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Influence of Grain Size
Distribution on Ductile
Intergranular Crack Growth
Resistance
The influence of grain size distribution on ductile intergranular crack growth resistance is
investigated using full-field microstructure-based finite element calculations and a simpler
model based on discrete unit events and graph search. The finite element calculations are
carried out for a plane strain slice with planar grains subjected to mode I small-scale
yielding conditions. The finite element formulation accounts for finite deformations, and
the constitutive relation models the loss of stress carrying capacity due to progressive
void nucleation, growth, and coalescence. The discrete unit events are characterized by a
set of finite element calculations for crack growth at a single-grain boundary junction. A
directed graph of the connectivity of grain boundary junctions and the distances between
them is used to create a directed graph in J-resistance space. For a specified grain bound-
ary distribution, this enables crack growth resistance curves to be calculated for all possible
crack paths. Crack growth resistance curves are calculated based on various path choice
criteria and compared with the results of full-field finite element calculations of the
initial boundary value problem. The effect of unimodal and bimodal grain size distributions
on intergranular crack growth is considered. It is found that a significant increase in crack
growth resistance is obtained if the difference in grain sizes in the bimodal grain size dis-
tribution is sufficiently large. [DOI: 10.1115/1.4045073]

Keywords: computational mechanics, failure criteria, mechanical properties of materials,
plasticity

1 Introduction
Several physical processes can be viewed as a problem of

path selection, for example, flow of a river stream [1] or crack
growth in a complex heterogeneous material microstructure [2–4].
Although the problems of path selection for the flow of a river
stream and of crack growth in a heterogeneous material involve
very different length scales, their solutions share common features.
For example, path selection criteria based on fracture mechanics can
be used to predict the growth of streams in a diffusion field [1],
while a directed graph constructed using microstructure specific
discrete unit events can be used to predict the crack growth in het-
erogeneous materials [4]. Intuitively, one expects that the path of a
physical process involving path selection can be controlled by engi-
neering the discrete unit events.
It has been shown that it is possible to engineer crack paths by

controlling the distribution of second-phase particles in a ductile
matrix to increase the material’s crack growth resistance [3].
In Ref. [3], the controlled microstructure was characterized by
various sinusoidal distributions of particles with the fixed mean par-
ticle spacing. The results presented in Ref. [3] indicate that the crack
path can be engineered to increase the crack growth resistance by
appropriately adding or removing particles that guide the crack
path.
Although near room temperature, ductile fracture in polycrystal-

line metals and alloys is typically transgranular; several materials
of technological interest that have a high-specific strength
(strength-to-weight ratio) such as Al-Li alloys [5] and metastable
β Ti alloys [6] undergo intergranular ductile fracture near room

temperature. Furthermore, several technologically important multi-
phase materials, such as multiphase advanced high-strength steels,
undergo ductile fracture along the interface between the hard and
the soft phases [7,8].
Here, we focus on a scenario involving ductile intergranular (or

interfacial) crack growth. In particular, we explore the possibility
of engineering the crack path to increase the material’s crack
growth resistance by controlling the grain size distribution.
Experiments have shown that the grain size distribution of
various materials can be controlled by advanced processing routes
[6,9–13]. Experiments have also shown that a controlled grain
size distribution, such as a bimodal grain size distribution, can
enhance the crack growth resistance of brittle ceramics [14], the
fatigue properties of titanium alloys [15], and the corrosion resis-
tance of steels [16].
Following such experimental observations, we carry out analyses

of ductile intergranular crack growth in material microstructures
with unimodal and bimodal grain size distributions. The bimodal
grain size distributions are characterized by varying grain sizes in
layers. Ductile intergranular crack growth is analyzed using both
microstructure-based finite element crack growth calculations
based on a constitutive framework for a progressively cavitating
ductile solid with an isotropic and isotropically hardening matrix
material as in Ref. [2], and a simple model based on discrete unit
events and graph search developed in Ref. [4]. In Ref. [4], the
key unit event associated with intergranular crack propagation
was found to be the interaction of a grain boundary crack with a
grain boundary segment located at an angle with the initial crack
plane. In order to characterize the unit events, finite element calcu-
lations are also carried out for a single-grain boundary segment
having various orientations with the initial crack plane.
Our calculations show that increasing the overall grain size in

microstructures with unimodal and bimodal grain size distributions
can result in an increase in the crack growth resistance. However,
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decreasing the grain size in one layer and increasing the grain size in
another layer, such that the overall grain size is fixed, can give an
even greater increase in the crack growth resistance. Furthermore,
the predictions of the simple model based on discrete unit events
and graph search are found to be in general agreement with the
results of full-field microstructure-based finite element crack
growth calculations. This suggests that the computationally efficient
unit event-based graph search model can provide a tool for design-
ing material microstructures with improved intergranular crack
growth resistance.

2 Theoretical Framework
2.1 Initial/Boundary Value Problem Formulation. The

material model and the numerical implementation are the same
as in Refs. [2,4]. Here, for completeness, we briefly describe the for-
mulation. Further details and more complete references are given in
Refs. [2,4].
The finite element formulation is based on the finite deformation

dynamic principle of virtual work written as∫
V
τ : δD dV =

∫
S
T · u dS −

∫
V
ρ
∂2u
∂t2

dV (1)

where u is the displacement vector, t is the time, V is the volume of
the region analyzed in the reference configuration, S is its surface in
the reference configuration, ρ is the density in the reference config-
uration, τ is the Kirchhoff stress tensor, and T= τ · n with n being
normal to S.
As in Refs. [2,4], a mode I small-scale yielding boundary value

problem is analyzed for a slice of material with an initial crack at
x= 0 and y= 0, as shown in Fig. 1. Initial and boundary displace-
ments and velocities corresponding to the isotropic linear elastic
mode I plane strain singular field are applied in such a way to min-
imize dynamic effects. The amplitude of the remote displacements
are proportional to an imposed stress intensity factor KI which is
taken to increase monotonically with time with K̇I = 1.2 × 107

MPa
���
m

√
s−1. In presenting the results, the remote loading is char-

acterized by Rice’s J integral [17] which, for small-scale yielding,
is related to the imposed stress intensity factor KI by

J = K2
I

1 − ν2
( )

E
(2)

A uniform 1000 × 600 in-plane (the x–y plane) mesh is used in a
0.01m× 0.006m region in front of the initial crack tip. In this
region, the in-plane elements are 10 μm by 10 μm. Although,
finite element calculations are based on the dynamic principle of
virtual work for numerical convenience, the focus is on quasi-static
response. Since the constitutive formulation here does not contain a
material length scale, in a quasi-static analysis only relative length
scales matter. Thus, we normalize all length scales by a reference
length scale e, which we choose to be the in-plane element side

length in the fine mesh region so that e= 10 μm. The total
number of finite elements and the total number of nodes in the
calculations are 760,000 and 5,328,253, respectively.
The microstructure is taken to be constant through the slice thick-

ness with only one element through the thickness so that the defor-
mation field is essentially two-dimensional. However, the finite
element formulation is three-dimensional using 20-node brick ele-
ments with the out of plane displacements constrained to give
overall plane strain. The internal force contributions are integrated
using eight-point Gaussian integration, and the explicit Newmark
β-method with β= 0 [18] is used for time integration and a rate
tangent modulus constitutive update is used [19].
The constitutive relation is based on writing the rate of deforma-

tion tensor d as the sum of an isotropic elastic part de = L−1: σ̂
characterized by Young’s modulus E and Poisson’s ratio ν and a
viscoplastic part dp. The elastic strains are presumed to remain
small.
The plastic part of the rate of deformation tensor dp is given by a

rate-dependent modified Gurson [20] constitutive relation for a
progressively cavitating solid with the flow potential given by

Φ =
σ2e
�σ2

+ 2q1f
* cosh

3q2σh
2�σ

( )
− 1 − q1f

*( )2
= 0 (3)

where q1= 1.25 and q2= 1.0 are parameters introduced in
Refs. [21,22], f is the void volume fraction, �σ is the matrix flow
strength, and

σe2 =
3
2
σ′ : σ′, σh =

1
3
σ : I, σ′ = σ − σhI (4)

with f* given by Eq. (5) as introduced in Ref. [23]

f * =
f , f < fc

fc + (1/q1 − fc)( f − fc)/( f f − fc), f ≥ fc

{
(5)

where the values fc= 0.12 and ff = 0.25 are used.
The plastic part of the rate of deformation tensor dp is obtained

from the plastic potential (Eq. (3)) as

d p =
(1 − f )�σ�̇ϵ

σ :
∂Φ
∂σ

⎡
⎢⎣

⎤
⎥⎦ ∂Φ

∂σ
(6)

The matrix plastic strain rate �̇ϵ is given by

�̇ϵ = ϵ̇0
�σ

g(�ϵ)

[ ]1/m
, g(�ϵ) = σ0 1 + �ϵ/ϵ0[ ]N (7)

with �ϵ =
�
�̇ϵdt and ϵ0= σ0/E.

The material microstructure is taken, which consists of hard
grains with relatively soft thin layers along the grain boundaries.
The elastic constants E= 116GPa and ν= 0.3, the hardening
exponent N= 0.1, and the rate sensitivity parameters m= 0.01 and
ϵ̇0 = 103s−1 are all taken to be the same for both the grains and
the soft grain boundary layers. The flow strength of the grains σ0
is taken to be 1200MPa and for the softer grain boundary layers
σℓ0 = 800MPa.
The initial void volume fraction is taken to be zero and the

evolution of the void volume fraction is governed by

ḟ = (1 − f )d p : I + ḟ nucl (8)

where the first term on the right-hand side of Eq. (8) accounts for
void growth and the second term for void nucleation.
Stress controlled void nucleation is taken to occur in the softer

grain boundary layers via

ḟ
stress
nucl =

f stressN

sstressN

���
2π

√ exp −
1
2

�σ + σh − σN
sstressN

( )2
[ ]

�̇σ + σ̇h
( )

(9)
Fig. 1 Sketch of the initially cracked slice of material analyzed,
showing the grain boundary distribution in the region in front of
the initial crack tip
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if (�σ + σh) is at its maximum over the deformation history. Other-
wise, A= 0. Here, f stressN = 0.06, σN = 1.5σℓ0, and sstressN = 0.3σℓ0.
Plastic strain-controlled void nucleation is taken to occur both in

the grains and in the grain boundary layers via

ḟ
strain
nucl =

f strainN

sstrainN

���
2π

√ exp −
1
2

�ϵ − ϵN
sstrainN

( )2
[ ]

�̇ϵ (10)

with f strainN = 0.04, ϵN= 0.2 and sstrainN = 0.2 for both phases.
The extent of crack growth Δa is defined by the maximum

projected length on the x-axis of the void volume fraction contour
f= 0.1.

2.2 Microstructure Generation. For a uniform grain size dis-
tribution, the microstructure is generated using Dirichlet tessellation
[24] with Ng random points chosen in the fine mesh region in
front of the initial crack tip. The fine mesh region of dimensions
A= 1000e× 600e is partitioned with the Ng random points to form
Ng Voronoi cells with one generator inside each cell. Each
Voronoi cell corresponds to a grain. The grain boundary layers
are generated along each grain with a thickness of 4e. The finite
element Gauss integration points in the fine mesh region are
assigned to the material properties associated with a grain or a
grain boundary layer depending on where they are located,
Vornoi cell or grain boundary layer. This method generates Ng

grains having an average grain size Dg =
������
A/Ng

√
.

For microstructures with a bimodal grain size distribution, the
fine mesh region is divided into five regions of equal area. In
terms of e, the area of each subdivided region is As= 200e× 600e.
Along the x-axis, these regions lie in (K− 1)200e≤ x≤K 200e,
where K= 1, 3, and 5 for regions I and K= 2 and 4 for regions II.
The regions I and II are partitioned with NI

g and NII
g random

points, respectively, and the microstructure is generated following
the procedure used to generate uniform grain size distribution.

This results in average grain size Dg =
�������
As/NI

g

√
in regions I and

Dg =
�������
As/NII

√
in regions II. This forms a layered microstructure

with regions I having one average grain size and regions II
having a different average grain size. Subsequently, we will refer
to these as type I regions and type II regions, respectively.

2.3 Unit Event Modeling. As in Refs. [2,4], crack growth is
modeled as a series of unit events comprising growth of a crack
along a grain boundary connected to the current crack tip placed
symmetrically at angle θ to the current crack, as illustrated in the
inset of Fig. 2.
Small-scale yielding calculations are carried out for various

angles θ. For angles greater than about 4 deg there is an increase
in J without any increase in crack length, as sketched in the inset
in going from A to B. The value of ΔJ on the right-side axis of
Fig. 2 is defined as (JB− JA). Eventually, crack growth occurs
along the grain boundary so that the direction of crack growth
changes by θ and the crack grows to point 2.
The tearing modulus TR [25] defined as

TR =
E

σ20

( )
dJ

d(Δa)
(11)

is calculated by identifying dJ with (J2− J1) and identifying Δa
with (Δa2−Δa1) where points 1 and 2 are shown in the inset of
Fig. 2. The length of the unit event grain boundary facet is taken
to be such that Δa2−Δa1= 100e/tan θ.

2.4 Intergranular Fracture Prediction As Graph Search.
The aim is to calculate the crack path and crack growth resistance
in a microstructure for which the position, orientation, and
segment length of each grain boundary are known. To this end,
the graph search procedure used here is described in more detail
in Refs. [2,4]. With each grain boundary junction taken to be a

node on a graph, all crack growth trajectories through the micro-
structure are obtained using a breadth-first search algorithm [26].
The crack growth resistance curve for a given crack path through
the grain boundary network is obtained from a similar graph
built-in J resistance space using the unit event crack growth resis-
tance data in Fig. 2. Once constructed, the graph contains informa-
tion regarding the crack growth resistance for every possible crack
path in a given microstructure. The path of least resistance for a
specified amount of crack growth can then be found using Dijkstra’s
algorithm [27]. Dijkstra’s algorithm is a graph search algorithm that
produces the minimal distance between two nodes. The distances in
this case are the increments in J for a crack traversing between two
nodes. The current unit event-based graph search model does not
account for the crack branching that can sometimes occur.

3 Numerical Results
Here, the results for the crack path and the crack growth resis-

tance predicted using both the microstructure-based finite element
calculations and the unit event-based graph search model are pre-
sented. For the model based on discrete unit events and graph
search, the crack growth resistances are shown for three crack
paths: (i) a path termed “Local minimum—TR” where at each
grain boundary junction the path with the smallest value of TR for
one of the junction grain boundaries is chosen; (ii) a path termed
“Local minimum—ΔJ” where at each grain boundary junction
the path with the smallest value of ΔJ for crack growth over two-
grain boundary junctions (calculations were also carried out using
the “Local minimum—ΔJ” criterion for growth over one-grain
boundary but the resulting crack paths differed little from those
obtained using the “Local minimum—TR” criterion so only the
results for growth over two grain boundaries are shown); and
(iii) a path termed “Global minimum” which is the path with the
global minimum crack growth resistance using the “Local
minimum—ΔJ” criterion for all possible crack paths from the
initial crack tip location to the end of the fine mesh region. Once
the crack path is chosen, the unit event-based normalized value of
ΔJ/σ0e is computed for each increment of normalized crack
growth Δa/e, where Δa is the change in crack length projected
onto the x-axis.
Our modeling aims to isolate the influence of variations in grain

size distribution on the crack growth resistance. We do not account
for crystallographic anisotropy or changes in material response that
may change with grain size, for example, a layer may have a crys-
tallographic texture and a Hall–Petch effect may lead to different

Fig. 2 The tearing modulus TR (circles) of a crack propagating
along a grain boundary oriented at angle θ with respect to the
plane of crack propagation and the increment in J/(σ0e), ΔJ
(squares) arising from the crack reaching the triple junction, as
shown in the inset
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grain sizes having different flow strengths. In our calculations,
the grains are isotropic and the flow strength is independent of
grain size.
For both the full-field finite element calculations and the unit

event-based graph search model, predicted crack path and crack
growth resistance curves are shown for Δa≤ 800e in order to
avoid the effects arising from the change in element size at the
end of the fine mesh region which occurs at Δa= 1000e. In addi-
tion, for the calculations here, the main crack path is confined
within −300e≤ y≤ 300e which defines the fine mesh region in
the y-direction.

3.1 Effect of Grain Size. Full-field finite element calculations
are carried out for three microstructures with unimodal grain size
distributions and with values of the average grain size Dg= 37.5e,
Dg= 40e, and Dg= 43e. Figure 3 shows the computed crack
growth resistance curves J computed from Eq. (2) versus Δa/e.
The value of J/(σ0e) increases with increasing grain size, varying
atΔa/e= 800 from 44 forDg= 37.5e to 54 forDg= 43e, an increase
of about 23%.
Figure 4 compares the full-field finite element predictions for

crack growth resistance and crack path with those of the simple
model based on unit events and graph search. Figure 4(a) shows
the comparisons for Dg= 37.5e while Fig. 4(b) shows the compar-
isons for Dg= 43e. The black line shows the predictions of the
full-field finite element analysis. The model predictions of the
normalized value of J, J/(σ0e) are shown along with three crack
paths: (i) the green line is the crack path predicted by the “global
minimum” criterion, (ii) the red line is the crack path predicted
by the local minimum TR criterion, and (iii) the blue line is the
crack path predicted by the local minimum ΔJ criterion.
With Dg= 37.5e (Fig. 4(a)), the full-field finite element results

and the global minimum based unit event model predictions
nearly coincide. This is because the full-field finite element crack
path and that obtained from the global minimum based unit event
model nearly coincide except near the end of the region shown
Δa/e≥ 650, where the full-field finite element results show crack
branching. However, this only leads to a small difference in the
crack growth resistance. At Δa/e= 800, J/(σ0e) is 43 for the full-
field finite element calculation and 40 for the global minimum
based unit event model crack path. The crack path obtained using
the local minimum TR criterion and local minimum ΔJ criterion
gives increased values of J/(σ0e). For example, at Δa/e= 800, the
local minimum ΔJ criterion predicts J/(σ0e)= 47 and that using
the local minimum TR criterion gives J/(σ0e)= 50.

Figure 4(b) shows corresponding results for Dg= 43e. In this
case, the full-field finite element crack path and that obtained
from the global minimum based unit event model coincide until
Δa/e≈ 300 and differ significantly thereafter. The predicted
values for the crack growth resistance J/(σ0e) at Δa/e= 800 are
54 for the finite element calculation, 55 for the crack path obtained
using the local minimum TR criterion, and 48 for the crack path
obtained using the local minimum ΔJ criterion.
Figure 4 shows that which unit event-based graph search

model gives the best fit to a particular finite element calculation
can vary with grain size. Nevertheless, the full-field finite element
calculations and the unit event-based graph search model predic-
tions agree that a change in average grain size from Dg= 37.5e to
Dg= 43e gives an increase in crack growth resistance. However,
it is important to note that the results here are obtained for a
single realization of a statistical distribution with a specified mean
grain size.

3.2 Bimodal Grain Size Distribution—Increasing Average
Grain Size. Figure 5 shows full-field finite element calculation
results for crack growth resistance curves for three bimodal grain
size distributions. The grain size in the type I regions has an
average grain size of 37.5e. The bimodal grain size distributions
have average grain sizes of 41.4e, 48.9e, and 58.5e in the type II
regions. For comparison purposes, the results for a uniform grain
size of 37.5e are also shown. The crack growth resistance increases
with increasing heterogeneity. The value of J/(σ0e) at Δa= 800e
increases from 44 for the uniform distribution to 58 for the case
where the average grain size in the type II regions is 58.5e, about
a 31% increase. By way of contrast, the values J/(σ0e) at Δa=
800e show only a relatively small increase for the cases with
average grain sizes of 41.4e and 48.9e in the type II regions
being J/(σ0e)= 48 and J/(σ0e)= 49, respectively.
The crack growth resistance curves and the crack paths for the

cases with an average grain size of 37.5e in the type I regions
and average grain sizes of 41.4e and 58.5e in the type II regions
are shown in Fig. 6. In Fig. 6(a), where average grain size in the
type II regions is 41.4e, the full-field finite element predictions
and all three predictions obtained from the unit event-based graph
search models are in close agreement until Δa/e≈ 600, the begin-
ning of the second type II region. The predicted crack growth resis-
tance curves then begin to differ considerably. In this case, the finite
element predictions most closely agree with the simple model
results obtained using the local minimum TR criterion. At Δa/e=
800, the value of J/(σ0e) obtained using the global minimum crite-
rion is about 38 while the local minimum ΔJ criterion is 54. The
full-field finite element calculations give J/(σ0e)= 47 while the
simple model based on local minimum TR criterion predicts 46.
In Fig. 6(a), the predicted crack path using all the unit event-

based graph search model is in good agreement with the full-field
finite element results until Δa/e≈ 550 at which point the simple
model prediction using local minimum TR criterion predicts a
rather abrupt increase in J/(σ0e). The associated predicted crack
path (red curve) obtained using the local minimum TR criterion
follows a small grain boundary segment that results in a very
small change in Δa whereas the full-field finite element calculation
leads to short micro-cracks along that path while the main crack
follows another path. The value of J/(σ0e) predicted using the
local minimum ΔJ criterion gives a smaller increase at this
point. This difference is probably associated with the “Local
minimum—TR” crack path being based on one-grain boundary
segment whereas the “Local minimum—ΔJ” is based on two-grain
boundary segments.
Figure 6(b) shows the results for a case where the average grain

size in the type I regions is 37.5e, same as in Fig. 6(a), but the
average grain size in type II regions is 58.5e. The J/(σ0e) versus
Δa curve obtained from the full-field finite element calculation
shows increases in J/(σ0e) associated with crack branching.
The simple model prediction using local minimum TR criterion

Fig. 3 Comparison of normalized J, J/(σ0e), versus normalized
crack extension Δa/e curves from full-field finite element calcula-
tions for three unimodal grain size distributions with average
grain sizes, Dg=37.5e, Dg=40e, and Dg=43e
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also shows fairly abrupt increase in J/(σ0e) correlated with the
boundaries of the first type II region which are not seen in the full-
field finite element result. In the finite element results, having a
larger grain size in the type II regions leads to more extended
branched cracks which increases the crack growth resistance.
In Fig. 6(a), the unit event-based graph search model using the

local minimum ΔJ criterion significantly over predicts the crack
growth resistance. On the other hand, in Fig. 6(b), the simple
model using local minimum TR criterion significantly over predicts
the crack growth resistance, whereas the unit event model using the
local minimum ΔJ criterion under predicts the crack growth resis-
tance and is close to the prediction of the global minimum criterion.
Also, for certain type I region/type II region interfaces a local
minimum criterion predicts a more abrupt increase in J/(σ0e) than
obtained in the full-field finite element calculation.

3.3 Bimodal Grain Size Distribution—Fixed Average Grain
Size. Results of three full-field finite element calculations for
bimodal grain size distributions where the average grain size is
fixed at 37.5e are shown in Fig. 7. In the type I regions, the
values of average grain size are Dg= 34.6e, Dg= 31.6e, and
Dg = 29.8e. The corresponding grain sizes in the type II regions
are Dg = 41.4e, Dg= 48.9e, and Dg= 58.5e, respectively. For

Fig. 4 Comparison of curves of normalized J, J/(σ0e), versus normalized crack extension Δa/e for unimodal
grain size distributions. Unit event-based graph search model results are shown for the global minimum
path; the local minimum path using the TR criterion; and the local minimum path using the ΔJ criterion.
Also, the crack path obtained from full-field finite element calculations (black) is compared with the crack
path obtained using the local TR criterion (red), the local minimum J criterion (blue) and the global crack
path (green). Portions of these crack paths overlap: (a) Dg=37.5e and (b) Dg=43e.

Fig. 5 Comparison of normalized J, J/(σ0e), versus normalized
crack extension Δa/e curves computed from full-field finite
element calculations for four bimodal grain size distributions
with a fixed average grain size in region I and an increased
grain size distribution in region II, as shown in Fig. 6
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comparison purposes, the crack growth resistance curve for a
uniform grain size distribution with Dg= 37.5e is also shown.
Increasing the difference in grain size between the regions

can significantly increase the crack growth resistance. With the
bimodal distribution [Dg= 34.6e]I, [Dg= 41.4e]II the value of
J/(σ0e) at Δa/e= 800 is 47. The corresponding value of J/(σ0e)
with [Dg= 31.6e]I, [Dg= 48.9e]II is 51 and with [Dg= 29.8e]I,
[Dg= 58.5e]II is 79. For comparison, with a uniform grain size
Dg = 37.5e, J/(σ0e)= 44 at Δa/e= 800.
The value of J/(σ0e)= 79 at Δa/e= 800 with [Dg= 29.8e]I, [Dg=

58.5e]II may be a numerical artifact since (as seen in Fig. 8) the
path of one of the crack branches at Δa/e≈ 600 reaches the upper
boundary (y= 300e ) of the fine mesh region. Nevertheless, even
discounting this large jump, the crack growth resistance curve for
[Dg= 29.8e]I, [Dg= 58.5e]II shows that a large grain size difference
in a bimodal grain size distribution can significantly increase the
crack growth resistance. For example, at Δa/e= 500, J/(σ0e)= 24
for a uniform grain size of Dg= 37.5e, while J/(σ0e)= 38 for the
bimodal distribution with [Dg= 29.8e]I, [Dg= 58.5e]II, which is
about a 58% increase.
Figure 8 shows comparisons between full-field finite element cal-

culations and unit event-based graph search model predictions
for [Dg= 34.6e]I, [Dg= 41.4e]II (Fig. 8(a)) and for [Dg= 29.8e]I,

Fig. 6 Comparison of curves of normalized J, J/(σ0e), versus normalized crack extension Δa/e for bimodal
grain size distributions with a fixed average grain size in region I and an increased grain size distribution in
region II. Unit event-based graph search model results are shown for the global minimum path; the local
minimum path using the TR criterion; and the local minimum path using the ΔJ criterion. Also, the crack
path obtained from full-field finite element calculations (black) is compared with the crack path obtained
using the local minimum TR criterion (red), the local minimum J criterion (blue), and the global minimum cri-
terion (green). Portions of these crack paths overlap: (a) Dg= 37.5e in region I and Dg=41.4e in region II and
(b) Dg=37.5e in region I and Dg=58.5e in region II.

Fig. 7 Comparison of curves of normalized J, J/(σ0e), versus
normalized crack extension Δa/e computed from full-field finite
element calculations for four bimodal grain size distributions
with a decreased grain size in region I and an increased grain size
distribution in region II as shown in Fig. 8
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[Dg= 58.5e]II (Fig. 8(b)). In Fig. 8(a), the full-field finite element
crack path and the simple model based on global minimum criterion
crack path nearly coincide as do the crack growth resistance curves.
On the other hand in Fig. 8(b), the full-field finite element crack
path exhibits branching and associated with each branch is a
jump in J/(σ0e). As a consequence, none of the crack path predicted
using the unit event-based graph search model coincide with
the finite element predictions. As noted previously, one of the
branches impinges on the fine mesh region boundary y= 300e
at Δa/e≈ 650 which probably accounts for the very large jump in
J/(σ0e) at this value of Δa/e.
The full-field finite element results for a bimodal-layered micro-

structure in Figs. 5 and 7 show that if the difference in grain size is
sufficiently large, a significant increase in crack growth resistance
for materials that fail by grain boundary crack growth can be
achieved. Furthermore, the crack paths in Figs. 6 and 8 show that
a bimodal-layered grain size distribution enhances the crack
growth resistance by altering the crack path near the interfaces
and by crack branching. These results indicate that by arranging
the grains with different average grain sizes in layers is

advantageous for materials that undergo grain boundary fracture,
as seen experimentally for other materials and other fracture mech-
anisms, e.g., Refs. [14–16].

4 Concluding Remarks
We have carried out analyses of ductile intergranular crack

growth with the aim of isolating the influence of variations in
grain size distribution on crack growth resistance. Analyses were
carried out for three grain size distributions: (i) a unimodal distri-
bution, (ii) a bimodal-layered distribution consisting of alternate
layers with the grain size in one layer type held fixed and with an
increased grain size in the other layer type, and (iii) a bimodal-
layered distribution consisting of alternate layers with a decreased
grain size in one layer type and an increased grain size in the
other layer type. In (ii), the overall average grain size increases,
while in (iii), the overall average grain size is fixed.
Our results show that for both unimodal and bimodal grain size

distributions, the crack growth resistance increases with increasing

Fig. 8 Comparison of curves of normalized J, J/(σ0e), versus normalized crack extension Δa/e for bimodal grain
size distributions with a decreased grain size in region I and an increased grain size distribution in region II. Unit
event-based graph searchmodel results are shown for the global minimumpath; the local minimumpath using the
TR criterion; and the local minimum path using the ΔJ criterion. Also, the crack path obtained from full-field finite
element calculations (black) is compared with the crack path obtained using the local minimum-TR criterion (red),
the local minimum-J criterion (blue) and the global minimum criterion (green). Portions of these crack paths
overlap: (a) Dg=34.6e in region I and Dg=41.4e in region II and (b) Dg=29.8e in region I and Dg = 58.5e in
region II.
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overall average grain size. For the bimodal distribution where the
overall average grain size is fixed, the crack growth resistance
increases with an increasing difference between the average grain
size in the two layer types. Hence, a combination of layered
smaller grain size regions that have a lower crack growth resistance
together with larger grain size regions that have greater crack
growth resistance can lead to a material with greater crack growth
resistant than a uniform microstructure with large grains. It is
worth noting that a wide variety of natural materials rely on a struc-
ture consisting of alternating regions of reduced and enhanced crack
growth resistance to attain superior overall crack growth resistance
[28–31].
In Ref. [4], for unimodal grain size distributions, in the absence

of crack branching, the unit event-based graph search model
with a local minimum ΔJ crack path selection criterion gave
good quantitative agreement with the full-field finite element
predictions. In the calculations here, for the unit event-based
graph search model, all criteria considered are in qualitative agree-
ment with the full-field finite element calculations but none of
the criteria used with the unit event-based graph search model
gave a good quantitative agreement with the full-field finite
element results for all grain microstructures analyzed. One pos-
sible reason for this is that the thickness of the grain boundaries
here is greater than that in Ref. [4], so that finite deformation
effects may play a greater role in the full-field finite element
calculations, leading, for example, to plastic deformations at some
crack tips along the path extending over more grains in some distri-
butions than in others. Nevertheless, the global minimum criterion
does provide a lower estimate of the crack growth resistance in all
cases analyzed.
A grain size distribution that maximizes the dissipation

during crack growth can be realized, at least in principle, by some
sort of iterative optimization method. One way to calculate the
crack growth resistance through a grain size distribution is to
carry out microstructure-based full-field finite element calculations.
However, such calculations, especially for three-dimensional
grain distributions, are extremely time-consuming. For an iterative
optimization scheme what is needed is a computationally efficient
procedure that can correctly rank the crack growth resistance of
possible grain size distributions. The computationally efficient
simple model based on discrete unit events and graph search devel-
oped in Ref. [4], and used here, holds promise for this purpose. A
more generally predictive crack path selection criterion would
enhance the utility of the discrete unit event and graph search
model for microstructure optimization purposes.
The results in Ref. [4] and here indicate that the unit event-

based graph search model can at least provide a qualitative predic-
tion of the crack growth resistance when crack branching does not
occur. However, our full-field finite element results show that
crack branching can play a significant role in the increased
crack growth resistance of the layered grain size microstructures.
Incorporating crack branching into the model will increase its pre-
dictive capability, so that it can become an engineering tool for
optimizing material microstructures to enhance crack growth
resistance.
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