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We study the term in the eddy energy budget of continuously-stratified quasigeostrophic
turbulence that is responsible for energy extraction by eddies from the background mean
flow. This term is a quadratic form, and we derive Euler-Lagrange equations describing its
eigenfunctions and eigenvalues, the former being orthogonal in the energy inner product
and the latter being real. The eigenvalues correspond to the instantaneous energy growth
rate of the associated eigenfunction. We find analytical solutions in the Eady problem. We
formulate a spectral method for computing eigenfunctions and eigenvalues, and compute
solutions in Phillips-type and Charney-type problems. In all problems, instantaneous
growth is possible at all horizontal scales in both inviscid problems and in problems with
linear Ekman friction. We conjecture that transient growth at small scales is matched
by linear transfer to decaying modes with the same horizontal structure, and we provide
simulations supporting the plausibility of this hypothesis. In Charney-type problems,
where the linear problem has exponentially growing modes at small scales, we expect net
energy extraction from the mean flow to be unavoidable, with an associated nonlinear
transfer of energy to dissipation.
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1. Introduction

The conversion of large-scale available potential energy to mesoscale eddy energy by
baroclinic instability is one of the most important energy pathways in the global ocean
(Ferrari & Wunsch 2009). Linear baroclinic instability is a well-studied subject with roots
in the work of Charney (1947), Eady (1949), and Phillips (1954), but the connection
of linear theory to actual ocean dynamics is tenuous at best: Global studies of linear
baroclinic instability in the world ocean (Smith 2007; Tulloch et al. 2011) show that the
ocean is very far above the onset of linear stability nearly everywhere, and the actual
perturbations about the background state are not infinitesimally small, as in linear theory.
Nevertheless linear theory is frequently invoked in an effort to at least partially explain
the properties of the fully nonlinear turbulent ocean dynamics (e.g. Tulloch et al. 2011;
Roullet et al. 2012; Grooms 2015; Capet et al. 2016; Barham et al. 2018, inter alia).

A direct connection between energy conversion in fully nonlinear fluid dynamics and
non-modal linear stability theory was made by DelSole (2004). The connection is based
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on the fact that the mathematical form of the term in the eddy energy budget that
corresponds to extraction of energy from a steady mean flow is exactly the same in
both the linear stability problem and in the fully nonlinear dynamics (see also the
discussion by Barham & Grooms 2019). This term in the eddy (or perturbation) energy
budget is a quadratic form in the eddy variables and can therefore be diagonalized by an
orthonormal basis of eigenfunctions (Goldstein 1980). The eigenvalues of the quadratic
form are all real; they are the instantaneous growth rates of each eigenfunction’s energy.
The instantaneous optimal is the eigenfunction associated with the maximal eigenvalue.
Nonlinear stability analysis (also called global stability and energy stability) examines
the eigenvalues of this quadratic form; the background is energy stable when all the
eigenvalues are negative (Joseph 1976). When the linear stability problem is normal,
the eigenvalues of the quadratic form are simply the real part of the eigenvalues in the
linear stability problem. In many problems the linear stability problem is non-normal,
and the quadratic form can have positive eigenvalues (i.e. growing perturbations) even
when the linear problem has no eigenvalues with positive real part. This non-normal
behavior is crucial to subcritical instability and transition to turbulence in shear flow
(e.g. Farrell 1984, 1985; Böberg & Brösa 1988; Butler & Farrell 1992; Farrell & Ioannou
1996; Schmid & Henningson 2001; Schmid 2007). In fully nonlinear flow, excitation of
eigenfunction perturbations associated with positive eigenvalues is required to sustain
turbulence against dissipation (DelSole 2004).

Barham & Grooms (2019) recently found exact analytical expressions for instantaneous
optimals and their growth rates in the classical Eady baroclinic instability problem using
the hydrostatic approximation without the geostrophic approximation. The results did
not have an obvious direct relevance to the phenomenology of geostrophic turbulence
because the largest growth rates occurred at small scales and were driven by ageostrophic
extraction of kinetic energy from the background mean flow, rather than by geostrophic
extraction of large-scale available potential energy as occurs in the world oceans (Ferrari
& Wunsch 2009). The type of baroclinic instability in the Eady problem is somewhat
different from other kinds more commonly observed in the global oceans (e.g. Charney-
type and Phillips-type; see Tulloch et al. 2011), but these other types are difficult to ana-
lyze without making a geostrophic approximation. This limitation motivates the present
study. We analyze instantaneous optimals and their growth rates in the continuously-
stratified quasigeostrophic (QG) framework. Previous research in this area includes the
work of Farrell (1989) and Farrell & Ioannou (1996), who studied instantaneous optimals
for the QG Eady problem. Rivière et al. (2001) studied non-normal growth in the two-
layer QG problem, i.e. where the vertical coordinate is discretized into two levels. Both
Farrell (1989) and Farrell & Ioannou (1996) started by discretizing the vertical coordinate
of the linear problem, and then computed optimal perturbations and their growth rates
for the discrete problem. More recently Kalashnik & Chkhetiani (2018) studied transient
growth in the QG Eady problem analytically, focusing on cases with zero potential
vorticity or idealized potential vorticity configurations.

We directly analyze the continuously-stratified QG equations without discretizing
the vertical coordinate; we allow arbitrary shear and stratification profiles, including
Charney-type and Phillips-type shear; and unlike Kalashnik & Chkhetiani (2018) we
allow the perturbations to have arbitrary potential vorticity configurations. We begin by
deriving a linear differential eigenvalue problem describing the optimal perturbations and
their instantaneous growth rates, and then give closed-form analytical expressions for the
instantaneous optimals and their growth rates in the QG Eady problem. We next find
that a simple finite-difference approximation of the linear eigenvalue problem describing
the optimal perturbations gives unreliable results, and develop a robust spectral method
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that we use to compute approximate numerical solutions. We find that applying a
discretization to the linear QG problem and then computing instantaneous optimals of
the discrete problem (as in the work of Farrell (1989) and Farrell & Ioannou (1996)) gives
reliable results comparable to the results obtained by directly analyzing the continuous
problem, but with slower convergence.

The behavior in all three problems (Eady, Charney-type, and Phillips-type) is re-
markably similar: instantaneous energy growth is possible at all scales, even when
linear Ekman friction is included, with growth rates that are nearly independent of the
horizontal scale of the perturbation. This is a marked contrast to the non-QG results
of Barham & Grooms (2019), where the growth rate increases as the horizontal scale
decreases. There is still a disconnect with the theory and simulations of quasigeostrophic
turbulence, where energy extraction from the steady mean flow is not observed at small
horizontal scales (Smith & Vallis 2002; Roullet et al. 2012; Capet et al. 2016). We
conjecture that net, or sustained energy growth is not observed at small scales because
of linear energy transfer from growing perturbations to decaying ones within a fixed
horizontal wavenumber. This is only possible when the linear stability problem has no
exponentially growing modes at small scales, and wavenumbers where the linear problem
has exponentially growing modes must experience a net energy injection. This conjecture
makes a connection back to the linear stability problem without needing to make any of
the usual assumptions associated with the linear stability problem, and is consistent with
the behavior observed in simulations (Smith & Vallis 2002; Roullet et al. 2012; Capet
et al. 2016). It also predicts that Charney-type shear profiles with exponential growth
at small scales should see net extraction of energy from the background mean flow by
the eddies at small scales along with an associated nonlinear transfer to other scales for
eventual dissipation.

The eigenvalue problem describing the instantaneous optimals is derived in §2, along
with exact solutions in the case of the Eady problem. Numerical methods and their results
are presented in §3. Our conjecture reconciling linear and nonlinear theory is presented
in §4, and conclusions are given in §5.

2. Euler-Lagrange Equations and Exact Solutions

The QG equations with general shear and stratification in z coordinates can be written

∂tq + u · ∇q + ū(z)∂xq + v (β + ∂y q̄(z)) = 0 (2.1a)

q = ∇2
hψ +

d

dz

(
S(z)

dψ

dz

)
(2.1b)

∂tϑ
+ + u · ∇ϑ+ + ū∂xϑ

+ − v+(∂zū) = 0 and ϑ+ = S(z)∂zψ at z = H (2.1c)

∂tϑ
− + u · ∇ϑ− + ū∂xϑ

− − v(∂zū) = −r∇2
hψ and ϑ− = S(z)∂zψ at z = 0 (2.1d)

where q is the relative potential vorticity, ψ is the streamfunction, u = (u, v)T =
(−∂yψ, ∂xψ)T is the velocity, ū(z) is the background velocity, q̄ is the background
potential vorticity, and ϑ = (f0/N)2dψ/dz. The background planetary vorticity is
f0 + βy. Superscripts + and − denote evaluation at z = 0 and z = H, respectively,
and S(z) = f2

0 /N
2(z) is the ratio of the Coriolis and Brunt-Vaisala frequencies, squared.

The Ekman drag coefficient is r = −f0d/2, where d is the depth of the Ekman layer.
Multiplying (2.1) by −ψ and integrating over the volume yields an equation for the
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evolution of energy

dE

dt
= −

∫∫∫ (
S(z)

dū

dz

)
∂xψ∂zψdxdydz − r

∫∫
|∇ψ−|2dxdy (2.2)

where E =
1

2

∫∫∫
|∇ψ|2 + S(z) (∂zψ)

2
dxdydz. (2.3)

(Technically the energy is ρ0E where ρ0 is the density of the fluid, but following standard
convention we refer to E as the energy.)

Both the energy and the energy tendency are quadratic forms that are incompletely
diagonalized with a Fourier basis. Expanding ψ in a Fourier series with terms
ψ̂k(z, t)ei(kxx+kyy) leads to the following formulas for energy and energy tendency

dE

dt
=
∑
kx

∑
ky

[
kx

∫ H

0

(
S(z)

dū

dz

)
Im
{
ψ̂∗k∂zψ̂k

}
dz − rk2|ψ̂−k |

2

]
(2.4)

where E =
1

2

∑
kx

∑
ky

∫ H

0

k2
∣∣∣ψ̂k

∣∣∣2 + S(z)
∣∣∣∂zψ̂k

∣∣∣2 dz. (2.5)

We assume that the Fourier coefficient is zero at wavenumber (kx, ky) = (0, 0), and
assume (for convenience and without loss of generality) that the horizontal domain is a
square of width 1. The superscript ∗ denotes a complex conjugate and k2 = k2

x + k2
y.

We will focus attention on perturbations with a single Fourier mode as the horizontal
structure, and will seek perturbations ψ̂k(z) that optimize the energy growth rate over
the set of perturbations with unit energy. To that end, we define the following Lagrangian

Ik[ψ̂k, λ] = Ĝk[ψ̂k]− λÊk[ψ̂k] (2.6)

where

Êk[ψ̂k] =
1

2

∫ H

0

k2
∣∣∣ψ̂k

∣∣∣2 + S(z)
∣∣∣∂zψ̂k

∣∣∣2 dz (2.7)

and

Ĝk[ψ̂k] = kx

∫ H

0

(
S(z)

dū

dz

)
Im
{
ψ̂∗k∂zψ̂k

}
dz − rk2|ψ̂−k |

2. (2.8)

To optimize the energy growth rate over the set of perturbations with unit energy we
derive Euler-Lagrange equations for the stationary points of the Lagrangian. The methods
used in the derivation are standard, and the derivation is presented in Appendix A. The
Euler Lagrange equations are

−ikx (∂y q̄) ψ̂k + 2ikx(S(z)∂zū)
d

dz
ψ̂k + λ

(
k2ψ̂k −

d

dz

(
S(z)

dψ̂k

dz

))
= 0, (2.9)

ikx

(
S(z)

dū

dz

)
ψ̂k − λS(z)

dψ̂k

dz
− rk2ψ̂k = 0, at z = 0, (2.10)

ikx

(
S(z)

dū

dz

)
ψ̂k − λS(z)

dψ̂k

dz
= 0, at z = H. (2.11)

It is worth noting that the mean potential vorticity gradient that appears in these
equations, ∂y q̄, does not include the planetary potential vorticity gradient β. This should
not be surprising, since β does not appear either in the energy or in the energy tendency.
It is also worth noting that the eigenvalue λ is the instantaneous energy growth rate
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associated with its corresponding eigenfunction, which follows from the fact that the
Lagrangian is a quadratic. To be precise, one can write the Lagrangian as

Ik[ψ̂k, λ] = 〈ψ̂k,Gkψ̂k〉 − λ〈ψ̂k, Ekψ̂k〉 (2.12)

where Gk and Ek are linear operators and 〈·, ·〉 is the standard L2 inner product. The
Euler-Lagrange equations are formally

Gkψ̂k = λEkψ̂k. (2.13)

Taking the inner product of this equation with an eigenfunction ψ̂k and assuming this
eigenfunction has been normalized to unit energy yields

Ĝk[ψ̂k] = 〈ψ̂k,Gkψ̂k〉 = λ〈ψ̂k, Ekψ̂k〉 = λ. (2.14)

The inviscid problem, r = 0, has three illuminating symmetries. First, the growth rate
scales linearly with the mean shear, since the transformation ū 7→ αū, λ 7→ αλ leaves
the Euler-Lagrange equations unchanged. Second, the transformation ψ̂k 7→ ψ̂∗k, λ 7→ −λ
leaves the Euler-Lagrange equations unchanged, so eigenvalues λ come in positive and
negative pairs. Third, symmetry under the transformation kx 7→ −kx, λ 7→ −λ together
with the second symmetry implies that growth rates are symmetric about the ky = 0
axis. In addition, it is clear that if kx = 0, then λ must also be zero.

2.1. Bounding the growth rate

This section provides an analytical upper bound on the absolute value of the eigenvalues
in the inviscid problem, showing that the QG problem studied here is qualitatively
different from the non-geostrophic problem studied by Barham & Grooms (2019) in
that the growth rates in the QG problem remain bounded as k →∞.∣∣∣Ĝk[ψ̂k]

∣∣∣ = |kx|

∣∣∣∣∣
∫ H

0

(
S(z)

dū

dz

)
Im
{
ψ̂∗k∂zψ̂k

}
dz

∣∣∣∣∣ (2.15)

6 |kx|
∫ H

0

S(z)

∣∣∣∣dūdz

∣∣∣∣ ∣∣∣ψ̂∗k∂zψ̂k

∣∣∣dz (2.16)

6
|kx|
2

∫ H

0

S(z)

∣∣∣∣dūdz

∣∣∣∣ (ε2|ψ̂|2 + ε−2|∂zψ̂|2
)

dz (2.17)

=
|kx|
2

∫ H

0

S(z)

∣∣∣∣dūdz

∣∣∣∣
(

k√
S(z)

|ψ̂|2 +

√
S(z)

k
|∂zψ̂|2

)
dz (2.18)

6
|kx|

∥∥∥√S dū
dz

∥∥∥
∞

2k

∫ H

0

(
k2|ψ̂|2 + S(z)|∂zψ̂|2

)
dz (2.19)

=
|kx|

∥∥∥√S dū
dz

∥∥∥
∞

k
(2.20)

We make use of Young’s inequality

|ab| 6 1

2

(
ε2|a|2 + ε−2|b|2

)
(2.21)

with ε2 = k/
√
S(z). The final equality assumes that ψ̂k has unit energy. This shows

that |Ĝk| is bounded above by |kx|‖
√
Sdū/dz‖∞/k for ψ̂k with E = 1. This clearly

rules out eigenfunctions ψ̂k with unit energy and eigenvalues larger in magnitude than
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|kx|‖
√
Sdū/dz‖∞/k. It follows that the growth rates λ must remain bounded in the limit

k → ∞. For the Eady problem with S = 1, ū = z the bound is also sharp, as shown in
the next section.

2.2. Eady Exact Solution

The Eady problem is defined by constant stratification N2(z) and constant shear
dū/dz. For simplicity of exposition, we will analyze the Euler-Lagrange equations in
the Eady problem by setting ū = z, H = 1, and S(z) = 1, and will consider inviscid
dynamics (r = 0). In this case the Euler-Lagrange equations become

2ikx∂zψ̂k + λ
(
k2ψ̂k − ∂2

z ψ̂k

)
= 0, (2.22)

ikxψ̂k − λ∂zψ̂k = 0, at z = 0 & 1. (2.23)

It is straighforward to obtain an analytical solution, which has the following form:

λ = ± kx√
k2 + π2n2

⇒ ψ̂k(z) = e±iz
√
k2+π2n2

cos(nπz) (2.24)

where n is an integer, and the eigenfunctions have not been normalized to unit energy.
The growth rate is maximized by taking n = 0. Modes with ky = 0 have higher growth
than modes with ky 6= 0, and modes with kx = 0 have no growth. When ky = n = 0 the
maximal growth rate is 1, independent of kx. Note that the vertical length scale of the
eigenfunctions reduces linearly with increasing k, i.e. eigenfunctions have a fixed aspect
ratio of horizontal to vertical length scales.

In the problem without the geostrophic approximation studied by Barham & Grooms
(2019), one set of eigenfunctions with ky = 0 had a very similar structure with growth rate
λ = 1 independent of kx. In that study, another type of eigenfunction was also present
with λ growing linearly in kx, and with energy growth driven entirely by ageostrophic
shear production. Restriction to the QG approximation has clearly eliminated these
ageostrophic perturbations.

3. Numerical Methods and Solutions

3.1. Discretizing the continuous optimization problem

Exact analytical solutions to the Euler-Lagrange equations (2.9)–(2.11) are not avail-
able in general, so, to study optimal perturbations and their growth rates, we discretize
the problem. A simple second-order centred finite-difference approximation of (2.9)–
(2.11) results in a generalized eigenvalue problem of the form

Ax = λBx (3.1)

where the entries of x are values of ψ̂k on a grid from z = 0 to z = H. The matrix
B is a discretization of the operator

[
k2(·)− ∂z (S(z)∂z(·)]

)
with Neumann boundary

conditions. Application of this method with S(z) = 1 and ū(z) = (z/H)2 yields a full set
of complex eigenvalues, where the complex parts are non-trivial and do not diminish with
increasing resolution. As an example, we computed the eigenvalues for S(z) = 1, H = 1,
ū(z) = z2/2 at kx = 1, ky = 0 with 128 grid points; these are plotted in the left panel of
Fig. 1. The eigenvalues all have a non-trivial complex component. The complex part does
decrease as the resolution is increased, but slowly: doubling the resolution to 256 points
reduces the size of the spurious complex component by a factor of two. Eigenvalues of
the continuous problem must all be real, so it is evident that the finite difference method
is unreliable here.
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Figure 1. Left: Eigenvalues λ computed from a finite-difference discretization of the
Euler-Lagrange equations (2.9)–(2.11); the number of grid points is 128 and eigenvalues are
plotted in the complex plane. Right: Absolute error in the largest instantaneous growth rate λ
in the Eady problem for kx = 1, ky = 0, and r = 0 computed by (i) discretizing the continuous
QG equations (2.1) and then finding optimals (blue) and (ii) optimizing the Lagrangian of the
continuous problem over a subspace of polynomials. In the abscissa for method (i) N refers to
the number of grid points, while for method (ii) N − 1 is the degree of the polynomials.

Rather than develop an alternate discretization of the Euler-Lagrange equations, we
return to the Lagrangian itself (2.6). The Euler-Lagrange equations describe stationary

points of the Lagrangian over an infinite-dimensional space (e.g. ψ̂k ∈ C2([0, H])),
and we discretize the problem by restricting attention to a finite-dimensional subspace,
specifically polynomials of degree at most N − 1. Finding stationary points of the
Lagrangian over this finite-dimensional subspace is straightforward and is guaranteed
to produce real eigenvalues λ (which are also Lagrange multipliers); convergence to true
values can be monitored by increasing N .

We use the Legendre polynomial basis, {Pn(z)}∞n=0, for the space of polynomials on
z ∈ [0, H], so that

ψ̂k =

N−1∑
n=0

cnPn(z). (3.2)

Inserting this into Ĝk yields

Ĝk[ψ̂k] =

N−1∑
n=0

N−1∑
m=0

[
kxIm{c∗ncm}

∫ H

0

(
S(z)

dū

dz

)
Pn(z)P ′m(z)dz − rk2c∗ncmPn(0)Pm(0)

]

=
1

2
c∗Gc (3.3)

where P ′n(z) =dPn(z)/dz, c is the vector of coefficients cn, and

Gn,m = −2rk2(−1)n+m + ikx

∫ H

0

(
S(z)

dū

dz

)
(Pm(z)P ′n(z)− Pn(z)P ′m(z)) dz. (3.4)

The above uses the Legendre polynomial normalization convention that Pn(0) = (−1)n;
we also use the convenient but unconventional indexing for the matrix G starting at 0
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rather than 1. Inserting the polynomial into Êk yields

Êk[ψ̂k] =
1

2

N−1∑
n=0

N−1∑
m=0

c∗ncm

∫ H

0

k2Pn(z)Pm(z) + S(z)P ′n(z)P ′m(z)dz

=
1

2
c∗Ec (3.5)

where

En,m =
Hk2

2n+ 1
δnm +

∫ H

0

S(z)P ′n(z)P ′m(z)dz (3.6)

where δnm is the Kronecker delta, and the indexing again starts at 0 instead of 1. The
Lagrangian restricted to this finite-dimensional subspace thus takes the following form

Îk[ψ̂k] =
1

2
c∗Gc− λ1

2
c∗Ec. (3.7)

Critical points of the Lagrangian are solutions of the generalized eigenvalue problem

Gc = λEc. (3.8)

Both matrices are Hermitian, while the matrix E is positive definite. As a result, a full
set of N real eigenvalues is guaranteed to exist.

To validate the spectral discretization described above we compute solutions to the
inviscid Eady problem at kx = 1, ky = 0 with S(z) = 1, H = 1, and ū(z) = z. The
absolute error in the maximal eigenvalue is shown in red as a function of N in the
right panel of Fig. 1. The error decreases to machine precision by N = 8. Results
at different wavenumbers are qualitatively similar, though eigenvalues at larger kx do
require higher resolution because they exhibit finer vertical structure as described in the
exact analytical solutions.

A natural alternative to the Legendre polynomials is the well-known baroclinic mode
basis (Pedlosky 1987, §6.12). Unfortunately these basis functions set ∂zψ = 0 at the
surfaces, which makes them converge much more slowly than polynomials for functions
that do not satisfy this condition, including the exact instantaneous optimals of the Eady
problem. Furthermore, they are computationally inconvenient, and except for special
choices of N2(z) they are not known analytically.

3.2. Optimizing the discrete problem

The foregoing section starts with the continuous equations describing instantaneous
optimals and discretizes them with a spectral method. As an alternative one can discretize
the linear QG equations (2.1) and then seek instantaneous optimals of the discretized
model. The standard second-order finite difference discretization of the continuously-
stratified QG system is described in a variety of places including Pedlosky (1987, §6.16
and §6.18) and Vallis (2006, §5.4); the specific details used here are the same as those in
Appendix B of Watwood et al. (2019). The linear discrete system takes the form

d

dt
Mx = Kx (3.9)

where the entries of x are values of ψ̂k at the center of N cells from z = 0 to z = H. The
matrix M is real and symmetric (for an equispaced grid). Code to generate the matrices M
and K is publicly available (Watwood & Grooms 2019). The energy is E = Hx∗Mx/(2N),
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and energy evolution is

dE

dt
= Hx∗

(
K ∗ + K

2N

)
x. (3.10)

Configurations of x that optimize the instantaneous growth rate of energy subject to the
constraint E = 1 are eigenvectors of the generalized eigenvalue problem

(K ∗ + K )x = λMx. (3.11)

The discretization is validated by computing solutions to the inviscid Eady problem at
kx = 1, ky = 0 with S(z) = 1, H = 1, and ū(z) = z. The absolute error in the maximal
eigenvalue is shown in blue as a function of N in the right panel of Fig. 1. The error
decreases algebraically, and far more slowly than the spectral discretization described in
the preceeding section: With N = 64 the finite difference method is still less accurate
than the spectral method with N = 4.

3.3. Numerical Results

Both of the numerical methods described above were verified to be accurate in the Eady
problem. The spectral method is used in all cases with N = 64, with exceptions noted.
This section describes numerical results for two different configurations of shear. One
configuration, the Phillips-type shear, corresponds to two-layer type behavior following
on the work of Phillips (1954). The Phillips-type shear consists of a single baroclinic mode
with zero shear at the surfaces, and baroclinic instability is related to the fact that the
mean potential vorticity gradient ∂y q̄ changes sign once in the interior of the fluid. The
second configuration, the Charney-type shear, has a constant mean potential vorticity
gradient in the interior of the fluid ∂y q̄ = −1 that interacts with shear at the surface
to generate instability. The Charney-type setup is associated with surface-intensified
nonlinear dynamics and with increased small-scale energy at the upper surface (Capet
et al. 2016). These two types of shear profile are qualitatively representative of the mean
shear profiles that drive baroclinic instability throughout the world oceans (Tulloch et al.
2011). In both cases we set S(z) = 1 and H = 1. Surface-intensified stratification would
be more realistic, but the integrals in (3.4) and (3.6) would no longer be analytically
tractable. The two shear profiles investigated here are

Phillips-type: ū(z) =
1

2

(
−1 + 6z2 − 4z3

)
(3.12)

Charney-type: ū(z) =
z2

2
. (3.13)

The standard Phillips-type profile (which is a first baroclinic mode) has the form
− cos(πz)/π; a polynomial mean shear was chosen here since it is qualitatively similar to
but more convenient numerically than the cosine profile.

The classical Charney problem is posed in a semi-infinite domain, and is identical to
the Eady problem except for the inclusion of a planetary vorticity gradient β. Although
β is absent from the Lagrangian, a semi-infinite domain constitutes a significant change,
and caution should be exercised before extrapolating the current results to the classical
Charney problem.

Figure 2 shows numerical results on the instantaneous growth rates λ for all three
problems with r = 0: Eady (upper row), Phillips-type (middle row), and Charney-type
(lower row). The left column shows the most positive eigenvalue λ as a function of
wavenumber. The right column shows the five most positive eigenvalues λ1 > . . . > λ5 as
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Figure 2. Left: Largest eigenvalue λ of the Euler-Lagrange equations as a function of kx and
ky for the Eady problem (upper), the Phillips-type problem (center), and the Charney-type
problem (lower). Right: The five largest eigenvalues λ1 > λ2 > . . . > λ5 (solid; coloured), along
with the growth rate σr of exponentially-growing solutions for the corresponding linear stability
problem (dashed; black). Solutions computed using polynomials of degree N − 1 = 63, with
r = 0 (inviscid).

a function of kx for ky = 0, together with the growth rate σr of the fastest-growing mode
of the linear stability problem. The behavior of the three cases is remarkably similar.
Growth rates are maximized on the ky = 0 axis, where they are nearly constant. (At
larger kx with ky = 0 the largest growth rates limit towards a constant value; not shown.)
At large scales (small kx) the largest eigenvalue dominates while all the others approach
zero.

Figure 3 shows numerical results on the vertical structure of the eigenfunction ψ̂k(z)
associated with the largest eigenvalue at kx = 2, ky = 0 with r = 0. The differences
between the three problems are more evident here than in their growth rates. The
Eady problem has the simple vertical structure proportional to eikz, as predicted by the
analytical solution. In the Phillips-type problem there is no mean shear on the boundary,
and the eigenfunctions are required to match this behavior; the energy growth (first term
on the right hand side of (2.2)) is maximized in mid-layer, where the mean shear is also
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Figure 3. Amplitude (solid) and phase (dashed) parts of the optimal perturbations ψ̂k as a
function of z at kx = 2, ky = 0 with r = 0 for the Eady (left), Phillips-type (center), and
Charney-type (right) problems. Solutions computed with polynomials of degree N − 1 = 63.

maximized. In the Charney-type problem there is no mean shear at the lower boundary,
and the mean shear is maximized at the upper boundary. The eigenfunctions also have
no shear at the lower boundary, and they are surface intensified. In all three problems
eigenfunctions corresponding to smaller eigenvalues or to larger wavenumbers kx have
finer vertical structure (not shown).

The effect of linear Ekman friction on the exponentially-growing modes of linear
stability theory is markedly different from the simpler intuitive effect of potential vorticity
diffusion (Holopainen 1961; Barcilon 1964; Williams & Robinson 1974). To investigate
the effect of friction we compute results with r = 0.5. Eigenvalues λ as a function of
kx for the Eady problem with ky = 0 are shown in Fig. 4, together with the inviscid
results r = 0, for comparison. The most positive and most negative eigenvalues for the
inviscid Eady problem are λ = 1 and −1, respectively; these are solid lines in Fig. 4.
The most positive and most negative eigenvalues for the Eady problem with r = 0.5 are
shown as dashed lines. Ekman friction only has a significant impact on the fastest positive
growth rate for eigenfunctions with large horizontal scale (small kx). These growth rates
are reduced, though not to zero, presumably because the associated eigenfunctions are
nearly barotropic. In contrast, the fastest-decaying eigenvalues are all strongly impacted
by Ekman friction. The associated eigenfunctions have a structure that optimizes the
decay rate, which increases linearly with kx. Results for the Phillips-type and Charney-
type problems are qualitatively similar (not shown).

4. Discussion

The injection, transfer, and ultimate dissipation of energy is an organizing principle
in the study of forced-dissipative turbulence. Energy injection via extraction from the
background mean flow in quasigeostrophic turbulence forced by baroclinic shear is
associated with a quadratic term in the energy budget. This quadratic term can be
diagonalized by a basis of eigenfunctions associated with real eigenvalues. Energy injec-
tion in quasigeostrophic turbulence forced by baroclinic shear can therefore be associated
with excitation and growth of eigenfunctions associated with positive eigenvalues. These
eigenfunctions are related to the instantaneous optimal perturbations of non-normal
linear stability theory, and are generically referred to here as instantaneous optimals.
But the topic here is strongly nonlinear quasigeostrophic turbulence, which is significantly
different from the dynamics of subcritical transition in viscous shear flows where non-
normal linear behavior is well-known (Schmid & Henningson 2001).

The partitioning of this energy into kinetic and available potential energy and its
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Figure 4. Most-positive and most-negative eigenvalues λ for the Eady problem as a function
of kx with ky = 0 for r = 0 (solid) and r = 0.5 (dashed). The blue lines show the most-positive
eigenvalues while the red lines show the most-negative. Solutions computed with polynomials of
degree N−1 = 63. Results for the Charney- and Phillips-type problems are similar (not shown).

transfer between forms and between horizontal scales is a complex subject that has
been primarily studied in the significantly simpler two-layer model (Salmon 1978; Fu &
Flierl 1980; Haidvogel & Held 1980; Scott & Arbic 2007). In both the two-layer model
and in models with higher vertical resolution there is a net energy input to the system
over a range of scales larger than the deformation radius in the form of eddy available
potential energy (see, e.g., Grooms & Majda 2014, Figure 3d), which is also the range
of scales where there are exponentially growing modes of the linear stability problem
(Smith & Vallis 2002; Roullet et al. 2012; Capet et al. 2016). The potential energy then
cascades downscale; near the deformation radius it is converted to eddy kinetic energy,
which then cascades to larger scales where it is dissipated via friction. To calculate
the actual rate of change of energy at a given wavenumber due to interaction with
the mean flow and friction, one resolves the vertical structure at that wavenumber into
a sum of instantaneous optimal eigenfunctions. The total energy growth rate is then
obtained by summing over the energy in each eigenfunction multiplied by the growth
rate associated with that eigenfunction. Our results are broadly consistent with the
simulated phenomenology of baroclinic turbulence in the sense that by multiplying the
energy spectrum by nearly flat eigenvalues λ, one obtains an energy injection spectrum
concentrated at large scales. This is not completely satisfactory though, because the shape
of the energy spectrum presumably depends on the structure of the energy injection and
vice versa. Our analysis indicates that energy injection is possible at all horizontal scales,
so some reconciliation with the observed confinement of energy injection to a limited
range of horizontal scales larger than the deformation radius is needed.

To frame the following discussion, write the fluid system in the following generic form

∂tu = L[u] + B[u, u] (4.1)

where u generically denotes the flow variables (not the velocity u = −∂xψ of the previous
sections), L is a linear operator including interaction of the flow with the background
mean state, and B is a bilinear nonlinear advection operator. We can further assume the
existence of an energy inner product E = 〈u, u〉/2, and we can decompose the linear term
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Figure 5. Energy as a function of time for simulations at kx = 5, ky = 0, r = 0, initialized with
the optimal perturbation for the Eady (left), Phillips-type (right), and Charney-type (right)
problems.

L into a piece LS that is self-adjoint with respect to the energy inner product, and a
piece LA that is skew-adjoint with respect to the energy inner product. The eigenvalues
and eigenfunctions of the operator LS are the growth rates and instantaneous optimals
studied in the previous sections.

In the QG problem the flow variable is ψ, the energy inner product is E = 〈ψ,ψ〉/2
defined by (2.3), and 〈ψ,Lψ〉 is dE/dt as defined by (2.2). In the QG problem L has
constant coefficients with respect to the horizontal coordinates x and y, and therefore does
not transfer energy between horizontal wavenumbers; only the quadratic nonlinearity
transfers energy between horizontal wavenumbers via triad interactions. On the other
hand, the nonlinearity in the QG equations does not lead to nonlinear self-interaction
at a single wavenumber because u · ∇q = 0 when u and q are both proportional to
ei(kxx+kyy). In a turbulent setting the nonlinear term will guarantee excitation of all
modes, so instantaneous energy growth is not only possible at all scales, it is unavoidable.
How can this be reconciled with the evident lack of net energy injection at small scales
in simulations of quasigeostrophic turbulence? We conjecture that the answer lies in the
role of the skew-adjoint linear operator LA. This operator is not able to transfer energy
between wavenumbers, but it can transfer energy from growing eigenfunctions of LS to
decaying ones. In fact, at wavenumbers where the operator L has no eigenvalues with
positive real part it is possible in principle that there is zero net (or sustained) energy
growth because of transfer from growing modes of LS to decaying ones by LA. However,
if the operator L has an eigenvalue with positive real part for some wavenumber then
sustained growth at that wavenumber is unavoidable and must be matched by nonlinear
transfer to other wavenumbers. This conjecture makes a connection to linear modal
stability theory without relying on any assumptions of linearity, and is consistent with
the observed lack of energy injection at small horizontal scales in problems like the Eady
and Phillips problems where there are no linearly unstable modes at small scales.

To illustrate this mechanism we run simulations of the full QG dynamics using
the standard equispaced finite-difference approximation in z, starting from an initial
condition that is the optimal perturbation of the finite difference model at wavenumber
kx = 5, ky = 0. Simulations are run for all three canonical problems from the preceeding
section. We solve the inviscid dynamics (r = 0) with N = 256 vertical levels, with
constant stratification S(z) = 1 and with H = 1. Since the initial condition consists
of a single horizontal wavenumber the nonlinearity is exactly zero for all time, and the
dynamics reduce to linear. The time evolution of the energy, starting from unity, is shown
in Fig. 5 for all three simulations.
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In the Eady problem the energy grows transiently and then sets up a regular oscillation
with no further net growth. (With nonzero Ekman friction the energy would eventually
decay to zero.) In the Phillips-type problem there is large initial transient growth followed
by decay towards zero. In the Charney-type problem the initial condition has a nonzero
component in the direction of an linearly unstable mode, and the energy eventually grows
exponentially. In the Eady and Phillips-type problems transient growth occurs as the flow
extracts energy from the large-scale background, but there is no sustained energy growth.
Instead, there is transient decay where the flow returns energy to the background. In the
presence of friction some of this transient decay would be associated with friction rather
than a return of energy to the background. This behavior, where the flow at small scales
transiently extracts energy from the background flow and then either returns it to the
background flow or dissipates it frictionally is consistent with the standard theory of QG
turbulence that expects no net energy transfer across horizontal scales at scales smaller
than the deformation radius (Charney 1971).

Having the small-scale flow transition between extracting energy from the large scales
and then returning that energy to the large scales is also connected to the concept of
energetic backscatter – transient transfer of energy from small to large scales. Backscatter
in idealized ocean models accounts in part for large-scale variability (Kitsios et al. 2013),
and the development of parameterizations of kinetic energy backscatter for ocean models
is a topic of current research (e.g. Kitsios et al. 2013; Jansen & Held 2014; Chen et al.
2018). The backscatter associated with linear inviscid decay at small scales as seen here
is in the form of potential energy while the aforementioned studies address kinetic energy
backscatter. The vertical structure of decaying perturbations could perhaps be used to
inform parameterizations of potential energy backscatter within the framework of Grooms
(2016) and Grooms & Kleiber (2019).

5. Conclusions

The goal of this study is to elucidate the process whereby eddies extract energy
from a steady background baroclinic shear in QG turbulence, bridging the gap between
linear theory and fully nonlinear dynamics. The term in the eddy energy budget that
corresponds to extraction of energy from the background shear is quadratic in the
eddy variables and can be diagonalized by an orthonormal basis of eigenfunctions.
The associated eigenvalues are the instantaneous energy growth rates associated with
each eigenfunction. Any flow configuration can therefore be resolved into a sum of
eigenfunctions, each of which is instantaneously extracting energy from the mean or
returning energy to the mean. We begin by deriving Euler-Lagrange equations describing
the eigenfunctions and eigenvalues in continuously-stratified QG dynamics. An exact
analytical solution is found for the inviscid Eady problem showing that instantaneous
energy growth is possible at all horizontal wavenumbers, and among perturbations
with no variation in the y direction (perpendicular to the background velocity) the
fastest-growing ones all have the same growth rate independent of horizontal scale. A
spectral numerical method is formulated to compute eigenfunctions and growth rates
for vertically-varying shear and stratification profiles. We compute eigenvalues for the
Eady problem and for a Phillips-type and a Charney-type problem. The Phillips-type
problem has no mean shear at the upper and lower surfaces with a mean potential
vorticity gradient that changes sign in the interior, and the Charney-type problem has
a constant potential vorticity gradient that interacts with shear at the upper surface.
In all experiments the stratification N2(z) is constant, though the results may extend
qualitatively to more realistic surface-intensified stratification. The computed eigenvalues
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for Phillips-type and Charney-type background flows are remarkably similar to the Eady
results, though the eigenfunctions themselves are different. The amplitude of the growing
eigenfunctions is concentrated in regions of high shear; in the Charney-type problem they
are surface intensified and in the Phillips-type problem they are intensified in the middle
of the layer. Ekman friction reduces growth rates at large scales and also leads to a set
of eigenfunctions associated with rapid decay, though it has minimal effect on growth at
small scales.

Our analytical results show that instantaneous growth is possible at all scales, unlike
modal linear stability theory where growth at small scales only occurs in Charney-
type problems where an internal potential vorticity gradient interacts with shear at the
boundary. In fully nonlinear turbulence triad interactions guarantee nonzero excitation
of all Fourier modes, which means that instantaneous growth is not only possible at
all scales, it is unavoidable. This needs to be reconciled with the phenomenology of
QG turbulence, where sustained extraction of energy from the background mean flow
is not observed at small scales, except in Charney-type problems (Smith & Vallis 2002;
Roullet et al. 2012; Capet et al. 2016). We propose that the transient growth of some
eigenfunctions at small scales is matched by transient decay of other eigenfunctions at the
same scales, with transfer between them mediated by the skew-adjoint part of the linear
operator. The plausibility of this hypothesis is supported by linear simulations where
an initial phase of transient growth is either followed by transient decay in the Phillips-
type problem, or where it transitions to steady oscillation in the Eady problem. The
simulations are inviscid, demonstrating that the mechanism can work without having
to match growth by frictional dissipation; the inclusion of frictional dissipation would
not change the overall hypothesis though. This hypothesis predicts that Charney-type
problems must exhibit sustained energy extraction from the mean flow at all scales,
though the rate of extraction at small scales should be weak because of the low energy
at small scales. This energy extraction has to be matched by nonlinear transfer to scales
where the energy decays, either by frictional processes or by backscatter of energy to the
large-scale mean flow.
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Appendix A.

The Euler-Lagrange equations (2.9)–(2.11) are derived in this appendix. Let φ represent

a perturbation of ψ̂k. Inserting ψ̂k +φ into Îk and retaining linear terms in φ, we obtain:

− ikx
2

∫ 1

0

(
S(z)

dū

dz

)[
ψ̂∗k∂zφ+ φ∗∂zψ̂k − ψ̂k∂zφ

∗ − φ∂zψ̂∗k
]

dz

− λ
2

∫ 1

0

k2
(
φψ̂∗k + ψ̂kφ

∗
)

+S(z)
[
∂zφ∂zψ̂

∗
k + ∂zψ̂k∂zφ

∗
]

dz−rk2((φ−)∗ψ̂−k +φ−(ψ̂−k )∗)

(A 1)
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Simplifying with integration by parts, we obtain:[
− ikx

2

(
S(z)

dū

dz

)[
ψ̂∗kφ− ψ̂kφ

∗
]]∣∣∣∣H

z=0

+
ikx
2

∫ 1

0

∂y q̄
[
ψ̂kφ

∗ − ψ̂∗kφ
]

+ 2

(
S(z)

dū

dz

)[
φ∗∂zψ̂k − φ∂zψ̂∗k

]
dz

− λ

2

[
S(z)

(
φ∂zψ̂

∗
k + φ∗∂zψ̂k

)]∣∣∣H
z=0

− λ

2

∫ 1

0

k2
(
φψ̂∗k + ψ̂kφ

∗
)
− φ∂z

(
S(z)∂zψ̂

∗
k

)
− φ∗∂z

(
S(z)∂zψ̂k

)
dz

− rk2((φ−)∗ψ̂−k + φ−(ψ̂−k )∗). (A 2)

The above uses the following identity relating the mean shear to the mean potential
vorticity gradient

d

dz

(
S(z)

dū

dz

)
= −∂y q̄. (A 3)

This simplifies to[
kx

(
S(z)

dū

dz

)
Im
{
ψ̂∗kφ

}
− λS(z)Re

{
φ∂zψ̂

∗
k

}]∣∣∣∣1
z=0

− 2rk2Re
{

(φ−)∗ψ̂−k

}
− kx

∫ 1

0

∂y q̄ Im
{
ψ̂kφ

∗
}

+ 2

(
S(z)

dū

dz

)
Im
{
φ∗∂zψ̂k

}
dz

− λ
∫ 1

0

Re
{
φ
(
k2ψ∗k − (∂zS∂zψ

∗
k)
)}

dz. (A 4)

Stationary configurations of ψ̂k are defined to be those for which the above expression is
zero for every φ, in particular for φ that are zero on the boundaries, which means that
the integral and the boundary terms must vanish separately. Thus we have

kx

(
S(z)

dū

dz

)
Im
{
ψ̂∗kφ

}
−λS(z)Re

{
φ∂zψ̂

∗
k

}
−2rk2Re

{
(φ−)∗ψ̂−k

}
= 0 at z = 0, (A 5)

kx

(
S(z)

dū

dz

)
Im
{
ψ̂∗kφ

}
− λS(z)Re

{
φ∂zψ̂

∗
k

}
= 0 at z = H (A 6)

and

− kx∂y q̄ Im
{
ψ̂kφ

∗
}

+ 2

(
S(z)

dū

dz

)
Im
{
φ∗∂zψ̂k

}
− λRe

{
φ
(
k2ψ∗k − ∂z (S(z)∂zψ

∗
k)
)}

= 0 (A 7)

for z ∈ (0, H). Let ψ̂k = ψr + iψi and φ = φr + iφi be the complex expression of ψ̂k and
φ. Then we may write (A 7) as

−kx∂y q̄ (φrψi − φiψr) + 2kx

(
S(z)

dū

dz

)
(φr∂zψi − φi∂zψr) (A 8)

−λ
[
φr
(
k2ψr − ∂z (S(z)∂zψr)

)]
− λ

[
φi
(
k2ψi − ∂z (S(z)∂zψi)

)]
= 0. (A 9)

Again, since this has to be true for any φ, including cases where φr = 0 or φi = 0. From
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this follows the system of equations

−kx∂y q̄ ψi + 2kx

(
S(z)

dū

dz

)
∂zψi − λ

(
k2ψr − ∂z (S(z)∂zψr)

)
= 0 (A 10)

kx∂y q̄ ψr − 2kx

(
S(z)

dū

dz

)
∂zψr − λ

(
k2ψi − ∂z (S(z)∂zψi)

)
= 0. (A 11)

Multiplying the second equation by i and adding, we get

− ikx∂y q̄ ψ̂k + 2ikx

(
S(z)

dū

dz

)
∂zψ̂k + λ

(
k2ψ̂k − ∂z

(
S(z)∂zψ̂k

))
= 0, for z ∈ (0, H).

(A 12)
This is (2.9). We next return to the boundary conditions. Again splitting into real and
imaginary parts, we get

kx

(
S(z)

dū

dz

)
[ψrφi − ψiφr]− λS(z) [φr∂zψr + φi∂zψi]

− rk2(φrψr + φiψi) = 0, for z = 0. (A 13)

kx

(
S(z)

dū

dz

)
[ψrφi − ψiφr]− λS(z) [φr∂zψr + φi∂zψi] = 0, for z = H. (A 14)

Alternately setting φr = 0 and φi = 0 gives rise to the equations

−kx
(
S(z)

dū

dz

)
ψi − λS(z)∂zψr = 0 and (A 15)

kx

(
S(z)

dū

dz

)
ψr − λS(z)∂zψi = 0, for z = H. (A 16)

Multiplying the second equation by i and adding, we get (2.11)

ikx

(
S(z)

dū

dz

)
ψ̂k − λS(z)∂zψ̂k = 0, for z = H. (A 17)

The same process at z = 0 gives rise to the equations

−kx
(
S(z)

dū

dz

)
ψi − λS(z)∂zψr − rk2ψr = 0 and (A 18)

kx

(
S(z)

dū

dz

)
ψr − λS(z)∂zψi − rk2ψi = 0, for z = 0. (A 19)

Multiplying the second equation by i and adding, we get (2.10)

ikx

(
S(z)

dū

dz

)
ψ̂k − λS(z)∂zψ̂k − 2rk2ψ̂k = 0, for z = 0. (A 20)

REFERENCES

Barcilon, V. 1964 Role of the Ekman layers in the stability of the symmetric regime obtained
in a rotating annulus. J. Atmos. Sci. 21 (3), 291–299.

Barham, W., Bachman, S. & Grooms, I. 2018 Some effects of horizontal discretization on
linear baroclinic and symmetric instabilities. Ocean Model. 125, 106–116.

Barham, W. & Grooms, I. 2019 Exact instantaneous optimals in the non-geostrophic Eady
problem and the detrimental effects of discretization. Theor. Comp. Fluid Dyn. 33 (2),
125–139.



18 W. Barham and I. Grooms
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