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The diurnal cycle of tropical cyclones (TCs) is a daily cycle in clouds that appears in satellite images and
may have implications for TC structure and intensity. The diurnal pattern can be seen in infrared (IR)
satellite imagery as cyclical pulses in the cloud field that propagate radially outward from the center of
nearly all Atlantic-basin TCs. These diurnal pulses, a distinguishing characteristic of this diurnal cycle, be-
gin forming in the storm’s inner core near sunset each day, appearing as a region of cooling cloud-top
temperatures. The area of cooling takes on a ring-like appearance as cloud-top warming occurs on its
inside edge and the cooling moves away from the storm overnight, reaching several hundred kilometers
from the circulation center by the following afternoon. The state-of-the-art TC diurnal cycle measure-
ment in IR satellite imagery has a limited ability to analyze the behavior beyond qualitative observations.
We present a method for quantifying the TC diurnal cycle using one-dimensional persistent homology,
a tool from Topological Data Analysis, by tracking maximum persistence and quantifying the cycle using
the discrete Fourier transform. Using Geostationary Operational Environmental Satellite IR imagery from

Hurricanes Felix and Ivan, our method is able to detect an approximate daily cycle.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The field of atmospheric science has numerous observation
platforms that provide high space and time resolution data, but
has yet to find methods which can quantify the intuitive patterns
explicitly. Meanwhile, the young field of Topological Data Analy-
sis (TDA) encompasses methods for quantifying exactly these sorts
of structural intuitions seen by atmospheric scientists. This paper
merges these two fields by using persistent homology, a now well-
established tool in TDA, to quantify a diurnal cycle observed in a
hurricane using Geostationary Operational Environmental Satellite
(GOES) infrared (IR) satellite data.

Persistent homology, and more generally TDA methods, has
found significant success in rather disparate applications by find-
ing structure in data and using this insight to answer questions
from the domain of interest. For instance, Giusti et al. used the ho-
mology of random simplicial complexes to investigate the geomet-
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ric organization of neurons in rat brains [1]. Persistent homology
has also been used to understand periodicity in time series arising
from biological [2,3] and engineering applications [4], as well as
for image analysis [5-8].

This paper presents an application of the use of both time series
and image analysis using TDA to study a daily cycle in hurricanes
that is of interest in the field of atmospheric science. The diur-
nal cycle of tropical cyclones (TCs) has been described in previous
studies [9-18] that provide evidence of the regularity of this cycle
as well as its potential impacts. This diurnal pattern can be seen in
GOES IR imagery as cyclical pulses in the cloud field that propagate
radially outward from TCs at speeds of 5-10 m s~! [9-11]. These
diurnal pulses, a distinguishing characteristic of the TC diurnal cy-
cle, begin forming in the TC's core near the time of sunset each day
and appear as a region of cooling cloud-top temperatures. The area
of cooling then takes on a ring-like appearance as marked cloud-
top warming occurs on its inside edge and it moves away from
the storm overnight, reaching several hundred kilometers from the
TC center by the following afternoon. Observations and numeri-
cal model simulations indicate that TC diurnal pulses propagate
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through a deep layer of the TC environment, suggesting that they
may have implications for TC structure and intensity [9-12,14].

The current state of the art TC diurnal cycle measurement has a
limited ability to analyze the behavior beyond qualitative observa-
tions. This paper presents a more advanced mathematical method
for quantifying the TC diurnal cycle using tools from TDA, namely
one-dimensional persistent homology to analyze the holes in a
space. This research aims to detect the presence of the diurnal cy-
cle in GOES IR satellite imagery and to track the changes through
a time series.

In this paper, we present a method of automatically detecting
and quantifying periodic circular structure in satellite imagery as
well as the results of our method applied to GOES IR hurricane
imagery for Hurricane Felix in 2007 and Hurricane Ivan in 2004.
The naive combination of persistent homology with the IR imagery
did not show a recurring pattern due to drastically variable val-
ues in IR brightness temperature data. Despite this, looking at the
data, there is a clear circular feature that is visible in the imagery.
Thus we develop a more sophisticated method using tools includ-
ing the distance transform and one-dimensional persistent homol-
ogy to detect the TC diurnal cycle quantitatively using maximum
persistence. Using our method, we are able to detect this 24-h cy-
cle in both hurricanes automatically, improving upon the existing
qualitative methods.

2. Tropical cyclone background

Previous research has documented a clear diurnal cycle of
cloudiness and rainfall in TCs: enhanced convection (i.e., thun-
derstorms) occurs overnight, precipitation peaks near sunrise, and
upper-level cloudiness (i.e., the cirrus canopy) expands radially
outward throughout the day, reaching its maximum areal coverage
in the early evening hours [9-18]. To quantify the expansion and
contraction of the cirrus canopy, Dunion et al. used GOES satellite
IR imagery to examine the six-hour cloud-top temperature differ-
ences of major hurricanes in the Atlantic basin from 2001 to 2010
[9]. They found that an area of colder cloud tops propagated out-
ward around 5-10 m s~! over the course of the day, with warm-
ing temperatures on its inner edge. More recently, in [11], Ditchek
et al. expanded Dunion et al.’s work to include all tropical cyclones
in the Atlantic basin from 1982 to 2017 and found that the diurnal
pulse is nearly ubiquitous, with 88% of TC days featuring an out-
wardly propagating pulse.

Despite the consistent signature and documentation of this di-
urnal cloud signature, open questions remain as to how the diurnal
cycle is linked to inner-core convective processes and whether it is
a column-deep phenomenon or mainly tied to upper-level TC cloud
dynamics related to incoming solar radiation [11,15,16,18]. Investi-
gating these questions is relevant to TC forecasting as the diurnal
cycle of clouds and rainfall has implications for forecasting storm
structure and intensity, as evidenced by the diurnal cycle in objec-
tive measures of TC intensity and the extent of the 50-kt wind ra-
dius documented by Dunion et al. Additionally, and especially rel-
evant to the current work, most of the papers above have identi-
fied the pulse using subjective measures of cloud-top temperature
change and timing [9,11]. The current work seeks to quantify the
pulse to determine its true periodicity using persistent homology,
a topological tool that is particularly effective at capturing the type
of patterns visible in the pulse.

3. Math background

Persistent homology is a tool from the field of TDA which mea-
sures structure in data. This data can start in many forms, includ-
ing as point clouds or, as in the case of this work, as a function

on a domain. In this section, we will briefly review the neces-
sary background to understand cubical complexes and persistent
homology, and refer the interested reader to [19-22] for a more
complete introduction.

3.1. Cubical complexes

In this section, we largely follow Chapter 2 of [21] with the
caveat for the informed reader that because we use homology with
Z, coefficients, we can be lazy about orientations of cubes. In addi-
tion, our data consists of 2D images, so we need only define cubes
up to dimension 2.

An elementary interval is a closed interval I c R of the form
[¢,¢+ 1] or [¢] for ¢ € Z, which are called nondegenerate and de-
generate respectively. An elementary cube Q € R? is a product
of elementary intervals Q =I; x I,. The dimension of Q, dim(Q),
is the number of nondegenerate components of Q. Note that 0-
dimensional cubes are just vertices at the points on the lattice
7 x 7 in R%, 1-dimensional cubes are edges connecting these ver-
tices, and 2-dimensional cubes are squares. Let K denote the set of
all elementary cubes in R?> and K4 c K the set of d-dimensional
cubes. A set X c R? is cubical if it can be written as a finite
union of elementary cubes. Then we denote the associated cubical
complex as K£(X) ={Q € K | Q c X}, with the d-dimensional sub-
set denoted K;(X) = {Q € K(X) | dim(Q) = d}. If QCP, then we say
Q is a face of P, denoted Q < P. If Q&P, then Q is a proper face
of P, denoted Q < P, and is additionally a primary face of P if
dim(Q) = dim(P) — 1.

A greyscale image, or more generally an m x n matrix, can be
viewed as a function M:D — R where D={(i,j) |0<i<m,0<
j <n}. We will model this as a function defined on a particu-
larly simple cubical set K = K£([0, m] x [0,n]). For simplicity, we
denote by s;; the square [i,i+ 1] x[j, j+1]. So, given a matrix
M, we equivalently think of this data as a function M: K — R
where we set M(s;;) equal to the matrix entry M;; and set M(P) =
min5i>j>pM(s,-v ;) for all lower dimensional cubes P. Note that we
will abuse notation and use M to denote both the original matrix
and representation as a function with domain K.

3.2. Homology

Homology [20] is a standard tool in algebraic topology which
provides a vector space! Hy(X) for each dimension k=0,1,2,...
for a given topological space X. The different dimensions measure
different properties of the space. In particular, for this work we
are interested in 1-dimensional homology; i.e. when k = 1. The 1-
dimensional homology group measures the number of loops in the
space; equivalently, we can think of this as the number of holes in
the space. In particular, if we look at the black region in each of
the examples in Fig. 1, the rank of the first homology for each is
(12.1).

The exact definition of homology is as follows. For any cubi-
cal set L (which for the purposes of this discussion will always be
a subset of K), we have sets giving the cubes of different dimen-
sions: K;(L) for i =0, 1, 2. An i-chain is a formal linear combination
of i-simplices in L, c = ZQje}Ci(L) a;Q;, with coefficients a; € Z,. We
can of course add these objects by setting (> a;Q;) + (X b;Q;) =
>-(aj +b;)Q; and multiply by a constant. Thus, the collection of all
i-chains forms a vector space C;(L).

We define a linear transformation §; : G;(L) — C;_; (L) called the
boundary map, by setting §;(Q) = Y P where the sum? is over the

T Normally a group, however, we are working with field coefficients.
2 Again, notice that because we are working with Z, coefficients, the book-
keeping normally needed for orientation is unnecessary.
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Fig. 1. An example matrix, M (top left) and corresponding persistence diagram (top
right). Second row: The black portions are sublevel sets, M;, where r = 0.25, 0.35,
and 0.7. The existence of a point far from the diagonal in the persistence dia-
gram shows that there is a prominent circular structure; while the other points
are caused by the smaller circles.

primary faces P < Q. The kernel of 81, Ker(§;), (that is, the set of
elements of C;(L) which map to 0) is generated by closed loops in
L. The image of §,, Im(8,), is generated by boundaries of 2-cells.
Then the 1-dimensional homology group is defined to be H; (K) =
Ker(81)/Im(8,). An element of this group y € Hy(L), represents an
equivalence class of loops which can differ by collections of 2-cells.

3.3. Persistent homology

For a static space L, H;(L) measures information about the num-
ber of loops. Persistent homology takes as input a changing topo-
logical space, and summarizes the information about how the ho-
mology changes.

Let an m x n R-valued matrix M be given. Fix a function value
reR and let M; = f~1(—oo0, r]. That is, M; is the subset of squares
in K which have value at most r in the matrix, along with all edges
and vertices which are faces of any included square. M, is often
called a sublevel set of M. See Fig. 1 for M, regions corresponding
to an example image.

These spaces have the property that M,CM; for r < s, thus
we can consider the sequence My, €My, C--- € My, for any set
of numbers ry < ry < ---1,. This sequence of spaces is called
a filtration. For each of the spaces, we can compute the homol-
ogy group Hp(My,). The inclusion maps give rise to linear maps
Hp(My,) - Hp(Mr,) — --- — Hp(Mp,).

It is these maps that we study to understand how the space
changes. In particular, when we are focused on 1-dimensional ho-
mology (k= 1) as in this study, a loop is represented by an ele-
ment y € Hy(My,). We say that this loop is born at r; if it is not
in the image from the previous space; that is, y ¢ Im(H; (M;_;) —
Hy(M;)). This same loop dies at r; if it merges with this image in
Mrj; that is, y e Im(H;(M;_1) — H;(M;)) where we abuse notation
by using y to both refer to the class in H;(My,) and the image
of this class under the sequence of maps in H; (Mrj). We refer to
rj —r; as the lifetime of the class.

A persistence diagram, as seen in the right of Fig. 1, is a col-
lection of points where for each class which is born at r; and dies
at r; is represented by a point at (r;, r;). The intuition is that a
class which has a long lifetime is far from the diagonal while a
class with a short lifetime is close. In many cases, a long lifetime
loop implies that there is some sort of inherent topological fea-
ture being found, and thus that this point far from the diagonal
is important, while short lifetime loops are likely caused by topo-
logical noise due to sampling or other errors in the system. In the
example of Fig. 1, there is a prominent off-diagonal point which

shows that the function defined by the matrix has a circular fea-
ture. Thus, a common measure for looking at the persistence di-
agram when investigating a single, circular structure is the maxi-
mum persistence, defined as

MaxPers(D) = max r;—r; (1)
(r;,rj)eD

for a given persistence diagram, D.
4. Methods
4.1. Data preparation

The data was given in the form of storm-centered GOES IR
(10.7-um) satellite imagery. The 10.7-um long channel detects IR
energy emitted from the Earth and is not strongly affected by at-
mospheric water vapor. Thus, this particular channel is useful for
detecting clouds at all times of the day and night and is ideal for
tracing the diurnal evolution of the TC cloud fields. For our analy-
sis, we used two different types of data sets. These two data sets
have the same native spatial resolution, but differ in temporal res-
olution. The first type (hereafter the GOES-12 data sets), utilizes
brightness temperatures derived directly from GOES-12 4-km IR
satellite imagery and consists of data in hourly increments, with
the exception of 0415 and 0515 UTC each day in Hurricane Felix,
and 0445 and 0545 UTC each day in Hurricane Ivan (due to the
GOES-12 satellite eclipse period). Imagery was remapped such that
each pixel has a spatial resolution of 2 km? and each image covers
a total area of approximately 1500 km x 1500 km, represented as
a 752 x 752 matrix. This remapping was performed using the Man
Computer Interactive Data Access System (McIDAS; [23]) in order
to generate storm-centered satellite images that were focused on
the relevant TC environment. The McIDAS 4 km to 2 km remap-
ping procedure replicates the original 8-bit grayscale values such
that none of the original pixel information is lost. The second type
is the GridSat-GOES [24] data set and consists of data in 3-h in-
crements with the exception of 0600 UTC each day. Each pixel has
a resolution of approximately 8 km and each image covers a to-
tal area of approximately 2400 km x 2400 km, represented by
a 301 x 301 matrix. This data is cropped to a 191 x 191
matrix to approximately match the area covered by the first set
of data. The cropped version covers a total area of approximately
1530 km x 1530 km. For an example of the GOES-12 and cropped
GridSat-GOES satellite imagery for Hurricane Felix, see Fig. 2.

The GridSat-GOES data set requires some additional process-
ing. The data is stored using a different format, using short
numbers rather than floats, so the following equation is applied
to the GridSat-GOES brightness temperatures to do the num-
ber type conversion: [(Original - 0.01 + 200.0) — 22.858]/0.919565.
Some images in the GridSat-GOES data set also contain missing
values where the brightness temperature for certain pixels was not
recorded and is instead assigned a fill value. In order to prevent
these values from impacting our results, we interpolate values for
these pixels. For a given pixel with a missing value, we compute

Sept 2, 2007 12:15 Sept 2, 2007 12:00

0 100 200 300 400 500 600 700 0 25 50 75 100 125 150 175

Fig. 2. Original satellite imagery from Felix GOES-12 data set (left) and Felix
GridSat-GOES data set (right) at approximately the same time.
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the average value of a 5 x 5 grid centered at the pixel, not includ-
ing the pixels in this range that also have missing values.

For Hurricane Felix, we studied both types of data sets to test
the flexibility of the method across spatial and temporal resolution.
The Felix GOES-12 data set spans 2 to 4 September 2007, while the
Felix GridSat-GOES dataset spans spanning 31 August to 6 Septem-
ber 2007. For Hurricane Ivan, we used the GOES-12 data set, which
spans 30 August to 1 September 2004.

4.2. Method of detection & quantification

We present a method of detecting and quantifying periodic cir-
cular structure representing the TC diurnal cycle in IR satellite im-
agery. Our method combines existing methods from the fields of
image processing, topological data analysis, and signal processing.

Initially, we have a time series of IR satellite images, repre-
sented as a matrix of pixel values S(t) for time t. The TC di-
urnal pulse is propagating outward through the day; thus, in
order to see the movement and changes in the GOES satellite
brightness temperature, we consider the difference in matrices
six hours apart [9,11]. For all times ¢, given the original bright-
ness temperature image S(t), we compute the six-hour differences,
M(t) = S(t + 6) — S(t). While circular features are visually promi-
nent in the data, simply using persistence on the difference data
did not show any relevant features. This discrepancy is due to the
extreme differences in the function values between the circular
sections which prevents the sublevel sets from containing the full
circular structure until very late in the filtration. Thus, we are un-
able to detect the circular structure from M(t) and we define a
new function on the difference matrix using the following method.
Fix a threshold w and let M(t), be the subset of M(t) which has
function value less than . This method results in a binary ma-
trix defined entry-wise, with M(t),[i, jl=1 if M(t)[i, j] < p, and
M(t)pli, j] = 0 otherwise. We will address this choice of threshold
in Section 5.2; however, we will focus on the case u = 80 degrees
for most of our analysis. Note that because M(t) is a difference of
two images, the threshold is not isolating all pixels above a certain
temperature, but rather those pixels that increase in value by at
least 80 degrees over the six hours.

After thresholding, we now have binary images; however, the
persistent homology is uninteresting, as there are only two possi-
ble sublevel sets. In order to create a greyscale image that main-
tains the visually apparent topological structure of the image, we
apply the distance transform, a method from the field of image
processing [25,26], which gives a new matrix D(t). The distance
transform is calculated as follows: given any pixel s;; in an im-
age M(t) represented as a matrix of pixels, D(t); j = mind(s; j, x)
where x is a 0-valued pixel and d is any distance metric. In this
application, we specifically use the L., distance, also known as
the chessboard distance; however, the distance transform is de-
fined for any distance metric, the Euclidean distance transform be-
ing the most commonly used. Given two pixels, s;, ;. S;, j, the L
distance between them is calculated as d(s;, j,,Si, j,) = max{|i; —
i1], |j2 — j1!}. This defines a distance on the pixels, which are the
2-cells in the cubical complex. The distance can be extended to
the lower dimensional cells in the same manor as described in
Section 3.1.

To calculate the distance transform, we use the python
submodule  scipy.ndimage, specifically the function
distance_transform_cdt with the chessboard metric. There-
fore, each entry in D(t) corresponds to the minimal distance to
an entry where M(t)[i, j] > . The distance transform D(t) is then
scaled by the resolution for each data set in order to convert the
distance units to kilometers instead of pixels. For the GridSat-GOES
data set, we scale by a factor of 8 km/pixel while for the GOES-12
data sets, we scale by a factor of 2 km/pixel. We then compute

Threshold = 80,
Sept 2 1515 - Sept 2 0915

6 Hour Difference,
Sept 2 1515 - Sept 2 0915

pixel values

0 100 200 300 400 500 600 700
pixel values

0 100 200 300 400 500 600 700
pixel values

Persistence Diagram,

DistanceTransform, Sept 2 1515 - Sept 2 0915

Sept 2 1515 - Sept 2 0915 200
‘ 400 °
175
350
150
300 .
8 250 125
3 < .
z 200 §100
K] a M
=
2, 150 75
.
100 50 o,
o
50 25
o 0
0 100 200 300 400 500 600 700
pixel values [ 50 100 150 200

Birth

Fig. 3. Top left: Example of 6 h difference, M(t), from the Felix GOES-12 data set;
Top right: thresholded subset, M(t), where u = 80; Bottom left: distance transform
function; Bottom right: corresponding persistence diagram.

sublevel set persistence on the function D(t) using the cubtop
method in Perseus [27,28], which calculates persistent homology
for cubical complexes using concepts from discrete Morse theory.
Note that Perseus requires an integer value filtration function on
the cubical complex; thus, we chose to use the chessboard metric
for the distance transform. Fig. 3 shows an example of each step
described so far.

For each six-hour difference in each data set, we apply the steps
described above, then calculate maximum persistence as defined in
Eq. 1. By plotting maximum persistence over time, we can see how
the most prominent circular feature changes through the progres-
sion of the day and life of the TC. This plot should show an oscilla-
tory pattern, detecting the change in the diurnal cycle throughout
the day. In order to quantify this oscillatory pattern, we use the
Fourier transform. In general, the Fourier transform is a commonly
used method for investigating periodicity of time series [29] by
decomposing a wave into a sum of sinusoids with different fre-
quencies. Since we are working with discrete data, we will work
with the discrete Fourier transform (DFT). Let T be the time be-
tween discrete samples, then let t, = kT where k=1,...,N—1.
Then, the discrete Fourier transform is F, = Y f(f)e 27N,
This converts a function from the time domain to the frequency
domain. The power spectrum of F, can be estimated by calculating
the square of the absolute value of the discrete Fourier transform,
|Fnl?.

Using the DFT, we calculate the most prominent frequency in
the data in order to determine how often the cyclic behavior re-
peats. Note, to use the discrete Fourier transform the time steps
must be equal; however, because of the missing times in our data,
this is not the case. Therefore, we approximate the maximum per-
sistence at these values by adding a point along the line between
the times immediately before and after the missing time. Addi-
tionally, we must truncate the maximum persistence to only in-
clude the days where we have the data for the entire day. This
means truncating the Felix GridSat-GOES data set to include only
1-4 September 2007, the Felix GOES-12 data set to include only 1-
2 September 2007, and the Ivan GOES-12 data set to include only
30-31 August 2004. The discrete Fourier transform was calculated
using the python submodule numpy.fft.
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We first calculate the Fourier transform using the function fft,
then calculate the frequency bins using £ftfreq. Using this infor-
mation, we plot the approximate power spectrum for each data set.
Note, if working with real data as we are in this application, the
power spectrum will be symmetric for positive and negative fre-
quencies; therefore, we only need to look at the positive frequen-
cies. Picking the frequencies corresponding to the highest peaks in
each power spectrum gives us the frequency of the most promi-
nent periodic signal in the data. Using this frequency, we can cal-
culate the period of the oscillatory pattern and quantify the signal
we are detecting. To verify the detected signal matches the visual
oscillatory pattern we see, we can reconstruct the sinusoid corre-
sponding to the most prominent periodic signal using the inverse
discrete Fourier transform, using ifft. Then plotting this recon-
structed sinusoid over the original data, we can see how closely
this signal matches the patterns in the data.

5. Results
5.1. Experimental results

After the data is prepared, we apply the steps described in
Section 4.2 to each data set. For the two Hurricane Felix data sets,
as they are from the same hurricane, we would expect the results
to be similar despite the temporal and spatial resolution differ-
ences. Plotting the calculated maximum persistence over time, we
get the time series plotted as solid lines in Fig. 4. The plots show
an oscillatory pattern for all three data sets which appears to re-
peat approximately daily.

To verify the periodicity of the oscillatory pattern, we apply
the discrete Fourier transform and calculate the power spectrum
for each data set. Each power spectrum is shown in Fig. 5. Pick-
ing the frequencies corresponding to the highest peaks in each
power spectrum gives us the frequency corresponding to the most
prominent sinusoidal signal in the data. The maximum peaks in
Fig. 5 give a frequency of 0.976 cycles per day for the Felix GridSat-
GOES data set, 0.979 cycles per day for the Felix GOES-12 data set,

Hurricane Felix, Threshold = 80

— GridSat-GOES
---- GridSat-GOES Smoothed
— GOES-12

-- GOES-12 Smoothed

T

g 3
g g

Maximum Persistence
5
g

Date and Time

Hurricane Ivan, Threshold = 80

— GOES-12
GOES-12 Smoothed

Date and Time

Fig. 4. Maximum persistence plotted over time for all data sets using threshold
=80 in addition to the reconstructed versions, created using inverse Fourier
transform. Gray vertical lines separate days according to UTC.

Felix GridSat-GOES Power Spectrum Felix GOES-12 Power Spectrum
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Fig. 5. Power spectrum for each data set. The highest peak on the Felix GridSat-
GOES power spectrum occurs at a frequency of approximately 0.976 cycles/day, the
peak on the Felix GOES-12 power spectrum occurs at a frequency of approximately
0.979 cycles/day, and the peak on the the Ivan GOES-12 power spectrum occurs at
a frequency of 1.0 cycles/day.

and 1.0 cycles per day for the Ivan GOES-12 data set. We use this
frequency, f, to calculate the periodicity of the cycle by calculating
using 1/f, giving the period of the sinusoid in days per cycle, then
multiply by 24 to rescale to hours per cycle. Doing so gives the re-
sult that the cycle is repeating every 24.6 h for the Felix GridSat-
GOES data set, every 24.5 h for the Felix GOES-12 data set, and
24.0 h for the Ivan GOES-12 data set.

Using the most prominent frequency for each data set, we cal-
culate the inverse Fourier transform, and plot these reconstructed
sinusoids over the original data. These sinusoids, plotted as the
lighter dashed lines in Fig. 4, closely resemble the patterns exhib-
ited by the original maximum persistence versus time plots; there-
fore, these approximately 24 h patterns visible in the plots are also
detected mathematically, which verifies the claim that our method
is detecting a daily cycle in each data set. Additionally, since for
both Hurricane Felix data sets, the plots of maximum persistence
against time seem to match and both have similar detected period-
icity from the DFT, our method seems robust to the temporal and
spatial resolution differences in these two data sets.

5.2. Choice of threshold

The method described involves a choice of threshold, so we
used a variety of thresholds, i € {25, 30, ..., 100}, to test the sen-
sitivity of our method to the parameter choice. For both data sets
of Hurricane Felix, our method is very robust to the choice of
threshold. In Fig. 6, the top row are plots that represent maximum
persistence versus time for the Hurricane Felix data sets using a
variety of thresholds. There is a clear periodic pattern for both
data sets across all the thresholds shown. In fact, for all thresholds
tested u € {35,40...,90}, the period is consistent at 24.6 h for the
Felix GridSat-GOES data set and 24.5 h for the Felix GOES-12 data
set. For u < 35 and @ > 90 the Fourier transform is unable to pick
up the daily pattern in the Felix GridSat-GOES data set.

For Hurricane Ivan, the plot is shown on the bottom row of
Fig. 6 for thresholds u € {80,85,...,100}. For all of the thresh-
old value shown, our method consistently detects a 24.0 h period.
This is a smaller range of threshold values than those that detect a
daily cycle in Hurricane Felix, but for thresholds u € {80, 85, 90},
our method detects a daily cycle in all three data sets. Thus, the
method may require some parameter tuning, but our analysis of
these three data sets gives a range of values to start with when
testing new data sets.
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Felix GridSat-GOES

Felix GOES-12

Time

Fig. 6. Maximum persistence vs time plot for Hurricane Felix (top row) and Hur-
ricane Ivan (bottom row). Hurricane Felix results are shown for all thresholds u €
{35, 40, ...,90} while Hurricane Ivan results are shown for p € {80, 85, ..., 100}.

5.3. Removal of noise

While the above method detects a daily cycle, there are some
instances where the six-hour differencing introduces noise because
of varying behavior in the center of the hurricane. The left im-
age of in Fig. 7 shows an example of how this noise can appear
in the distance transform for the Felix GOES-12 data set. A small
area of pixels above the threshold cause the distance transform to
fill in the center of the circular region, thus potentially changing
the value of maximum persistence. Therefore, before applying the
distance transform, we use a method from mathematical morphol-
ogy [30] called opening to de-noise the image and see how this
impacts the detected periodicity.

Opening is the combination of two tools from mathematical
morphology, erosion and dilation. Both involve a kernel moving
through a binary image. In erosion, a pixel in the original image
will remain a 1 only if all pixels under the kernel are 1's, other-
wise it becomes a 0. Dilation is the opposite of erosion, A kernel
moves through the binary image and a pixel is assigned a 1 if at
least one pixel under the kernel is a 1, otherwise it is assigned a 0.
Opening is erosion followed by dilation, which will remove noise
and rebuild the area around the boundary.

We apply opening to the binary thresholded image using a
8 x 8 pixel kernel for the GOES-12 data sets and a 2 x 2 pixel
kernel for the GridSat-GOES data set to remove noise such as these
center pixels. Note, the difference in size of the kernel is due to
the differences in spatial resolution between the two data sets. We
use the python module cv2 for these computations. Opening is
specifically implemented using the function cv2.morphologyEx
using cv2.MORPH_QOPEN as the second input. The right image in
Fig. 7 show the result when opening is used on the thresholded
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Fig. 7. A example comparison of distance transform images with and without open-
ing for the Felix GOES-12 data set. At left, the noise in the center of the hurricane
causes the distance transform to fill in. At right, performing opening gets rid of the
small noisy point, and the distance transform does not get filled in.
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Fig. 8. Maximum persistence plotted over time for all data sets using threshold
=80 in addition to the versions using opening to remove noise. Gray vertical
lines separate days according to UTC.

matrix and then the distance transform is applied. Since the dis-
tance transform is no longer filled in, the opening process has re-
moved the noisy pixels causing the issue.

Using this extra step in the method, we recalculate maximum
persistence for all times and compute the estimated period of the
new maximum persistence values using Fourier transforms.

Fig. 8 shows maximum persistence plotted versus time for us-
ing our original method, and the method including the additional
opening step. While the new maximum persistence values vary
a little from the originals, the general oscillatory behavior seems
similar. For both the Felix and Ivan GOES-12 data sets, the Fourier
transform still detects a 24.5 and 24.0 h cycle respectively. Thus
the presence of noise in these data sets is not impacting the re-
sults. However, for the Felix GridSat-GOES data set, the Fourier
transform now detects a 15.375 h cycle, likely due to the differ-
ence in spatial resolution. The GOES-12 data has higher spatial res-
olution, so applying opening to remove noise does not impact the
global circular structure. The GridSat-GOES data has lower spatial
resolution, and is therefore more sensitive to noise in the image.
Thus, our method is more reliable when applied to higher spatial
resolution data, and should be used with caution on lower quality
data.

6. Discussion

This paper presents a novel method for detecting and analyz-
ing the diurnal cycle of tropical cyclones using methods from TDA.
Current state of the art TC diurnal cycle measurement in the satel-
lite imagery is mostly qualitative; our method provides a mathe-
matically advanced method for automatic detection and measure-
ment. While our method involves a choice of a parameter for the
threshold, we present evidence that a range of threshold values
yield the same results.

Here, we show that using two sets of GOES satellite data for
Hurricane Felix and one set of data for Hurricane Ivan, our method
is able to detect almost identical patterns across all three data sets.
Our method performs more consistently and robustly on higher
spatial resolution data sets, represented by the GOES-12 data for
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both Hurricanes Felix and Ivan. While the method does detect a
daily cycle in the lower resolution Felix GridSat-GOES data, when
the images are blurred to remove noise, the cycle is no longer de-
tected by the Fourier transform.

This is a novel application of methods from TDA and image pro-
cessing to the TC diurnal cycle. We believe this method could be
used to study additional atmospheric phenomena exhibiting circu-
lar structure. A future direction of this project is to apply this anal-
ysis to more TCs, other satellite channels and other atmospheric
data to further test our method.
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