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Abstract

The reproducing kernel particle methods (RKPM) are meshfree methods
arising in mechanics, especially in dealing with problems involving large
deformation and singularities. We provide a theoretical analysis of super-
convergence in Sobolev norms for reproducing kernel (RK) approximations
when the interpolation order p is even. Super-convergence phenomenon
means the convergence rate is higher than the order that is generally ex-
pected. We distinguish the continuous RK approximation and the discrete
RKP approximation. While the continuous RK approximations are proven
to be super-convergent when p is even, its discrete counterpart has super-
convergence only with uniform particle distribution and special choices of
RK kernel functions and support sizes. Super-convergence does not exist
for the discrete RKP approximation with general RK support sizes. At
last, the concept of pseudo-super-convergence is introduced to explain why
in practice the super-convergence phenomenon is sometimes observed for
general cases although in theory it is not true. Our analysis is general for
multi-dimensional RK approximations.

1. Introduction

The reproducing kernel (RK) approximation of functions introduced by
[17] uses integral transformation with corrected kernel functions, which are
determined by the reproducing conditions. The reproducing kernel particle
methods (RKPM) ([8, 17]) are meshfree methods based on RK approxi-
mations. RKPM has attracted many attentions from researchers to use this
method to solve partial differential equations in Galerkin procedure. It is es-
pecially effective for problems with large deformations ([7, 9, 15]). Recently,
people have used RKPM to solve nonlocal peridynamics models ([14]).



The conventional error estimates of RKPM in [5] and [18] yield same
order of convergence as in classical finite element methods. Many numerical
experiments (see e.g. [10, 14]), however, show that these error estimates
are rather conservative and super-convergence rates have been observed for
even order RKPM. A synchronized convergence phenomenon is introduced
in [10] and its applications are exploited in [4, 11, 12, 13]. Their interest is
to achieve the same order of convergence rate in high-order error norms as
in L? error norm in the interior of the domain. To achieve the synchronized
convergence, a crucial requirement is that the correction function to be a
constant in the interior of the domain. This condition, to the knowledge
of the authors, is rather restrictive and it is shown to be possible in the
literature only when interpolation order p is 1. In this work, we will show
that the convergence rate under all Sobolev norms can be improved for all
even order RK approximations over the entire computation domain. For
convenience, when we say even order RK approximation we actually refer
to RK approximation with even order interpolation, i.e., p is even. We will
mainly use the analytic tool in [10], but our concerns are completely different
from the synchronized convergence phenomenon. In this work, we provide
the theoretical analysis of the super-convergence phenomena, which is based
on the observation that in the interior of domain, the RK shape function
of even order basis is in fact identical to the shape function of one order
higher. Error estimates in Sobolev spaces are given in this work for both
the RK approximations and the RKP approximations. For convenience, we
will call the RK integral approximation of functions as the continuous RK
approzimation, and the RKP approximation using particles the discrete RK
approximation. Although in practice integrals are always replaced by finite
sums, the discussion of continuous RK approximation followed by its discrete
counterpart in this paper bears the significance of helping us to see in a clear
way the origin of the super-convergence phenomena. It turns out that the
discrete RKP approximation is super-convergent with even interpolation
order p only when the window function satisfies the Strang-Fix condition.
This can be achieved, for instance, by choosing B-spline functions to be the
window function with RK support size selected wisely. However, when the
RK support size is arbitrary, super-convergence is sometimes observed in
numerical experiments within certain range of numerical resolutions. We
will use numerical examples to explain that the in the case of arbitrary RK
support size, the super-convergence is not true for all scales of numerical
solutions. We thus call it a phenomenon of pseudo-super-convergence.

This paper is organized as follows. Section 2 introduces the continu-
ous and discrete RK approximations. Super-convergence for continuous RK



Figure 1: Domain decomposition in 1d. 6 =QuUQand Q=0 UQR

approximation is shown in Section 3 and this lays the foundation on the
analysis of super-convergence for RK approximations. In Section 4, super-
convergence for discrete RK approximation with selected RK support sizes
is presented. To better demonstrate the analysis, we work on one dimen-
sion in Sections 2-4. The multi-dimensional extension is then natural and
is presented in Section 5. Numerical experiments that verify the super-
convergence of discrete RK approximation are presented in Section 6. Then
the discussion of discrete RK approximation with arbitrary RK support size
is in Section 7, where the concept of pseudo-super-convergence is introduced.
Finally, conclusions are made in Section 8.

2. RK approximation

The continuous RK approximation of functions uses integral transforma-
tion with corrected kernel functions. In practice, integrals are replaced by fi-
nite summations, which leads to discrete RK approximations. The corrected
kernel functions are determined by the reproducing conditions. Therefore
RK approximations exactly reproduce polynomials. We will review the no-
tations of the continuous and discrete RK approximation in Sections 2.1 and
2.2 respectively.

In this section and the following two sections, we will work on the 1d
domain ©Q C R. The generalization to multi-dimension is natural and will
be discussed in Section 5. In Figure 1, the domain of interest is given by
Q = (0,1) and the interior of the domain is defined by € = (¢, 1 — €), where
€ is a parameter in the RK approximation that will be introduced shortly.
Notice that the boundary of the domain € (denoted by Q = Q\Q) is not
the usual codimension one boundary, but rather a boundary layer of width
¢ inside Q. The main idea of the error analysis in the following sections is
to investigate the approximation errors separately on the interior 2 and on
the boundary layer €.



2.1. Continuous RK approximation
For a small number € > 0, uc(x) is the RK approximation of a given
function u(z) on Q defined by

uel() = /Q\Tfem;x—y)u(y)dy, 1)

where \Tls(w; x —y) is the modified kernel function given by

Ve(w;z —y) = C(z;2 — y)ge(z — y) - (2)

C(x;x —y) is the correction function obtained by imposing the reproducing
conditions such that the RK approximation exactly reproduces polynomials.
¢c(x — y) is the kernel function given by

bl =20 (%), g

where ¢(z) is a symmetric nonnegative function supported on [—1, 1], which
we call the window function. Notice that we do not require the integral
of the kernel function ¢ to be 1 since any scaling factor can be absorbed
into the correction function. Now for p being a nonnegative integer, the
correction function C(z;x — y) is given by

Clz;z —y) = H) (x — y)by(x), (4)

where Hg (x —y) is a row vector consisting of monomial basis functions of
degree p:
Hg('x—y) = [1,$—y,(fﬂ—y)2,'” 7(x_y)p]

b,(x) is a column vector containing correction function coefficients obtained
from the p-th order reproducing condition:

/\ie(x;my)yady:xa, a=0,1,...,p, (5)
Q
which is equivalent to

/Q\Tux; r— y)H,(x — y)dy = H,(0). (6)



Substitute equations (2) and (4) into (6) we obtain
M(2)by(z) = Hp(0), (7)

where

M (z) = /QHp@:—ym(x—y)HZ(x—y)dy, (8)

isa (p+1) x (p+ 1) matrix and is called moment matrix. Denote M(w) =
(M; ’(x))f,j:o’ then each entry M;; is the (i + j)-th moment of ¢, given by

Myj(w) = iy (x) = /(w — )"z —y)dy, 0<i,j<p. (9
b,(x) is then obtained by solving the system of equation (7):

by(z) = M, () Hy(0). (10)

By combining equations (2), (4), and (10), we obtain the modified kernel
function

Ue(z;2 —y) = HY (¢ — y) M, (2) Hy(0) (2 — y). (11)

2.2. Discrete RK approximation

For practical computations, integrals are replaced by summations. Sup-
pose the domain Q is discretized into a total number of I nodes {mk}izl, the
discrete RK approximation is then a numerical approximation of equation

(1): .
u(z) ~ ! (z) =Y Uy(a)u(ay), (12)
k=1

where the modified kernel function Wi (x) is defined by
Uy(x) = Clx,x — zk)pe(z — 1) - (13)

U (x) is also referred to as the RK shape function in the literature. Notice
that equation (12) does not contain any quadrature weights because they can
be absorbed into the shape function. The p-th order reproducing condition
is then replaced by the discrete reproducing condition:

I

Z\Ilk(@:cg:ﬁ", a=0,1,...,p. (14)
k=1



which is equivalent to

]~

Uy (x)Hpy(x — x) = Hp(0). (15)
k=1

Substitute equations (13) and (4) into (15) we obtain
M,,(2)bp(z) = Hy(0),

where M, = (M;;)? j=o 18 the discrete moment matrix given by

I
ZHP xr — xp) qﬁe(x—wk)HT(ac—mk). (16)
k=1

Each entry M;;(x) is the (i + j)-th discrete moment:

I
Mij(x) = miyj(@) =Y (2 —2p)oe(z —a3), 0<ij<p. (17)
k=1

Similar to equation (10), we now have
by(x) = (My)~" () Hy(0). (18)

By substituting equations (4) and (18) into (13), the RK shape function
is obtained as

V() = H (v — 2) (M) " (2) Hp(0)pe(x — a), k=1,--- , 1. (19)
We call v/ (z) the RK interpolant of u(z). Note that u!(x}) is usually not

agreed with u(xy), so u!(z) is viewed an interpolant of u(z) in a generalized
sense.

3. Super-convergence for continuous RK approximation

The error estimates for the RK approximation are done using Taylor
expansion (see [5, 18]). We first give a brief review of them for completeness.
Notice that we focus on the continuous RK approximation in this section.
To give estimates in Sobolev space, we will need the so called averaged
Taylor polynomial, since derivatives may not exist in the pointwise sense.
As in [5], we use the notation WP for Sobolev space, where p is the order
of derivative and ¢ denotes the L? norm.



Now suppose that the whole domain Q has a finite cover U;V:(E)Bj, where

each set Bj is a ball of diameter € and each point z € Q is covered by at

most a fixed number of sets in {B; };V:(i) Define
Bj = {x : dist(z, B;) < €},

then UN_(;)B is again a covering of ﬁ Assume that each point x € Q is cov-
ered by at most Ky sets in {B } 1 , where Ky is a constant independent of
e. This can be satisfied, for instance, by choosing {B; } ) t0 a collection of

uniformly distributed balls over the domain Q. Note that the finite cover has
nothing to do with the discretization of the domain Q. The error estimate
is done locally on each set B; N Q. Let Qf u(x) be the Taylor polynomial of
degree p of u averaged over B; (see [1, 3]), and denote the remainder

P _ P N Q
Riu(z) = u(z) — Qju(z), Vz e BN
Then from the results of [1, Section 4.3], we have the following estimates

|2 <O | o and (20)

L>(B; mQ) Wrtla(B;nQ)’
< O

HR?U‘H for | = 07 1a e L,p Tt 17 (21)

Wha(B,nQ) Wrtla(B,nQ)

where C only depends on p and ¢. Notice that in multi-dimension, the power
on € in (20) becomes p + 1 —d/q and that (21) is a constructive form of the

Bramble-Hilbert lemma. Now for x € B; N ), we can write by applying (1)
that
(@) = uelo) =Qula) ~ [ Felasa ~ p)Qutu)dy
D T (- D
+ Rju(x) — /ﬂlIfe(x, T — y)Rju(y)dy.

Since Q?u(m) is a polynomial of degree p, we have by the reproducing con-
dition (5) that

Quia) = [Flwio—)Quindy, veeBnR ()



Thus

wm—u4w—R%@»14wxmx—wR%@m%

for z € B; N ﬁ and then

T B L1

Wha(B; Wlaq(Bjmﬁ)

l _ (23)
D _ k _
H@WW@MENAMN&W )| 4l 5,05
k=0

where DF stands for the k-th derivative with respect to x. Notice that the
support of ¥ (x;x — y) is y € Be(x) and by the calculations of [18, Lemma
2.1], one has

DEC(w;z —y) = O(c™¥), fory € Bu(w),

if the window function ¢ is k-th continuously differentiable. So we can obtain
by (2) that

DEG (230 —y) = O(e *7Y), for y € Bo(a). (24)

Now substitute equations (20), (21) and (24) into (23), we obtain

lu = tellyras o < CE Mellyypinags, i (25)
forall [ =0,1,--- ,p+ 1. Therefore we conclude that
N(e) N(e)
lo=uellyiag = Z; s = vl < C Z; [l 00,00
Jj= j=
S é€p+1il”uHWp+1,q(ﬁ)7 l :0717"’p+17
(26)

where C = CKjp, and the last step in (26) is by that fact that z € Q is
covered by at most Ky sets in {B; };V:(i)

The previous lines of arguments and the final estimate (26) share the
same idea with [5] and [18], although details may differ. Equation (26) tells
us that the RK approximation of p-th order can achieve at most p + 1-th
order convergence in L? norm provided that the function w is in the Sobolev
space WPT12 However, many numerical experiments (see [10, 14]) have



shown that super-convergence exists for even order RK basis (p is an even
number).

In the following, we provide careful error analysis that explains the super-
convergence phenomena for p being an even number. The basic idea is to
investigate the errors in the interior and boundary of the domain separately.
We will show that a p-th order RK approximation can actually achieve
(p+ 1)-th reproducing condition in the interior of the domain if p is an even
number. This fact is the key to obtain the super-convergence result as we
have seen that equation (22) relies totally on the reproducing condition. We
begin with a lemma that characterizes the moment function m,(x) in the
interior of the domain.

Lemma 3.1. For x € Q, the moment mq(x) = 0 if a is an odd number.

Proof. Recall that mq(x) is defined by equation (9). First notice that for
x € Q, we have Be(x) fully contained in . Since kernel function ¢.(z) is
symmetric, it implies that for any = € Q, mqy(x) is zero when « is an odd
number. O

Lemma 3.1 is simple enough by observation, but it leads to the following
crucial property for the correction coefficients vector.

Lemma 3.2. Let by(z) = Mgl(aﬁ)Hp(O) and let bg) (0 < i < p) be the
components of b,. In the interior of the domain (x € ), we have

(a) b,(,i) (x) =0 for i being an odd number, and
(b) bz(f)(x) = 1()21(3:) for p =2k, where k € N.

Proof. We are going to show (a) first. Here we always assume that x €
and we drop the z-dependence of the vectors for convenience. The proof of
(a) contains two cases where p is even or odd. For p being an even number,
we assume that p = 2k, where £ € N. Since all the odd order moments
vanish by Lemma 3.1, equation (7) becomes

Cie 0 - o] [0 ][
0 g - 0 b;c) 0

= , (27)
ok 0 | 0] {0




which can be written into two independent systems based on even and odd
rows of bgy:

_ _ 4 T,(0)7 _
my mo s Mg bék) 1
Mo M4 - Mokt bgi) 0
= , (28)
Mok Maky2 -+ Mg bgf) 0
and S
mo M4 e Mog boy
5. - 3) 0
my meg T Moky2 by, 0
= (29)
Mok Mogt2 -+ Mik_2 béi.k_l) 0

Since the moment matrix is a Gram matrix which is invertible ([18]), it is
apparent that the matrices in the two linear systems (28) and (29) are also

)(1‘) = 0 for i being

invertible. So the solution to equation (29) is 0, i.e. bg

an odd number.
For the second case where p = 2k + 1,k € N, follow the same procedure
as before we have

[ o 0 S Mgy 0 _bgl)c)+1_ [1]

0 e - 0 daere| | b, 0
= (30)

map 0 - g, 0 bgfi)l 0

0 a0 ] || o

Rewrite equation (30) into the two independent systems

10



- . . 1 [0 7 o
mo ™Mo cee Mo b2k+1 1
~ ~ ~ 2k+1
Mo M cec Mggge| [b5°T 0
= : (31)
Mor. e m (2k) 0
I 2k 2k+2 ak | kaJrl Y
and )
_ _ _ SO o
ma mg v Mokya 2h+1 0
~ ~ ~ (3)
my me v Mokt | by 0
= (32)
~ ~ ~ 2k—1)
m m eem ( 0
2k 2k+4-2 ak by, 1
Mok+2 Mokta -+ Mgt | |p2kt1) 0
L _ 2k+1 L

Equation (32) has only the trivial solution, i.e., bg,zﬂ = 0 for i being an odd
number. Combine the two cases, (a) is shown.

Now observe that the coefficient matrices in equations (31) and (28) are
exactly the same, therefore their solutions are identical, i.e., bgk) 41 :bgk), for
i = 2n,n € N. This completes the proof of (b). O
By the result of Lemma 3.2, we can identify the modified kernel function
W, of an even order to the that of an odd order. For convenience we denote
\Ife(p,x; x — y) to be the modified kernel function with respect to the RK

approximation of p-th order, then we have the following result.

Lemma 3.3. If p is even, then the modified kernel functions of p-th and
(p+ 1)-th order are identical in the interior of the domain, that is

Ve(p,z;2 —y) =Ve(p+ Loz —y), z€Q.
Proof. If p is even, use Lemma 3.2, we have for z € Q) that
by (@) = by (), 0].

Then by equations (2) and (4) we have obviously that W.(p,z;x — y) and
Uc(p+1,z;x —y) are identical. O

Lemma 3.3 essentially says that for even number p, the p-th order RK
approximation can achieve (p+1)-th reproducing condition in the interior of
the domain, which is crucial in proving super-convergence. When showing

11



the final theorem, we need functions to be approximated free from patho-
logical behavior in the boundary layer. More specially, we want that the
Sobolev norm of a function « has uniform density in the boundary layer and
in the interior of the domain. We thus give the following definition.

Definition 3.4. Suppose that Q ng, and Qp = {z € Q: dist(xz,00Q) < €}.

We say that a function uw € WP(Q) is proper if

lullweaq,) < Ce?|ul (33)

wra(Q)
One can easily check that if u € WWJ(E) N C’p(ﬁ), then equation (33) is
satisfied.

We now go back to the 1d case and show the convergence theorem for
the continuous RK approximation.

Theorem 3.5. Assume that the window function ¢ € CP+2, and u € WP+24(Q)
1s proper. Then the error estimate for the continuous RK approrimation is

as follows:
if p is odd,
1-1
HU - uGHWZ,q(ﬁ) < C6p+ HuHWp+1,q(ﬁ) ’
and if p is even,
-1
||lu — UeHleq(ﬁ) < CePtitl/a HUHWPHJJ(E) ,

forl=0,1,---p+1.

Proof. If p is an odd number, the error estimate is the same one as equation
(26) shows. Now assume that p is even, then we divide the domain Q into
two parts, as shown in Figure (1), and investigate approximation errors on
them separately.

For z € Q, by Lemma 3.3 and equation (5), we have

/\ie(p,x;x—y)yady:xo‘, a=0,1,...,p+1. (34)
Q

So we can write



where Q?HU is the Taylor polynomial of degree p+1 of u averaged over Bj,

and R?Jrlu is the remainder. By equation (34), we have

Q?Jrlu(x) = /Q\Ile(p,x;a: - y)Q?HU(y)dy, x e .
So one can follow the previous arguments to show that

-l
lu = uellwas,ne) < O ullyrizas,nn

for {=0,1,--- ,p+ 2. Now combine with fact that

= tellwras;non) < C M ulymagsna,) -
for{=0,1,--- ,p+ 1, we have finally
|u(x) — ue($)‘|wz,q(ﬁ) < Z [Ju — UEHWl,q(Bij) + Z Ju — UEHWM(B]-QQ) )
J:B;jNQ#£D J:BjNQp #0D
< CEerzilHu”WP“v‘l(Q) + CGPJFl?l”“HWPHﬂ(le) ]
< O ullyypizaggy + CPTHVI ]

< Oy

Wrtla(Q)’
Wet2.a(Q)

g

4. Discrete RK approximation error estimates for selected RK
support sizes

In this section we investigate super-convergence for the discrete RK ap-
proximation. Continuous RK approximation discussed in section 3 has little
use in practice, though it gives us some insights on how to obtain super-
convergence in discrete RK approximation. From the previous section we
have established a clear understanding of the origin of super-convergence.
Intuitively, we can hope for super-convergence to happen with even order
discrete RK approximation if the discrete moment m, vanishes for o being
an odd number. However, this condition is hard to satisfy if particles are
not uniformly distributed. Therefore in this section, we only consider the
uniform discretization of the domain Q. We assume that {x; }1_, is the uni-
formly distributed with h = x; — x;_1 to be the spacing. By construction,
the p-th order discrete RK approximation also satisfies p-th order repro-
ducing condition, so similar to the continuous case, the L? approximation

13



error is at least O(ePT1) for the p-th order discrete RK approximation. We
will not repeat the arguments here since they are almost identical to the
continuous case. The super-convergence, however, is different.

Unlike continuous moment, if « is odd, the discrete moment mq(x) is
not always zero for x € (). However, we will show in the following that this
can be made true with carefully selected window functions and RK support
sizes. To achieve this, we need to utilize the Strang-Fix condition ([6]) to
characterize the kernel functions. We recall that a function f(z) is said to
satisfy the k-th order Strang-Fix condition, if the following two conditions
are satisfied:

f(O) =1, and (35)

~

DEf(e)] =0, VjeZ\{0}, a<k. (36)

2mg

~

Here f(&) is the Fourier transform of f(x) defined as
fo = [ faesd,

and Dg‘fis the a-th derivative of ]? Since for us the scaling factor can always
be absorbed into the correction function, the condition (35) can actually be
dropped because it is a normalization of the function f. In addition, we will
use a more generalized version of condition (36):

~

Dgf(€)

=0, Vjez\{0},

27j
h

where h is the mesh spacing. So following the notation in [17], we define a
special class of functions that satisfies the generalized k-th order Strang-Fix
condition as

SF —{r: D?f(‘f)L =0, VjeZ\{0},0<a<k}  (37)

It turns out that the discrete moment mg(z) for x in the interior of the
domain has an equivalent form as in the following lemma.

Lemma 4.1. Assume that the kernel function ¢. € S]-';Lk), then the discrete
moment mq(x) defined by (17) does not depend on x in the interior of

14



domain and is given by

mea(x) = h/Rzagbe(z)dz, (38)

fora <k and z € Q.

Proof. First we recall Poisson’s summation formula (see e.g. [2]):
S flwtgh) =+ 50 F (2rl ) et
, h 4 h '
JEL JEL

Assume that xp = kh without loss of generality. For z € , the discrete
moment can be written as

I
Ma(z) = Z(m —2;)%(z — ;) = Y _(x+ jh)*¢e(x + jh),

j=1 JEZL
i al J 2zl
JEZ
(NS
= ZDg ¢e(0)7

where we used Poisson’s summation formula and the generalized Strang-Fix
condition for ¢.. Now since

DEd.(€) = /R (—iz)e(x)e d,

we then have .

o
%D?¢E(O> = 3 /Rxaq%(x)dx-

O

From equation (38), it is easily seen that the discrete moment mq ()

vanishes for x € Q if « is an odd number, by the fact that ¢, is a symmetric

kernel. Then it is straightforward to go through the same process from

Lemma 3.1 to Lemma 3.3. Here we only present a discrete version of Lemma

3.3. For convenience we denote Vi (p,z)(k =1,---,1) to be the RK shape
function of p-th order.

Lemma 4.2. Assume that the kernel function ¢ € S}"fpﬁl), where pg 1S
some nonnegative integer, then for all p < py and p being an even number,

15



the RK shape functions of p-th and (p + 1)-th order are identical in the
interior of the domain, namely

\I]k;(p> l’) = \Ilk(p+ 17$)7 WS Q7 b < bo, P is even.

Proof. This is a result of Lemma 4.1. The proof is essentially the same as
the arguments in Lemma 3.2 and Lemma 3.3. O

Finally, we assume that the particle distribution is always (e, p)-regular,
a notion introduced by [5], so that all the analytical tools in [5] can be used.
the theorem for discrete RK approximation error estimates is the following.

Theorem 4.3. Assume that the window function ¢ € CP+2, and u € WP+24(Q)
is proper. Suppose ¢, € S]:ELZPH)
approximation is as follows:

if p is odd,

, the error estimate for the discrete RK

lu — | < O fu

Wha(Q) Wrtla(Q)”

and if p is even,

lu — | < Oty |

wha(Q) Wrt2.a(Q)’

forl=0,1,--- ,p+1.

Proof. The proof is a discrete adaptation to the previous continuous re-
sult, which can also be obtained following the analysis of [5]. The super-
convergence for p being even is realized by the application of Lemma 4.2.

0

4.1. B-spline functions as window functions

Theorem 4.3 tells us that in general, we expect the discrete RK approx-
imation of even order to have super-convergence if we select the sufficiently
smooth window function such that ¢. € S]-‘;fp I practice, the win-
dow function ¢(z) is usually chosen as B-spline functions. The following
lemma reveals the good properties of B-spline functions that allow us to

have super-convergence.

Lemma 4.4. Assume that the window function ¢ is supported on [—1,1]
and it is the B-spline of degree n > 2p + 1. Assume also that the RK

support size is chosen to be € = %Hroh, for ro being a positive integer,

then ¢, € S]:Elszrl), and thus the convergence results in Theorem 4.3 are
achieved.

16



Proof. We introduce a rectangular function

0, otherwise,

and its Fourier transform is given by

sin(€/2)
g2

B-spline function of degree n, can be written as the convolution of n 4 1
rectangular functions ([16]),

BMx) = 7% 50 x5 8(),

B(¢) =

and thus

sin<§/2>]"“
&2 |

Here we normalize the support of the B-spline to [—1, 1] to get our window

Br(€) = [

function
o) =" ("5 e ). (10)
S0 1 /z 1 T
Pe(z) = ?/5 (;) = ;5” <r0h> )
where we used € = ”T‘Hroh. Thus we have
~ roh —

_ moh [sin(rohf/Q)]”H ‘ (41)

de(§) = ?571 (rohg) Y roh)2

The derivatives of q/S\E are given by

DEGo ="y () petsn (e r2) ((0 - /2)n+1> |

k=0

Now that
sin (roh&/2) ’ =0, jez,

2
=2y



and if a < m, sin (rgh&/2) is in every term of Dg@(ﬁ), we have

Dge(€) =0, jez\{0},
¢=2mj

which proves that ¢. € SF 22]0 +), d

Lemma 4.4 shows that the popular choices of B-spline functions as win-
dow functions can achieve the assumptions made in Theorem 4.3. Therefore,
lemma 4.4 can be used as guidelines on how to select window function and
RK support in order to achieve super-convergence. We will see in Section 6
that numerical experiments verify our theorem.

5. Multi-dimensional RK Approximation

We work with one-dimensional problems previously for better represen-
tation of the work. Our method can actually be easily generalized to the
analysis of multi-dimensional RK approximation. Let d > 1, we consider an
open bounded domain  C R%. The boundary layer of € is given by

Qu ={x € Q: dist(z,0Q) < €} .

The interior of Q is then the complement of £ in Q. A point in R? is denoted
by € = (x1,...,24)". A multi-index is a collection of d nonnegative integers,
a = (ai,...,0q4) and its length is expressed as |a| = 2?21 «;. For a given
o, we write ® =z ... 250

Now instead of (3), the kernel function ¢(x) in multi-dimension is de-

fined as
||

be(@) = Eldgz) <> . zeR?. (42)

€

The row vector HpT (x —1y) consists of multivariate monomial basis functions
of degree p arranged in certain lexicographical order:

H (z —y) = [(& — ¥)*ja<p € R,

where N, is the dimension of the polynomial space of degree p and is defined

as d
p+
W= (7).
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The continuous moment matrix Mp(az) € RNo*Np is given by
My(@) = [ @~ y)éc(e ~ ) H] (z ~ y)dy.
and each entry of Mp(w) is written as

o) = /Q<:c Y%l —y)dy, ol < 2p. (43)

Therefore, we arrive at the continuous approximation in multi-dimension as

ue(x) = /Qm; z — y)u(y)dy.

where

Uo(z;x —y) = HY (z — y) M, (z) H,(0)pc(z — y).

With the continuous multi-dimensional RK approximation defined, it
is straightforward to define the corresponding discrete RK approximation
following the work in 1d, which we will omit here.

Now by the definition of the moment mq () in equation (43), we observe
that it is zero for « in the interior of the domain if any one of components of
« is an odd number, which is a multi-dimensional generalization of Lemma
3.1. We first define some notations for convenience of presentation. We
define the set Z = {a = (a1, a2, - ,aq) € N? : |a| < p}, and define two
subsets of 7 as

€ ={a €T: q; are even numbers for all 1 <i < d}, and
O=17\¢.

Notice that O is the set of all indices v with at least one component to be
an odd number. Now the multi-dimensional version of Lemma 3.1 is the
following.

Lemma 5.1. For x € Q, the moment mq(x) =0 if @ € O.

Proof. For « in the interior of the domain, the moment given by (43) is
actually

me(x) = /Rd z2%(2z)dz . (44)

Since ¢, is a radially symmetric function, it is obvious that if one of the
components of « is an odd number, then the integral given by (44) is zero.
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We now give a multi-dimensional version of Lemma 3.2.

Lemma 5.2. Let by(x) = Mp_l(a:)Hp(O) and let bz(,a)(|a| < p) be the com-

ponents of b,. For x € Q, we have
(a) b (z) =0 ifa € O, and

(b) b5 (@) = b\, (@) for p = 2k, where k € N.

Proof. The basic idea of proof is again by splitting the system ]\N/Ip(a:)bp(:c) =
H,(0) into two linear systems. Notice that in 1d, the linear systems (27)
and (30) are decomposed into two smaller systems. The common feature is
that after the decomposition, the smaller systems (28) and (31) contain only
the components of b, with even upper indices. Here such decomposition for
multi-dimensional problem follows similarly.

Now we split the vector b,(x) into two sub-vectors by defining

b[e)ven(x) — [b}()a)(ag)]ae& and b;dd(ilf) = [bl(;a) (®)]aco -

We then define sub-matrices of Mp(m) as

M"™(x) = (fliarp(@))ace gee , and

M () = (Mats(®))aco,e0 -

It is obvious that Mg”e”(m) and M;dd(a}) are both invertible if the original
matrix M) (x) is invertible. Notice that the other two sub-matrices of M, (x)

given by (Ma+8(T))ace,geo and (Ma+a(T))aco,gee are in fact zero since
by Lemma 5.2 the moment m~(x) is zero if v € O. We can then rearrange

the rows and columns in the system Mp(m)bp(m) = H,(0) such that it is
given by the following block matrices

Me'l)en x 0 be’UeTL x e
p ( ) - pdd ( ) _ 1 7 (45)
0 Mg4(z)] [ b (x) 0
where e; = [1,0,---,0]7. Naturally, (45) splits into two linear systems
M (z)bS"" (x) = ey, and (46)
A rodd odd
M) (x)by"(x) = 0. (47)
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Equation (47) implies that 3% (x) = 0, which is exactly (a). Moreover, (b)
is not hard to seen by looking at equation (46) for p = 2k and p = 2k + 1.
O

As soon as one has the multi-dimensional version of Lemma 3.2, it is
clear that there is no obstacle in obtaining the convergence theorem in multi-
dimension. We believe that the proof is similar enough to the 1d case so
that it is omitted here. For completeness, we give the final theorem for the
multi-dimensional continuous RK approximation is given as follows.

Theorem 5.3. Assume that the window function ¢ € CP*2, andu € WPH24(Q)
1s proper. Then the error estimate for the d-dimensional continuous RK ap-
proxzimation is as follows:

if p is odd,

= tell 055 < CEH Nl

Wwha(Q) Wrtla(Q)’

and if p is even,

[l = ue < Oty |

Wwha(Q) Wrt2.a(Q)’

forl=0,1,---p+1.

For the discrete RK approximation, we need to modify the definition of
the set of functions with Strang-Fix property. Instead of (37), we now define

S ={f:DgfE)| =0, VjeZ\{0},0<a<k}, (4)

2mg
h

where D? = D?ll Dg‘; ces D?dd. Then the multi-dimensional version of Theo-
rem 4.3 is given as follows.

Theorem 5.4. Assume that the window function ¢ € CP*2, andu € WPT24(Q)
18 proper. Suppose ¢, € S}",(fpﬂ), then the error estimate for the d-dimensional
discrete RK approximation is as follows:

if p is odd,

Mo < C |l

H'LL —u Wl,q(ﬁ)

Wrtla(Q)’
and if p is even,

lu — < Oty

Wwha(Q) Wrt2.a(Q)

forl=0,1,---p+1.
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6. Numerical experiments

Cubic B-spline is widely used as the window function in RK approxi-
mations, because it guarantees that u! € C?(Q). In this section, ¢(z) is
defined by equation (40) with n = 3. By Lemma 4.4 and Theorem 4.3, we
have super-convergence of the RK approximation of constant basis (p = 0)
if the RK support € = ”T“roh = 2rgh, where 19 € N. We are going to verify
Theorem 4.3 with [ = 0 and ¢ = 2, namely we will look at the L? error
between a function and its discrete RK approximation with the expectation
of half-order super-convergence for the case p = 0.

Figure 2 shows the pointwise error of using constant RK basis (p = 0)
to approximate linear function the u(x) = z on the domain Q = (0,1). In
Figure 2, 11 particles are positioned uniformly and RK support € = 2h (rg =
1). We see that the approximation error is zero everywhere in the interior
of the domain. This is to say the RK approximation with constant basis
reproduces exactly linear functions in the interior of the domain. In general,
the RK shape function of constant basis satisfies first order reproducing
condition for points in the interior of the domain with support size € = 2rgh,
where rq is a positive integer.

0.02

0.01p J

0.0 e

u(z) — ul ()

—0.01F J

—0.02 : : : :
0083 0.2 0.4 0.6 0.8 1.0

T

Figure 2: Error distribution of approximating a linear function u(x) = x using constant
RK basis with A = 0.1 and € = 2h. Cubic B-spline is the window function.

Convergence studies of approximating u(z) = e* are shown in Figure 3,
4 and 5. In Figure 3, constant RK basis (p = 0) is used with RK support
€ = 2h. The L? convergence rate on §) is observed to be second order and
the L? convergence rate over the whole domain § is observed to be O(h!'?),
which agrees with our theorem. Figure 3 can be compared with Figure 4,
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where linear RK basis (p = 1) is used with RK support € = 2h. The L?

convergence rates are second order on both € and €. Similar behaviors are
observed for all support size € = 2rgh, where r( is a positive integer. More
generally, to see the super-convergence of RK approximation for p > 2,
higher order B-spline functions need to be used, using the guidelines given
by Lemma 4.2. In Figure 5, quadratic RK basis (p = 2) is employed with
RK support € = 3h and the window function is the fifth-order B-spline. The
L?, H' and H? convergence rates on €2 are 4.0, 3.0 and 2.0 respectively and
they are 3.5, 2.5 and 1.5 on Q. We observe super-convergence for constant
and quadratic RK basis and our numerical experiments verify the results of
Lemma 4.2.
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—-45 —-40 -35 -30 -25 -20 -15 -1.0
logio(h)

Figure 3: Convergence study of approximating u(z) = e® using constant RK basis with
€ = 2h. r is the rate of convergence and cubic B-spline is the window function.

7. The discussion on general RK support sizes

The analysis in section 4 does not hold for general RK support sizes ex-
cept for these discussed in lemma 4.4 because ¢, ¢ SF Elzp U for arbitrary e.
Thus one do not expect super-convergence of RK approximation with arbi-
trary RK support size. We present the error estimates of RK approximation

with arbitrary RK support sizes which can be found in [5, 10] as follows:

|u — | < O] forti=0,1,---,p+1. (49)

Wwha(Q) Wrtla(Q)”
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Figure 4: Convergence study of approximating u(z) = e” using linear RK basis with

€ = 2h. r is the rate of convergence and cubic B-spline is the window function.

In Section 4, we showed that in general if B-spline of order n is the
window function, then we have super-convergence for even order RK basis
with support size € = ”T“'roh. In general, for an arbitrary RK support
size, we do not expect such super-convergence. Figure 6 shows the error
distribution of using constant RK basis to approximate linear function the
u(x) = x, but with a support size ¢ = h. We do not see the exact reproduce
of linear function in the interior of the domain, in comparison with Figure
2 using the support size ¢ = 2h. However, we do observe that the error
vanishes the at grid points (z = z;) and midpoints between grid points
(x = (x; + xi4+1)/2). This is a general fact for all support sizes because the
grids are symmetrically distributed centered at these special points z = z;
and z = (x; + xi+1)/2, which makes the odd order discrete moments at
these points to be zero, and we can easily derive a higher order reproducing
relation at those special points for even order RK basis.

In practice, however, one often observes super-convergence in L? norm
for even order RK basis with a support size € not exactly equal to ”T*'lroh
([10, 14]). These observations do not contradict equation (49) and we call
this phenomenon the pseudo-super-convergence.

Remark 7.1. Pseudo-super-convergence is the phenomenon that some nu-
merical examples do not exhibit the real super-convergence phenomena but
are due to insufficient refinement of h.

First, at a generic point  (x # x; and x # (z; + z;4+1)/2) in the interior
of the domain, although the odd order discrete moments do not vanish com-
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Figure 5: Convergence study of approximating u(z) = e® using linear RK basis with

€ = 3h. r is the rate of convergence and fifth-order B-spline is the window function.
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Figure 6: Error distribution of approximating a linear function u(x) = z using constant
RK basis with h = 0.2 and € = h. Cubic B-spline is the window function.

pletely, but they are diminishing as the ratio ¢/h grows, since more sampling
points are used to calculate the numerical integral of anti-symmetric func-
tions. We see clearly in Figure 7 that with the increase of the ratio €/h, the
errors in the interior of the domain relative to the boundary are diminishing
for the case of approximating linear functions by the constant RK approx-
imation. Thus in the region where h is not refined enough, the dominant
error comes from the boundary and thus we observe super-convergence for
p being even. However, for a fixed ratio €/h, the approximation error on
Q will eventually play the significant role with the refinement of h. Thus
convergence rate drops back to p 4+ 1 in the region where h is smaller than
some threshold. The differentiation of two regions is typical in a RK ap-
proximation with pseudo-super-convergence.

Figure 8 studies pseudo-super-convergence phenomena. We approximate
u(z) = ¥ by RK with constant basis using cubic B-spline as the window
function. Figure 8 shows the clear transition between two different regions
of convergence rates. In Figure 8a, the support size ¢ = 1.7h is used. When
h > 1E — 2.5, the major approximation error comes from the boundary,
thus we see a convergence rate of r = 1.5. When h < 1E — 2.5, the error
on {2 starts to play the dominant role. The convergence rate over the whole
domain gradually changes from r = 1.5 to r = 1.0. We observe similar
pattern of such transition in Figure 8b where ¢ = 2.7h. The difference is
that with a larger ratio €/h, the transition of error contribution comes at a
smaller mesh size where h ~ 1F — 4.5. The transition point moves further
when we keep increasing the ratio €/h. If one further increases the ratio
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Figure 7: Error distribution of approximating a linear function u(x) = x using constant
RK basis with support sizes e = 1.7h and € = 2.7h. Cubic B-spline is the window function.
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€/h, then the transition happens at even smaller h. When the ratio €/h is
large enough such that the transition point is around machine precision, i.e.,
Figure 9, one always observes super-convergence in numerical experiments.
However, such super-convergence is not a mathematical property but just a
numerical artifact, and thus it bears the name pseudo-super-convergence.
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(a) e=1.7h

logio||u — U[HQ

-9 1 1 1 1 1 L I I
-5.5—-5.0-4.5-4.0 -3.5-3.0 -2.5 -2.0 -1.5 -1.0
10g10(h)

(b) € = 2.7h

Figure 8: Convergence study of approximating u(xz) = €® using constant RK basis with
support sizes € = 1.7h and € = 2.7h. Cubic B-spline is the window function.

8. Conclusion

In this work, the super-convergence of RK approximation are analyzed.
We borrowed the idea from [10] and look at error estimates in the entire do-
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Figure 9: Convergence study of approximating u(z) = e® using quadratic RK basis with
support sizes € = 3.7h. Cubic B-spline is the window function.

main. The key idea is to divide the domain 2 into two parts, the interior (£2)
and the boundary (€), and investigate the approximation errors on them
separately. We provide the interpolation error analysis in Sobolev spaces
for both the continuous RK approximation and the discrete RK approxi-
mation. While the super-convergence always exists for the even order con-
tinuous RK approximation as result of the symmetry of window functions,
the discrete RK approximation can only be super-convergent with uniform
particle distribution and carefully tuned parameters, since the symmetry is
not guaranteed with arbitrary distributed particles. Our result is a general
one that holds true for multi-dimensional RK approximation.

For general RK support size, error estimates in [5, 10] do not expect
super-convergence but numerical experiments have observed higher conver-
gence rates. We call it pseudo-super-convergence and then further explained
the pseudo-super-convergence phenomena in many numerical experiments
apart from the proven cases in our theorem. In those cases, the observed
convergence rates have a clear drop from higher to lower ones along with
the mesh refinement. Therefore the pseudo-super-convergence is merely a
numerical artifact results from insufficient mesh refinement. However, the
transition of convergence rates happens at smaller grid size h if the ratio
between RK support size € and h is set to be larger, making the drop of
convergence rates hard to be seen in practice. This is understandable be-
cause increasing the ratio of € over h makes the discrete RK approximation
closer to its corresponding continuous RK approximation, which we know is
always super-convergent.
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Note that our super-convergence analysis differs from the synchronized
convergence introduced in [10, 11] in the way that we are interested in the
super-convergence phenomenon of even order RK interpolation in Sobolev
norms over the entire domain of interest, while the synchronized conver-
gence phenomenon investigates cases when convergence rates in L? norm
and higher order norms become the same for some interpolation orders in
the interior of the domain. We leave the synchronized convergence in more
general RK interpolation order for future work. Finally, we remark that
our work involves only interpolation error analysis. The further study of
applying the result for solving nonlocal problems is in the separate work
[19].
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