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Abstract

Smoothed particle hydrodynamics (SPH) is a popular numerical technique devel-
oped for simulating complex fluid flows. Among its key ingredients is the use of
nonlocal integral relaxations to local differentiations. Mathematical analysis of the
corresponding nonlocal models on the continuum level can provide further theoretical
understanding of SPH. We present, in this part of a series of works on the mathematics
of SPH, a nonlocal relaxation to the conventional linear steady-state Stokes system
for incompressible viscous flows. The nonlocal continuum model is characterized by
a smoothing length § which measures the range of nonlocal interactions. It serves as
a bridge between the discrete approximation schemes that involve a nonlocal integral
relaxation and the local continuum models. We show that for a class of carefully chosen
nonlocal operators, the resulting nonlocal Stokes equation is well-posed and recovers
the original Stokes equation in the local limit when § approaches zero. For some other
commonly used smooth kernels, there are risks in getting ill-posed continuum models
that could lead to computational difficulties in practice. This leads us to discuss the
implications of our finding on the design of numerical methods.
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1 Introduction

There has been much recent interest in nonlocal continuum models. In solid mechanics,
the theory of peridynamics [46] was proposed as a possible alternative to conventional
models of elasticity and fracture mechanics. It has also been shown to be an integral
relaxation to the conventional models when the latter are valid such as the case of
linear elasticity. Mathematical and numerical analyses of peridynamics have provided
a solid theoretical foundation to nonlocal mechanical models and their numerical
approximations [15,37,49]. In this work, we are interested in extending such mathe-
matical studies to problems in fluid mechanics. Indeed, nonlocal integral relaxations
are naturally linked to numerical schemes developed for simulating fluid flows such as
the smoothed particle hydrodynamics (SPH) [23,33,34,39,43], vortex methods [2,11]
and others [3,4,7,8,13,21,28,50]. While developed originally for astrophysical applica-
tions, SPH has become a very popular computational technique for simulating complex
flows, including both compressible and incompressible flows; meanwhile, it has also
encountered issues like the loss of stability and lack of resolution. The mathematical
analysis of SPH remains limited today except [5,30]. We present, as part of a series of
investigations on the mathematics of SPH, a nonlocal relaxation to the conventional
linear steady-state Stokes system for incompressible viscous flows, with the aim of
providing further insight into the theoretical foundation of methods like SPH. The
proposed nonlocal models serve as bridges linking SPH with the local differential
equation models and allow us to delineate effects resulted from the different aspects
of the approximation process. This adds new angle to the subject that has not been
systematically explored in the literature before. The nonlocal equation studied here is
also different from but closely connected to other nonlocal and fractional fluid models
such as those considered for geostrophic flows [9,10] and hyper-dissipative models
[27,48] as well as hydrodynamic limit of kinetic models [47].

One of the main contributions of this work is to formulate a well-posed nonlocal
analog of the linear Stokes system (in two and three space dimensions). In general, a
spatially nonlocal model may depend on the laws of nonlocal interactions specified
in the bulk spatial region and necessary modifications near the boundary involving
possible boundary conditions or nonlocal constraints [15]. As a first step, we will be
focusing on the bulk nonlocal interactions in this work, namely finding suitable non-
local relaxations of the first- and second-order differential operators used in the local
Stokes equation such that the resulting nonlocal Stokes equation remains well-posed
and retains a consistent local limit. To that end, we only consider periodic bound-
ary conditions to avoid the discussion near physical boundary. Such a simplification
allows us to use Fourier analysis to carry out much needed technical derivations.
Though the analysis would work in any space dimension, our attention is on two- and
three-dimensional spaces for physical relevance and this also complements a similar
discussion in the one-dimensional case presented in [18] for the correspondence model
of peridynamic materials. The nonlocal analogs of differential operators adopted in this
paper are basic elements of nonlocal vector calculus introduced in [16] and have been
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successfully applied to nonlocal modeling and analysis [14,15,38]. Our main finding
in this work is that the choices of the nonlocal gradient and divergence operators are
more subtle issues that need more careful treatment. More specifically, we reveal that
nonlocal interaction kernels associated with nonlocal gradient and divergence opera-
tors should have suitably strengthened interactions as particles (materials points) get
close together, which in this work is phrased as strong nearby interactions for easy ref-
erence. Many popular choices used in practical implementation of SPH, however, do
not yield such type of interactions, thus leading to possibly ill-posed problems on the
continuum level in the smoothing step. Although suitable numerical discretization may
add regularization effect to help alleviating the impact of any intrinsic ill-posedness,
it is expected that these numerical regularization effect would be highly dependent
on the resolution level (like particle distribution). Such speculations would require
further theoretical investigation. Nevertheless, by revealing potential flaws in the key
smoothing step for developing a robust and practical SPH methodology, our analysis
provides strong links between the popular SPH discretization and a new mathematical
foundation of nonlocal operators.

To further highlight the bridging role of the nonlocal models in the analysis of SPH-
type methods and to show that the ill-posedness of nonlocal models can be avoided
with carefully designed nonlocal operators, we present examples of well-posed nonlo-
cal Stokes models involving nonlocal gradient and divergence operators with suitably
strengthened nearby interactions. For these nonlocal models, we actually show that the
spaces of nonlocal and local divergence-free vector fields coincide, a nice property-
preserving feature of the nonlocal relaxation. We also get, as a byproduct, that using
the nonlocal kernels under consideration, the nonlocal Laplacian in terms of the com-
position of nonlocal gradient and divergence operators is a well-defined and invertible
operator which may be used in either the nonlocal Stokes system or a scalar Pois-
son equation. The latter is often used to do the pressure correction for maintaining
incompressibility in practical SPH implementation. With well-posed nonlocal Stokes
equation, to make further connections with the second step of discretizing the nonlo-
cal operators in SPH, we deduce the convergence and the asymptotic compatibility of
the Fourier spectral approximations. The latter is natural due to the special periodic
setting. Moreover, the mathematical findings in this special case demonstrate the pos-
sibility that once well-posed nonlocal continuum models can be constructed from the
smoothing step, it is possible to develop robust discretization that can maintain the
convergence in different parameter regimes, for example, either for a fixed smoothing
length § > 0 orfor§ — 0, as the numerical resolution improves. It also serves as a hint
for future analysis of collocation and mesh-free methods like SPH that are originally
designed for more complex geometric settings. Indeed, one may design other remedies
such as using nonlocal gradient operators with biased nonlocal interactions (similar in
spirit to upwind differences [31]) or a formulation involving artificial compressibility
[51], The latter two subjects are explored in separate works. In short, our study here
further illustrates that the mathematics developed for nonlocal continuum models may
offer foundation for a better understanding of related numerical discretizations.

The rest of the paper is organized as follows. We begin by formulating the nonlocal
linear Stokes system in Sect. 2, in which the notation and assumptions are introduced.
We then establish the well-posedness of the resulting nonlocal model in Sect. 3 and
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the connection to the usual local Stokes system in Sect. 4. In Sect. 5, we discuss the
Fourier spectral methods and related convergence issues. We conclude in Sect. 6 with
a summary and a discussion on ongoing and future research.

2 Nonlocal Stokes System

Let us first recall the conventional, local Stokes equation. Let u be the velocity field, p
the pressure, f the body force, v the given viscosity coefficient and a bounded domain
£2 C R” with a smooth boundary 952, the conventional, local Stokes equation of
interests here refers to the system

—vAu+Vp=f, inf2 )
-V.-u=0, in £2.

The linear Stokes equation (1) serves as a simplification of the stationary and
time-dependent Navier—Stokes equations which are among the most widely studied
mathematical models for fluid flows. In recent years, there have been much interests
in various generalizations and relaxations of the linear Stokes and nonlinear Navier—
Stokes systems, in particular, those involving nonlocal operators. We refer to earlier
mentioned examples like geostrophic flows [9,10], hyper-dissipative models [27,48]
and hydrodynamic limit of kinetic models [47]. Of particular interests to us is the non-
local relaxation used in the SPH for the simulation of complex flows. While developed
for astrophysical applications, SPH for incompressible viscous flows has also been a
subject of ongoing study [1,6,22,25,26,29,41,42,45]. Despite broad applications and
much progress in the algorithmic development effort, there has not much rigorous
examination on the underlying relaxed nonlocal continuum models which could serve
as bridges between local continuum models and their numerical discretizations.

We begin by focusing on a linear nonlocal system defined on the periodic cell given
by 2 = (=7, 7)? ¢ R? in dimension d = 2 or 3. Given a small parameter § > 0
representing the nonlocal interaction length, we define the nonlocal Stokes equation
as: for a given periodic function f on 2, find periodic functions us and ps such
that

—vLsus(x) + Gsps(x) = f(x), x €2, @)
—Dgug(x) = 0, X € .Q,

with normalization conditions on #s and ps to eliminate constant shifts, and on f to
assure compatibility

f us(x)dx =0, / ps(x)dx =0, / f(x)dx =0. 3)
Q Q Q
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The nonlocal operators used in (2) are the nonlocal diffusion operator Ls, nonlocal
gradient operator G5 and nonlocal divergence operator Dy given, respectively, by

Coux) = /R oy — YD) — u(e)dy, @)
Gsp(x) = /R sy =) (p() — plo)dy )
Dsu(x) = /R o3y =) @)+ ue)dy. ©)

The above operators are determined by a nonlocal scalar-valued kernel wg and a vector-
valued kernel ws. In this work, we take a special form ws(x) = @s(|x|)x/|x]|, and
for the moment, we assume that w; and @; both are nonnegative, radial symmetric
and with a compact support in the § neighborhood B (0, §) of the origin. Here, § is a
parameter that characterizes the range of nonlocal interaction. It is called a nonlocal
horizon parameter in peridynamics, following [46], but in SPH, it is more commonly
called the smoothing length. While more specific assumptions on the nonlocal kernels
are given later, we note that these operators have been studied extensively in recent
years, see for instance, [16,35,36,38] for more discussions and generalizations. The
development of these operators, and in particular, their vector and tensor forms, has
been motivated by the mathematical analysis of peridynamics and other nonlocal
integral equation models, though the connection to SPH has also been alluded to
previously [17]. In more general mathematical context, these nonlocal operators serve
as the nonlocal analog of the classical diffusion, gradient and divergence operators,
upon properly choosing the nonlocal kernels, and they form part of the building blocks
of the nonlocal vector calculus, together with relevant integral identities. Indeed, by
a nonlocal integration by parts formula (see [38, Theorem 2.7]), we have G5 and Ds
to be adjoint operators of each other, in the sense that, for functions in the suitable
spaces (and periodic in our context),

/ u(x)-Gsp(x)dx = —/ Dsu(x)p(x)dx, @)
2 2

justlike the conventional gradient and divergence operators. In addition, the expression
u(y) + u(x) in the definition of Dsu in (4) can be used interchangeably with u(y) —
u(x), although the plus sign is preferred in the more general function class over a
bounded domain 2 to have (7) satisfied.

We note that integral relaxations to differential operators have also been discussed in
many works related to the SPH methods as mentioned earlier, except that they are more
often given by approximate quadrature forms in disguise. In the SPH community, § is
called the smoothing length; thus, we refer § as either horizon parameter or smoothing
length interchangeably in this work.

Nonlocal operators such as Ls can also be seen as continuum forms of popular dis-
crete and graph Laplacians (see e.g. [24,32,40]). The study on G5 and Dy, as explained
in this work, bears even greater significance for the nonlocal Stokes equation. Such
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a study is also related to the so-called correspondence theory of peridynamics, see a
recent study in [18].

Now we specify conditions on the kernels ws and @s used in the definition of the
nonlocal diffusion operator L, and the nonlocal gradient and divergence operators G
and Dy.

Assumption 1 The nonnegative and radial symmetric kernels w; = w;(|x|) and &5 =
@s(|x]) are assumed to satisfy the following assumptions.

1. The kernels wg = w;(|x|) and @5 = @s(|x|) have compact support in the sphere
B(0, §) and satisfy the normalization conditions:

! 2
5/ os(lx)]x["dx =d. ®)
Rn

and
/ wos(lx))|x|dx =d. 9
Rn

2. Thekernels wg and @ are rescaled from kernels w and @ that have compact support
in the unit sphere:

_ 1 x|
%(le)——8d+2w 5 )
: Ll (10

The above conditions are often made in earlier studies on the nonlocal operators
and are also default assumptions throughout this paper. In the literature on SPH and
vortex-blob methods, these moment conditions have also been used as well, see, e.g.,
[11]. It turns out that, as shown in the next section, additional conditions on the kernels,
particularly on @;, are needed in order to obtain a well-posed nonlocal Stokes system.

3 Well-Posedness of the Nonlocal Stokes System with Periodic
Condition

In this section, we examine the well-posedness of the nonlocal Stokes system given
by (2). To begin with, let us define an operator associated with the vector system by

—vL
A5:<_D85 %‘3). (11)
FoL T
: H_f
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Under periodic conditions and the constraints (3), we write # and p in terms of
their Fourier series, namely,

1 ;
u@) =G ), WEEET and px) =

1 -~ i&-x
an o Y. p®et,

£ £#0 €L £#0

where
) = / u(x)e ¥ *dx and 5(§) = / px)e % dx.
2 2

The following lemma provides the associated Fourier symbols of the nonlocal
operators.

Lemma 2 The Fourier symbols of operators Ls, Gs and Dy are given by

Lsu() = —rs(E)a(E) (12)
Gsp(&) = ibs(E)P(E) (13)
Dsu(E) = i(bs(€)TaE), (14)

where Ls(&) and bs(&) are given by

rs(§) =/ 595(|S|)(1 —cos(§ - 5))ds (15)
Is|=
~ s .
bs(§) = / ws(|s])— sin(§ - s)ds. (16)
Is]<5 |s]
Proof The results follow immediately from the definitions of Ls, Gs and Ds. O

For convenience, in the following lemma, we further express As(€) and bs(&) in
(15) and (16) using polar coordinates.

Lemma 3 The Fourier symbols As(§) and bs(&) in (15) and (16) can be equivalently
expressed as

/2 b
4/ / rws(r)(1 — cos(r cos(¢)|€]))drd¢ ford =2,
_ 0 0

rs(§) = )2 s (17)
47[/ sin(¢>)/ rza)_a(r)(l — cos(r cos(¢)|€]))drd¢ ford =3,
0 0
and
_ §
bs(§) = b5(|§|)|§—|, (13)
EOE';W

@ Springer Lﬁjog



Foundations of Computational Mathematics

where the scalar coefficient bs(|&)) is given by

/2 )
4/ cos(¢>)/ rags(r) sin(r cos(¢)|&])drd¢ ford = 2,

bs (1E]) = o s
471/ cos(¢) sin(¢)/ rzc?)g(r) sin(r cos(¢)|&|)drd¢ ford = 3.
0 0

Proof Let us show (18) with d = 3. The case with d = 2 is similar and omitted. First
we observe that for any orthogonal matrix R, we have

bs(&) = R"bs(RE).

Now denote e = (0,0, 1)7. Let R be the rotation matrix which rotates & to be aligned
with e, namely

RE = [Ele.

Then RE - s = |&|s3 and

RT
bs (&) = f | 5@a<|s|>|—ssin(|§|s3>ds.

S|

So each component of bs (&) is given by

Is|

~ 3
ws(|s]) .
izf 2USD 5™ Rjss; sinllss)ds
[s|<é j=1

_ / 0)5(|S|)R3is3 sin(|&|s3)ds fori =1,2,3.
si<s I8

The next task at hand is to find {R3;,i = 1, 2, 3}. We know that R is the matrix
obtained by rotating & by an angle of arccos(e - é—l) = arccos(&3/]€|) around the axis
in the direction of

Exe 1

Exel JER+ £

Such a rotation matrix can be explicitly constructed. In particular, R3; is given by

(&2, —61,0).

Rz = i, fori =1,2,3.
I§]
Elol:;ﬂ
@ Springer Lﬁjog



Foundations of Computational Mathematics

Combing the above arguments, we obtain

bs(§) = £ a(ISI)—Sln(|§|S3)dS
& Is|<5 [s]
|§| (271/ cos(¢) s1n(¢)f r a)g(r) sin(r cos(¢)|£|)drd¢>
0
_£,
| bs(&),

where b (&) is given by (19).
Now (17) can be obtained similarly by noticing that A5(§) = As(RE) for any
orthogonal matrix R. O

Via Fourier analysis, we now get a (d 4+ 1) x (d + 1) matrix system:

a&)\ _ (F®
A,s@)(m))_( 0 )

where

_ *&)a  ibs(§)
wer= (i 07):

For each fixed nonzero &, in order for the matrix A;s(&) to be invertible, we need As(&)
and bs (&) to be nonzero. Under such assumptions, the inverse of As(&) is given by

i (I _b5(§)®b5(§)> . bs(é)

| m® 15 (8)[2 G
(45N = L B®) @ | (20)

Iba(E)l2 bs (£)]?

Now we can easily observe from the expression in Eq. (17) that A5(&) is positive for
any nonzero &. It is however more delicate to check the non-degeneracy of bs (&) since
the latter is an integral of a product of a positive function with a sign-changing oscilla-
tory function. The following lemma (also utilized in [18]) gives a simple observation
on the sine Fourier coefficient that is useful to our discussion on the positivity of bs(£).
Lemma4 Given a measurable, nonnegative and nonincreasing function g = g(x)
with xg(x) integrable, we have

2
/ g(x)sin(x)dx > 0 21)
0

with the equality holds only for g being a constant function. Consequently, for any
h > 0anda > 0, we have

h
/ g(x) sin(ax)dx > 0, (22)
0
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with the equality holds only for g being a constant function (and with value zero if the
product ha is not an integer multiple of 27 ).

Proof The inequality (21) follows immediately from the observation that

2 bd
/ g(x) sin(x)dx = / [g(x) — g(x + m)]sin(x)dx > 0.
0 0

By the nonincreasing property, we see that the equality holds only for g being a
constant function. The more general case follows by applying a change of variable
and taking a zero extension of g outside (0, /) to cover complete periods of the scaled
sine function. O

A simple consequence of Lemma 4 and (19) is that b5 (&) is positive for any fixed &
if r¥=1&(r) is a nonincreasing function. This simple fact gives us a hint that in order for
the nonlocal Stokes system to be well-posed, one should expect the nonlocal interaction
in the gradient and divergence operators be suitably strengthened for physical points
(particles) in closer proximity. Now to offer a precise energy estimate, in the rest of this
section, we assume that the kernel s () satisfies the following additional conditions.

Assumption 5 The kernel @s () is the rescaling of @(r) given by (10) with &(r)
satisfying the following conditions.

1. rd_lc?)(r) is nonincreasing for r € (0, 1);
2. @(r) is of fractional type in at least a small neighborhood of origin, namely there
exists some € > 0 such that for s € (0, €) we have

(23)

for some constant ¢ > 0 and 8 € (—1, 1).

Remark 1 The condition that ¢~ !&(r) is nonincreasing gives us a sufficient condition
for bs (&) to stay positive for finite |£|. It is not a necessary condition, but it is shown later
by some examples that bs (&) can be zero for finite |€| if the nonincreasing condition is
violated; thus, the nonlocal Stokes system s ill-posed in such cases. Consequently, SPH
schemes based on the nonlocal gradients with bounded and smooth kernels obtained
from the smoothing step may contain intrinsic instabilities that are difficult to eliminate
on the discretization level, especially when the particle distribution becomes uneven
or highly disordered.

As an illustration, in Fig. 1 we plot the values of bs(|€|) against |&]| for the kernel
w(r) = rd;‘*'ﬂ with < — 1, using the expression in (19) with d = 2 and d = 3,
respectively. We observe from the plots the tendency for bs (|&]) to stay positive with the
kernel @(r) being more singular at zero. On the other hand, clear numerical evidence
from the plots shows that bs(]€]) may become zero at some finite frequencies for
B < — 1.5 in the two-dimensional case and for 8 < —2 in the three-dimensional
case.
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d=2, 5=-2 5 d=3, 5=-2.5

o ) ' - ()
14} o “ o

d=2, 3=-1.5
2.5 T B T .
—N ()
--0
2+ ]
15¢
1t
0.5
0 n n n
0 5 10 15 20 25 30
1§
d=2, 3=-1.2 d=3, f=-1.5
25 T T T v 3.5 T T r r T
N ()
3l --0 |4
25t
2
15¢
1+
0.5
0 n n n n n
0 5 10 15 20 25 30
€]

Fig.1 Values of bs(|&|) against |&| for § = 1, d = 2 (left column from top to bottom) with 8 = — 2 (top),
B = — 1.5 (middle), B = — 1.2 (bottom), and d = 3 (right column from top to bottom) with § = —2.5
(top), B = — 2 (middle), 8 = — 1.5 (bottom)

The following theorem establishes the existence of a unique solution to the nonlocal
Stokes equation.

Theorem 6 Assume that the kernels wg and s satisfy Assumptions 1 and 5. Given
8 > 0, there exists a unique solution (ugs, ps) to the nonlocal Stokes system (2)

FolCT
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with periodic boundary condition given in the form of their Fourier series with
(us(&), ps(€)) computed through

wsE)\ G (T®
(ﬁs(g))_(A‘S(E)) < 0 > (24)

where (As(€))~" are defined by (20) for nonzero &. In addition, with C independent
of 8 and f we have

lusliiss ) < C||f||[$§(g)]d (25)
IPslz22) < CUf a2y (26)
where Ss5(§2) is the energy space with its norm associated with the Fourier symbol

(s (€)% and S5 (82) is its dual space, and B € (—1,1) is the exponent defined
through (23).

Proof From Lemma 4 and Assumption 5, we know that As(£) is invertible for nonzero
& and the inverse is given by (20). This gives us

~ 1 bs(E)@ba(‘é))A
= /- —
w® =70 ( DA
and
( sENT ~
Ps(§) = Ib s E)1F o ().
So we have
C|l—— s 27
[us(&)| < @) ‘ £ &) 27
and
T 28
1Ps(8)] < ’b (E)' [f(&)] (28)

From (27), we know immediately that (25) is true.

Now we are left to show (26). From Eq. (28) we only need to estimate |1/bs(|&])].
We again address the case d = 3. Under the assumption that 2@ (r) is nonincreasing,
we can use Lemma 3 to write

/2 8
bs(|&]) = 4x /0 cos(¢) sin(¢) /O r2@s(r) sin(r cos(¢)|))drde
/2 1
= 2%/ sin(2¢)/ rzc?)(r) sin(r cos(¢)3|&|)drde.
0 0

Fo C 'ﬂ
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Notice that the integral in the above quantity is positive for any finite §|&| under the
assumption that 72®(r) is nonincreasing. Indeed, from Lemma 4, we know that the
integrand is always nonnegative and it is only possibly zero when cos(¢)5|&] is a
multiple of 27, which is a set of measure zero. Thus the integral above is positive for

any fixed numbers § > 0 and |&| > 0.
Again we denote a = §|&| . Fora < 1, we use

sin(x) > x
in(x) >x — —
- 6

to get

/2

b4 1
bs(1&1) zszaf cos(¢) Sin(2¢)d¢f ré(r)dr
0 0

27.“13 /2 1
/ cos’ (¢) sin(2¢)d¢ / I &(r)dr

a
>—(C=C s
23 €]

where C is a constant independent of §. For a € [1, 47 /€] where € is the parameter
defined in Assumption 5, since the integral defined above is positive, it then has a

lower bound, namely, we have

B

).

T

Z

bs(I&]) =

Oolﬁl
~

Now for a > 4m /e, we have cos(¢p)a > 2 /e for ¢ € (0, 7/3). We then write

v

o [7/3 1
bs(&]) 5 / sin(2¢) / r2&(r) sin(r cos(¢)a)drde
0 0

27 73 . cosz(];)a 1 2 .
> 5 sin(2¢) + , r-w(r) sin(r cos(¢)a)drde.
0 0 cos(i;)a

Using Lemma 4 and the nonincreasing assumption, we observe that

1 1= oy
P26(r) sin(r cos(@)a)dr = / P h(r) sin(r cos(¢)a)dr > 0,
0

2
cos(¢p)a

where
T 2

h) =+ — i+ —
= cos(¢)a (r cos(¢)a)
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is a nonincreasing function. Then one can show by using (23) that

bs(1&])

v

27‘[ ﬂ/3 cos(jfp)a
5 [ sin(2¢) / r2&(r) sin(r cos(¢)a)drde
0 0

2malf
>
- 48
B
_ Clg]
- 81_/3

/3 2 1
/0 cos? (¢) sin(2¢)d¢ /0 ’msin(r)dr

Thus we obtain (26). O

An interesting consequence is that, under the specific choices of the kernel, we see
the equivalence of a vector field being either locally divergence-free or nonlocally
divergence-free.

Corollary 7 Assume that the kernels wg and &s satisfy Assumptions 1 and 5. Then, in
the distribution sense over the periodic cell, a periodic and square integrable vector
field u satisfies V -u = 0 ifand only if Dsu = 0. In other words, we have the following
equivalent function spaces:

wel’ Q) : V-u=0,inR)={uecl?* ) : Dsu=0, in 2.}

The above result follows immediately from the established positivity of the scalar
coefficient bs (&) for any & # 0.

In addition, we may also use the composition of nonlocal divergence and nonlocal
gradient to get a nonlocal Laplacian to replace the operator L in the nonlocal model
(2). Similar argument can be adopted to show the well-posedness of the resulting
system. We state the conclusion below without proof.

Theorem 8 Assume that the kernel ws satisfies Assumptions 1 and 5. Given § > 0,

there exists a unique solution (g, ps) to the following modified nonlocal Stokes system
—vDsGsus(x) + Gsps(x) = f(x), x €82, (29)
—D(;u(;(x) =0, x € 2,

with periodic boundary condition and normalization conditions of the type given in
(3). In addition, with C independent of § and f we have

lus iy, 2y < C||f||[vg(9)]d (30)
||P8||L2(Q) = C”f”[y—ﬂ(g)]d» (31
where Vs(82) is the Hilbert space associated with the norm ||u| = {||u||iz(m +
||Q(;u||iz(m}l/2 and V§ (L2) is its dual space, and B € (—1, 1) is the exponent defined
through (23).
FolCT
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Remark 2 Naturally, we can also establish the well-posedness of the Poisson equation
corresponding to the nonlocal Laplacian DsGs, just like their local counterparts, under
the same conditions given in the above theorem. In fact, this is the usual practice, in the
context of solid mechanics, of the correspondence model of peridynamic materials. The
study of well-posedness of the latter formulation [18] is similar to that carried out there.
For the scalar equation, the resulting nonlocal interactions encoded in L5 = D;sGs
involve both repulsive and attractive types which is different from the L5 operator
used in (4) that features only repulsive interactions. We note that this is also relevant
to practical incompressible SPH as the pressure correction often relies on a well-posed
Poisson equation. Thus, in case that the kernels for Ds and G5 do not have strengthened
nearby interactions, the pressure correction step using DsGs might become ill-posed
which would also impact the convergence and robustness of the numerical solution.
Indeed, it has been noted that the composition of SPH divergence and SPH gradient
leads to a discretization that are sensitive to particle distributions [12,45]. From our
analysis, we can see that it is no surprise that such phenomenon does occur as the
kernels in the SPH derivatives usually do not exhibit strong nearby interactions.

Unlike the case of local elliptic systems, the solutions to nonlocal Stokes equation
may or may not be more regular than the data (f in our case), depending on the specific
forms of the nonlocal operators. For o = w(|x|) integrable, we can only show that
the velocity us remains in L? if the data f is also in L2. On the other hand, in some
special cases where w = w(|x|) exhibits sufficient singular behavior, we can expect
some fractional order regularity pick up. For later references, these results are stated
below.

Proposition 9 Assume that the kernels wg and &g satisfy Assumptions 1 and 5 with ws
being a rescaling of w. Let ug be the velocity component of the solution to the nonlocal
Stokes equation (2). Without loss of generality, we also only consider § € (0, 1). If
w(|x]) is integrable in x, then we have

lusliizz@ye < CNFlliz2caye- (32)

If instead,
m
w(r) > pr e Vr e (0, 1), (33)
for some o € (0, 1) and a constant m € R, then we have

sl ge@ye < CIS -2y (34)
where C is independent of § and f.

Proof We follow the proof of Theorem 6. Without loss of generality, we take the case

d = 3 subject to the additional assumptions of the kernel w (). From the definition of
As(E), we have

FoC
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7/3 s

ho(€) = dr /O sin(@) /O Py (r) (1 — cos(r cos($)[£]))drdg
z (73 1

= 5_2/0 sin(¢>)/0 r?o(r)(1 — cos(r cos(¢)8|€))drde

Now define a = §|&|. Fora < 1, we use

.x2 x4
B
cos(x) < 5 + 7
to get
dmal (/3 _ 1
h®) = 2 / cos(¢) sin(9)dep / ro@)dr
0 0
- @ / o cos* () sin(¢)d¢b / lr6w(r)dr
2482 J, )
2
a
> C; = CIEP,

where C is a constant independent of §. Now we consider the case a = §|&| > 1.
Since it is true that for any finite a, As(&) is a positive number in the form of C(a)/ 82,
where C(a) depends only on a, then A5(&) has a lower bound C /8 for a belongs to
a finite interval with C being a constant independent of §.

For the case that w(|x|) to be integrable in x, we have r2w(r) to be integrable in
r. By using the Riemann-Lebesgue Lemma, we can see that As(&) goes to C /8> for
some constant C as a — oo. Thus we have shown (32).

As for the case that w(r) satisfies (33), we have

/3 1
NOE 1_7; f sin(@) f r*o(r)(1 = cos(rcos(9)51§ D) drdg
0 0
2u /3 cos(¢)a
-2 /0 sin(¢) cos™ () /0 iz (1= cos()ardg
4a®
52
C
= 52—2a|§|2a’

=

/3 ) » al2 1
/O sin(¢) cos™ (¢)d¢ /O m(l—cos(r))dr

for a > 1. Thus we obtain (34). O

Remark 3 With the conditions in Assumption 5 on the kernel @gs(r), and the more
singular behavior imposed in (23), we do get some regularity pickup on the pressure
given in (26).

Before ending this section, we present some additional regularity estimates on
the nonlocal solutions for smoother data by observing that the nonlocal operators
Elol:;ﬂ
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commute with any local differential operators (and their fractional powers, defined
via the spectrum decomposition) in the periodic setting. Moreover, we notice that the
constants in the estimates given in Theorem 6 and Proposition 9 are independent of §
and f, so we can get uniform regularity estimates stated in the following corollary.

Corollary 10 Assume that the kernels wg and &5 satisfy Assumptions 1 and 5. The
solution (ug, ps) to the nonlocal Stokes system (2) with periodic boundary condition
satisfies that for any partial (and possibly fractional) differential operators 0 on the
spatial variables of any nonnegative order,

0us S5y < C||af||[3;(g)]d, (35)
19psliz2c2y = CUOfllia-5 2y (36)

where C > 0 is a generic constant independent of 8, f and d. Moreover, if w(r)
satisfies (33) for some a € (0, 1) and constants m, M € RY, then

10us |l e (2ye < CNOS Nl p—e (@) (37)
||3P5||L2(52) = C”af”[]-]*ﬂ(g)]d, (33)

for a generic constant C > 0 that is independent of 8, f and 9.

4 The Local Limit

Since the nonlocal operators, as defined here, are constructed to have the corresponding
differential operators as the local limits as the horizon (smoothing length) § shrinks
to zero, it is reasonable to expect that the limit of the nonlocal Stokes system (2)
recovers the conventional local Stokes system as nonlocal effects vanish. With the
energy estimates shown earlier, it is possible to derive rigorously the zero § limit of
(2). Moreover, we can establish the convergence rate of the nonlocal solutions to its
local counterpart as § — 0 using Fourier analysis.

Theorem 11 Assume that the kernels wg and &5 satisfy Assumptions I and 5. Let (u, p)
be the solution of Stokes system (1) and (us, ps) be the solution of nonlocal Stokes
system (2). with all of them being subject to the condition (3), there is a constant C
independent of § and f such that

e —usllz22ye < C8% N Flliz2cane- (39)
and
Ip = psll 2@y < CE™™ NI £l gy for any n > —B, (40)
where B € (—1, 1) is the exponent defined through (23).
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Proof Let us work on the case d = 3 as illustration. We may again obtain from (20)
the estimate of the Fourier coefficients:

o 11| |bs®) ®bsE) E®E] A
@) "‘3@)'5(&;(&) ER| T @b ®Fr & )'f(g)'
1 1 ~
<C T(E)_W | f(&)]
and
o b® & |5
PE) ) = €| = s 17 @1

Then (39) is just a consequence of the following estimate of the difference between
1/4s(&) and 1/|£|?, which we can draw similar arguments from [19, Lemma 1] to
obtain:

1 1

_— = C52,
rs(&) €17

where C is a constant independent of § and &.
To get the proof of (40), we notice that for |§| > 1,

bs (€) _i:‘£< ‘ _L)’< b
bs()1> &I &1 \bs (€D 1&1)] ~ |bs(1ED  1€I]°
where bs(|€]) is given by (19). Let a = |£]§, then
[ 5 1 1
bs(1ED &1 2 [772 [ r20(r) sin(29) sin(r cos(@)a)drdp |

For a < 1, since

_ (reos(g)a)’

r cos(¢)a 3l

< sin(r cos(¢p)a) < rcos(¢)a,

we obtain

3

/2 1
a— % =< 271/ sin(2¢)/ r2&(r) sin(r cos(¢)a)drdg < a.
! 0 0

So

1 1 1 ‘
- - =
5 |bs(IED €]
FoC'T
u
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So we have
1 < da =68|§| (41)
— | <éa= ,
bs(1&])  1&]
which implies that
1 _ L L S CSmin{Z,H—r]}ls'min{O,l—n} S Camin{Z,l—H]}’ (42)
bs(1&D)  |&1] 1&1"

for the case a = §|&| < 1. For a > 1, we proceed the same way as in the proof of
Theorem 6 to obtain

Clé| for §|&| € [1,4m /€]

bs(1&]) = {CSIIIE__’; for 8|&| € (47 /€, 00).

Then we have for a = §|&| € [1, 47 /€],

1 1’ 1 1 -
—— — —| —<C < s,
bs(1&D)  [&]1] &]" |&[1+n

And for the case a = §|&| > 4m /e, we use the assumption that > —f to obtain

1 1|1 §1=F 1 ' ~
- —| = SO + —— < C8! PP g sl < Calt,
bs(1&) Ié‘l‘ &1 &P (&[T

Combine the above arguments we arrive at (40). O

5 Numerical Discretization

With a well-posed nonlocal Stokes system (2), one may readily consider its numerical
discretization. We leave the discussion on its particle approximation and the connection
to the incompressible SPH to future works due to the need for more lengthy derivations.
Instead, under periodic conditions, it is natural to consider Fourier spectral method
for numerical approximation whose convergence can be subject to the similar Fourier
analysis.

Let (u (’SV , pgv ) stands for the Fourier spectral approximation of (us, ps). It is easy
to see that (uév , pév ) are simply the truncation (projection) of (us, ps) over all Fourier
modes with wave numbers no larger than N. Hence, we get the following convergence
result for a fixed § > 0as N — oo for f € [L2(£2)]? and also convergence rates for
smoother data.

Theorem 12 Let (uév (x), pév (x)) be Fourier spectral approximation to the (2).

We assume also that Assumptions 1 and 5 hold true for the kernels. Then for
f e [L2(2)1 N [HP(2)19, we have as N — oo,

FoL g
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luy — uslli2(2ye > 0 and Ip§ — psllL22) — 0. (43)

Moreover, if o (r) satisfies (33) for some o € (0, 1) and constants m, M € R™, then
for any s > 0, with C independent of 8, N, f and s, we have as N — 00,

C
" = wsllgsrsacane < 2500 F ly-ecaye (44)

and

C
||P§v = psllay @) < ﬁ”af”[yy—ﬂ(g)]d, (45)

where s > 0 denote the total order of differentiations of a partial differential operator
a.

Proof The results follow from standard Fourier analysis and the regularity estimates
in Corollary 10. O

Remark 4 By Corollary 7, we can also see that the discrete Fourier spectral approxi-
mation automatically leads to a divergence-free vector fields under Assumption 5 and
(10) on the kernels, simultaneously in the local and nonlocal sense.

Although nonlocal models may be of interests in their own right, given that they
have been used as integral relaxations to the local models, we would like to study the
convergence properties of nonlocal discrete solutions to solutions of the corresponding
local continuum models. Along this direction, we would like to emphasize the fact
that the Fourier spectral approximation for (2) is asymptotically compatible (a notion
developed in [49]), in the sense that it is not only a convergent numerical method for
the nonlocal problem with fixed 8, but also preserves the compatibility to the asymp-
totic local limit as § shrinks to zero. The asymptotic compatibility of Fourier spectral
approximation to nonlocal problems has been studied before, see, for example [19]
and the references cited therein. Having the asymptotic compatibility provides robust-
ness to the numerical discretization since the numerical solution in various parameter
regimes (that involving both the smoothing length and the spatial discretization param-
eter) is expected to converge to the desired continuum limit with increased numerical
resolution. In mathematical terms, one expects the following to be true:

lud —ul — 0, §—0,
and as and (46)
Ipy — pll = 0, N — oo.

By the projection property. we have
laeg" — u™ | < llus — ul| (47)
and

IpY = pV1I < lips — pl. (48)
Elol:;ﬂ
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THEOREM 13 - N

(uh ,p}) — > (u,p

N — o0 N — o0

Y
("MS ’ P&)

THEOREM 11

Fig.2 A diagram for asymptotic compatibility and convergence results

Thus, one way to derive the convergence to the local limit is through the triangle
inequalities:

N N N N
lud —ull < fu) —u¥ |+ |u —u|
N (49)
< llus —ull + 1w — u|

and

IpY — pl < 1pY = P+ 1PN = pll

N (50)
<lps—prl+Ilp" — pl

where (u?', p") denotes the Fourier approximation for the standard Stokes equation,
which converges to (u, p) as N — oo.

Now to visualize the asymptotic compatibility of the Fourier spectral approxima-
tion, we present a diagram in Fig. 2 showing the different paths of convergence,
following the work of [49].

Theorem 13 Suppose (uév(x), pév(x)) and W™ (x), pN(x)) are Fourier spectral
approximations to the (2) and (1), respectively. We assume also that Assumptions 1
and 5 hold true for the kernels. Then with C independent of §, N and f, we have

) — a2 oyp < C2 NN 2 gaye- (51)
and
1Py — PVl 20y < CE™MEITY EN Y oy forn = =B, (52)

where B € (—1, 1) is the exponent defined through (23).

Proof The result is immediate from (47) and (48) and Theorem 11. O
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While the focus of this work is mainly on theoretical analysis, the asymptotic com-
patibility given in Theorem 13 reveals interesting possibilities to design numerical
discretization of the local Stokes equation via nonlocal integral relaxations without
imposing the smoothing length § to be proportional to 7 = 1/N with N representing
the discretization parameter (or & representing the scale of numerical resolution). The
latter, with & being the parameter for typical particle spacing, is a common practice
in methods like SPH. Relaxing such constraints can potentially lead to more effec-
tive and robust approximations especially when simulating complex flow patterns that
require more adaptive choices of smoothing and discretization. Finding convergent
approximation for particle like approximation to the integral formulations for more
general i and § has been systematically studied and successfully explored computa-
tionally [21,44], though the focus there were corrections on the discrete level to assure
reproducing conditions, which has been a popular approach developed in mesh-free
approximation literature. Further theoretical investigations on the connections of these
related ideas will be carried out in future works.

6 Conclusion and Discussions

Recent development of nonlocal continuum models and nonlocal calculus has pro-
vided us useful tools to better understand models and numerical methods that may
involve nonlocality, either on the physical level or for convenience of numerical com-
putation [14]. A number of studies have been carried out for solid mechanics in the
context of peridynamics. This work is an attempt to extend the mathematical study of
nonlocal models to fluid mechanics. It is mainly aimed at providing new theoretical
insight to popular methods for simulating fluid flows such as SPH and vortex-blob
methods. The latter two approaches have the notion of nonlocality and integral relax-
ations explicitly built in their formulations. In addition to being a computational
technique, the introduction of nonlocality can also arise due to physical considera-
tions such as the nonlocal memory effect in viscoelastic fluids and the nonlocal spatial
effect in quasi-geostrophic flows. Indeed, the message we want to deliver in this paper
is that one should perhaps first study the continuum relaxation of the PDEs more
systematically before designing consistent, stable and robust numerical discretiza-
tion. It is thus a meaningful mathematical exercise to consider a well-posed nonlocal
analog of the local continuum equations as one foundation block for understanding
and improving the relevant numerical methods. The setting presented here is sim-
plified to the case of nonlocal Stokes equation with periodic boundary conditions so
that we can first probe the choices of appropriate nonlocal operators without delv-
ing into other technical difficulties. When replacing the local differential operators
by their nonlocal counterparts such as those introduced in previous works [16,38],
we see that one should be particularly careful about the interaction kernels used in
nonlocal gradient and divergence operators, in the sense that the interaction should
be sufficiently strengthened to make the system stay solvable and stable. The con-
dition imposed, as elucidated in the work, is a natural one that makes the spaces
of local and nonlocal divergence-free vector fields equivalent. The resulting models
with proper nonlocal interaction kernels are not only well-posed for any finite horizon
Elol:;ﬂ
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and smoothing length, but their solutions also converge to the solution of classical
Stokes equation in the local limit, a fact established in this work along with precise
convergence rates.

The nonlocal Stokes equation, as a continuum model, serves as a bridge between the
local Stokes equation and its discretizations like SPH. In building such a linkage, the
notion of asymptotically compatible schemes shown in Fig. 2 can become important
for practical applications due to the implied robustness of the underlying numerical
methods so that one does not necessarily need the discretization to be refined faster than
the reduction of smoothing length. In particular, the Fourier spectral method is shown
to enjoy asymptotic compatibility. It is certainly more interesting to look into other
numerical methods, in particular, particle discretizations like SPH, which is a main
objective of our ongoing series of works. Although no extended investigations are made
here on either mesh or particle-based discretization, some preliminary speculations
can be offered. For example, while we leave more detailed studies to subsequent works,
it is no surprising that the well-posedness of the continuum nonlocal Stokes equation
does not guarantee that simple minded discretization is automatically stable. As a com-
parison, it is well known that to solve the conventional local Stokes equation based on
standard centered finite differences on a Cartesian mesh, check-board-type instabilities
may arise when the unknown velocity and pressure are placed at the same set of mesh
points. Instead, the so-called MAC (Marker and Cell)-type schemes are developed to
place the unknown variables at staggered locations. Such issues can be studied in the
nonlocal setting, very much in the same spirit of the work presented here. For an brief
illustration, consider the one-dimensional nonlocal gradient operator given by

8
Gsp(x) = /0 @s(s)(p(x +5) — p(x — 5))ds,

we have naturally two types of finite difference approximation, one with a regular uni-
form grid and another with a staggered grid that are given in the following, respectively:

Regular: Gl p(x;) = de (P(xjsr) — p(xj—1))
k=0

)
Staggered:  Gf p(ej) = Y di (pCrjayin) = PO )
k=0

for some nonnegative coefficients {dy}. Again by Fourier analysis, we may find that
the eigenvalues of the two discrete operators are:

.
i2) " dysin(nkh) for regular grid

. k=0
ibsn(n) = .

i2 Z di sin(nkh + nh/2) for staggered grid
k=0
EOE';W
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where h =27 /N andn = —N + 1, ..., N. One can observe that for the regular grid
the discrete eigenvalue is zero if n = N while it is generically not the case for the
staggered case. The story of numerical stability is then different for the two discrete
operators, see [31] for additional discussions on multidimensional cases.

Finally, there are various possible extensions of the work here. Our nonlocal for-
mulation here is based on a centered nonlocal relaxation to local differential operators.
For example, for G5 in (4) , it is determined by a vector ws(y —x) which can be viewed
as an odd and rank-one tensor. A more general form of such a nonlocal gradient oper-
ator acting on a vector field u, by the Schwartz kernel theorem, can be written as a
second-order tensor [38] given by

u(y) —u(x) d

ly — x|

3

Gsu(x) = /pmy — ) Ms(y —x)

where M; is a third-order odd tensor and the integral is interpreted in the principal sense.
There are also other forms of nonlocal operators such as those based on non-symmetric
or one-sided interaction kernels. For example, the one-dimensional forward/backward
nonlocal differentiation operators

)
Gy p(x) = /0 Pps(8)(p(x +5) — p(x))ds,

b
G p(x) = /0 Ps()(p(x) — p(x — $))ds,

have been studied in [20] that can lead to invertible operators for a wider class of
nonlocal interaction kernels ps = ps(s) with orientation bias [31]. Moreover, one
may consider formulations involving stabilization terms by introducing some nonlocal
analog of artificial compressibility similar to ideas used for conventional local Stokes
models [51]. Studying the nonlocal analog of time-dependent nonlinear Navier—Stokes
system is surely another step to take [31]. Extensions can also be considered for com-
pressible flows, interfacial and multiphase flows, magneto-hydrodynamics (MHD)
and stochastically driven flows. The extension in the case of a scalar hyperbolic con-
servation laws can be found in [30]. For SPH, much effort has also been devoted to
the accurate treatment of boundary conditions, even though particle like mesh-free
methods are thought to be able to handle complex geometry and boundary conditions
more effectively. This is perhaps not surprising, given the intrinsic nonlocal continuum
formulations explicitly formulated here that demand generically the notion of nonlo-
cal boundary conditions or volumetric constraints (see [15,38]). It leads to another
important topic of future research. Naturally, once the model and discretization are
in place, there are still many practical issues ranging from quadratures to linear and
nonlinear solvers that must also be investigated along with more careful theoretical
analysis.
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