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Abstract— We introduce a fast approximate stability analysis
into an automated dry stacking procedure. Evaluating struc-
tural stability is essential for any type of construction, but
especially challenging in techniques where building elements
remain distinct and do not use fasteners or adhesives. Due
to the irregular shape of construction materials, autonomous
agents have restricted knowledge of contact geometry, which
makes existing analysis tools difficult to deploy. In this paper,
a geometric safety factor called kern is used to estimate how
much the contact interface can shrink and the structure still be
feasible, where feasibility can be checked efficiently using linear
programming. We validate the stability measure by comparing
the proposed methods with a fully simulated shaking test in 2D.
We also improve existing heuristics-based planning by adding
the proposed measure into the assembly process.

I. INTRODUCTION

Robots that can autonomously operate in and modify
unstructured environments would be extremely useful in
a variety of applications, such as search and rescue and
exploration of remote environments which lack the supply
infrastructure required by typical construction techniques.
Ideally, robots could modify their environment in ways that
aid their immediate operational goals, or complete human
imposed missions while requiring minimal or no additional
raw materials.

Dry stacking, a construction technique that relies on grav-
ity and friction instead of fasteners or mortar, is ideally suited
for these applications. Rigid elements that are found in the
environment are assembled into stable structures. Building
these structures has long been the purview of expert human
masons, and recent work by the authors [1], [2] and others [3]
have investigated the feasibility of automating dry stacking
as a robotic construction technique. In contrast to packing
problems, in which objects need to be arranged into a fixed
space, stacking problems are significantly more complicated
due to additional stability constraints. Arrangements that
achieve excellent packing can fail to be stable. Evaluating
stability of structures is one of the key, necessary capabilities
for automation.

One common approach to evaluate the stability of object
arrangements is to subject them to disturbances such as load-
ing forces and shaking. This method is common in both de-
structive physical testing and in a simulation. For simulated
rigid bodies shaking (as opposed to loading) is especially
appropriate, since the simulators fail to capture fractures and
other compressive failures of individual elements accurately.
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However, simulated shaking is noisy, i.e. the same structure
produces different results due to numerical noise and the
choice of random forces and it is computationally expensive.

Analytic methods of modeling and analyzing stability have
been widely used, e.g. in humanoid locomotion [4], [5],
safety assessment of historic masonry structures [6], design-
ing structural sound masonry building [7]. These methods
provide analytic results or have computationally efficient
implementations. However, these methods assume that the
contact geometry is known or, in the case of design, can be
efficiently parameterized. When working with found objects,
robotic agents have limited choice of their exact shape and,
therefore, have limited control over contact geometry, which
makes it difficult to apply these analysis techniques directly.

In this paper, we study the stability evaluation for drys-
tacked structures based on a geometric safety factor called
kern [7]. When evaluating the stability of objects with plane-
plane contacts, the kerning is applied to the interior portion
of the contact interface, and stability can be evaluated by
computing how much this interface can shrink and the overall
structure still be stable. For example, in the case of vertical
box stacking, the center of mass of the top objects needs
to project onto the interior of this interface to be stable,
so that smaller interfaces are less likely to be stable. The
amount of possible shrinkage is a quantitative measure of
stability. By expressing the torque and force balance between
objects as a linear program, static stability can be checked
quickly using a variety of commercial or free solvers. Our
contribution is to formulate an approximation for the kern
contact geometry that can be used on irregular objects. This
enables a fast approximate stability analysis that can be used
instead of shaking or a full simulation. This approach works
particularly well for moderately irregular objects. Due to the
increased speed, this novel methods can be used during the
dry stacking assembly process and provide better results than
the current, state-of-the-art techniques.

Section II gives a brief overview of related works; Sec-
tion III describes the background knowledge and proposed
algorithm; Section IV describes our specific simulation and
experimental setup, results and subsequent discussion; finally
Section V concludes the paper.

II. RELATED WORK

In our previous work [1], [2], we propose an architecture
for solving the dry stacking problem based on heuristics
and deep Q-learning for building stable large-scale structures
using physics simulation. The target structure is built on a
simulated shaking table, and after a particular construction



Fig. 1: Model of contact forces at interfaces between objects in 2D
case. We assume there are two contact modes: point contact (point
to line) in the upper right image and full contact (line to line) in
the upper left one. A full contact can be represented as two-point
contacts. Contact points are marked as blue color. At each contact,
there is a force f i, which can be decomposed into a normal force
f i
n and a friction f i

r .

experiment is completed, the whole structure is shaken and
displacements of the objects are observed.

The methods presented by Furrer et al. [3] propose a pose
searching algorithm that considers structural stability using
a physics simulator. In addition, they present an autonomous
system, using a robot manipulator, for stacking balancing
vertical towers using irregular stones. Instead of analyzing
contact forces directly, the pose searching method considers
support polygon area, kinetic energy, the deviation between
thrust line direction and the normal of the support polygon
surface, and the length between the new object and the CoM
of the previously stacked object.

Stability in assembly planning have been studied previ-
ously. Authors [8] addressed the problem of gravitational
stability of assemblies of frictionless rigid bodies, and they
proposed solution methods to the problems of determining
if an assembly is stable and finding a stable orientation for
a given assembly. Mosemann el al. [9] proposed methods
to determine whether an assembly in a given orientation is
frictional stable and to compute a frictional stable orientation.

Analyzing the stability of existing buildings using contact
forces can serve as a useful tool in masonry. For example,
structure stability analysis is used by Michiels et al. [10] to
determine the collapse load and the collapse mechanism of a
rammed earth arch; by Block et al. [6] for safety assessment
of historic structures and by Panozzo et al. [11] to allow non-
expert users to design masonry structures. Whiting et al. [7],
proposed a measure of infeasibility that determines how close
a model is to be structurally sound. Frick et al. [12] proposed
methods that decompose three-dimensional shapes into self-
supporting, discrete-element assemblies. Force networks in
granular packing and force distributions are studied by Tighe
et al. in [13] and Radjai at al. in [14]; and Groth et al. [15]
investigate the acquisition of an intuitive understanding of
physical principles and geometric affordances in the context
of generalized object stacking.

Other applications also benefit from contact and force
analysis. Caron et al. [4] proposed a closed form formula of
the contact wrench cone [16] for rectangular support areas

Fig. 2: Boundary shrinkage in 2D case. In (a), the original contacts
are line to line contact, and red line represents kern. Two forces f i

and f i+1 are exerting to this kern; (b) shows the kern after several
steps of shrinkage, and the forces f i and f i+1 are closer. (c) gives
example of point to line contact case, and after shrinkage, the forces
are represented in (d). Force exerting locations are shrunk in a way
that two forces are getting closer to each other along the direction
of frictions.

in rigid contacts situation. Addi and Rodic [5] investigated
the impact and friction contact dynamics that occur during
a biped motion. Zhou et al. [17] modeled 3D contact forces
occurring during peg-in-hole assembly operations, in which
the output force/torque is used for collision detection in
an interactive virtual reality environment, as it affects the
feedback perception.

III. METHODS

In this section, we present the methods used for solving
the static equilibrium equations and our proposed measure
that uses the concept of kern. The notation is based on the
approach in [7], which presents a more detailed derivation.

A. Static Equilibrium Analysis

A feasible structure is one in which the forces must satisfy
static equilibrium, compression and friction constraints.

1) Contact Modeling: In 3D, the physics of contact is
a continuous distribution of stress and pressure fields and
surface contacts are often modeled using sets of contact
points [18]. Authors in [18] prove that the distribution of
contact forces on a plane is equivalent to contact forces lying
in friction cones at the corners of convex contact polygons.
Fig. 1 illustrates the contact forces discretization in 2D case.

2) Static Equilibrium: Static equilibrium conditions re-
quire that the net force and net torque, i.e the sum of all
forces and torque, acting on objects in the structure equal
zero, taking into account both gravity and external loads.
We can combine the equilibrium constraints for each object
into a linear system of equations [19] given by:

Aeq.f + w = 0 (1)

where w is a vector containing the weights of each object,
f is the vector of interface forces and Aeq is the matrix of
coefficients for the equilibrium equations, see [7].



Fig. 3: Illustration of an example of boundary shrinkage. Top
shows one set of feasible solution given original contacts; bottom
is one feasible force solution after a few steps of shrinkage. Black
arrow indicates the force magnitude and orientation.

3) Compression and Friction: Masonry uses building
materials that are rigid. Hence, the compressive stresses
are relatively low relative to the strength of masonry in
such structures. Furthermore, according to limit analysis of
masonry as summarized by [20], the material can be assumed
to have zero tensile strength. This condition is expressed as
a non-negativity constraint on the normal forces:

f in ≥ 0, ∀i ∈ interface vertices (2)

In order to model friction, a friction constraint is applied
to each vertex of the object interfaces. In Fig.1, for each
pair of forces f in and f ir, f ir lies within the friction cone of
the normal force f in. The linear approximation as a friction
pyramid is given by :

|f ir| ≤ αf in, ∀i ∈ interface vertices (3)

where α is the coefficient of static friction; in this paper
we use a value of 0.4. Combining the friction constraints
for each object in the structure gives rise to a sparse linear
system of inequalities:

Afrf ≤ 0 (4)

In summary, for a feasible structure, a force solution must
exist that satisfies the following linear constraints:

Aeq.f = −w
Afr.f ≤ 0

f in ≥ 0, ∀i ∈ interface vertices

(5)

Static analysis can only indicate whether a structure is
stable or not. It fails to quantify stability, which allows for
comparison of relative stabilities of different configurations
for the same target structure. In addition, from a structural
mechanics viewpoint, the constraints in Eq. 5 describe a
statically indeterminate structure. Structures that have more
unknown forces than available equilibrium equations are
statically indeterminate [21], as the equations of local force
and torque balance do not uniquely determine the forces.

B. Proposed Measure

Instead of solving for each individual force in response
to various disturbances to quantify stability, we make use of
the concept of kern [7] and check for global stability using

Fig. 4: Simulation framework. LINE 1 serves as the ground for
the wall; LINE 2 and LINE 3 stop fallen objects from the wall from
falling off screen; LINE 4 and LINE 5 are guidelines for the wall,
and they do not interact with the environment; BASE at the bottom
serves as the base for the wall construction.

the method described in the previous section. The kern is
the central portion contact interface, possibly with additional
safety margins, and the force equations are computed on
the kern limits. If the resultant force lies within the kern
boundaries, the entire interface will act in compression. If
the resultant force reaches the boundary of the interface, the
structure forms a hinge and might lead to unstable conditions.
For example, in vertical box stacking or overhang problem,
the resultant force of the top blocks needs to project inside
the contact interface to be stable.

In our method, we systematically modify the kern limits
by shrinking its boundaries. As the boundaries shrink, the
corresponding force positions change and the static analysis
equations are measured on the new positions. This procedure
is repeated until there is no feasible solution for the static
analysis equations. We associate the number of times that
the kern can shrink and still allow for stable solutions as a
measure of stability. Fig. 2 illustrates the boundary shrinkage
in 2D case.

Algorithm 1 describes the proposed approach. In Line
3, the kern boundaries are shrunk by ε. At each shrinkage
step, the locations of two forces move along their friction
directions (Line 5). In line 6, we use COIN Cbc linear
programming solver [22]. The return value of Algorithm 1
is how many times the interface can be shrunk, until the
structure becomes infeasible. Fig. 3 illustrates an example
of the boundaries shrinkage in our simulated environment.
The proposed boundary shrinking method does not aim to
calculate the exact force magnitude, and thus may not be able
to accurately predict if an object is close to slipping. How-
ever, many real-world drystacked stone walls (Fig. 5 left) are
constructed in such way that each stone is mostly supported
by normal forces. In these situations friction forces seem
to have limited contribution to the overall stability, and the
proposed approximate method can yield good predictions.

IV. EXPERIMENTS

We first describe the simulation environment used in
our experiments, then we give the experimental results
and further discussion. The objective of our experiment is
to validate the proposed stability analysis, to compare its
efficiency to the shaking analysis approach used in our



Data: Contacts, weight of each object
Result: shrinkage level

1 shrinkage level ← 0 ;
2 while static analysis equations are feasible do
3 shrinkage level ← shrinkage level + 1 ;
4 Shrink kern boundaries by ε ;
5 Compute the new force positions;
6 Apply linear programming solver on Eq. (5);
7 end

Algorithm 1: Kern based stability measure

Fig. 5: Real drystacked stone walls from masonry book [23].

previous experiments, and to test how much it can improve
the heuristics-based planning if it is added to the assembly
process. We conduct all the experiments using a Intel(R)
Core(TM) i7-4790 CPU with 3.60GHZ computer.

A. Simulation

We developed our assembly framework based on a 2D
rigid body simulator [24] that is necessary to provide the
contact geometry used to predict the stability of structures.
Fig. 4 depicts a screen shot of our framework.

In our previous work [1], [2], the structure stability is
analyzed by shaking the platform (BASE) where the con-
struction process takes place. During evaluation, the mag-
nitude of shaking increases and the displacement of each
object, as defined in Eq. (6), is measured. We define the
parameterized lemniscate (∞-shaped) motions with different
scaling factors as the shaking function. Let (xt, yt) be the
coordinates of the BASE at time t, xt and yt move following
xt = scale × cos(t) and y = 0.5 × scale × sin(2t) and
scale = shakeLevel/(3 − cos(2t)). Here, scale indicates
the magnitude of shaking; shakeLevel denotes the scaling
factor for the shaking function. Larger shakeLevel generates
larger velocity and magnitude for the BASE. After shaking,
the displacement of each object is used to calculate the
stability. The shakeLevel keeps increasing until the built
structure collapses, and this shakeLevel is the final stability
of current structure. The better quality a structure has, the
more number of shaking levels it can withstand.

We calculate a displacement score Doi for each object oi
in the structure by taking into account its linear and angular
displacement before and after the shaking process as shown
below:

Doi =
√

(α∆x2 + α∆y2 + β∆θ2) (6)

where ∆x, ∆y and ∆θ are the differences in the horizontal
direction, vertical direction and orientation of the object pose
before and after the shaking process, respectively; α and β
are scaling factors.

Fig. 6: Comparison between shaking test and proposed stability
measure. Each colored continuous line represents one structure;
horizontal axis is the shaking level; vertical axis represents the
average displacement score of all objects after shaking test; and
the colorscale shows the result of the proposed stability measure.
Each color corresponds to one value on the color bar. Larger value
on the color bar corresponds to larger stability value given by the
proposed measure.

TABLE I: Comparison of running time. ”Shaking evaluation”
means after the target structure is completed, we test final structure
by subjecting it to the shaking test, in which shakingLevel
increases from 1 to 20.

Method Shaking (single) Shaking evaluation Proposed
Time (second) 5 to 10 150 <0.6

The Average Displacement Score (ADS) D is given by:

D =
1

|I|
Σoi∈I Doi (7)

where I and |I| represent the set and number of objects in
the structure, respectively.

The shaking process is not an efficient way of evaluating
stability. First, the simulation of the shaking is slow. Second,
the process is non-deterministic due to numerical noise and
the choice of random forces. For these reasons, in order
to get reasonable stability value, shaking test needs to be
conducted several times, which makes the evaluation more
time-consuming.

B. Validation

Since a shaking test is one of the general ways of eval-
uating structure stability, we validate the proposed stability
measure by comparing it to a shaking test.

TABLE I compares the running time between two mea-
sures. Single shaking test takes around 5 to 10 seconds, and
this is 10 times slower than proposed measure. Once the
structure is completed, a set of shaking test is conducted,
where shakingLevel increases from 1 to 20. This process
usually takes around 150 seconds, which is 250 times slower
than proposed measure.

In order to evaluate the proposed measure with less bias
introduced by the existing stacking planning, we manually
build different structures, which have different target area
completions and level of stabilities. Fig. 6 shows the com-
parison between the shaking test and proposed measure. The



Fig. 7: An example in which the proposed measure outperforms
the shaking test. Right image shows that the shaking test can not
distinguish the top and bottom images on left in terms of stability,
however, the proposed measure scores 13 to top left image, and 5
to bottom left one.

colorscale shows the result of the proposed stability measure.
The structures with lower stability measure are represented
by blue lines, and they have larger ADS (D) values; higher
stability structures represented by yellow and red lines have
lower ADS (D) values. The proposed method correlates with
the shaking method. Less stable structures produce more
displacement for the same amount of shaking. From Fig. 6,
we can see shaking test and proposed measure are complying
with each other for most of the structures.

Fig. 7 illustrates an example of how a configuration
difference in the positioning of a single object (the blue
object) can affect the stability assessment provided by both
methods. While the shaking test produces very similar results
(green and red curves) for the given structures, the proposed
measure generates more discrepant values (5 for the lower
one and 13 for the upper one), as shown in the right image.
In general, we would prefer the placement shown in the
upper left image because the blue object in the lower left
has the potential to push away other objects. While the
proposed method can analytically identify it as a more stable
configuration; the shaking test can not explicitly show that
the upper is better than the lower.

C. Incorporating Heuristics

In previous work [1], we utilize the physics simulator to
get a set of feasible poses for objects on a partially built
structure. All the feasible poses respect both geometric and
physical constraints. We then utilize heuristics for a reduction
of the feasible poses set. The reduction is a hierarchical
filtering approach, where each level filters out poses that
do not meet the minimum requirement for a satisfactory
placement. Each level of reduction uses heuristics derived
from masonry books [25], [26]: the length of the common
edges between objects, the hole area generated by a new
placement, the height of neighboring objects, the top surface
slope of an object after placement and if there is interlocking,
see [1] for further explanations. Because the shaking process
is computationally expensive, we only evaluate the stability
of the structure after completion of the construction process.

Since the proposed stability measure takes less than 0.6
seconds to evaluate one structure, it can be added to previous
heuristics-based planning as an additional level on the hierar-

Fig. 8: Comparison between heuristics-based planning (top row)
and combined planning (bottom row). From left to right, objects
irregularity level is increasing.

chical filtering in each assembly step, which filters out poses
whose shrinkage levels are less than the average number of
shrinkage. This filter does not apply on small objects (fillers),
see [1] for more details.

We evaluate the combined planning using datasets of
irregular objects, as proposed in [1], in which the objects are
categorized according to their levels of irregularity. In this
work, we use objects whose irregularity levels range from 10
to 50, with a sampling interval of 10. For each irregularity
level, we generated 5 different datasets and built 5 structures.
The overall quality of the built structure is evaluated by:

Q = stability × f(TFF) (8)

where stability is the shakeLevel, f(TFF) is a penalty
function, where TFF stands for Target Fill Fraction. It is
defined as the ratio of the area of the target structure that is
not covered by the empty space to the area of target structure.
The penalty function f(TFF) is defined as follows:

f(TFF) =

{
0 TFF < 60%

1
1+exp (−a∗(TFF−b)) TFF ≥ 60%

Fig. 9 depicts the overall quality of the previous heuristics-
based greedy planning [1] and the combined planning de-
scribed above. The black and red error bars are mean and
standard deviation of the previous heuristics-based planning
and the combined planning, respectively; the blue area is the
prediction of heuristics-based planning given by Gaussian
Process model with its probabilistic nature in the form of a
pointwise ±σ confidence interval. Horizontal axis represents
object dataset irregularity; a larger number corresponds to
larger irregularities. The vertical axis is the overall quality
of a structure.

For low levels of irregularity, the overall stability of com-
bined planning outperforms the heuristics-based planning,
but for higher irregularity, the results are similar in both
methods, as we can see in Fig. 9. This is because more
irregular objects have more complicated geometry, which
is susceptible to contact geometry changes. So when the
contact geometry changes, the prediction of stability based
on previous contacts becomes invalid, which explains that
when the level of irregularity increases, the combined method
performs similar to the heuristics-based method.

Fig. 8 shows structures constructed using heuristics-based
planning and combined planning. We can see that structures



Fig. 9: Overall quality of assembly using object sets with different
irregularities.

in the second row tend to have longer and more stable
interfaces between objects than the ones in the first row. The
structures in the last column are constructed with the dataset
of objects that have high irregularity. This corresponds to Fig.
9 which, when the irregularity level is increasing, combined
and heuristics-based planning performs similarly.

V. CONCLUSION

We study stability evaluation of drystacked structures.
Using a full structural simulation subjected to disturbances is
computationally expensive, and prohibitive when searching
the space of possible assemblies. An approximate stability
analysis is proposed based on kern. This method is known to
be fast and accurate in regular contact geometries. Stability
is estimated by shrinking the kern area until the structure
becomes infeasible. This condition can be expressed as a
linear program, where feasibility can be computed efficiently.
However, with irregular objects, changes to the contact
geometry are more difficult to compute and we propose a
fast approximate approach to do so. Experiments verify that
the resulting stability measure matches the evaluation of a
fully simulated destructive shaking test. Due to the increased
speed, this method can be added to existing heuristics-based
planning during the assembly process. Experiments show that
the combined assembly planning outperforms the heuristics-
based method, especially for dry-stacking moderately irregu-
lar objects where the contact change approximation is good.
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