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Topological crystalline insulators are classes of materials in which the electronic structure hosts non-trivial
topology protected by some symmetry of the crystal. The paradigm of these are (Sn/Pb)Te alloys, for which the
protection comes from mirror symmetry. The topology necessitates that gapless surface states are present for a
bounded system even as the bulk is gapped. When magnetic dopants which are exchange-coupled to the elec-

trons are added to the system, near the surface they may order. We demonstrate that the magnetic ordering at
the surface reflects the symmetry of the bulk and leads to a rich set of possible ferromagnetic groundstates, with
the particular form of this chosen out by the electron surface density, which in principle may be controlled by an
external gate. The effective spin stiffness at the surface has an unusual “emergent” long-range form which
follows from the Dirac nature of the electronic dispersion at the surface, with interesting consequences for the
domain walls. Possible experimental signatures of this physics are discussed.

1. Introduction

Some of the most interesting developments in condensed matter
physics in the last few decades have involved electronic systems in
which topology plays a non-trivial role. The paradigm for this is the
quantum Hall system [1], a two-dimensional electron gas subject to a
perpendicular magnetic field. When this system is placed in a spatially
periodic potential, an intricate band structure develops [2], and the
Hall conductivity associated with these bands turns out to be a topo-
logical invariant [3], the Chern number. When this Chern number is
different than zero the system supports a non-vanishing, quantized Hall
conductivity [1], and for finite size systems there are robust gapless
states at the edges [4] even as the bulk spectrum is gapped.

In recent years it has been recognized that the rich physics des-
cending from non-trivial topology is not restricted to electrons in
magnetic fields. In zero magnetic field there are now many examples of
topological insulators and superconductors [5,6], both two and three
dimensional. An important example of the three-dimensional case are
topological crystalline insulators (TCI's) [7]. In these systems the gap-
less states at a sample boundary come in the form of Dirac cones [8],
electronic states with a two-dimensional (surface) dispersion that varies
linearly around a doubly-degenerate Dirac point. For TCI's this degen-
eracy is protected by a crystalline symmetry at one or more specific
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points in the surface Brillouin zone. The breaking of this symmetry as
the wavevector deviates from such points leads to level repulsion,
causing the energy dispersion. The resulting gapless surface states in-
vade the bulk gap, and when the system Fermi energy resides there, the
surface states dominate its conduction properties. Such behavior is ra-
ther analogous to what occurs in the quantum Hall system [1].

A paradigm for TCI's that has been of great recent interest are
(Pb,Sn)Te and related alloys [9-14]. In these systems the crystalline
symmetries protecting the surface states are mirror reflections across
high symmetry planes. When the crystal is cut in such a way that the
surface leaves one or more of the mirror symmetries undisturbed, the
surface can host gapless states. The symmetries, however, can be dis-
turbed in more subtle ways [15,16], in particular by magnetic dopants.
At long wavelengths the random placement of such impurities to a first
approximation leaves the mirror symmetry intact; however, if they
order magnetically, the resulting magnetization may align in such a
way that mirror symmetry is broken. Qualitatively, one may expect
such behavior should in fact be favorable: by forming such a gap, filled
electron states are energetically pushed down, lowering the overall
electronic energy of the system [17]. This is essentially a long-wave-
length description of coupling between pairs of magnetic moments
mediated by conduction electrons, resulting in the well-known “RKKY”
interaction. While this has been thoroughly considered in the context of
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topological insulators protected by time-reversal symmetry [18-22],
the resulting ordered groundstates turn out to be less rich than in the
TCI case [23]: the former usually supports ferromagnetism moments
perpendicular to the surface, or spin-glass states.

By contrast, in TCI systems the favored magnetization directions are
not determined by the surface, but instead by the high symmetry di-
rections of the bulk crystal lattice. This behavior is nicely illustrated
when one considers a (111) surface of (Sn,Pb)Te [14,24-26]. This
surface hosts four surface Dirac points in the surface Brillouin zone.
Assuming the presence of substitutional isoelectronic magnetic im-
purities diluted into the system (or dopant magnetic impurities com-
pensated by non-magnetic ones) the chemical potential may lie in the
bulk gap. The absence of bulk conducting electrons implies the absence
of substantial RKKY coupling there, and one expects the bulk moments
to be disordered. The conducting surface states however do couple
magnetic moments in their vicinity, leading to surface magnetism. The
direction of lowest energy for the magnetization depends on which gap
opening(s) of the various Dirac points dominates the total electronic
energy. In turn this implies that favored magnetization directions will
depend on the chemical potential y. In principle this may be adjusted
via a gate potential, leading to a possibly useful way to electrically
control the magnetization direction.

Figs. 1 and 2 illustrate the physics, which is derived from a nu-
merical tight-binding model representing a TCI slab with two open
faces of (111) surfaces of (Pb,Sn)Te with magnetic moments embedded
in them. Fig. 1 illustrates the total electronic energy of the system as a
function of the magnetization orientation for two different chemical
potentials y, showing that the low energy orientations are sensitive to
this parameter. Fig. 2 shows in more detail how this happens: the en-
ergies of surface electronic states penetrating the bulk gap, which
would comprise four gapless Dirac cones in the absence of the magnetic
moments, now have gaps, with relative sizes that depend on the mag-
netization orientation. The single particle energies are illustrated in a
“flattened” manner, with the momentum (horizontal) axis along a
particular direction in the surface Brillouin zone, and states at different
momenta perpendicular to this direction all shown vertically above and
below one another. The plot makes clear that the energy structure is
quite sensitive to the magnetization orientation, which leads to very
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Fig. 2. Tight-binding energy levels near bulk gap energy for a slab geometry
with magnetic moments near surfaces. In (a) the levels are shown for magne-
tization oriented along the bulk I' — L direction associated with a surface M
point. In (b) the orientation is along a bulk I' — L direction associated with the
surface T' point.

different minimal energy magnetization directions for different p’s.
To understand these results in more detail, we next discuss the tight-
binding model that underlies it.

2. From tight-binding to surface Hamiltonians
Figs. 1 and 2 are based on a tight-binding Hamiltonian for materials

in the (Sn,Pb)Te class, which has a rocksalt structure. Its explicit form
[9] is given by Hpyx = H,, + Hpp + Hpnn + Hyo, with

Hn = %M T TR G (R,

Hu = Xwms ?aL(R)'E;,R’E)R,R”a,S R) + h.c.,

Hounn = Zj 5 X (mrys ?j,Z(R)'E)R,R’E;{,R"E;s(RI) +h.c.,

Hy = i34 Y. Cn®) X GoR)-D), o

In these equations & is the vector of Pauli matrices. R labels the sites of
a cubic lattice, j = a, b are the species type (Sn/Pb or Te), with on-site
energies mgp, and s = 1, | is the electron spin. The vector operator
E;'s (R) annihilates electrons in p,, p, and p, orbitals, and A, characterizes

N
the strength of spin-orbit coupling in the system. The quantities dg g
are unit vectors pointing from R to R’, and the sum over (R, R”) denotes

Fig. 1. Electronic energy for different mag-
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sible orientations of the magnetization.
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along which the system energy is shown in
(b) and (c). (b) Total electron energy vs.
magnetization orientation for chemical po-
tential u near Er, as a function of azimuthal
angle @, for the four paths illustrated in (a).
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favored. Note there is a total of six minimal
energy directions in this case.
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positions which are nearest neighbors, while ((R, R’)) denotes next
nearest neighbors.

For appropriately chosen parameters, the model is a direct gap
semiconductor ~ with  smallest gaps at the L  points

b=k ko ko= (5.5 2), (<55 ), (5,-5.2), (5.5 -2) i
units of the inverse nearest neighbor separation]. For k precisely at an
L-point the nearest neighbor hopping integral vanishes so that the states
at these points have well-defined sublattice index. Adjusting m, — m, =
m continuously allows two states to cross in energy, leading to band
inversion and a transition from trivial to topological bands [9]. In
practice, this parameter is adjusted in the real material by varying the
relative densities of Pb and Sn in the alloy; in the virtual crystal ap-
proximation, this is taken into account by adjusting the electron po-
tential at the site in the rocksalt structure where these atoms reside.
Precisely at the m value for the topological transition, with k set to one
of the L-points one encounters a four-fold degenerate manifold of states.
The Hamiltonian may then be expanded for small deviations q from an
L-point to obtain an effective long-wavelength Hamiltonian [27]. For
example, near the k = k; point one finds

H =Aqt — Blg,d + q,817 + [m + C5 (g} + ¢2) + C{¢2r,
+CP (g + gd) + C{Pg. ©)

. . ~ 3 1 ~ 3 1
In this expression, &, = Lcr,c — -0y and G, = %ay + -0, are 2 X 2 ma-

trices acting on the 1,2 indices of the basis states with different
quantum numbers under three-fold rotations along the k; direction, and
Ty, Ty, T, are standard Pauli matrices acting on the sublattice index. The
coefficients A, B, C$” and C*) may each be written explicitly in terms of
the tight-binding parameters [27]. Finally, the wavevector coordinate
qs represents the q component along the k; direction, while ¢g; and g»
are components perpendicular to this. The matrix &; in Eq. (2) carries
out a mirror reflection which is a symmetry of Hpuy; perturbations
which do not spoil this symmetry will result in an effective Hamiltonian
near an L point of a similar form [7]. Analogous approximate forms
(Hs_ 4) for the other three L points can be obtained in similar ways.

We now specialize to the (111) surface of this system. The resulting
system is two-dimensional, with a Brillouin zone in the form of a
hexagon; in standard notation the central point of this is labeled T and
the centers of the six edges are M points. When the periodicity of the
reciprocal lattice is taken into account, only three of the six M points
are distinguishable. If one projects the four bulk L points onto the
surface, they coincide with the T point and the three M points. This
geometry is illustrated in Fig. 3. For m < O the bands host nontrivial
topology [9], protected in this system by mirror symmetries which the
surface respects, so that it necessarily hosts gapless states [8]. Low
energy forms of these may be explicitly constructed [23,28-30], and
used to find surface Hamiltonians in the vicinity of the T and each of the
M points [23]. These take the form

(111)

= M. [111]

Fig. 3. Illustration of the bulk and surface Brillouin zones, showing how the
various L points, labeled with subscripts 0-3 to distinguish them, map to the T
and M points. The latter are given subscripts 1-3 to emphasize the specific L
points with which they are associated.
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Hr = B[q,%, + q,G1] + Er 3)
and
AB ~ ~
Hy = ————=|(®* - Dq,8 + ¢,5] + Exr.
VA + 1*B? 4

Note that the states which the &; operators act upon in Hy; are different
than those of Hr. Analogous results may be obtained for the other two
M points by 25/3 rotations of Eq. (4).

3. Surface magnetism

Magnetic ions such a manganese diluted into (Pb,Sn)Te are known
to typically enter substitutionally for the Sn/Pb atoms, and the coupling
of the magnetic moments with the conduction electrons can be modeled
rather well with an s — d model [31], Hy=J Zi ?(ri)-E;, where 5,

represents an impurity spin at location r; and E)(ri) is the conduction
electron spin density [32]. Since we are considering situations in which
the chemical potential is in the bulk gap, there are effectively no car-
riers in the bulk of the system to couple these moments, and one expects
them to be in a disordered state. This contrasts with the surface, for
which gapless conduction electrons should couple impurity spins that
happen to reside near the surface via the RKKY interaction. This overall
situation suggests an appropriate model involves just the magnetic
moments near the surface, residing on a single sublattice.

The calculations leading to Egs. (3) and (4) involved computing
explicit forms for the wavefunctions which were used to project the
bulk Hamiltonian onto the surface, and these may be used to compute
the contribution of H,y to these effective Hamiltonians [27]. To further
simplify the model, we assume the impurity spins ferromagnetically
order and treat the Hamiltonian in mean-field theory; the linear stabi-
lity of the state against formation of a spin-density wave can then be
checked. The resulting effective Hamiltonian takes a generic form,

H; = E; + a;(q, — b2)31 + Bi(q, — b)) + AT, (5)

where i denotes either the T or one of the M points, and q; » represent
wavevector components along the surface. (Note the relationships be-
tween (g1, q2) and (qx, qy, q.) depend on the specific Dirac point i.)
Because of the surface symmetry, ar = B;, but ay # By;. The offsets by
and b, are proportional to components of the impurity magnetization
perpendicular to k;, while A; is proportional to the component along it.
Energy eigenvalues of 5 have the form
¢ =E + \/ a’(q, — b + B2(q, — bo)* + A}. Importantly, when the
magnetization aligns along a I' — L direction and u ~ E;, a gap opens in
the corresponding surface spectrum that lowers its contribution to the
total electron energy [17]. This behavior is shown explicitly in Fig. 2,
and is the driving physics behind the orientation dependences apparent
in Fig. 1.

4. Tight-binding slab

These ideas may be checked numerically by computing the elec-
tronic energy of a system of electrons in the rocksalt structure with
Hamiltonian described by Hp,, but with open (111) surfaces, adding

an effective magnetic field b near the surface only on the a sublattice.
Details of the calculation are presented in Ref. [27].

As a first pass at this, we first consider the system with a relatively
small unit cell, which corresponds to a relatively large density of im-
purities. While this differs from the physical situation, it captures the
correct qualitative physics, and allows us to study a wide enough slab
that the surfaces are effectively decoupled. As anticipated, among the
four the Dirac cones the one with largest magnetization projection
along its corresponding I - L direction develops the largest gap. This is
demonstrated explicitly in Fig. 2. Because states in the vicinity of Er
and Ey are repelled from the Dirac points by the magnetization, with
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Fig. 4. Free energy per surface atom F;1; and Fij; in units of nearest neighbor hopping t, when magnetic moments are oriented in the (111) direction and in the (111)
direction respectively, as a function of chemical potential, for J| I?I = 0.3 in Hyq. (A straight line has been subtracted from these energies so that the two curves can be
distinguished.) Dashed line illustrates regions where different orientations have lower energy. EY and Ey; indicate valence band tops when s is oriented in each
direction respectively. In these calculations there are 2 magnetic ions for 9 atoms on the surface, which is illustrated in the inset.

states raised and lowered by equal amounts, it is clear that the total
electronic energy will be the most strongly lowered when the chemical
potential p is close to either of these two Dirac point energies. For fixed
chemical potential, this means that when u~Er, the energy is minimized
when the magnetization is along the k, direction, while for u~Ejgz, it is
minimized when the magnetization is along any of the k, 3 4 directions.
The numerical results presented in Fig. 1 confirm these expectations.
Thus in the u~Er case one finds two (equal) energy minima on the
Bloch sphere, while for u~Ey; there are six.

To further substantiate this, we also examined a more dilute mag-
netic moment model, with impurities present for 2/9 of the atoms of
one sublattice near the surface, with results shown in Fig. 4. The main
panel shows the Gibbs free energies F;;; and Fj;; of the system
({Hpux> — UN with N the number of electrons) when the magnetic
moments are oriented in the (111) direction and in the (111) directions,
as a function of chemical potential. The results again demonstrate that
energetically favored directions are determined by y. One may also use
this geometry to verify that orienting the two surface magnetic mo-
ments in different directions always raises the energy of the system,
supporting our assumed ferromagnetic ordering, and that different
placements of the impurities in the unit cell on one of the sublattices
has little effect [23].

Because of the small lateral size of our unit cells, the numerical test
of ferromagnetic ordering is limited to relatively short wavelengths. To
test the stability of this ordering at long wavelengths, we can consider
the change of energy in the system perturbatively. We do this with an
effective field that varies spatially with some wavevector 6,
by, (x) = bl(oz) + 8by 2 cos(Qr), A(r)=A® + §Acos(Q-r). To compute
the change in energy we adopt as our basic Hamiltonian Eq. (5), as-
suming for simplicity a; = 5; = a, use the directions associated with q;
and g5 to define x and y directions on the surface, and compute the
change in energy to second order in 8b; », §A, and Q. The calculation
yields a correction of the form [27].

SE(Q) —8E(0) _ 1
——§———22&&@, ©
HY=xy

where the coefficients p,, are all second order in the deviations &b, ,,
SA, and the eigenvalues of the 2 X 2 matrix it represents are positive.
This demonstrates that if the effective field from the surface magneti-
zation has a spatial oscillation, the resulting energy increases with in-
creasing oscillation wavevector, as should be for a ferromagnetically

aligned groundstate. The stiffnesses p,, have the surprising property
that they diverge as 1/A” [27], which suggests that as the magneti-
zation density gets small, the system becomes very stiff. This unin-
tuitive result is unique to this system, and suggests that surface mag-
netism in this system should have some unusual properties. We next
turn to a discussion of these.

5. Discussion

We now turn to physical consequences of the surface magnetism
discussed above, focusing on temperature ranges where the impurity
magnetic moments may be treated classically. One behavior with pos-
sible utility in spintronic devices is the connection between the surface
electron density and magnetization direction: a small change in the
chemical potential near the surface will cause the spins to change from
orienting along the normal to the surface to a nearly planar direction.
This means that the magnetic state can be controlled by an electric gate
potential.

Beyond this, the observation that p,, ~ 1/A‘’ has a number of
consequences. For fixed p, the existence of multiple groundstate di-
rections implies that there should be domain wall (DW) excitations in
the system, with energy per unit length scaling as \/A®Qp, , with po an
effective average stiffness. Naively this remains finite even as A©
vanishes, as should happen at high enough temperature where the
magnetism disorders. In fact one does not expect the stiffness to truly
diverge as the magnetically induced gap is closed due to thermal fluc-
tuations. This stems from the fact that Fermi surface of the surface
electrons becomes smeared at finite temperature, eradicating the effect
of the gap closing.

The divergent behavior of the stiffness at zero temperature may be
understood in terms of the pairwise RKKY interaction between spins
when the exchange interaction is mediated by Dirac electrons with
chemical potential precisely located at the Dirac point: this interaction
falls off as 1/R® [33]. This is a long-range interaction which for col-
lection of spins leads to spin gradient interactions that fall off only as 1/
R, an effective three-dimensional Coulomb interaction. The gap
opening cuts off this interaction and induces an effective screening
length, so that one can model the interactions among gradients as
having a e *R/R, with & ~ vg/A, and vg the electron Fermi velocity. At
temperatures T where A is small on average, this length scale can be
replaced by & ~ vg/kgT [34]. In particular this means that upon
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approaching the thermal disordering phase transition, the effective
stiffness does not diverge, but rather remains finite at a scale set by the
temperature. The long-range form of the gradient interactions is emer-
gent, in the sense that it will present itself when the magnetization is
small even at low temperature. This should be the case when the im-
purity density njn, is small. Counter-intuitively, the number of spins
coupled together (i.e., within a range of order ¢) in an ordered phase
diverges as My, — 0.

The unusual behavior of the stiffness makes itself felt most directly
in how the transition temperature scales with ny,,. In both the six-state
case [Fig. 1(c)] and in the Ising case [Fig. 1(b)], thermal disordering
can be understood as a DW proliferation transition [35,36]. In either of
these the transition temperature is proportional to the effective ex-
change stiffness at long wavelengths — kgT. ~ J.5 — and because this
stiffness is an interaction effect, one expects ]eff~n,-§,,p when the corre-
lation length exceeds the average distance between impurities. The
explicit presence of temperature in the effective screening length ¢
changes this scaling to a T, that instead varies linearly with n;n,. Note
this means one expects the scaling of T, with ny,,, to differ for cases in
which p passes through a Dirac point from ones in which it does not: in
the latter, the interaction is finite in range, with length scale & ~ w/kp,
where ky is the Fermi wavelength (vgkr = p). Note also that the uni-
versality classes for thermal disordering in the Ising and six-state cases
should be different: while the former is clearly in the Ising class, the
latter transition is known to be in the Kosterlitz-Thouless universality
class [36]. Thus we see that simply by adjusting the surface electron
density, a rather rich variety of behaviors should be observable in the
thermodynamics that the surface magnetism presents.

There are further special properties associated with DW's in this
system. Because of the topological nature of the electron system, they
host states that invade the magnetization-induced gaps [37,38]. At the
critical temperature T, where the transition occurs, one expects DW's to
proliferate, opening a channel for conduction which is absent below T.
This should lead to singular behavior in the surface conductivity that
reflects the nature of the DW proliferation transition [39,40]. Moreover,
one might detect the opening of such a conduction channel when it is
probed via tunneling. A further possibility is to look for differences in
surface conduction when the system is field-cooled through its critical
temperature from when it is zero field-cooled. The latter leads to nu-
cleation of groundstate domains with random orientation, and DW's
between them which cannot relax on the time scale of an experiment.
Thus one expects stronger surface conduction from a zero field-cooled
sample [41-43].

In summary, the surface of a magnetically-doped TCI hosts magnetic
ordering in the topological state even when the bulk is magnetically
disordered. The unique electronic structure of a TCI surface leads to a
rich set of possible ordered states, with defect structures — domain walls
— that reflect how the symmetry of a surface is realized at the chemical
potential of the conducting surface electrons. This allows thermal dis-
ordering transitions of a number of different universality classes to be
realized in this single system, simply by adjusting the electron doping
near the surface. In this way the magnetically-doped TCI system allows
for an exploration of a diverse set of effective magnetic systems, all in a
single setting.
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