy
Minimization. J. Chem. Theor. Comp. 2014, 10, 4104-4120.

D’Adamo, G.; Pelissetto, A.; Pierleoni, C. Predicting the thermodynamics by using state-
dependent interactions. J. Chem. Phys. 2013, 138, 234107.

22



31

32

33

34

35

36

37

38

39

Wagner, J. W.; Dama, J. F.; Durumeric, A. E. P.; Voth, G. A. On the representability
problem and the physical meaning of coarse-grained models. J. Chem. Phys. 2016, 1/5,
044108.

Clark, A. J.; McCarty, J.; Lyubimov, I. Y.; Guenza, M. G. Thermodynamic Consistency
in Variable-Level Coarse Graining of Polymeric Liquids. Phys. Rev. Lett. 2012, 109,
168301.

McCarty, J.; Clark, A. J.; Lyubimov, I. Y.; Guenza, M. G. Thermodynamic Consistency
between Analytic Integral Equation Theory and Coarse-Grained Molecular Dynamics

Simulations of Homopolymer Melts. Macromolecules 2012, 45, 8482—-8493.

McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G. An analytical coarse-graining
method which preserves the free energy, structural correlations, and thermodynamic state

of polymer melts from the atomistic to the mesoscale. J. Chem. Phys. 2014, 140, 204913.

Foley, T. T.; Shell, M. S.; Noid, W. G. The impact of resolution upon entropy and

information in coarse-grained models. J. Chem. Phys. 2015, 143, 243104.

Dunn, N. J. H.; Noid, W. G. Bottom-up coarse-grained models that accurately describe
the structure, pressure, and compressibility of molecular liquids. J. Chem. Phys. 2015,

143, 243148.

Dunn, N. J. H.; Noid, W. G. Bottom-up coarse-grained models with predictive accuracy
and transferability for both structural and thermodynamic properties of heptane-toluene

mixtures. J. Chem. Phys. 2016, 144, 204124.

Das, A.; Andersen, H. C. The multiscale coarse-graining method. V. Isothermal-isobaric

ensemble. J. Chem. Phys. 2010, 132, 164106.

Mullinax, J. W.; Noid, W. G. Extended Ensemble approach for deriving transferable

Coarse-grained potentials. J. Chem. Phys. 2009, 131, 104110.

23



40

41

42

43

44

45

46

47

48

49

20

Tuckerman., M. E. Statistical Mechanics: Theory and Molecular Simulation; Oxford

University Press: Oxford, Great Britain, 2013.

Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.; Voth, G. A.; Das, A_;
Andersen, H. C. The Multiscale Coarse-graining Method. I. A Rigorous Bridge between
Atomistic and Coarse-grained Models. J. Chem. Phys. 2008, 128, 244114.

Kirkwood, J. G. Statistical mechanics of fluid mixtures. J. Chem. Phys. 1935, 3, 300-313.

Likos, C. N. Effective interactions in soft condensed matter physics. Phys. Rep. 2001,
348, 267 — 4309.

Akkermans, R. L. C.; Briels, W. J. A structure-based coarse-grained model for polymer
melts. J. Chem. Phys. 2001, 114, 1020-1031.

Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids, 2nd ed.; Academic Press: San
Diego, CA USA, 1990.

Rudzinski, J. F.; Noid, W. G. Coarse-graining entropy, forces, and structures. J. Chem.
Phys. 2011, 135, 214101.

Bahar, I.; Lezon, T. R.; Bakan, A.; Shrivastava, I. H. Normal Mode Analysis of Biomolec-
ular Structures: Functional Mechanisms of Membrane Proteins. Chem. Rev. 2010, 110,

1463-1497.

Weeks, J. D. Connecting Local Structure to Interface Formation: A Molecular Scale van

der Waals Theory of Nonuniform Liquids. Annu. Rev. Phys. Chem. 2002, 53, 533-562.

Andersen, H. C.; Chandler, D.; Weeks, J. D. Roles of Repulsive and Attractive Forces in
Liquids : The Equilibrium Theory of Classical Fluids. Adv. Chem. Phys. 1976, 34, 105.

Stillinger, F. H.; Sakai, H.; Torquato, S. Statistical mechanical models with effective
potentials: Definitions, applications, and thermodynamic consequences. J. Chem. Phys.

2002, 117, 288-296.

24



51

52

93

o4

55

96

Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic

problems. J. Chem. Phys. 2008, 129, 144108.

Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the OPLS
All-Atom force field on conformational energetics and properties of organic liquids. J. Am.

Chem. Soc. 1996, 118, 11225-36.

Izvekov, S.; Voth, G. A. A multiscale coarse-graining method for biomolecular systems.

J. Phys. Chem. B 2005, 109, 2469 — 2473.

Izvekov, S.; Voth, G. A. Multiscale coarse graining of liquid-state systems. J. Chem.
Phys. 2005, 123, 134105.

Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 90th Edition, 90th ed.; CRC
Press: Ann Arbor, MI USA, 2009.

Shinoda, W.; Devane, R.; Klein, M. L. Multi-property fitting and parameterization of a

coarse grained model for aqueous surfactants. Mol. Sim. 2007, 33, 27-36.

25



Figures

200/

150¢

120f

3KK4 e—e 1S4K
—a 3E9V o— 1YO7
~—a 2HS8E o—¢ 4BLJ
—v 3LYG

2 3 5 8 12 20 40 60 120

N

Figure 1: Analysis of the PMF (top) and apparent configurational entropy (bottom) as
a function of the number, N, of sites considered. The top panel indicates the energetic
(horizontal dotted line) and entropic (vertical dotted line) contributions to the average of
the dimensionless PMF (solid line), (W), for each protein domain. The bottom panel
presents the absolute magnitude of the apparent configurational entropy for each protein
domain when viewed at the given resolution. Both panels employ a log x - log y scale.
Reproduced from Ref. [35, with the permission of AIP Publishing.
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Figure 2: Simulated volume distributions for various heptane models. The solid black curve
presents the simulated distribution for the OPLS-AA model. The dashed-dotted blue, solid
green, dashed red, and dotted purple curves indicate simulated distributions for the MS-CG,
DA, DN, and SDK 3-site models, respectively. The dashed orange curve indicates the normal
distribution that is constructed from the experimentally known density and compressibility
of heptane. Reproduced from Ref. 36, with the permission of ATP Publishing.
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Figure 3: Comparison of the pressure-volume behavior for the AA heptane model and for
different 3-site CG heptane models. The black, green, red, and purple curves correspond
to the models of Fig. 3. Panel a) presents the equation of state for each model, which is
estimated from the mean pressure at each volume in the simulated constant NPT ensem-
ble. The error bars indicate the standard error in the simulated means. The orange curve
indicates the equation of state that is determined from the experimentally known density
and compressibility of heptane. Panel b) presents a scatter plot of the simulated pressure
and volume. The cyan points correspond to the pressure, P, that is determined by ap-
plying the MS-CG potential to the mapped ensemble. Reproduced from Ref. [36, with the
permission of AIP Publishing.
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Figure 4: Scatter plot correlating the missing cohesive energy density, (AUjpyer), with the
average pressure correction, AP, required for various models. Panel a presents results for
AA (black), as well as 3-site (blue), 2-site (green), and 1-site (red) CG models for heptane
(crosses) and for toluene (circles). Panel b presents results for 3-site CG models of liquid
mole ratio. The slight differences in the two panels
pure toluene reflect finite size effects.”®8 Adapted

mixtures with varying heptane:toluene
for 3-site models of pure heptane and
from Refs. [36l and 137, with the permiss

ion of AIP Publishing.
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Figure 5: Simulated density distributions (top) and pressure-volume equations of state (bot-
tom) for AA (solid) and 3-site CG (dotted) models for various heptane-toluene mixtures.
Pure heptane, pure toluene, as well as the 2:3, 1:1, and 3:2 heptane:toluene mixtures were in-
cluded in parameterizing the CG potentials. The results for the 1:9 and 9:1 heptane:toluene
mixtures were not included in the parameterization and reflect predictions of the transferable
model. Adapted from Ref. 37, with the permission of AIP Publishing.
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