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Abstract. Motivated by recent development on nonlocal mechanical models like peridynamics,
we consider nonlocal integral models with a spatially varying horizon that allows the finite range of
nonlocal interactions to be position-dependent. In particular, we focus on linear variational prob-
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1. Introduction. This work is concerned with nonlocal models that have a fi-
nite range of nonlocal interactions. An example is given by the peridynamic models
of continuum mechanics [21], which are parametrized by a finite horizon parameter
measuring the range of nonlocal interactions. One can find similar models for non-
local diffusion and transport processes [8, 6]. The horizon parameter is often chosen
as a positive constant over the spatial domain in most of the earlier studies. In [23],
models with a variable horizon having a positive lower bound over the domain have
also been examined. In [28], the variable horizon adopted there is allowed to vanish
as the material points approach a co-dimension one hyper-surface. With a vanishing
horizon, nonlocal models get localized heterogeneously. The corresponding models
are thus called nonlocal models with heterogeneous localization [28]. The latter is the
topic that we like to further explore here, given its potential impact to nonlocal model-
ing. For example, unlike nonlocal models with a constant horizon that are generically
accompanied by volumetric constraints (nonlocal analog of boundary conditions, see
[8]), models with heterogeneous localization on co-dimension one hyper-surfaces allow
conventional boundary conditions to be imposed [28].

In this paper, we aim to deliver the following messages. First, by introducing the
spatially varying horizon, one can allow the nonlocal models to get localized, espe-
cially on the boundary or interface. In those cases, in contrast to the general theory
on nonlocal volumetric constraints for nonlocal problems discussed in [8] and other
related works [15, 16, 17, 25], we end up with well-posed nonlocal models with local
boundary conditions. Furthermore, these local boundary value problems of nonlo-
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cal models recovers the local limit as the nonlocal interaction vanishes everywhere
in the domain. However, for some horizon functions that have unbounded second
order derivative, e.g., a piecewise linear horizon parameter, directly imposing the
local boundary conditions might produce nonlocal solutions that fail to accurately
capture all the interesting solution properties in the local limit such as the boundary
flux associated with local Dirichlet data, which can be seen from the numerical ex-
periments presented in Section 5. To address such issues, we discuss two remedies.
One is to introduce an auxiliary function to handle the boundary effects, as shown in
Section 3, for several cases that cover both Dirichlet and Neumann type conditions.
Well-posedness results of linear variational problems associated with these nonlocal
models are also established. An added advantage, in the case where the constructed
auxiliary function is linear, is that one can pass the so called patch test straightfor-
wardly. However, auxiliary functions are not always readily available, especially for
the complex geometry in high dimensional spaces. We thus discuss the alternative
using a smoother horizon function, e.g., of C2 class. Although such approach cannot
pass the traditional patch test, we demonstrate in the numerical experiments that the
effects of ghost forces can be controlled. In addition, as illustrated in Section 4, we
demonstrate that it is possible to seamlessly couple classical local models with nonlo-
cal models with heterogeneous localization through a common interface instead of an
overlapping domain of nonzero measure. Detailed computational studies are presented
in Section 5 on the numeral discretization of both nonlocal models with the heteroge-
neous localization and seamlessly coupled local-nonlocal models. The simulations are
done using standard Galerkin continuous piecewise linear finite element methods that
are known to be asymptotically compatible, a concept developed in [26, 27] for the
consistent discretization of nonlocal models and their local limits, and are thus ideal
as a robust discretization of nonlocal models involving the heterogeneous localization.

2. Background and existing works. There are various challenges in nonlocal
modeling that motivate our study of variable horizon such as the multiscale nature
of materials, the boundary or surface effects in nonlocal modeling, and the coupling
of local and nonlocal models, etc [5, 14, 10, 11, 18, 20]. Among these challenges,
the treatment of interface and boundary conditions for nonlocal models has received
much attention, given their differences from local PDEs. Discussions on a variety of
nonlocal constraints have been given in [8] and a number of other works [1, 15, 25, 29].
In particular, [25] presented formulations of Neumann conditions and demonstrated
how to get the second order convergence of the nonlocal models to their local limit in
the horizon parameter δ as δ → 0. Our study first focuses on models with Neumann
type volumetric constraints and a piecewise linear horizon parameter. To handle the
extra complexity associated with the Dirichlet type constraints, we then consider two
approaches using either a smoother horizon parameter or some auxiliary functions.

In terms of local-nonlocal coupling that offers great potential in multiscale cou-
pling and effective simulations, an overlapping domain of local and nonlocal regions
is often used in earlier works [5, 10, 20]. In this paper, we present a seamless coupling
strategy that allows a local model to connect through a co-dimension one interface
with a nonlocal model having heterogeneous localization on such an interface. Hence,
the local region may be seen naturally as an extension of the nonlocal model with a
zero (localized) horizon. Such a seamless coupling is possible due to the new trace
theorems established in [28] and it removes the overlapping domain. Our results here
demonstrate that such coupled models can be formulated as well-posed variational
problems and the so-called ghost force effect can be controlled properly.
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Concerning the numerical solution of nonlocal models with heterogeneous local-
ization, constructing a robust and convergent discretization scheme is important for
practical applications. For nonlocal models characterized by a constant horizon pa-
rameter δ, it is known that as δ → 0, one might encounter consistency issues at discrete
levels between the nonlocal models and the local PDEs, when the latter remain valid.
Answering such questions on the discrete level is an important task of code validation
and verification. In [27], a theory of asymptotically compatible (AC) schemes was
developed. It was successfully applied to nonlocal models with constant horizon for
various boundary constraints [25, 26] and nonlocal gradient recovery technique [12].
Given the extra complications involved in the variable horizon, we demonstrate that
asymptotically compatible schemes are ideally suited for the nonlocal models that
allows heterogeneous localization and seamlessly coupled local-nonlocal problems. In
this paper, we use standard Galerkin piecewise linear finite element methods that are
known to be AC [27]. We offer computational studies on the convergence rates for
different types of volume constraints and horizons as the nonlocality vanishes over the
whole computation domain.

3. Nonlocal variational problems with heterogeneous localization. We
now present a nonlocal variational problem with heterogeneous localization [13, 28].
Given a spatial domain Ω of interest, we let ΩI denote the corresponding interaction
domain, a concept introduced in [7, 8] that will be explained later. We introduce the
following nonlocal energy functional

(3.1) EΩ(u) =
1

2

∫
Ω∪ΩI

∫
Ω∪ΩI

ρδ(x
′, x) (u(x′)− u(x))

2
dx′dx ,

where ρδ(x
′, x) = ρδ(x, x

′) is a symmetric, nonnegative interaction kernel with more
details specified later.

The energy accounting for the contribution due to the work done by a given
external force f = f(x) on Ω is given by

(3.2) Ef (u) = EΩ(u)−
∫

Ω

f(x)u(x)dx .

We consider the constrained minimization problem

(3.3) min Ef (u) subject to Ec(u) = 0 ,

where Ec(u) denotes a constraint functional, see [8] for more details. For example,

(3.4) Ec(u) :=

∫
ΩI

u2 dx

leads to a homogeneous nonlocal Dirichlet constraint on ΩI . On the other hand, if
ΩI = ∅ and

(3.5) Ec(u) := (cN −
∫

Ω

u dx)2

for a given constant cN , then Ec(u) = 0 implies that the integral of u = u(x) over
Ω is cN and we end up with a nonlocal Neumann type problem. For homogeneous
pure Neumann type problems discussed later, we always assume the compatibility
condition

(3.6)

∫
Ω

f(x) dx = 0 .
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The weak form of Euler-Lagrange equation for (3.3) and (3.5) with ΩI = ∅ is

(3.7) Bδ(u, v) :=

∫
Ω

∫
Ω

ρδ(x, x
′) (u(x′)− u(x)) (v(x′)− v(x)) dx′ = (f, v) ,

where

(f, v) =

∫
Ω

f(x)v(x)dx ,

and Bδ(u, v) defines a symmetric bilinear form for the solution u and any test function
v in suitable function spaces.

3.1. Nonlocal kernels, variable horizon and function spaces. Recently,
nonlocal problems with heterogeneous localization have been introduced in [28]. We
recall some basic definitions here.

Let Ω be an open and bounded domain in Rn. Following [28], we define, for all
x, x′ ∈ Ω,

(3.8) ρδ(x, x
′) = cδ(x)γδ(x)(|x′ − x|) + cδ(x

′)γδ(x′)(|x′ − x|)

such that

(3.9) cδ(x)

∫
Ω

γδ(x)(|x− x′|)(x′ − x)2dx′ =
n

2
,

where δ(x) represents a variable horizon such that γδ(x)(|x′−x|) ≥ 0 for |x− x′| ≤ δ(x)
and γδ(x)(|x′ − x|) = 0 for |x− x′| > δ(x). For example, for a nonnegative function γ̂
with compact support in the interval (0, 1), we may define [28]

(3.10) γδ(x)(r) = γ̂

(
r

δ(x)

)
.

For much of this work, we restrict to the case that γ̂ is a constant function but
the theory can be readily extended to more singular kernels, following the discussions
given in [28] concerning the nonlocal energy spaces corresponding to both the constant
and more general kernels.

By heterogeneous localization [28], we are interested in the case where δ(x) = 0
at some isolated points. Here, throughout this section, we consider the case that δ(x)
vanishes as x goes to the boundary ∂Ω. For example, one choice of δ(x) is simply
given by:

(3.11) δ(x) = min(dist(x, ∂Ω), δ) .

Here we have max δ(x) = δ. Besides (3.11), other forms of the function δ(x), par-
ticularly ones with much more smoothness, will be considered later. Without loss of
generality, we take as a notation convention to use δ representing both the heteroge-
neously defined horizon function and its maximum value. In this way, we may use
δ → 0 to represent the localization of the model throughout the domain.

Let us now define some function spaces of interest to us. The space Sδ(Ω) ⊂ L2(Ω)
is given by

Sδ(Ω) =
{
u ∈ L2(Ω) : EΩ(u) <∞

}
.

Now the solution space for the nonlocal homogeneous Dirichlet type problem is
defined by the closure of smooth functions in the space of Sδ(Ω). Namely, we define

SDδ (Ω) = {u ∈ Sδ(Ω) : ∃un ∈ C∞c (Ω) such that un → u in Sδ(Ω)} .
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It is worth noting that by the trace theorem in [28], any function in Sδ(Ω) has a well-
defined trace in the space H1/2(∂Ω). So it is reasonable to impose local boundary
constraints in the space Sδ(Ω). Naturally, the nonlocal Neumann-type constrained
energy space can be similarly defined as a subspace of Sδ(Ω) with a normalization
condition:

SNδ (Ω) =

{
u ∈ Sδ(Ω) :

∫
Ω

udx = cN

}
,

for some constant cN . Again, without loss of generality, we assume cN = 0 unless
noted otherwise. It is not hard to see that Sδ(Ω) and the constrained energy spaces are
real Hilbert spaces with the inner product (·, ·)s defined as (u,w)s = Bδ(u,w)+(u,w),
see, for example, similar results given in [16]. We use ‖u‖L2 to denote the L2 norm of
u, |u|e to denote the energy seminorm

√
(Bδ(u, u)) of u in Sδ(Ω) and ‖ · ‖s to denote

the norm on Sδ(Ω) defined by ‖u‖2s = ‖u‖2L2 + |u|2e.
Similar to the constant horizon case, it is not hard to see that the nonlocal energy

space S(Ω) is a Hilbert space. Moreover, we may observe that, if |u|e = 0 for some
u ∈ S(Ω), then u = u(x) is a constant function for a.e. x ∈ Ω. Indeed, let K be any
subset compactly contained in Ω, we have σ := infx∈K δ(x) > 0. We can restrict the
choice of the kernel ρδ(x, x

′) so that it is strictly above zero for any x, x′ ∈ K with
|x′ − x| < σ/2. This implies that

0 = |u|2e ≥
∫
K

∫
K∩Bσ/2(x)

ρδ(x, x
′)(u(x)− u(x′))2dx′dx ,

which forces u be a constant on K. Thus, u is a constant almost everywhere over Ω.
The well-posedness of the nonlocal boundary value problems proposed respec-

tively in sections 3.2, 3.3 and 3.4 can be derived using the conventional Lax-Milgram
theorem with the help of a nonlocal Poincaré-type inequality. The latter, shown
below, is applicable to any subspace of Sδ(Ω) that intersects R trivially, including
particularly SDδ (Ω) and SNδ (Ω) as cases of interests here.

Proposition 3.1. Suppose V is a closed subspace of L2(Ω) that intersects R
trivially. Then there exists a constant C = C(ρδ, V,Ω) such that

(3.12) ‖u‖L2 ≤ C|u|e , ∀u ∈ V ∩ Sδ(Ω).

Proof. We prove the inequality by contradiction, which is a standard technique
for establishing Poincaré inequality. Suppose the inequality (3.12) is false. Then there
exist {un} ∈ V such that for all n, ‖un‖L2 = 1, and as n→∞, |un|e → 0. We claim
that in such case ‖un‖L2 → 0 as n → ∞, resulting in a contradiction. To prove the
claim, suppose that u is the weak limit in L2 of the bounded sequence un. Since V is
a closed subspace of L2(Ω), we have u ∈ V.
Step 1. We show that the weak limit u is in fact 0. We claim that | · |e is L2-weakly
lower semicontinuous, namely

(3.13) |u|e ≤ lim inf
n
|un|e .

In fact, since | · |e is a convex functional, then the weak lower semicontinuity is equiva-
lent to strong lower semicontinuity. So we only need to show (3.13) under the assump-
tion that un converges to u strongly in L2. Indeed, under such assumption, we can
extract a subsequence of {unk} such that it converges to u pointwisely up to a set of
measure zero. Then we arrive at (3.13) by applying Fatou’s lemma. Now from (3.13)
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we have |u|e = 0 so that u equals to a constant in Ω. Therefore, u must be identical
to zero since the only constant function in V is the zero function by assumption.
Step 2. We show next that, as n→∞, un → 0 strongly in L2(Ω). First we observe
the following fact for γδ(x) to be of the rescaled type (3.10) and δ(x) only vanishes on
the boundary ∂Ω continuously. Fix a constant c > 0, then for any ε > 0, we could
choose M > 0, such that by defining ρMδ = min(M,ρδ), the integral defined by

d(x) :=

∫
Ω

ρMδ (x, x′)dx′

has a lower bound c for all x in the interior of Ω characterized by the distance ε to
the boundary ∂Ω (denoted as Ωε). Then we have

|uk|2e ≥
∫

Ω

∫
Ω

ρMδ (x, x′)(uk(x)− uk(x′))2dxdx′

≥ 2

∫
Ω

(∫
Ω

ρMδ (x, x′)dx′
)
u2
k(x)dx− 2

∫
Ω

(∫
Ω

ρMδ (x, x′)uk(x′)dx′
)
u(x)dx

≥ 2

∫
Ωε

d(x)u2
k(x)dx− 2

∫
Ω

(∫
Ω

ρMδ (x, x′)uk(x′)dx′
)
uk(x)dx

≥ 2c‖uk‖2L2(Ωε)
−
∫

Ω

Kuk(x)uk(x)dx ,

where K is a Hilbert-Schmidt operator defined by

Kuk(x) =

∫
Ω

ρMδ (x, x′)uk(x′)dx′ ,

since ρMδ ∈ L2(Ω × Ω). Now since uk ⇀ 0 from the first step, we have Kuk → 0
strongly in L2. Thus we have

0 = lim sup
k
|uk|e ≥

√
2c · lim sup

k
‖uk‖L2(Ωε) .

By letting ε→ 0 we have ‖uk‖L2(Ω) → 0 as k →∞, which contradicts to ‖uk‖L2(Ω) =
1. This proves the claim above and completes the proof of the proposition.

Let Vs denote a generic subspace V ∩Sδ with its dual denoted by V ′s. A standard
application of the Lax-Milgram theorem (which is based on the Riesz representation
theorem) yields the well-posedness of the variational problems in Vs. The important
examples of Vs considered in this work are the spaces SDδ (Ω) and SNδ (Ω).

Lemma 3.2. For a given f ∈ V ′s, there exists a unique u ∈ Vs such that

Bδ(u, v) = (f, v) ,

for all v ∈ Vs. Moreover, |u|e = |f |V′s .
We will study different types of problems in the subsequent sections with different

choices of Vs and f .

3.2. Homogeneous Neumann-type problems. Working with SNδ (Ω), one
can formulate the homogeneous Neumann-type problem in a variational way. For a
given f ∈ L2(Ω), find uδ ∈ SNδ (Ω), such that

(3.14) Bδ(uδ, v) = (f, v) ∀v ∈ SNδ (Ω) .
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Notice that the problem has a solution uδ for any f in the dual space of SNδ (Ω) based
on the Lax-Milgram/Riesz-representation theory. But in order for the solution to
have properly defined homogeneous Neumann data on the boundary and to be valid
pointwise in the interior of Ω, we let f in L2(Ω), a subspace of the dual of SNδ (Ω).
Then the nonlocal Neumann problem (3.14) converges as δ → 0 to the classical local
homogeneous Neumann value problem: for f ∈ L2(Ω), find u0 ∈ H1(Ω)\R such that

(∇u0,∇v) = (f, v) ∀v ∈ H1(Ω) .

We may formally examine the limiting weak form of (3.14). Indeed, for smooth
functions u and v, we have

Bδ(u, v) =

∫
Ω

∫
Ω

ρδ(x, x
′)(u(x′)− u(x))(v(x′)− v(x))dx′dx

= 2

∫
Ω

∫
Rn
cδ(x)γδ(x)(|s|)(u(x+ s)− u(x))(v(x+ s)− v(x))dsdx

=

∫
Ω

∇u(x) · ∇v(x)

(∫
Rn

2

n
cδ(x)γδ(x)(|s|)|s|2ds+O(δ2)

)
dx

→
∫

Ω

∇u(x) · ∇v(x)dx ,

as δ → 0. So the limiting weak form of (3.14) corresponds to the weak form of the local
homogeneous Neumann problem. The rigorous proof of the convergence of solutions
uδ to u0 requires a new compactness result, which is out of the scope of this paper.
Detailed derivations will be conduced in separate works.

The strong form of (3.14) is given as
Lδu(x) = f(x) in Ω ,∫

Ω

u dx = 0 .

where Lδ is found to be

Lδu(x) := −2

∫
Ω

ρδ(x, x
′)(u(x′)− u(x))dx′ ,

thanks to the Fubini theorem, which can be applied in the case that u has vanishing
normal derivatives on the boundary of Ω.

Finally, the strong form of the local limit is given by

(3.15)


L0u : = −∆u = f in Ω ,

∂u

∂n
= 0 on ∂Ω ,∫

Ω

u dx = 0 .

3.3. Inhomogeneous Neumann-type problems. We now extend the study
earlier on the homogeneous Neumann-type problems to those involving inhomoge-
neous Neumann data. Instead of (3.15), we want to get a nonlocal solution which is
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an approximation of the solution to classical inhomogeneous Neumann problems

(3.16)


L0u = f in Ω ,

∂u

∂n
= g on ∂Ω ,∫

Ω

u dx = 0 ,

for some inhomogeneous boundary data g. In general, (3.16) is well-defined for f ∈
H−1(Ω) and g ∈ H−1/2(∂Ω) that satisfy the compatibility condition∫

Ω

f = −
∫
∂Ω

g.

It has the following weak formulation: find u0 ∈ H1(Ω)\R, such that

(3.17) (∇u0,∇v) = (f, v) + (g, v)∂Ω ∀v ∈ H1(Ω) .

A nonlocal version of (3.17) naturally becomes: find uδ ∈ SNδ (Ω), such that

(3.18) Bδ(uδ, v) = (f, v) + (g, v)∂Ω ∀v ∈ SNδ (Ω) .

Note that (3.18) is well defined for f ∈ L2(Ω) and g ∈ H−1/2(∂Ω), since by the
trace theorem in [28], the space SNδ (Ω) has H1/2(∂Ω) as its trace space, so (g, ·)∂Ω

is a continuous functional on SNδ (Ω). To avoid technicality, we consider more regular
data with f ∈ L2(Ω) and g ∈ H1/2(∂Ω). Otherwise, the less regular data may be first
mollified. Experiments on the numerical solution of (3.18) can be found in Section 5.

While a valid weak formulation, (3.18) also leads to some inconveniences. The
first is that we lack a proper definition of its strong form since the Fubini theorem
cannot be applied when the normal derivative of uδ does not vanish on the boundary.
The second is that the horizon function δ(x) generally has to be smoothly varying in
order to get a high order approximation to the corresponding local problem, as shown
in Section 5.2. Indeed, as illustrated in the experiments presented in Section 5, the
solution to nonlocal problem (3.18) with a piecewise linear horizon converges to its
local limit only in first order in δ. This can be seen based on the results reported in
Table 5.4. A possible remedy is to consider a relaxed version of (3.18). If the goal
is to find a proper nonlocal problem that approximates the local Neumann boundary
value problem accurately, then instead of using (g, v)∂Ω exactly in (3.18), one may
replace but some functional (gδ, v) that approximates (g, v)∂Ω in the asymptotic limit.

3.3.1. Auxiliary function approach. The auxiliary function approach has
been used to formulate nonlocal problem before. For nonlocal problems with a con-
stant horizon, [25] discussed the use of auxiliary functions to transfer a nonlocal inho-
mogeneous Neumann problem to a new homogeneous one while maintaining second
order consistency with the local limit in terms of δ.

Let us now demonstrate how to modify (3.18) via an auxiliary function: let ua be
an auxiliary function to be specified later that satisfies ua ∈ H2(Ω) and ∂ua

∂n = g on
∂Ω. Instead of (3.18), we consider the solution uδ to the following variational problem

(3.19) Bδ(uδ, v) = (f, v) + (∆ua, v) +Bδ(ua, v) ∀v ∈ SNδ (Ω) .

The derivation of (3.19) comes as follows. If we define (gδ, v) as

(gδ, v) = (g, v)∂Ω +Bδ(ua, v)− (∇ua,∇v) ,
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then it is obvious that (gδ, v) approximates (g, v)∂Ω as δ → 0, by the consistency of
the nonlocal bilinear form to the local bilinear form. Then using integration by parts
and the fact that the normal derivative of ua corresponds to g on the boundary, we
arrive at

(gδ, v) = Bδ(ua, v) + (∆ua, v) ,

which leads to the conclusion of (3.19). This modification of (3.18) preserves the limit
of uδ, as shown in the numerical experiments in Section 5.

The well-posedness in this case can be given in the following proposition.

Proposition 3.3. Given f ∈ L2 and ua ∈ H2(Ω) with ∂ua

∂n = g on ∂Ω, there
exists a unique uδ such that uδ −ua ∈ SNδ (Ω) and uδ solves (3.19) for all v ∈ SNδ (Ω).
Moreover, with Lδ given in Section 3.2, (3.19) can be written in a strong from:

Lδ(uδ − ua)(x) = f(x) + ∆ua(x) in Ω .

Now let us discuss how to select the auxiliary function ua. A possible way to
determine ua is to solve the following local equation

(3.20)



−∆ua =

∫
Ω

fdx in Ω ,

∂ua

∂n
= g on ∂Ω ,∫

Ω

ua dx = 0 .

Notice that this equation is solvable because the forcing term is compatible with
the Neumann data. By the particular choice of the the auxiliary function, the strong
form of (3.19) is then reduced to

(3.21)


Lδ(uδ − ua)(x) = f(x)−

∫
Ω

fdx in Ω ,∫
Ω

uδ dx = 0 .

In 1d, working on Ω = (0, 1), the auxiliary function ua can be simply given by

ua(x) = −x
2

2

∫
Ω

fdx+ g(0)x ,

where f and g satisfy the compatibility condition∫
Ω

fdx = g(0)− g(1) .

One can easily check that u′a(0) = g(0) and u′a(1) = g(1).

3.3.2. Modified forcing for high order truncation. As also proposed in [25],
we can cancel low order terms in the nonlocal modeling/truncation error through a
modification of the right hand side for problems with a constant horizon. Let us
elaborate next this approach in the more general context of heterogeneous nonlocal
interactions discussed here.
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Consider for now Ω = (0, 1) and u ∈ C3(Ω) is sufficiently regular. For x close to
the left boundary x = 0, we can get from a careful Taylor expansion that

L0u− Lδu = 2

∫
Ω

ρδ(x, x
′)(u(x′)− u(x))dx′ − u′′(x)

= 2

∫
Ω

ρδ(x, x
′)(x′ − x)u′(x)dx′ +

∫
Ω

ρδ(x, x
′)(x′ − x)2u′′(x)dx′ − u′′(x) +O(δ)

= 2

∫
Ω

ρδ(x, x
′)(x′ − x)(u′(0) + xu′′(x))dx′

+

∫
Ω

ρδ(x, x
′)(x′ − x)2u′′(x)dx′ − u′′(x) +O(δ)

= 2u′(0)

∫
Ω

ρδ(x, x
′)(x′ − x)dx′ + u′′(x)

(∫
Ω

ρδ(x, x
′)(x′2 − x2)− 1

)
dx′ +O(δ) .

Similarly, when x is close to the right boundary or in the middle of Ω, we can derive
the truncation error accordingly. Consequently, similar to the illustration provided
in [25] for the constant horizon case, one may introduce some modified right hand
side to the nonlocal model near the boundary to get higher order consistency. For
example, when x is close to x = 0, we have

Lδu(x) = fδ(x) := −2u′(0)

∫
Ω

ρδ(x, x
′)(x′ − x)dx′ + f(x)

∫
Ω

ρδ(x, x
′)(x′2 − x2)dx′ .

Indeed, if we consider the constant horizon case, then we can get from the above that

fδ(x) = −2u′(0)

∫ x+δ

0

ρδ(x, x
′)(x′ − x)dx′ + f(x)

∫ x+δ

0

ρδ(x, x
′)(x′2 − x2)dx′

= 2u′(0)

∫ 0

x−δ
ρδ(x, x

′)(x′ − x)dx′ + f(x)

(
1−

∫ 0

x−δ
ρδ(x, x

′)(x′2 − x2)dx′
)

= 2u′(0)

∫ 0

−δ
ρδ(x, x

′)(x′ − x)dx′ + f(x)

(
1−

∫
Ω

ρδ(x,−x′)(x′2 − x2)dx′
)
,

which is similar to the formula given in [25] but has a simpler form.

3.4. Dirichlet-type problems. For nonlocal diffusion models with a constant
horizon, problems subject to Dirichlet volumetric constraints have been studied in
various earlier works, for example [7, 26]. The local limiting problem corresponds to

(3.22)

{
L0u = f in Ω ,

u = g on ∂Ω .

The corresponding weak from is given by: find the solution u ∈ {w ∈ H1(Ω) : w|∂Ω =
g} such that

(3.23) (∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω) .

While intuitively we may use the trace theorem given in [28] to specify a Dirichlet
condition on the boundary where the nonlocal interaction gets localized, the deriva-
tives of the resulting solution could develop undesirable oscillations if the horizon
function is not sufficiently smooth, which is similar to the inhomogeneous Neumann
case that will be presented in Section 5.2. It turns out that we can again use the idea
of modifying the bilinear form by the use of auxiliary functions discussed below.
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3.4.1. Auxiliary function formulation. We again want to seek auxiliary func-
tion ua ∈ C2 with ∂ua

∂n = ∂u
∂n . However, the Neumann data is not specified in this case,

we thus cannot solve for ua a priori without solving the corresponding local problem
as in the case of (3.20) and (3.21). Instead, in order to use the auxiliary function, we
have to solve the coupled system

(3.24)



Lδ(uδ − ua)(x) = f(x)−
∫

Ω

fdx in Ω ,

−∆ua =

∫
Ω

fdx in Ω ,

uδ = g on ∂Ω ,

∂uδ
∂n
− ∂ua

∂n
= 0 on ∂Ω .

The coupled system (3.24) can be decoupled in the following way. By denoting ũ =
uδ−ua, one can find that solving (3.24) is equivalent to solve the following two systems
separately:

(3.25)


Lδũ(x) = f(x)−

∫
Ω

fdx in Ω ,∫
Ω

ũ dx = 0 ,

and

(3.26)

−∆ua =

∫
Ω

fdx in Ω ,

ua = g − ũ on ∂Ω .

Then uδ is obtained by letting uδ = ũ+ ua.
We note that (3.26) can be seen as a post-processing step. Its validity depends

crucially on the superposition principle of linear problems.

3.4.2. An equivalent formulation in one dimension. In 1d, it is easy to
solve the coupled system (3.24) directly. Assuming that Ω = (0, 1). Using the fact
that, in 1d, ua in (3.26) takes on the form of

(3.27) ua(x) = −x
2

2

∫
Ω

fdx+ ax ,

with an undetermined parameter a = u′(0). Using the boundary condition ∂ua

∂n = ∂u
∂n ,

we can test the first equation in (3.24) with a test function v, and use Fubini’s theorem
to arrive at

Bδ(uδ − ua, v) = (f −
∫

Ω

fdx, v) .

Now if we let v(x) = x, then the left side of the above is equal to

Bδ(uδ − ua, x) = Bδ(uδ, x)−Bδ(ua, x) = Bδ(uδ, x) +
1

2

∫
Ω

fdx− a ,

and the right hand side is equal to∫ 1

0

(
f(x)−

∫
Ω

fdx

)
xdx = g(1)− g(0)− u′(1)− 1

2

∫
Ω

fdx
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Using the compatibility condition for f :∫
Ω

fdx = u′(0)− u′(1) = a− u′(1)

one arrives at Bδ(uδ, x) = g(1)−g(0) which can be viewed as a nonlocal compatibility
condition to determine a. In the end, in 1d, the coupled system (3.24) can be written
as: find u = u(x) and a parameter a such that

(3.28)



Lδ(uδ − ua)(x) = f(x)−
∫ 1

0

fdx on Ω = (0, 1) ,

ua(x) = −x
2

2

∫
Ω

fdx+ ax ,

uδ = g on ∂Ω ,

Bδ(uδ, x) = g(1)− g(0) .

3.5. Nonlocal models with mixed boundary conditions. The treatment
for a nonlocal problem with mixed boundary conditions is a combination of the dis-
cussions in Sections 3.3 and 3.4. Briefly, if we want to take uδ = g on Γ1 ⊂ ∂Ω, and
∂uδ
∂n = h on Γ2 ⊂ ∂Ω, then we solve the following two systems separately:

(3.29)


Lδũ(x) = f(x)−

∫
Ω

fdx in Ω ,∫
Ω

ũ dx = 0 ,

and

(3.30)


−∆ua =

∫
Ω

fdx in Ω ,

ua = g − ũ on Γ1 .

∂ua

∂n
= h on Γ2 .

Then the solution uδ for the nonlocal mixed problem is obtained by uδ = ũ+ ua.

Remark 1. To end this section, we note that the introduction of auxiliary func-
tions serves as a remedy to have better recovery of the local limit from the nonlocal
models with a non-smooth horizon function such as the one given by (3.11), and it is
not necessary when the horizon function is smoothly defined such as the one that is
given in Fig 4.1.

4. Local-nonlocal coupled problems. While nonlocal modeling has its ad-
vantage on complex physical processes, nonlocal model based numerical simulations
often incur higher computational cost than those based on traditional local models.
Local-nonlocal coupling is a natural approach in practice and various strategies have
been proposed [5, 10, 11, 18, 20]. In this section, we propose an energy-based seam-
less coupling approach to define local-nonlocal coupled problems. We first adopt the
auxiliary function approach and use a general horizon parameter (one representative
could be the one given by (3.11)), which is a direct application from the discussion
in Section 3.4. For this approach, we only discuss its application in 1d. We then
use a smoother variable horizon to solve the coupled problems without the auxiliary
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functions, which is directly applicable to high dimensional problems. The goal of this
section is to derive a coupled model which approximates the traditional PDEs (3.22).

We consider an open bounded and connected domain Ω in Rn. Ω is decomposed
into two parts Ω = Ω− ∪ Ω+, where we consider nonlocal model on Ω+ and local
model on Ω−. We denote Γ = ∂Ω− ∩ ∂Ω+. The nonlocal interaction domain ΩI is
defined as

ΩI = {y ∈ Rn \ Ω+ such that ρδ(x, y) 6= 0 for some x ∈ Ω+} .

We define the coupled energy functional as

(4.1)

Ef (u) =
1

2

∫
Ω+∪ΩI

∫
Ω+∪ΩI

ρδ(x, x
′)(u(x′)− u(x))2dx′dx

+
1

2

∫
Ω−

|∇u(x)|2 dx−
∫

Ω

f(x)u(x)dx .

Let us also denote the space

Wδ(Ω) =
{
u ∈ H1(Ω−) ∩ Sδ(Ω+) such that u− = u+ at Γ

}
,

which is well-defined by the trace theorem given in [28]. For simplicity, we will only
consider the minimization problem of the energy functional subject to Dirichlet bound-
ary conditions. So the solution space is given by

W̃δ(Ω) = {u ∈ Wδ(Ω), u = g on ΩI ∪ (∂Ω−\Γ)} .

4.1. Coupled problems with auxiliary functions for general horizons.
In this subsection, we use auxiliary function to solve the coupled nonlocal and local
model, following the discussion in Section 3.4. Since in 1d the auxiliary function is
easily obtained, we will only consider the 1d case here. We consider Ω− = (−1, 0],
Ω+ = [0, 1) and ΩI = ∅. We use the piecewise linear horizon function on Ω+ that is
localized at ∂Ω+.

As an application of the auxiliary function approach for solving nonlocal Dirichlet
problems with heterogeneous localization, we let ua be the auxiliary function be given
by (3.27), where Ω should be replaced by Ω+. We now consider the minimizer of the
following modified energy functional

(4.2)

Ef (u; a) =EΩ+(u− ua)−
∫

Ω+

u′′a(x)u(x)dx

+
1

2

∫
Ω−

u′(x)2 dx−
∫

Ω

f(x)u(x)dx .

The solution space now is defined by

{u ∈ Wδ(Ω), u = g on {−1, 1}} .

The weak form of Euler-Lagrange equation for the minimization problem becomes

(4.3) B0(u, v)Ω− +Bδ(u− ua, v)Ω+
− (u′′a , v)Ω+

= (f, v) ,

where the subscripts Ω− and Ω+ represent the integral domain of the bilinear forms,
and the test function v are in Wδ(Ω) but with homogeneous Dirichlet conditions on
{x = ±1}. By Fubini’s theorem, (4.3) leads to

Lδ(u− ua) = f −
∫

Ω+

f dx in Ω+ .
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In order to find a nonlocal compatibility condition for the coupled problems, we again
multiply the linear function h(x) = x on both sides and integrate with respect to x
from 0 to 1, which leads to

(4.4)

∫
Ω+

∫
Ω+

ρδ(x, x
′)(x′ − x)(u(x′)− u(x)) dx′dx− a =

∫
Ω+

f(x)(x− 1) dx .

4.2. Coupled problems with C2 horizon functions. As demonstrated ear-
lier, constructing suitable auxiliary functions can help retain good consistency of the
nonlocal model with the local limit for general kernels and horizons. However, such
constructions in general geometry in higher dimensional spaces are challenging. In-
stead, we now consider the use of a smoother horizon function in the kernel over
the domain Ω+. Discussion on smooth (and strictly positive) horizon has been made
also in [23] along with numerical experiments. Here we discuss the case that allows
heterogeneous localization with the horizon becoming zero at Γ.

We consider the minimization problem of the original energy functional (4.1).
The weak form of the coupled problem is simply given by

B0(u, v)Ω− +Bδ(u, v)Ω+
= (f, v) ,

for u ∈ W̃δ(Ω) and the test function v is from Wδ(Ω) with homogeneous Dirichlet
condition at ΩI ∪ (∂Ω−\Γ).

In Fig. 4.1, we give a 1d example of a second order differentiable horizon function
δ(x) on the domain Ω+ = (0, 1), which will be used in the numerical experiments in
Section 5. We plot δ(x) up to its second order derivative. δ′′(x) is bounded by some
power of the maximum value of δ(x) on (0, 1).

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02
(x)

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04
d  / dx

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2
d

2
 / dx

2

Fig. 4.1. Horizon as a C2 function of x.

In the numerical experiments presented in Section 5, we can see that the coupled
solutions converge to the limiting local solution in an optimal order. Moreover, al-
though the ghost forces do not disappear totally, we demonstrate that they vanish
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as δ → 0. We also present numerical experiments on using such a horizon to solve
nonlocal problems subject to various constraints. Convergence can again be observed
in an optimal order without auxiliary functions.

5. Numerical simulations. We now report numerical experiments in 1d that
on one hand substantiate the analysis given earlier and on the other hand, offer quan-
titative pictures to the solution behavior (particularly in the local limit) of nonlocal
models and coupled local-nonlocal models. We adopt Galerkin piecewise linear finite
element methods to do discretization.

5.1. Nonlocal homogeneous Neumann problems. We work on the 1d do-
main Ω = (0, 1). After numerical discretization, we get the stiffness matrix A, where A
is assembled by conforming piecewise linear finite element Galerkin approximations,
see [25] for details. For Neumann type problems, however, the matrix is singular
without the uniqueness constraint. In principle, we may have several ways to deal
with such issue. One possible approach is to modify the stiffness matrix. Let e be
the column vector in the null space of the stiffness matrix A and define B = A+ eeT ,
we solve the linear system with coefficient matrix B to get a solution U′. Then the
vector U′ has the property eTU′ = 0. To get the solutions with different mean values
(say to match with suitable benchmark solutions), we need to set U = U′ − Che for
suitably chosen constant Ch.

For numerical experiments, we first fix the horizon δ and calculate the right hand
side of the nonlocal equation based on an exact solution u(x) = x2(1 − x)2 − 1/30.
This naturally leads to a δ-dependent right hand side f = fδ(x) = Lδu. Meanwhile,
since the integral of u over Ω is zero, which leads to our target weak form:

(5.1) Bδ(uδ, v) = (fδ, v) ∀v ∈ SNδ (Ω) ,

where uδ ∈ SNδ (Ω). We take the kernel

ρδ(x
′, x) = cδ(x)χδ(x)(|x′ − x|) + cδ(x

′)χδ(x′)(|x′ − x|),

where

cδ(x) =
3

4δ(x)3
, δ(x) = min(δ, x, 1− x).

We solve the nonlocal problem on a uniform mesh with mesh size h and take δ to
be constant and reduce h to check the convergence properties. As an illustration we
choose δ = 1

4 and refine the mesh with decreasing h. For each h, the constant Ch is
chosen as the trapezoidal rule of the numerical solution on the grid points for each h
which is an approximation of the integral of u.

Table 5.1 shows errors and error orders of the piecewise linear finite element
approximations to the solution x2(1−x)2−1/30 with a fixed δ = 1

4 while refining mesh
with a decreasing h, where Ih denotes the piecewise linear interpolation operator.
From the data in the table, we see that the convergence rate for fixed δ is O(h2) for
finite element approximations.

We now establish the numerical experiments to show the order of convergence as
δ and h both go to 0. In this example, we discretize and solve the following equation:

(5.2) Bδ(uδ, v) = (f, v) ∀v ∈ SNδ (Ω) .

We choose the same kernel and the same local limit of the nonlocal solution u(x) =
x2(1−x)2−1/30, hence the right hand side would be f(x) = −12x2 +12x−2. Let Uh

δ
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h ‖Uh − Ihu‖∞ Order
2−5 6.14× 10−4 −
2−6 1.86× 10−4 1.73
2−7 3.64× 10−5 2.35
2−8 1.10× 10−5 1.73
2−9 2.74× 10−6 2.00
2−10 6.25× 10−7 2.13
2−11 1.63× 10−7 1.94
2−12 3.63× 10−8 2.16

Table 5.1
L∞ errors and error orders of piecewise linear finite element approximations for fixed δ = 1

4

to the solution x4 − 2x3 + x2 − 1/30 as h→ 0.

denote the numerical solution of (5.2) with mesh size h and horizon δ. Then from the
above example, with fixed δ, Uh

δ will converge to the interpolant of nonlocal solution
uδ with decreasing h. Therefore, when we keep reducing δ while picking a relative
small enough h, the resulting solutions are expected to approximate the local limit.
On the other side, we can also fix the ratio between horizon and mesh size: r = δ/h
and refine the mesh, which is also a popular limiting process as it roughly preserves
the number of nonzero entries in each row of the stiffness matrix.

Fixed small h fFxed r = 2

δ ‖Uh
δ − Ihu‖∞ Order ‖Uh

δ − Ihu‖∞ Order
2−2 7.81× 10−3 − 7.88× 10−3 −
2−3 3.12× 10−3 1.35 3.47× 10−3 1.18
2−4 9.46× 10−4 1.71 1.14× 10−3 1.60
2−5 2.60× 10−4 1.86 3.26× 10−4 1.81
2−6 6.81× 10−5 1.93 8.70× 10−5 1.91
2−7 1.74× 10−5 1.97 2.25× 10−5 1.95
2−8 4.41× 10−6 1.99 5.71× 10−6 1.98

Table 5.2
L∞ errors and error orders of piecewise linear finite element method as δ → 0 to solution

x4 − 2x3 + x2 − 1/30.

Table 5.2 shows errors and error orders to the local limit of the piecewise linear
finite element approximations as δ goes to 0 for a fixed small enough h (Column 2 and
3) and a fixed ratio of horizon size to mesh size (Column 4 and 5). From the table,
we can see the convergence rate to the local limit is O(δ2). This example shows the
asymptotic compatibility. More thorough discussion can be found in other references,
for example [12, 25, 26, 27].

For further illustration, we can also estimate the derivative of nonlocal solutions
to see if it will recover the local Neumann boundary conditions as δ → 0. Table
5.3 shows that the numerical derivative of the nonlocal solution converges to the
derivative of the local limit in the first order, where Dh is the numerical difference
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δ ‖DhU
h
δ − Ihu′‖∞ Order

2−3 3.83× 10−2 −
2−4 2.11× 10−2 0.86
2−5 1.11× 10−2 0.92
2−6 5.74× 10−3 0.97
2−7 2.93× 10−3 0.98
2−8 1.47× 10−3 0.99

Table 5.3
L∞ errors and error orders of the numerical derivative of uδ to derivative of local solution:

4x3 − 6x2 + 2x as δ → 0.

quotient operator (forward, backward or central). Moreover, when we only focus on
the derivative at the boundary, we can find that for any δ, u′δ(0) = u′δ(1) = 0, which
means the nonlocal solutions also satisfy the homogeneous Neumann conditions. For
example, we can see this phenomenon in Fig. 5.1, where we fix δ = 1

8 and get the
corresponding uδ.

0 0.2 0.4 0.6 0.8 1
-0.04

-0.02

0

0.02

0.04

nonlocal solution

local solution

Fig. 5.1. The nonlocal solution with δ = 1
8

and the local solution.

We remark that we can get the same convergence results when using the smoother
horizon shown in Fig. 4.1. The results are omitted here but more interesting examples
of solving nonlocal problems by such horizon will be given shortly.

5.2. Nonlocal inhomogeneous Neumann problems. In this example, we
present the numerical study on inhomogeneous nonlocal Neumann problems by both
the smoother horizon shown in Fig. 4.1 with local boundary conditions and the piece-
wise linear horizon (3.11) with auxiliary functions, which has been discussed in Section
3.3. Before that, we first give an example on the issue when imposing local inhomoge-
neous Neumann boundary conditions on the nonlocal model with the piecewise linear
horizon (3.11). We discretize and solve the following equation:

(5.3) Bδ(uδ, v) = (f, v) + (g, v)∂Ω ,

where u, v ∈ SNδ (Ω), g is the Neumann boundary condition and (·, ·)∂Ω denotes the
boundary integration. In 1D domain Ω = (0, 1), it is defined by

(5.4) (g, v)∂Ω = u′(1)v(1)− u′(0)v(0) .
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For illustration, we take an exact local solution u = x4 − 2x3 + x2 − 2x+ 29/30.
Table 5.4 shows that the nonlocal solution only has first order convergence as δ → 0.
Moreover, there are oscillations of derivatives with length 2δ at the boundary layers.
See Fig. 5.2 for example where δ = 1/8.

Numerical solution
δ L∞ Error Order

2−3 3.69× 10−2 −
2−4 1.80× 10−2 1.03
2−5 8.80× 10−3 1.03
2−6 4.34× 10−3 1.02
2−7 2.15× 10−3 1.01
2−8 1.07× 10−3 1.00

Table 5.4
L∞ errors and error orders of piecewise linear finite element approximations as δ → 0 to

solution x4 − 2x3 + x2 − 2x+ 29/30 with the piecewise linear horizon function and inhomogeneous
Neumann conditions, but without the use of auxiliary function.

0 0.2 0.4 0.6 0.8 1

-1

0

1

solution

0 0.2 0.4 0.6 0.8 1

-3

-2.5

-2

-1.5

-1
derivative

Fig. 5.2. Derivatives oscillate around the boundary when imposing local Neumann boundary
conditions on nonlocal models with piecewise linear variable horizon.

Instead, we can consider to use the auxiliary functions. Since g = −2 on the
boundary, we can simply take ua(x) = −2x. Table 5.5 shows that the numerical solu-
tion and numerical derivative of the nonlocal case converges to its local limit, which
means that this approach works and the boundary condition can still be achieved
when the horizon vanishes.

Moreover, we can use the horizon shown in Fig. 4.1 without auxiliary functions
and impose the local boundary conditions. As noted before, we use the constant
δ to also represent the maximum value of δ(x). In order to check the asymptotic
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Numerical solution Numerical derivative
δ L∞ Error Order L∞ Error Order

2−3 2.81× 10−3 − 3.82× 10−2 −
2−4 9.47× 10−4 1.55 2.12× 10−2 0.85
2−5 2.64× 10−4 1.84 1.13× 10−2 0.91
2−6 5.99× 10−5 2.14 6.02× 10−3 0.91
2−7 1.21× 10−5 2.28 3.00× 10−3 0.98
2−8 3.12× 10−6 2.02 1.50× 10−3 0.99

Table 5.5
L∞ errors and error orders of piecewise linear finite element approximations as δ → 0 to

solution x4 − 2x3 + x2 − 2x+ 29/30 with the piecewise linear horizon function and inhomogeneous
Neumann conditions.

compatibility of this case, we instead fix r = δ/h and let δ → 0. Table 5.6 shows the
convergence of numerical solution and numerical derivative to the local limit with a
fixed r = 2 in L∞ sense. The order of convergence for numerical derivatives can be
confirmed as the optimal order, while the convergence of numerical solutions is close,
but not exactly second order. More convincing data on second order convergence
for the solutions are presented in Table 5.7, where one can see that the numerical
solutions converge in an optimal order in L2 norm.

Numerical solution Numerical derivative
r = 2 L∞ Error Order L∞ Error Order
δ = 0.02 3.13× 10−4 − 1.96× 10−2 −
δ/2 9.06× 10−5 1.79 9.90× 10−3 0.99
δ/4 2.58× 10−5 1.81 4.97× 10−3 0.99
δ/8 7.45× 10−6 1.79 2.49× 10−3 1.00
δ/16 2.20× 10−6 1.76 1.25× 10−3 1.00

Table 5.6
L∞ errors and error orders of piecewise linear finite element approximations as δ → 0 with

fixed r to solution x4−2x3+x2−2x+29/30 with C2 horizon function and inhomogeneous Neumann
conditions.

5.3. Nonlocal Dirichlet problems. In this example, we still calculate f =
f(x) based on the choice of a local limiting solution u0(x) = x4−2x3+x2−2x+29/30.
Similar to the example given in Section 5.2, we can observe undesirable oscillations
of the solution derivative around the boundary when directly imposing local Dirichlet
boundary conditions on the nonlocal model with the piecewise linear horizon func-
tion. Therefore, we turn to use auxiliary functions and solve the modified problem
(3.28). where a and b are assumed to be the boundary derivatives of the local limiting
solution at x = 0 and x = 1 respectively. In this example, we expect that the deriva-
tives of numerical solution at 0 and 1 matches those of the local limiting solution,
which is given by u′0(0) = u′0(1) = −2. Table 5.8 shows that the numerical solution
and numerical derivative of the nonlocal case again converge in an optimal order.
The auxiliary function approach with extra unknowns still work in nonlocal Dirichlet
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r = 2 ‖Uh
δ − Ihu‖2 Order

δ 1.93× 10−4 −
δ/2 4.98× 10−5 1.95
δ/4 1.26× 10−5 1.99
δ/8 3.19× 10−6 1.98
δ/16 8.28× 10−7 1.95

Table 5.7
L2 errors and error orders of piecewise linear finite element approximations as δ → 0 with fixed

r to solution x4 − 2x3 + x2 − 2x + 29/30 with C2 horizon function and inhomogeneous Neumann
conditions.

problems. Moreover, from Column 4 of the table we can see that the assumption that
uδ − ua has homogeneous Neumann boundary conditions is satisfied for each δ.

Numerical solution Numerical derivative
δ L∞ Error Order u′δ(0) L∞ Error Order

2−3 3.09× 10−3 − −2.00 3.80× 10−2 −
2−4 9.46× 10−4 1.71 −2.00 2.09× 10−2 0.86
2−5 2.60× 10−4 1.86 −2.00 1.09× 10−2 0.94
2−6 6.81× 10−5 1.93 −2.00 5.57× 10−3 0.97
2−7 1.74× 10−5 1.97 −2.00 2.81× 10−3 0.99
2−8 4.41× 10−6 1.98 −2.00 1.41× 10−3 0.99

Table 5.8
L∞ errors and error orders of piecewise linear finite element approximations as δ → 0 to

solution x4 − 2x3 + x2 − 2x + 29/30 as well as the solution derivatives at x = 0 (value of a) with
the piecewise linear horizon function and Dirichlet conditions.

Besides, if we use the horizon shown in Fig. 4.1 and impose the local boundary
conditions, we can also get convergence of solutions and derivatives both in optimal
orders. The results are listed in Table 5.9.

Numerical solution Numerical derivative
r = 2 L∞ Error Order L2 Error Order L∞ Error Order
δ = 0.02 2.76× 10−4 − 1.54× 10−4 − 1.95× 10−2 −
δ/2 7.92× 10−5 1.80 3.96× 10−5 1.96 9.87× 10−3 0.98
δ/4 2.29× 10−5 1.79 1.03× 10−5 1.95 4.97× 10−3 0.99
δ/8 6.78× 10−6 1.75 2.73× 10−6 1.91 2.49× 10−3 1.00
δ/16 2.06× 10−6 1.72 7.42× 10−7 1.88 1.25× 10−3 1.00

Table 5.9
L∞ and L2 errors and error orders of piecewise linear finite element approximations as δ → 0

with fixed r to solution x4−2x3 +x2−2x+29/30 with C2 horizon function and Dirichlet conditions.
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5.4. Local-nonlocal coupled problems. The examples so far have introduced
the auxiliary function approach on nonlocal diffusion models with various constraints.
Furthermore, the numerical scheme is verified as the asymptotically compatible scheme.
We now present how this method can be combined with local PDEs to stimulate cou-
pled local and nonlocal models in a seamless fashion without overlapping domains. In
Section 4, the coupled problems are presented with two different horizon functions,
both cases are explored more in this example.

As a direct application of the last example, we first consider the same variable hori-
zon used in previous examples with an auxiliary function ua(x) = − 1

2 (
∫

Ω+
f)x2 + ax.

We discretize and solve the variational problem (4.3) and the compatibility condition
(4.4). Table 5.10 shows the convergence of numerical solution and numerical deriva-
tive of the coupled case to the local limits. Moreover, we observe that for each δ, we
can solve u′δ(0) correctly as the mesh size goes to zero.

Numerical solution Numerical derivative
δ L∞ Error Order u′δ(0) L∞ Error Order

2−3 3.09× 10−3 − −2.00 3.80× 10−2 −
2−4 9.46× 10−4 1.71 −2.00 2.09× 10−2 0.86
2−5 2.60× 10−4 1.86 −2.00 1.09× 10−2 0.94
2−6 6.81× 10−5 1.93 −2.00 5.57× 10−3 0.97
2−7 1.74× 10−5 1.97 −2.00 2.81× 10−3 0.99

Table 5.10
L∞ errors and error orders of piecewise linear finite element approximations of coupled problem

as δ → 0 to solution x4 − 2x3 + x2 − 2x+ 29/30 as well as the solution derivatives at x = 0 (value
of a) with the piecewise linear horizon function.

Numerical solution Numerical derivative
r = 2 L∞ Error Order L2 Error Order L∞ Error Order
δ = 0.02 2.95× 10−4 − 1.74× 10−4 − 1.29× 10−1 −
δ/2 8.49× 10−5 1.79 4.49× 10−5 1.95 6.49× 10−2 1.00
δ/4 2.43× 10−5 1.80 1.15× 10−5 1.97 3.25× 10−2 1.00
δ/8 7.12× 10−6 1.77 2.97× 10−6 1.95 1.62× 10−2 1.00
δ/16 2.13× 10−6 1.74 7.86× 10−7 1.92 8.12× 10−3 1.00

Table 5.11
L∞ and L2 errors and error orders of piecewise linear finite element approximations of coupled

problem as δ → 0 with fixed r to solution x4 − 2x3 + x2 − 2x+ 29/30 with C2 horizon function.

Another energy-based method is to consider the original energy functional (4.1)
but with a smoother horizon function, which is shown in Fig. 4.1. Again we fix
r = δ/h and let δ → 0 since the model will get localized as the maximum value
of horizon vanishes. Table 5.11 shows that the numerical solution and numerical
derivative converge to the local limits with a fixed r = 2 both in optimal orders. For
the convergence of numerical solutions, one can see this more clearly with respect to
the L2 norm.
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Although the solution derivatives can converge as δ → 0, this model does not
satisfy the patch test, which could lead to the existence of ghost forces. However, the
ghost forces vanishes as δ → 0. They are also much smaller than those produced in
the case with δ(x) = min(x, δ, 1−x) but without an auxiliary function. In Fig. 5.3, we
choose a linear profile u(x) = −2x+ 1 which implies a zero source term. We can see
that the ghost strains vanish as δ decreases. Although we cannot pass the patch test
for a fixed δ > 0, the ghost forces do not affect the convergence of solution derivatives
and they get reduced with smaller δ.
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Fig. 5.3. In patch test, ghost forces vanish as δ → 0.

5.5. Discussion. The numerical experiments presented so far with the spatially
varying horizon parameters have mimicked those earlier experiments give in [26],
where the nonlocal diffusion model with Dirichlet type volume constraints and the
constant horizon is studied, and in [25] where the nonlocal diffusion model with Neu-
mann type volume constraints and the constant horizon are studied. In addition,
we have applied the variable horizon approach to local-nonlocal coupled problems.
We carried out experiments using either the auxiliary function method for inhomo-
geneous boundary value problems with a piecewise linear horizon function or a C2

horizon function without the auxiliary function. Both approaches can provide optimal
order convergence to the local limit.

Nevertheless, the simulations are mostly confined to smooth solutions. We leave
experiments involving singular solutions to future works. Simulations of our coupling
model to higher dimensional spaces and real physical processes will be explored in
future works.

6. Conclusion. In this paper, we have developed a linear nonlocal model with a
spatially varying horizon that captures a spatial change of scales in nonlocal interac-
tions. Our work has extended existing studies on the nonlocal diffusion and nonlocal
peridynamic models, and their finite element discrete approximations.

On the modeling side, we are able to significantly expand the nonlocal modeling
technique by allowing heterogeneous localization. The latter in turn offers, in partic-
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ular, a way to pose local boundary value problems for nonlocal models and provides
a seamless coupling of local and nonlocal models. This contribution should also be of
interests to situations where nonlocal models are utilized as relaxations to study or
approximate local PDE models (such as in the development of SPH [6]). Our studies
here, though limited to one-dimensional space, are quite extensive as they have cov-
ered a number of cases involving piecewise linear or smooth horizons, homogeneous
and inhomogeneous, local or nonlocal, and Neumann or Dirichlet constraints.

On the computational side, we have demonstrated that the asymptotically com-
patible schemes are naturally designed for nonlocal problems with a heterogeneously
defined horizon that can be positive and zero in different part of the computational
domain. They provide the necessary robustness with respect to the change of length
scales.

We note that the current work is restricted to the linear diffusion models and in the
numerical experiments, the computational mesh is taken to be uniform since a smooth
solution is assumed. While these serve the purpose of illustration well, additional
complications may arise in practice. It will be interesting to study further extensions
to more general models in higher dimensions and more general discretization, as well
as more applications in real physical processes.
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