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Abstract. Many problems in nature, being characterized by a parameter, are of interest both
with a fixed parameter value and with the parameter approaching an asymptotic limit. Numerical
schemes that are convergent in both regimes offer robust discretizations, which can be highly desirable
in practice. The asymptotically compatible schemes studied in an earlier published version of this
paper meet such objectives for a class of parametrized problems. An extended version of the
abstract mathematical framework is established rigorously here, together with applications to the
numerical solution of both nonlocal models and their local limits. In particular, the framework can be
applied to nonlocal models of diffusion and a general state-based peridynamic system parametrized
by the horizon radius. Recent findings have exposed the risks associated with some discretizations of
nonlocal models when the horizon radius is proportional to the discretization parameter. Thus, it is
desirable to develop asymptotically compatible schemes for such models so as to offer robust numerical
discretizations to problems involving nonlocal interactions on multiple scales. This work provides new
insight in this regard through a careful analysis of related conforming finite element discretizations
and the finding is valid under minimal regularity assumptions on exact solutions. It reveals that for
the nonlocal models under consideration and their local limit, as long as the finite element space
contains continuous piecewise linear functions, the Galerkin finite element approximation is always
asymptotically compatible. For piecewise constant finite element, whenever applicable, it is shown
that a correct local limit solution can also be obtained as long as the discretization (mesh) parameter
decreases faster than the modeling (horizon) parameter does. These results can be used to guide
future computational studies of nonlocal problems. Some other applications, such as the fractional
PDE limit of nonlocal models, and open questions are also presented.
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1. Introduction. Asymptotically compatible schemes, as first defined in [57],
are aimed at providing approximations to parameterized problems that are robust
with respect to changes in parameters. It can be formulated as a general mathematical
framework, even though the original theory presented in [57] was largely inspired by
the study of robust numerical methods for nonlocal models and their local limits [56].
Nonlocal phenomena are ubiquitous in nature and nonlocal models have appeared in
many subjects, from physics and biology to materials and social sciences [16]. For
example, there has been a great deal of interest recently in the nonlocal peridynamic
(PD) continuum theory introduced first by Silling in [49]. PD models avoid the explicit
use of spatial derivatives and provide alternatives to the classical partial differential
equation (PDE) based continuum mechanics, especially when dealing with cracks and
materials failure [5, 34, 43, 53, 54]. Mathematical analysis of PD models and other
related nonlocal models, such as nonlocal diffusion, can be found in [1, 3, 10, 20, 28,
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30, 41, 42]. Numerical approximations have also been studied in [7, 12, 23, 34, 37, 48,
51, 56, 62, 63] (see [16] for a more recent update on the references).

A common feature of PD models is the introduction of the horizon parameter δ
that characterizes the range (radius) of nonlocal interactions [20, 49]. As δ → 0, non-
local effect diminishes and the zero-horizon limit of nonlocal PD models becomes a
classical local differential equation model when the latter is well-defined. Such limiting
behavior provides connections and consistencies between nonlocal and local models,
and has immense practical significance especially for multiscale modeling and simu-
lations. A natural question leading to the work here is how such limiting behaviors
can be preserved in various discrete approximations. This is a critical issue in the
applications of PD like models to problems involving possibly different scales, given
the popularity and practicality to perform PD simulations with a coupled horizon δ
and mesh spacing h. Recently, we have showed that some standard numerical meth-
ods for nonlocal diffusion (ND) and PD models may approximate the wrong local
limit when the ratio of δ and h is kept constant, while convergence to the desired
local limit can also be established for some other discretizations [56]. To keep the
discussion relatively simple, the results presented in [56] have mostly been confined
to one-dimensional models. Still, they have clearly exposed the risks involved in some
popular practices for dealing with nonlocal models and exemplified the need for more
comprehensive numerical analysis of the relevant issues.

This paper recapitulates a large part of the work of [57] in introducing asymptot-
ically compatible schemes and the corresponding abstract mathematical framework
for their rigorous numerical analysis with respect to certain classes of parametrized
problems and their asymptotic limits. We note that the original framework given
in [57] was stated for self-adjoint operators and associated variational problems. In
the present version, the framework is generalized to cover for non self-adjoint and
indefinite operators as well as parameter-dependent data. As pointed out in [57],
the abstraction allows us to go beyond the discussion on approximations of nonlocal
models and their local limits to establish a more general mathematical theory with
a much broader perspective. Indeed, numerical analysis of parametrized problems
has been a classical subject [9, 45, 46, 47]. The vanishing nonlocality of the ND/PD
models as δ tends to zero reminds us of many classical problems with a changing
parameter. For instance, the vanishing viscosity limit for nonlinear conservation laws
[11], the convergence of phase field models to their sharp interface limits [17], as well
as the linear elasticity problem as the Lamé constant tends to infinity [4], etc. All
these problems share a common feature that properties of the underlying equations
change significantly in the limit process, so that it is not at all obvious what numerical
methods may be effective for a vast range of parameter values and in some limiting
cases. It is interesting and challenging to develop numerical methods that behave as
desired while taking limits of the problems, and we consider such methods here and
name them as asymptotically compatible schemes. While it is perhaps impossible to
develop a theory that would encompass problems of many different types, the work in
[57] and the discussion in this extended version serve as an attempt to develop an ab-
stract framework that can not only be applied to linear ND and PD models and their
local limits but also to other applications. This may offer new insights into the study
of problems involving both a modeling parameter (or a relaxation parameter as in the
development of numerical techniques such as the smoothed particle hydrodynamics
[26]) and a discretization parameter. Moreover, the abstraction also illustrates the
key features that distinguish the nonlocal models, which are the main applications
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considered here, from other parametrized problems.
An immediate consequence of the abstract framework is the identification of

asymptotically compatible finite element methods for the robust discretization of
linear ND/PD models, as summarized later by a commutative diagram in Figure
2.1. The results are for models with very general nonlocal interaction kernels and
solutions with minimal regularity assumptions, as well as general geometric meshes
with no restrictions on the space dimension. They significantly generalize earlier ex-
ploratory findings [56] and offer another major contribution of this paper that will
be of particular interest to people working on numerical simulations of ND/PD mod-
els. Furthermore, the concept of asymptotically compatible schemes is applicable to
not only Galerkin approximation but also other discretizations such as finite differ-
ence and collocations methods using quadratures [25, 56], as well as DG, particle and
spectral approximations [22, 27, 36, 61].

The paper is organized as follows. In section 2, we introduce the asymptoti-
cally compatible scheme and an abstract framework for the convergence analysis.
In section 3, we consider the application to linear ND problems and characterize
asymptotically compatible finite element methods. We also show that the discontinu-
ous piecewise constant finite element, which is not reliable if the ratio δ/h is fixed [56],
may be conditionally asymptotically compatible. Section 4 contains an application to
state-based PD models. Results of numerical experiments are reported in section 5
to complement the theoretical analysis and to illustrate the order of accuracy of nu-
merical schemes. Section 6 provides a few concluding remarks and some discussions
on subsequent works inspired by [57].

2. An abstract framework. In this section, we introduce the notion of asymp-
totically compatible schemes and propose an abstract framework for their numerical
analysis when they are applied to a special class of parametrized problems.

2.1. Notation and assumptions. Before stating the main results, let us in-
troduce notation and state the main assumptions. The assumptions are given in the
order of (infinite-dimensional) function spaces, then bilinear forms, followed by in-
duced linear operators, and finally the approximations. While the original version
in [57] was presented for self-adjoint problems, we provide an extended version that
works also for non self-adjoint problems.

We begin by considering two families of reflexive Banach spaces {Tσ, σ ∈ [0,∞]}
and {Xσ, σ ∈ (0,∞]} over R with corresponding norms {‖ · ‖Tσ , σ ∈ [0,∞]} and
{‖ · ‖Xσ , σ ∈ (0,∞]}. Denote the dual space of Tσ by T−σ = T ∗σ , and the dual space
of Xσ by X−σ = X ∗σ . For simplicity, we use the same notation 〈·, ·〉 to stand for the
duality pairing between Tσ and T−σ or between Xσ and X−σ, without specifying any
subscript related to the spaces.

We note that both spaces T0 and T∞ are of particular interest to our discussions
here. Indeed, we let T0 be a Hilbert space and identify the dual space of T0 with
itself, that is, T ∗0 = T0. A typical example of T0 is given by the standard L2 function
space in applications that we consider later. Moreover, we assume that T0 serves as
the pivot space between T−σ and Tσ so that a realization of the duality pairing 〈·, ·〉
between T−σ and Tσ is given as the extension of the inner product on T0.

Assumptions given above on the spaces {Tσ} and {Xσ} are very generic so far.
To discuss the special class of problems defined on spaces {Tσ} and {Xσ}, we state
the following assumptions, which are crucial to the problems under consideration.

Assumption 2.1. The spaces {Tσ} and {Xσ} are assumed to satisfy the properties
below.
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(i) Uniform embedding property: there are positive constants M1 and M2, inde-
pendent of σ ∈ (0,∞), such that

M1‖u‖T0 ≤ ‖u‖Tσ ∀u ∈ Tσ and ‖v‖Xσ ≤M2‖v‖X∞ ∀v ∈ X∞.

(ii) Asymptotically compact embedding property for {Tσ}: for any sequence (un ∈
Tn), if there is a constant C > 0 independent of n such that

‖un‖Tn ≤ C ∀n,

then the sequence (un) is relatively compact in T0 and each limit point is
in T∞.

With spaces {Tσ} and {Xσ} given, we now consider some parametrized bilinear
forms.

Assumption 2.2. Let aσ : Tσ ×Xσ → R be a symmetric bilinear form, σ ∈ (0,∞].
(i) aσ is bounded: there exists a constant C2 > 0 such that

aσ(u, v) ≤ C2‖u‖Tσ‖v‖Xσ ∀u ∈ Tσ, v ∈ Xσ.

(ii) Inf-sup condition: there exists a constant α > 0 independent of σ such that

inf
u∈Tσ

sup
v∈Xσ

aσ(u, v)

‖u‖Tσ‖v‖Xσ
≥ α > 0.

(iii) If aσ(u, v) = 0 for all u ∈ Tσ, then v = 0.
Given the above assumption on the bilinear forms, for any σ ∈ (0,∞], we see that

aσ(·, v) defines a bounded linear functional for any v ∈ Xσ. Moreover, by the Lax-
Milgram/Banach-Necas-Babuska theorem [31], it induces naturally a bounded linear
operator, denoted byA∗σ, from Xσ to T−σ, with a bounded inverse (A∗σ)−1 : T−σ → Xσ.
In other words, using the notation given above, we have〈

u,A∗σv
〉

= aσ(u, v) ∀u ∈ Tσ, v ∈ Xσ. (2.1)

Moreover, the adjoint of A∗σ, denoted by Aσ, is also a bounded linear operator from
Tσ to X−σ with a bounded inverse, and we have〈

Aσu, v
〉

=
〈
u,A∗σv

〉
∀u ∈ Tσ, v ∈ Xσ . (2.2)

We next give some assumptions on Aσ.
Assumption 2.3. For A∗σ defined by (2.1), we assume the following:
(i) A subspace X∗ is dense in X∞, and also dense in any Xσ with σ ≥ 0, such

that

A∗σv ∈ T0 ∀v ∈ X∗.

(ii) A∗∞ is the limit of A∗σ in X∗ in the sense that

lim
σ→∞

‖A∗σv −A∗∞v‖T−σ = 0 ∀v ∈ X∗. (2.3)

Since we are concerned with numerical approximations of problems associated
with the operators {Aσ} for σ ∈ (0,∞], we consider families of closed subspaces
{Wσ,h ⊂ Tσ} and {Xσ,h ⊂ Xσ} parametrized by an additional real parameter h ∈
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(0, h0]. The fact that we take Wσ,h as a subspace of Tσ and Xσ,h as a subspace
of Xσ implies that we are effectively adopting a standard, internal, or equivalently
conforming type Galerkin approximation approach.

We assume that Wσ,h and Xσ,h are finite dimensional spaces, and dimWσ,h =
dimXσ,h. Moreover, we need some basic assumptions on the approximation properties
as stated below. The first assumption guarantees the discrete problems to be solvable.
The second assumption ensures the convergence of Wσ,h to Tσ as h → 0 for each σ,
and the third assumption on {Xσ,h} is concerned with the limiting behavior as both
h→ 0 and σ →∞ at the same time.

Assumption 2.4. Assume that the family of subspaces {Xσ,h ⊂ Xσ} parametrized
by σ ∈ (0,∞] and h ∈ (0, h0] satisfies the following properties:

(i) Discrete inf-sup: there exists a constant α̃ > 0 independent of σ such that

inf
u∈Wσ,h

sup
v∈Xσ,h

aσ(u, v)

‖u‖Tσ‖v‖Xσ
≥ α̃ > 0.

(ii) For each σ ∈ (0,∞], the family {Wσ,h, h ∈ (0, h0]} is dense in Tσ in the sense
that ∀u ∈ Tσ, there exists a sequence {un ∈ Wσ,hn} with hn → 0 as n → ∞
such that

‖u− un‖Tσ → 0 as n→∞. (2.4)

(iii) {Xσ,h, σ ∈ (0,∞), h ∈ (0, h0]} is asymptotically dense in X∞, i.e., ∀v ∈ X∞,
there exists a sequence {vn ∈ Xσn,hn}hn→0,σn→∞ as n→∞ such that

‖v − vn‖X∞ → 0 as n→∞. (2.5)

2.2. The parametrized problems and their approximations. Consider a
family of parametrized problems defined by the following: given fσ ∈ X−σ,

find uσ ∈ Tσ such that aσ(uσ, v) = 〈fσ, v〉 ∀v ∈ Xσ (2.6)

for any parameter σ ∈ (0,∞]. The approximation to uσ in a subspace Wσ,h is defined
by the following:

find uσ,h ∈Wσ,h such that aσ(uσ,h, v) = 〈fσ, v〉 ∀v ∈ Xσ,h. (2.7)

Note that fσ was taken to be independent of σ in [57]. Here, we allow for a general-
ization that is subject to the following assumption on the data fσ.

Assumption 2.5. ‖fσ‖X−σ ≤ C for a constant C independent of σ and ‖fσ −
f∞‖X−∞ → 0 as σ →∞.

The existence and uniqueness of uσ and uσ,h follow from assumptions made earlier.
We may also express (2.6) and (2.7) in strong forms as

Aσuσ = fσ, (2.8)

Ahσuσ,h = πhσfσ, (2.9)

where πhσ is the projection operator onto the subspace X∗σ,h, which can be identified

with Xσ,h due to the finite dimensionality, and Ahσ : Xσ,h → X∗σ,h is the operator
induced by the bilinear form aσ on Wσ,h ×Xσ,h (or the solution operator of (2.7) in
the specified subspace).
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We are interested in establishing an abstract framework to analyze the various
limits of {uσ,h} as we take limits in the parameters. We first state a convergence
result for the solutions of the parametrized problems as σ →∞.

Theorem 2.6 (convergence of solutions as σ → ∞). Given the assumptions on
the family of spaces and the bilinear forms and operators, we have

‖uσ − u∞‖T0 → 0 as σ →∞.

Proof. By (2.6) and the assumptions, we have

α‖uσ‖Tσ ≤ sup
v∈Xσ

|aσ(uσ, v)|
‖v‖Xσ

= sup
v∈Xσ

|〈fσ, v〉|
‖v‖Xσ

= ‖fσ‖X−σ ≤ C,

which leads to the uniform boundedness of {uσ ∈ Tσ}, and thus by the asymptotically
compact embedding property, we get the convergence of a subsequence of {uσ} in T0

to a limit point u∗ ∈ T∞. For notational convenience, we use the same {uσ} to denote
the subsequence. Now, taking v ∈ X∗ ⊂ X∞, we have

〈f∞ −A∞u∗, v〉 = 〈f∞ − fσ, v〉+ 〈Aσuσ −A∞u∗, v〉
= 〈f∞ − fσ, v〉+ 〈uσ,A∗σv −A∗∞v〉+ 〈uσ − u∗,A∗∞v〉.

The first term in the above equation goes to zero as σ → ∞ by the assumption
that ‖f∞ − fσ‖X−∞ → 0. The second term goes to zero as a result of the uniform
boundedness of uσ in Tσ and equation (2.3). The third term goes to zero since
A∗∞v ∈ T0 and uσ − u∗ goes to zero in T0. Together we arrive at

〈f∞ −A∞u∗, v〉 → 0 as σ →∞.

Moreover, since X∗ is dense in X∞, we see that u∗ is the unique solution u∞ of
A∞u∞ = f and the convergence of the whole sequence also follows.

Next, we consider the convergence of approximations as h→ 0 for a given σ.
Theorem 2.7 (convergence with a fixed σ ∈ [0,∞] as h → 0). For any given

σ ∈ [0,∞], let uσ and uσ,h be defined by (2.6) and (2.7). Given the assumptions on
the approximate spaces and the approximate bilinear forms, there exists a constant
C > 0, independent of h, such that

‖uσ,h − uσ‖Tσ ≤ C inf
vσ,h∈Wσ,h

‖vσ,h − uσ‖Tσ → 0 as h→ 0.

Proof. The proof is similar to the standard best approximation property of the
Galerkin approximation. Given σ ∈ [0,∞], for any vσ,h ∈Wσ,h,

α̃‖uσ,h − w‖Tσ ≤ sup
v∈Xσ,h

|aσ(uσ,h − w, v)|
‖v‖Xσ

= sup
v∈Xσ,h

|aσ(uσ − w, v)|
‖v‖Xσ

≤ C‖uσ − w‖Tσ .

So we have

‖uσ,h − uσ‖Tσ ≤ inf
w∈Wσ,h

(‖uσ,h − w‖Tσ + ‖w − uσ‖Tσ )

≤ (1 + C/α̃) inf
w∈Wσ,h

‖uσ − w‖Tσ → 0 as h→ 0.

This proves the theorem.
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We now move on to an analogue of Theorem 2.6 for approximate problems, that
is, we consider the convergence as σ →∞ but for a fixed h > 0. For this, we need a
few additional assumptions on the approximation spaces.

Theorem 2.8 (convergence of approximate solutions with h > 0 as σ → ∞).
Given the assumptions on the family of spaces, bilinear forms, operators, and approx-
imate spaces, and assume in addition that for a given h > 0, we have the following:

(i) Limit of approximate spaces:

W∞,h = T∞ ∩

⋂
σ≥0

Wσ,h

 , and X∞,h = X∞ ∩

⋂
σ≥0

Xσ,h

. (2.10)

(ii) Approximation property of bilinear forms:

lim
σ→∞

aσ(uh, vh) = a∞(uh, vh) ∀uh ∈W∞,h, v ∈ X∞,h. (2.11)

(iii) A strengthened continuity property: for any sequence (wσ,h ∈ Wσ,h) with
uniformly bounded (‖wσ,h‖Tσ ) and satisfying wσ,h → 0 in T0 as σ → ∞, we
have

lim
σ→∞

aσ(wσ,h, vh) = 0 ∀vh ∈ X∞,h. (2.12)

Then, for the approximate solutions uσ,h of (2.7) with σ ∈ (0,∞), we have

‖uσ,h − u∞,h‖T0 → 0 as σ →∞. (2.13)

Proof. Similar to the proof of Theorem 2.6, we have

α̃‖uσ,h‖Tσ ≤ sup
v∈Xσ,h

|aσ(uσ,h, v)|
‖v‖Xσ

= sup
v∈Xσ,h

|〈fσ, v〉|
‖v‖Xσ

≤ ‖fσ‖X−σ ≤ C .

This leads to the uniform boundedness of {uσ,h ∈ Tσ}, and thus by the asymptotically
compact embedding property, we get the convergence of a subsequence in T0 to a limit
point u∗,h ∈ T∞. By assumption (2.10), we have necessarily that u∗,h ∈W∞,h. Using
again the same {uσ,h} to denote the subsequence and taking vh ∈W∞,h ⊂Wσ,h,

〈f∞ −A∞u∗,h, vh〉 = 〈f∞ − fσ, vh〉+ 〈Aσuσ,h, vh〉 − 〈A∞u∗,h, vh〉
= 〈f∞ − fσ, vh〉+ 〈Aσ(uσ,h − u∗,h), vh〉+ 〈(Aσ −A∞)u∗,h, vh〉
= 〈f∞ − fσ, vh〉+ aσ(uσ,h − u∗,h, vh) +

[
aσ(u∗,h, vh)− a∞(u∗,h, vh)

]
= I1 + I2 + I3.

The fist term I1 in the above equation goes to zero since ‖f∞ − fσ‖X−∞ → 0 as
σ → ∞. Now, to estimate the second term, we let wσ,h = uσ,h − u∗,h ∈ Wσ,h and
apply the strengthened continuity property of aσ to get |I2| → 0. Assumption (2.11)
implies that I3 → 0. Thus, u∗,h is the unique solution of (2.7) with σ = ∞ and the
unique limit point of the whole sequence {uσ,h}. The theorem thus follows.

2.3. Asymptotically compatible schemes. While we have the convergence
of {uσ,h} for a given σ as h → 0, as well as the convergence of {uσ} to u∞ and
{uσ,h} to u∞,h as σ →∞, we are also interested in the behavior as both σ →∞ and
h→ 0. We summarize this in Figure 2.1 and introduce the concept of asymptotically
compatible schemes.
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uσ,h u∞,h

uσ u∞

Theorem 2.8

σ →∞

Theorem 2.7 h→ 0

Theorem 2.6

σ →∞

Theorem 2.7h→ 0
Theorem 2.10

(σ →∞, h→ 0)

Fig. 2.1. A diagram for asymptomatically compatible schemes and convergence results.

Definition 2.9. The family of convergent approximations {uσ,h} defined by (2.7)
is said to be asymptotically compatible to the solution u∞ defined by (2.6) with σ =∞
if for any sequence σn →∞ and hn → 0, we have ‖uσn,hn − u∞‖T0 → 0.

Note that since uσn,hn and u∞ may live in different spaces, the space T0 is the
most natural space that contains all the elements involved. In cases where uσn,hn
represent discrete solutions, one may even use different meshes and basis functions.
Nevertheless, additional compatibilities on the spaces are needed for the convergence
of uσ,h and to u∞,h as σ →∞, as suggested by (2.10), for example.

Theorem 2.10 (asymptotically compatibility). Under Assumptions 2.1–2.5, the
family of approximations is asymptotically compatible.

Proof. The first step is again similar to that in the proof of Theorems 2.6 and
2.8, that is, we can get ‖uσ,h‖Tσ being uniformly bounded by some constant,

‖uσ,h‖Tσ ≤ C. (2.14)

Then for any sequences {σn} and {hn}, where σn → ∞, hn → 0, the sequence
(uσn,hn)n is relatively compact in T0, and any limit point u∗ of the convergent sub-
sequence in T0, still denoted by (un = uσn,hn) without loss of generality, is in T∞.
Let us show that u∗ solves (2.6) with σ = ∞ and therefore is unique so that the
entire sequence actually converges to the unique solution u∗ = u∞. That is, for
‖u∗ − un‖T0 → 0 as n→∞, we need to prove for every v ∈ X∗, u∗ satisfies (2.6).

By the asymptotically dense property (2.5) of Xσ,h in X∞, we can choose vn ∈
Xσn,hn such that ‖v − vn‖X∞ → 0. Then we have the following equation:

a∞(u∗, v)− 〈f∞, v〉 = 〈A∞(u∗ − un), v〉+ 〈(A∞ −Aσn)un, v〉
+ 〈Aσnun, v − vn〉+ [〈fσn , vn〉 − 〈f∞, v〉]

= I + II + III + IV. (2.15)

We now show that as n→∞, all four terms vanish. Now for the first part, since the
adjoint operator of A∞ satisfies Aa∞stv ∈ T0, we can rewrite I as

|I| = |〈A∞(u∗ − un), v〉| = |〈u∗ − un,A∗∞v〉| ≤ ‖u∗ − un‖T0‖A∗∞v‖T0 → 0.

Similarly we can rewrite the second part and use Assumption 2.3 to obtain

|II| = |〈un,A∗∞v −A∗σnv〉| ≤ ‖un‖Tσn ‖A
∗
∞v −A∗σnv‖T−σn

≤ C‖A∗∞v −A∗σnv‖T−σn → 0.
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We then use the bound on the bilinear form aσ and the uniform embedding to get

|III| = |aσn(un, v − vn)| ≤ C‖un‖Tσn ‖v − vn‖Xσn
≤ C̃‖v − vn‖Xσn ≤ C̃M2‖v − vn‖X∞ → 0.

Finally, for the last term,

|IV| ≤ |〈fσn , vn〉 − 〈f∞, v〉| ≤ |〈fσn − f∞, vn〉|+ |〈f∞, vn − v〉|
≤ ‖fσn − f∞‖X−∞‖vn‖X∞ + ‖f∞‖X−∞‖vn − v‖X∞ → 0.

This shows that u∗ solves (2.6). This completes the proof of the theorem.

3. Applications to ND problem. The first example we consider is a homoge-
neous Dirichlet volume constrained value problem associated with a linear ND model.
We refer [16, 18, 38, 41] for more discussions on related mathematical theory. These
problems are nonlocal in nature and they can be cast into the parametrized form
described in the above section since a parameter δ is often used in these models to
denote the range of nonlocal interactions.

3.1. Model equation. Let Ω ⊂ Rd denote a bounded, open domain with a
piecewise planar boundary. The corresponding interaction domain is defined as

ΩI = {y ∈ Rd\Ω such that dist(y, ∂Ω) ≤ 1}. (3.1)

Also we let Ωw = Ω ∪ ΩI be the domain containing both Ω and ΩI . A nonlocal
operator L is defined as, for any function u(x) : Ωw → R,

Lu(x) = −2

∫
Ω

(u(y)− u(x))γ(|x− y|)dy, (3.2)

where the kernel γ = γ(|x− y|) is assumed to be radial with supp(γ(| · |)) ⊂ B1(0)
(the unit ball centered at the origin), and there exists a constant λ > 0 such that
Bλ(0) ⊂ supp(γ(| · |)). Moreover, γ is a nonnegative and nonincreasing function with
a bounded second order moment. That is,

γ̂(|ξ|) = |ξ|2γ(|ξ|) ∈ L1
loc(Rd) and

∫
B1(0)

γ̂(|ξ|)dξ = d. (3.3)

And we denote the rescaled kernels

γ̂δ(|ξ|) =
1

δd
γ̂

(
|ξ|
δ

)
, γδ(|ξ|) =

1

δd+2
γ

(
|ξ|
δ

)
(3.4)

for δ ∈ (0, 1] and let Lδ denote the nonlocal operator corresponding to the kernel γδ.
Note that more general forms of the kernels can be considered as well [16, 18]; the
essential features are that they in some sense are approximations of the distributional
Laplacian of the Dirac-delta measure near the origin. The assumptions of the above
form are made to simplify the presentation.

The model equation to be studied is the nonlocal volume-constrained problem [18]:

{
Lδu = f on Ω,

u = 0 on ΩIδ
(3.5)
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where ΩIδ = {y ∈ Rd\Ω dist(y, ∂Ω) ≤ δ} and Ωδ = Ω∪ΩIδ . The second equation in
(3.5) is a constraint imposed on a domain ΩIδ with a nonzero measure. It is a natural
extension of Dirichelet boundary condition for classical PDEs [18]. With L0 = −∆,
the nonlocal equation (3.5) is an analogue of the classical problem{

L0u = f on Ω,

u = 0 on ∂Ω.
(3.6)

Let S0 = H1
0 (Ω) be the standard Sobolev space of real-valued functions that are

square integrable and have square-integrable derivatives on Ω with trace zero on the
boundary ∂Ω. It serves as the natural energy space of (3.6) equipped with an inner
product and norm

(u, v)S0 =

∫
Ω

∇u(x) · ∇v(x)dx, ‖u‖S0 =

(∫
Ω

|∇u(x)|2dx
)1/2

.

The natural energy space associated with (3.5) is [18, 38]

Sδ =

{
u ∈ L2(Ωδ) :

∫
Ωδ

∫
Ωδ

γδ(|x− y|)(u(x)− u(y))2dxdy <∞, u|ΩIδ = 0

}
for δ ∈ (0, 1]. It is clear that Sδ is a subspace of L2(Ωδ) (the space of all real-valued
square-integrable functions on Ωδ) with an inner product (·, ·)Sδ defined as

(u, v)Sδ =

∫
Ωδ

∫
Ωδ

γδ(|x− y|)(u(x)− u(y))(v(x)− v(y))dxdy

and ‖ · ‖Sδ the associated norm. We note that {‖ · ‖Sδ} are usually seminorms, but for
{Sδ} they are equivalent to full norms, as demonstrated by the Poincaré inequality
given later (see also [38]), just as on H1

0 (Ω), the norms | · |H1(Ω) and ‖ · ‖H1(Ω) are
equivalent. It can be shown that Sδ is also the completion of C∞0 (Ω) in L2(Ωδ) under
the norm ‖ · ‖Sδ [38].

In order to apply the framework given earlier, it is convenient to have functions
in the different spaces {Sδ, δ ∈ [0, 1]} be specified in a common spatial domain, say,
Ωw = Ω ∪ ΩI ; we thus make all functions in Sδ equivalent to themselves with zero
extension outside Ω and norms defined by{∫

Ωδ

∫
Ωδ

γδ(|x− y|)(u(x)− u(y))2dxdy

}1/2

and {∫
Ωw

∫
Ωw

γδ(|x− y|)(u(x)− u(y))2dxdy

}1/2

are also equivalent for such functions, independently of δ. These equivalence properties
will be implicitly used throughout the manuscript unless otherwise noted.

Now we present weak formulations for the nonlocal (and local) diffusion models.
Define a family of bilinear forms {bδ} by

bδ(u, v) =


∫

Ωδ

∫
Ωδ

γδ(|y − x|)(u(y)− u(x))(v(y)− v(x))dydx (δ > 0),∫
Ω

∇u(x) · ∇u(x) (δ = 0)

(3.7)
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for u, v ∈ Sδ. Then the weak formulations of (3.5) and (3.6) are as follows:

Find uδ ∈ Sδ such that bδ(uδ, v) = (f, v)L2 ∀v ∈ Sδ. (3.8)

Note that, for simplicity, f is taken to be independent of δ as in [57], so that the
Assumption 2.5 is automatically satisfied, though the results remain valid if f depends
on δ and satisfies the Assumption 2.5.

Now for each δ, we introduce the finite element spaces {Vδ,h} ⊂ Sδ associated
with the triangulation τh = {K} of the domain Ωδ (or Ωw). We set

Vδ,h := {v ∈ Sδ : v|K ∈ P (K) ∀K ∈ τh},

where P (K) = Pp(K) is the space of polynomials on K ∈ τh of degree less than or
equal to p. Again, for different δ, in order to have the finite element functions defined
on a common spatial domain, we also assume, as in the case for Sδ, that any element
in Vδ,h automatically vanishes outside Ω. As h→ 0, {Vδ,h} is dense in Sδ, i.e., for any
v ∈ Sδ, there exists a sequence (vh ∈ Vδ,h) such that

‖vh − v‖Sδ → 0 as h→ 0. (3.9)

These properties are easily satisfied by standard finite element spaces.
The Galerkin approximation is to replace Sδ by Vδ,h in (3.8):

Find uδ,h ∈ Vδ,h such that bδ(uδ,h, v) = (f, v)L2 ∀v ∈ Vδ,h. (3.10)

3.2. Asymptotically compatible schemes. To apply the abstract framework
to the ND model, we define Tσ and Xσ in the context of section 2 as

Tσ= Xσ =


S1/σ for σ ∈ [1,∞],

L2
0(Ω) for σ = 0,

S1 for σ ∈ (0, 1),

(3.11)

where L2
0(Ω) contains all elements in L2(Ω) that vanish outside Ω. Note that for this

example, the spaces Tσ and Xσ are the same and aσ is a symmetric bilinear form
on Tσ × Xσ. We define Tσ and Xσ for σ ∈ (0, 1) to be the same as S1, since this
would not affect the limiting behavior as σ → ∞, or equivalently, δ → 0. Indeed,
we are interested in approximations of both nonlocal problems with a finite horizon
parameter and their local limits.

For the family of spaces, we need to verify the assumptions made in the earlier
section. First, let us state a simple lemma below where fractional Sobolev spaces are

used. We use H
α/2
0 (Ω) to denote the closure of C∞c (Ω) in Hα/2(Ω) for α ∈ (0, 2].

More discussions on these spaces can be found in [8, 15].
Lemma 3.1. For α ∈ (0, 2] and a kernel γδ satisfying |ξ|αγδ(|ξ|) ∈ L1(Rd), we

have a constant C depending only on Ω such that

‖u‖2Sδ ≤ C
(∫
|ξ|αγδ(|ξ|)dξ

)
‖u‖2Hα/2(Ω) ∀u ∈ Hα/2

0 (Ω) ∩ L2
0(Ω). (3.12)

Proof. We consider the zero extension of functions to Rd, so that there exists a
constant C = C(Ω), independent of α and δ, such that ‖u‖Hα/2(Rd) ≤ C‖u‖Hα/2(Ω)
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∀u ∈ Hα/2
0 (Ω)∩L2

0(Ω). Here we denote the extension of u by the same notation. The
lemma is then a consequence of the following:∫

Rd
|u(x + ξ)− u(x)|2dx ≤ C|ξ|α‖u‖2Hα/2(Rd).

To see the above, we have by the Fourier transform that

|u|2Hα/2(Rd) =

∫
Rd
|k|αû2(k)dk,

∫
Rd
|u(x + ξ)− u(x)|2dx =

∫
Rd
|eik·ξ − 1|2û2(k)dk.

So the desired inequality follows from an elementary inequality |eik·ξ − 1|2 ≤ 2|ξ ·k|α
for α ∈ (0, 2]. Hence, we get∫

Ω

∫
Bδ(x)

γδ(|y − x|)(u(y)− u(x))2dydx ≤
∫
Rd
γδ(|ξ|)

∫
Rd

(u(x + ξ)− u(x))2dxdξ

≤ C‖u‖Hα/2(Ω)

∫
Rd
|ξ|αγδ(|ξ|)dξ,

which leads to the lemma.
By applying the above to functions in S0 = X∞ for the case of α = 2, we have

the uniform embedding of X∞ in Xσ since for the kernel γδ, we have

∫
|ξ|2γδ(|ξ|)dξ = 1.

To verify Assumption 2.1(i) for {Tσ} and {Xσ}, it remains to apply a uniform Poincaré
type inequality for the uniform embedding of Tσ in T0.

Lemma 3.2 (uniform Poincaré inequality). There exists C > 0 independent of δ
such that ∀δ ∈ (0, 1],

‖u‖2L2(Ωδ)
≤ C‖u‖2Sδ ∀u ∈ Sδ. (3.13)

The above is a special case of [39, Proposition 5.3] for scalar valued functions (see
[39] for the proof). Also from [38], we know that Sδ is complete, thus a Hilbert space.

To check Assumption 2.1(ii), we need a compactness lemma that can be found in
[8, Theorem 4] and [44, Theorems 1.2, 1.3].

Lemma 3.3. Suppose un ∈ Sδn with δn → 0. If

sup
n

∫
Ωδn

∫
Ωδn

γδn(|x− y|)(un(x)− un(y))2dxdy ≤ ∞,

then un is precompact in L2
0(Ω). Moreover, any limit point u ∈ S0.

We note that in establishing Lemmas 3.2 and 3.3, an argument of [8] often can be
used, which requires that γ̂ is nonincreasing. It has been noted that by techniques
introduced in [2], the results remain true under a less restrictive condition where
γ is assumed to be nonincreasing. Moreover, [44] provided an even more general
argument that works for d ≥ 2 without the assumption on γ being nonincreasing.
Related discussions on these issues can be found in [38, 39].

We next move to the bilinear forms. Note that bδ is exactly the inner product
defined on Sδ, so Assumption 2.2(i) is naturally satisfied with C = 1. Assumption
2.2(ii) and (iii) are also satisfied, since bδ is a coercive bilinear form.
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Since Tσ = Xσ and aσ is a symmetric bilinear form, the associated linear operator
Aσ is then self-adjoint. Assumption 2.3 is about the convergence of the operator
Lδ, a result that has been shown in many works, such as [20, 39]. We state it here
as a proposition without proof. It is a pointwise convergence property of a smooth
function under the action of the nonlocal integral operator Lδ (generally interpreted
in the principal value sense [39]) to that under the negative Laplace operator.

Proposition 3.4. For all v ∈ C∞c (Ω), and all x ∈ Ω, we have

Lδv(x) −→ −∆v(x) as δ → 0. (3.14)

Moreover, there exists a constant C = C(d, v) such that

sup
δ∈(0,1)

sup
x∈Ω
|Lδv(x)| ≤ C. (3.15)

With pointwise convergence and uniform boundedness estimate of Lδv, Assump-
tion 2.3 is obviously true by the bounded convergence theorem. This is stated in the
following lemma, which is a stronger result than what Assumption 2.3(ii) requires.

Lemma 3.5. For Lδ and L0 defined in section 3.1, ∀v ∈ C∞c (Ω),

‖Lδv − L0v‖L2(Ω) −→ 0 as δ → 0.

For the approximate spaces, we have Wσ,h = Xσ,h = V1/σ,h for σ ≥ 1. So
Assumption 2.4(i) is satisfied as a result of coercivity and Vδ,h ⊂ Sδ. The property
(3.9) ensures that Vδ,h satisfies Assumption 2.4(ii). To check Assumption 2.4(iii), for

convenience, we define a special family of spaces V̂δ,h.

Definition 3.6. Let V̂δ,h ⊂ V0,h ⊂ S0 be the continuous piecewise linear finite
element space that corresponds to the same mesh τh with Vδ,h.

The following lemma is simply a restatement of a simple fact that the continuous
piecewise linear subspace of H1

0 approximates the whole space as mesh size goes to
zero.

Lemma 3.7. The family {V̂δ,h} is asymptotically dense in S0, that is, it satisfies
Assumption 2.4(ii).

Now we see that if V̂δ,h ⊂ Vδ,h, then Vδ,h also satisfies Assumption 2.4(iii).
With all assumptions 2.1–2.5 verified, the following theorem offers a remedy for

developing asymptotically compatible schemes when one wants to solve ND equations.
Theorem 3.8. Let uδ and uδ,h be solutions of (3.8) and (3.10), respectively, and

V̂δ,h is defined in Definition 3.6. If V̂δ,h ⊂ Vδ,h, then ‖uδ,h − u0‖L2(Ω) → 0 as δ → 0,
h→ 0.

Proof. Taking Tσ= Xσ := S1/σ, aσ := b1/σ, Aσ= A∗σ := L1/σ, and Wσ,h= Xσ,h :=
V1/σ,h, we see that the above theorem follows from Theorem 2.10, since in the above
discussions we have verified all assumptions 2.1–2.5 for this case.

In short, we see that if the finite element spaces contain a continuous finite element
subspace that have desired approximation properties in S0, then the corresponding
discretization is asymptotically compatible. This is particularly true for any con-
tinuous or discontinuous finite element spaces containing at least the subspace of
continuous piecewise linear elements.

We now examine the local limit of discrete solutions on a fixed mesh, following the
discussions in Theorem 2.8. By condition (2.10), we see that some compatibility of the
discrete spaces is needed. We choose to work with a fixed mesh as a simplification,
although there is still ample freedom to choose different finite element spaces for
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nonlocal and local problems. We assume that V0,h = S0∩ (
⋂
δ>0Vδ,h) so that (2.10) is

satisfied. To verify all the additional assumptions required for Theorem 2.8, we state
a couple of technical results.

For a given triangulation τh, we define a space of continuous and piecewise smooth
functions given by

Vh := {v ∈ C(Ωδ) : v|K ∈ C∞(K), K ∈ τh, v|ΩIδ = 0}.

Note that functions in Vh are again set to vanish outside Ω. Then, we have the
convergence of the bilinear forms on the subspace Vh.

Lemma 3.9. For any u, v ∈ Vh, as δ → 0, we have

(Lδu, v)L2(Ωδ) − (∇u,∇v)L2(Ω) → 0.

Consequently, for any uh, vh ∈ V0,h,

lim
δ→0

bδ(uh, vh) = b0(uh, vh).

Proof. First, we note that

(Lδu, v)L2(Ωδ) − (∇u,∇v)L2(Ω) =
∑
K∈τh

∫
K

uLδv −
∑
K∈τh

∫
K

∇u · ∇v.

Now, for any mesh element K ∈ τh, integration by parts on each K gives

(Lδu, v)L2(Ωδ) − (∇u,∇v)L2(Ω) =
∑
K∈τh

∫
K

u(Lδv + ∆v)−
∑
e∈E0h

∫
e

uJ∇vKe,

where E0
h is the set of internal edges of τh and J∇vKe is the jump of the vector on the

edge e. For the first term, by [23, Theorem 3.7], which remains valid for the kernel
under consideration here, we have∫

K

u(∆v + Lδv)→ 1

2

∑
e∈edge(K)

∫
e

uJ∇vKe as δ → 0.

Summing over K ∈ τh, we get∑
K∈τh

∫
K

u(∆v + Lδv)→
∑
e∈E0h

∫
e

uJ∇vKe.

Thus we have (Lδu, v)L2(Ωδ) → (∇u,∇v)L2(Ω) and the lemma follows.
Next, to show condition (2.12) in Theorem 2.8, we present the following lemma.
Lemma 3.10. Assume that wδ,h ∈ Vδ,h ⊂ Sδ, vh ∈ V0,h ⊂ S0 and ‖wδ,h‖L2 → 0

as δ → 0, then bδ(wδ,h, vh)→ 0 as δ → 0.
Proof. Since wδ,h and vh are smooth on each element K ⊂ τh, we will prove the

result on each K ⊂ τh. Also, we define ΓK for each K ⊂ τh by

ΓK := {x /∈ K | dist(x,K) ≤ δ}.

Then

bδ(wδ,h, vh) =
∑
K∈τh

∫
K

∫
K∪ΓK

γδ(x
′ − x)(wδ,h(x′)− wδ,h(x))(vh(x′)− vh(x))dx′dx.
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By [8, Theorem 1], for smooth wδ,h and vh restricted on K,∫
K

∫
K

γδ(x
′ − x)(wδ,h(x′)− wδ,h(x))(vh(x′)− vh(x))dx′dx

≤‖wδ,h‖Sδ(K)‖vh‖Sδ(K) ≤ C‖wδ,h‖H1(K)‖vh‖H1(K).

Now by the norm equivalence of finite dimensional spaces,

‖wδ,h‖H1(K) ≤ C‖wδ,h‖L2(K) → 0 as δ → 0,

so ∫
K

∫
K

γδ(x
′ − x)(wδ,h(x′)− wδ,h(x))(vh(x′)− vh(x))dx′dx→ 0.

For the second term,∫
K

∫
ΓK

γδ(x
′ − x)(wδ,h(x′)− wδ,h(x))(vh(x′)− vh(x))dx′dx

≤ 2‖wδ,h‖L∞
∫
K

∫
ΓK

γδ(x
′ − x)|vh(x′)− vh(x)|dx′dx.

Now by the norm equivalence of finite dimensional spaces,

‖wδ,h‖L∞ ≤ C‖wδ,h‖L2 → 0,

it remains to prove that for any vh ∈ V0,h,∫
K

∫
ΓK

γδ(x
′ − x)|vh(x′)− vh(x)|dx′dx

is bounded uniformly in δ.
Since vh is piecewise smooth for x ∈ K and x′ ∈ ΓK , respectively, we use s to

denote the intersection of ∂K and the line between x′ and x. By Taylor expansion,
we have

vh(x′) = vh(x) +∇vh(x) · (s− x) +∇vΓK (s) · (x′ − s) + o(δ).

Denote Kout := K ∩Bδ(∂K) (the latter being a δ neighborhood of ∂K); then∫
K

∫
ΓK

γδ(x
′ − x)|vh(x′)− vh(x)|dx′dx

=

∫
Kout

∫
ΓK

γδ(x
′ − x)|∇vh(x) · (s− x) +∇vΓK (s) · (x′ − s)|dx′dx

+

∫
Kout

∫
ΓK

γδ · o(δ)dx′dx

≤ 2‖∇v‖L∞
∫
Kout

∫
ΓK

γδ(x
′ − x)|x′ − x|dx′dx +

∫
Kout

∫
ΓK

γδ · o(δ)dx′dx.

Now it is easy to see that the second term on the above right-hand side tends
to zero as δ → 0. For the first term, following the proof of [23, Theorem 3.7] and in
particular [23, (3.35)], we have

2

∫
Kout

∫
ΓK

γδ(x
′ − x)|x′ − x|dx′dx ≤

∫
Bδ(0)

γδ(z)|z|2dz

(∑
e∈K
|e|

)
,
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which is bounded uniformly in δ under the assumption on the kernel γδ.
In summary, we now have proved that for each K ∈ τh,∫

K

∫
K∪ΓK

γδ(x
′ − x)(wδ,h(x′)− wδ,h(x))(vh(x′)− vh(x))dx′dx→ 0,

which implies bδ(wδ,h, vh)→ 0. Hence, the Lemma is proved.
Theorem 3.11. Let uδ,h and u0,h be discrete solutions as defined in (3.10) with

δ > 0 and δ = 0, respectively. Assume further that Vδ,h ⊂ Sδ is a finite element
space that contains all continuous piecewise linear functions. Moreover, V0,h = S0 ∩
(
⋂
δ>0Vδ,h). Then, for fixed h and τh, we have ‖uδ,h − u0,h‖L2 → 0 as δ → 0.

Proof. The theorem is a direct application of Theorem 2.8, where conditions
(2.11) and (2.12) are verified by Lemma 3.9 and Lemma 3.10 respectively.

We note that the above theorem implies that as long as all piecewise continuous
linear elements are included, the finite element spaces for nonlocal problems may not
be conforming subspaces of the local limit problem but can still have solutions that
converge to the conforming local finite element solution.

3.3. A case of conditional asymptotic stability. It is known that some finite
element approximations to the ND models are not asymptotically compatible [56]. In
particular, the counterexamples given in [56] demonstrate that if δ is taken to be
proportional to h, then as h → 0, the discrete solutions may be convergent, but to
the wrong limit. It is interesting from a practical point of view to provide some
constructive remedies to avoid such undesirable effects. This is the purpose of the
discussion here. We show that as long as the condition h = o(δ) is met as δ → 0, then
we are able to obtain the correct local limit even for discontinuous piecewise constant
finite element approximations when they are of conforming type.

Theorem 3.12. Let uδ, uδ,h be solutions of (3.8) and (3.10). If Vδ,h is the
piecewise constant space, then ‖uδ,h − u0‖L2 → 0 if h = o(δ) as δ → 0.

Proof. We revisit the proof of Theorem 2.10. Recall that a∞(u, v) − 〈f∞, v〉 is
split into four parts. Without Assumption 2.4(iii), the estimates for three of the four
terms are not affected. We only need to estimate the term III and prove that III→ 0
if σnhn → 0 as n→∞. In fact, by Lemma 3.1,

III ≤ C‖v − vn‖Sσn ≤ C‖v − vn‖Hα/2(Ω)

(∫
|ξ|αγδn(|ξ|)dξ

)1/2

,

where vn ∈ Vδn,hn = Wσn,hn . A direct calculation shows∫
|ξ|αγδ(|ξ|)dξ = δα−2

∫
B(0,1)

|ξ|αγ(|ξ|)dξ = Cδα−2.

So,

III ≤ Cσ1−α/2
n ‖v − vn‖Hα/2(Ω), for α ∈ [0, 1].

Now, by taking vn as the piecewise constant L2-orthogonal projection of v ∈ S0 onto
Vδn,hn , we have [6, (1.3)]

‖v − vn‖Hα/2(Ω) ≤ Ch1−α/2
n ‖v‖H1(Ω).

Thus, III ≤ C(σn ·hn)1−α/2‖v‖H1(Ω) → 0 as n→∞, which completes the proof.
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4. Applications to the state-based PD system. State-based PD models
were presented in [52, 50] as a generalization of bond-based PD models. We refer to
[40] for the mathematical analysis. Given the similarity between linear state-based
models and ND models in applying the abstract framework introduced in this work,
we omit most of the technical details here but emphasize filling in the necessary
ingredients (and references) for verifying all the needed assumptions.

4.1. Linear PD solids. Using the same notation as for the ND model, we
present a PD model [50], using the terms similar to [19, 40], for a constitutively
linear, isotropic solid undergoing deformation. For simplicity, we omit mechanical
descriptions and define directly the corresponding bilinear form:

Bδ(u,v):=

∫
Ω

((
k(x)− α(x)m(x)

d2

)
Tr(D∗u)(x)Tr(D∗v)(x)

+ α(x)

∫
Ω

γδ(|x′ − x|)Tr(D∗u)(x′,x)Tr(D∗v)(x′,x)dx′
)
dx, (4.1)

where k(x) and α(x) are scalar functions that are closely related to the bulk and shear
modulus of the material, respectively, and γδ is a kernel as defined for the ND model
given earlier. The function m(x) is defined as

m(x) =

∫
Ω

γδ(|x′ − x|)|x′ − x|2dx′.

Tr(D∗) is the trace of the nonlocal operator D∗ defined by

D∗u(x,y) := (u(y)− u(x))⊗ y − x

|y − x|
,

and Tr(D∗) is the trace of the nonlocal gradient D∗ defined by:

D∗(u)(x) :=

∫
Ω

D∗(u)(x,y)ω(y,x)dy, where ω(y,x) =
d

m(x)
γδ(|y − x|)|y − x|.

We refer to [16, 20, 42] for more detailed discussions on these basic nonlocal operators.
Let S∗ = L2(Ωδ;Rd). Using the same notation for vector-valued function spaces as
for the scalar ND model, the energy spaces are given by

Sδ =

{
u ∈ S∗ :

∫
Ωδ

∫
Ωδ

γδ(|x′ − x|) (Tr(D∗u)(x′,x))
2
dx′dx <∞,u = 0 on ΩIδ

}
with an inner product

(u,v)Sδ =

∫
Ωδ

∫
Ωδ

γδ(|x′ − x|)Tr(D∗u)(x′,x)Tr(D∗v)(x′,x) dx′dx

and an induced norm ‖ · ‖Sδ , where the δ-dependence is due to the kernel γδ. Zero
extensions to functions in Sδ are again assumed as in the scalar case.

By the following uniform Poincaré-type inequality proved in [40, Proposition 3],
we know that (·, ·)Sδ is indeed a well-defined inner product that also induces a well-
defined norm ‖·‖Sδ .

Lemma 4.1 (uniform Poincaré inequality). There exists a constant C > 0 inde-
pendent of δ such that ∀δ ∈ (0, 1],

‖u‖2L2(Ωδ;Rd) ≤ C‖u‖
2
Sδ ∀u ∈ Sδ.
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Furthermore, by [40, Lemma 3], Bδ is a bounded and coercive bilinear operator
on Sδ, i.e., there exist positive constants C1 and C2 independent of δ such that,
∀u,v ∈ Sδ,

Bδ(u,v) ≤ C2‖u‖Sδ‖v‖Sδ and Bδ(u,u) ≥ C1‖u‖2Sδ .

Thus Bδ induces the nonlocal PD Navier operator Lδ : Sδ → S∗δ , which is a linear
operator bounded uniformly in δ and is defined by

Bδ(u,v) = 〈Lδ(u),v〉 ∀ u,v ∈ Sδ. (4.2)

We also denote the space S0 to be

S0 =

{
u ∈ L2(Ω;Rd) :

∫
Ω

|(∇u +∇uT )(x)|2dx <∞,u|∂Ω = 0

}
(4.3)

equipped with a norm equivalent to ‖ · ‖H1
0 (Ω).

Concerning the local limit of Lδ, we quote the following result [40, Thoerem 3].
Lemma 4.2. Assume that k(x) and α(x) are smooth functions (say, of the class

C1). Then for w ∈ C∞c (Ω;Rd), Lδw is uniformly bounded in L∞(Ω;Rd), and

Lδw(x) −→ L0w(x) as δ → 0 ∀ x ∈ Ω,

where L0 is defined by L0w(x) = −div(µ(x)∇w(x))−∇((µ(x)+λ(x)) divw(x)) with
µ(x) = α(x)/[d(d+ 2)] and λ(x) = k(x)− 2α(x)/[d2(d+ 2)].

For the given w, combining the above pointwise convergence of Lδw to L0w with
the uniform boundedness of Lδw, we get ‖Lδw − L0w‖L2(Ω) → 0 as δ → 0, a result
stronger than what is needed later.

4.2. Asymptotically compatible scheme. As before, we define the spaces
Tσ and Xσ in Assumption 2.1 the same way as in (3.11) except with {Sδ} denoting
vector-valued function spaces associated with the state-based PD model. We then
define uδ as follows.

Find uδ ∈ Sδ such that Bδ(uδ,v) = (f ,v)L2 ∀v ∈ Sδ. (4.4)

with f ∈ L2(Ωw;Rd) independent of δ so that the Assumption 2.5 is satisfied. Simi-
larly, we define the limiting bilinear form on S0:

B0(u,v) := 〈L0u,v〉 ∀u,v ∈ S0.

It is well known that B0 is bounded and coercive on S0 [13, 29]. We set aσ := B1/σ

and Aσ= A∗σ := L1/σ for σ ∈ [1,∞]. Then one part of Assumption 2.1(i) is given by
Lemma 4.1, while the other is precisely [39, Lemma 2.2] restated as the lemma below.

Lemma 4.3. There exists a constant C > 0 only depending on Ω such that

‖u‖2Sδ ≤ C
(∫

Rd
|ξ|2γδ(|ξ|)dξ

)
‖u‖2H1(Ω) ∀u ∈ H1(Ω) ∩ Sδ.

Assumption 2.1(ii) is just [40, Lemma 7] that is restated below without proof.
Lemma 4.4. Let uδ ∈ Sδ for δ > 0. If supδ>0 ‖uδ‖Sδ < ∞, then the sequence

(uδ) is precompact in L2(Ω;Rd). Moreover, any limit point u ∈ S0.
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Meanwhile, the discussions in the previous subsection easily lead to Assumptions
2.2 and 2.3 in the present context.

For discrete approximations, as in the ND case, let {Vδ,h} ⊂ Sδ denote a family
of finite element subspaces where h characterizes the mesh size and for any v ∈ Sδ,
we have a family of elements {vh ∈ Vδ,h} such that ‖vh − v‖Sδ → 0 as h→ 0. Then,
the Galerkin approximation is to replace Sδ by Vδ,h in (4.4):

Find uδ,h ∈ Vδ,h such that Bδ(uδ,h,v) = (f ,v)L2 ∀v ∈ Vδ,h. (4.5)

Clearly, Wσ,h= Xσ,h := V1/σ,h satisfies Assumption 2.4(i) and (ii). The Assump-

tion 2.4(iii) is also satisfied with V̂δ,h ⊂ Vδ,h and V̂δ,h being a vector-valued version of
the continuous piecewise linear element subspace that approximates S0 = T∞= X∞
as h→ 0.

Now we are ready to state the convergence theorem on the finite element approxi-
mations of the linear state-based PD model, as a direct consequence of Theorem 2.10.
We skip the detailed proof.

Theorem 4.5. Let uδ, uδ,h be the solutions of (4.4) and (4.5), and V̂δ,h ⊂ Sδ is

described as above. If V̂δ,h ⊂ Vδ,h, then ‖uδ,h − u0‖L2 → 0 as δ → 0, h→ 0.
Consequently, we see also that for the state-based PD models, the asymptotic

compatibility is preserved for conforming finite element approximations that contain
continuous piecewise linear finite element subspaces.

By extending the convergence of the discrete linear forms from the ND models to
the state-based PD models, we can also get similar results on the convergence of the
discrete solutions between the PD models and the local Navier equations as δ → 0 on
a fixed mesh.

Again, the conclusions remain valid for the data f in (4.4) that depends on δ, if
the Assumption 2.5 is satisfied.

5. Numerical experiments. Here, we report numerical results that validate
our analysis and provide results on the order of convergence that cannot be seen from
our convergence theorems. We use a discontinuous piecewise linear finite element
to solve a one-dimensional nonlocal problem −Lδu = f on (0, 1) with the nonlocal
constraint u = 0 outside (0, 1) and the nonlocal operator given by

Lδu = 2

∫ δ

−δ
γδ(s)(u(x+ s)− u(x))ds.

A special kernel is chosen to be γδ(s) = δ−2|s|−1 in our numerical examples.
We choose a relatively smooth function as u0 given by a fourth order B-spline:

u0(x) =
1

h5



0, x < 0,

x4

120
, 0 ≤ x < 0.2,

− x4

30
+
x3

30
− x2

100
+

x

750
− 1

15000
, 0.2 ≤ x < 0.4,

x4

20
− x3

10
+

7x2

100
− x

50
+

31

15000
, 0.4 ≤ x < 0.5,

with u0 symmetric (even) with respect to x = 0.5. Its graph shown in Figure 5.1.
We then calculate analytically f := −u′′0 and solve nonlocal problems on a uniform

mesh using a discontinuous piecewise linear finite element space. The corresponding
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Fig. 5.1. Graph of u0(x) and its second order derivative.
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Fig. 5.2. Pointwise error uδ,h(x)− u0(x) with r = δ
h

= 3 and h = 2−k, k = 3, 4, 5, 6.

pointwise errors e(x) = uδ,h(x) − u0(x) are plotted in Figures 5.2–5.4 for the three
cases, respectively. Note that the red dots are highlighted to show errors at nodal
points. Qualitatively, one may observe some common features in these plots: first,
while the errors are generally discontinuous at the nodal points given the use of discon-
tinuous finite element functions, the magnitude of discontinuity diminishes as δ → 0,
leading to a continuous (and conforming) approximation to the local limit solution as
predicted by the theory; second, the error profiles, in particular, the maximum and
minimum envelopes of the errors, are all nicely correlated with the second derivatives
of u0 shown in Figure 5.1. While this does not follow from our analytical framework
here, this is consistent with the errors of typical piecewise linear interpolations and
may not also tie this with the more detailed truncation error analysis given in [56].
Meanwhile, the error plots also show different oscillation patterns of the errors inside
the mesh intervals in comparison with those at nodal points for the three cases. A pos-
sible explanation is that oscillations are related to discretization errors that become
more pronounced with smaller δ due to the reduction of modeling errors (between
nonlocal and local equations).

To be more quantitative, errors of the numerical solutions in various norms and
with different relations between δ and h were measured and reported in [57]. These
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Fig. 5.3. Pointwise error uδ,h(x)− u0(x) with δ = h2 and h = 2−k, k = 3, 4, 5, 6.
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Fig. 5.4. Pointwise error uδ,h(x)− u0(x) with δ =
√
h and h = 2−k, k = 3, 4, 6, 8.

data complemented the theoretical framework that addresses the convergence of nu-
merical solutions but without precise estimates on the orders of approximation errors.
While the detailed data on numerical errors are removed in this work (but can be
found in tables presented in [57]), we summarize the main observations here for the
difference cases. In the first case, when δ/h is taken as a fixed constant as the mesh is
refined with a decreasing h, it was observed that the L2 convergence rate for function
values is of second order and that for piecewise first order derivatives is of first or-
der, which is consistent with the optimal orders predicted by standard approximation
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theory. Meanwhile, with δ = h2 when refining the mesh, the L2 convergence orders
stay the same as in the previous case. However, in the case of δ =

√
h, the L2 con-

vergence order for function values drops to first order. A possible explanation is that
the modeling error dominates and it is of the order O(δ2) = O(h).

Some superconvergence order can also be observed from the data reported in
[57]. We refer to some related findings in [56]. In addition, it was noted in [57] that
with the same mesh spacing, say, h = 2−6, the errors decrease as δ changes from
O(
√
h) to O(h) and O(h2), a reasonable and desirable behavior showing the efficiency

of localization (small horizon) if the objective is to capture the local limit when the
latter is well defined.

6. Conclusion. In this work, we established in [57] and subsequent works on
the analysis of a class of asymptotically compatible schemes for the approximations of
parametrized problems. The original motivation was to develop a robust discretization
of nonlocal models for multiscale problems where the nonlocal models can be seen as
parametrized by the horizon that measures the range of nonlocal interactions. Yet,
the abstract framework allows us to put the discussion in an even broader context.
Not only does it reveal the true essence of the nonlocal problems, but it may also
be applicable to other parametrized problems. The analytical set-up underlying the
abstract framework is valid with minimal assumptions on the underlying problems,
the solution regularity, and the approximation spaces. Among various studies of
numerical methods and their asymptotic behavior with a parameter approaching to a
limit (ranging from uniformly convergent schemes for singularly perturbed problems
[47], numerical viscosity solutions of conservation laws [11], lock-free approximations
for shells [4], to asymptotically preserving schemes for kinetic equations [33]), perhaps
the analysis in [32] offers the closest resemblance to the work here in spirit. In [32], the
approximations to the zero mean free path ε → 0 limit or diffusive limit of radiative
transport models have been studied. The models studied there share similar features
as the nonlocal models considered here in that the parametrized problems may have
singular solutions but they approach a more regular solution of the diffusive limit. It
has been concluded in [32] that piecewise constant approximations would only lead to
a uniform constant solution in such a limit but that finite elements containing enough
continuous elements can recover the correct limit as both mesh size and mean free
path go to zero, a phenomenon that is reminiscent to our finding here for the local
limit of nonlocal problems. This provides additional motivation to present the more
abstract framework developed here so it may be applied to problems that arise from
different applications.

Meanwhile, the illustrative applications of the framework discussed here offered
some new results on the numerical analysis of nonlocal problems as well. For a homo-
geneous Dirichlet type nonlocal constrained value problems associated with a scalar
ND equation, we showed that any finite element discretization that contains piecewise
linear functions provides an asymptotically compatible scheme and thus is a robust
discretization to both the nonlocal problems and the local limit. The convergence of
approximations to the correct solutions and models is ensured independent of the re-
lations between the horizon parameter δ and the discretization parameter h as shown
in the diagram 2.1. Moreover, we showed that such discrete schemes of the nonlocal
problem converge to the conforming finite element scheme of the local differential
problem as the horizon goes to zero for fixed h. We further extended similar results
to a nonlocal state-based PD system.

The main results presented so far, following what were given in [57], focused on
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the regime with nonlocal horizon parameters going to zero that resulted in local lim-
its given by PDEs. To show the generality of the abstract framework, let us mention
some subsequent works inspired by [57]. First, [58] considered a type of nonconforming
approximations to nonlocal problems involving nonlocal interaction kernels that are
sufficiently singular near the origin. Through the removal of singularity of the non-
local interaction near a sufficiently small neighborhood of the origin (parametrized
by the cut-off radius ε) conventional discontinuous finite element space becomes con-
forming for the parametrized problems with ε→ 0. Then, the convergence theory can
be established by generalizing the relevant compactness results given in [8] as ε → 0
and applying the framework of asymptotically compatible discretization with respect
to the mesh size and the truncation radius ε. Another example is the successful ap-
plication of the framework to the discretization of fractional PDE (fPDE) associated
with the fractional Laplacian that can be viewed as the global (with an infinite nonlo-
cal horizon parameter) limit of nonlocal models with properly scaled fractional type
nonlocal interaction kernels [60]. We recall the fPDE and the homogeneous nonlocal
Dirichlet boundary condition given by{

(−∆)αu = f on Ω ⊂ Rd

u = 0 on Rd\Ω
. (6.1)

Here, (−∆)α represents an integral form of the fractional Laplacian operator and it
is defined by

(−∆)αu(x) = Cd,α

∫
Rd

u(x)− u(x′)

|x− x′|d+2α
dx′ , (6.2)

where Cd,α is a constant related to the dimension d and the fractional order α. By
truncations of both the spatial domain and the range of nonlocal interactions, we may
end up with a class of parametrized problem−Lδu(x) = −

∫
Rd

(u(x′)− u(x))γδ(|x′ − x|)dx′ = f on Ω

u = 0 on Ωδ .

(6.3)

where

γδ(|x′ − x|) =


Cd,α

|x− x′|d+2α
x′ ∈ Bδ(x)

0 x′ ∈ Rd\Bδ(x) .

(6.4)

The framework of asymptotically compatible discretization can then be adopted to
get the convergence of the Galerkin approximations of (6.3) to the solution of the
fractional equation (6.1) as the numerical resolution level gets refined while δ → ∞.
Moreover, the study of δ → ∞ fractional equation limit, in combination with the
discussions on the δ → 0 local PDE limit, demonstrates that nonlocal models with
δ being a measure of the finite range of nonlocal interactions, with different scalings
of the kernels and limits, serve to effective bridge local PDE models and fractional
equation models, as shown in Fig. 6.1 [16]. The same picture remains valid on the
discrete level for asymptotically compatible schemes.

We note also that while some of our earlier works exposed possible risks in using
piecewise constant finite element for nonlocal problem when the horizon parameter
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Fig. 6.1. Bridging local and fractional diffusion equations: PDE as the local limit (δ → 0) and
fPDE model as the global limit (δ →∞).

is proportional to the mesh size [56], the present study provided new remedy to deal
with the issue by showing that piecewise constant finite element for the ND problem,
when conforming, would be a conditionally asymptotically compatible discretization,
under the natural condition that h = o(δ), which has been pointed out in some
simulation-based studies [7, 12].1

In addition, to compensate for the lack of analysis on the order of convergence,
we carried out numerical experiments of a one-dimensional ND equation discretized
with conforming discontinuous piecewise linear finite elements. The discontinuous
linear finite element solutions of the nonlocal problem converge to the solution of the
correct local differential problem as predicted no matter how δ varies with h, but the
convergence rates show dependence on the choices of δ and h. The convergence and
superconvergence orders observed lead to interesting theoretical issues to be studied
further along with the development of possible postprocessing techniques [14] to im-
prove the order of convergence especially for derivatives and stress variables when
singular behaviors are likely to be present in practice.

Finally, we note that although the original study [57] is restricted to Galerkin con-
forming approximations and linear problems, there have been subsequent studies to
extend the notion of asymptotically compatible schemes to other varieties of approx-
imation methods including particle-based (or meshfree) methods, quadrature-based
difference methods, Discontinuous Galerkin methods, spectral type methods and also
to nonlinear nonlocal models of hyperbolic conservation laws and phase field equations
(see for example [21, 22, 25, 27, 36, 55, 61] and a review and additional references in
[16]). With the extension here to non-self-adjoint and indefinite cases, it opens up
possibilities to treat nonlocal convection-diffusion problems and problems involving
both repulsive and attractive nonlocal interactions (that may be associated with sign-
changing kernels [38]), as well as saddle-point problems [26]. Naturally, there are also
many interesting and relevant theoretical and practical issues remain to be investi-
gated. For example, error estimates that are consistent with the asymptotic compat-
ibility can be further studied. Concerning practical applications, additional studies
are needed to explore the constructive roles of asymptotically compatible schemes in
dealing with multiscale problems involving coupled local and nonlocal models, partic-
ularly those models adopting a spatially heterogeneous horizon parameter [16, 24, 59].
Similarly, more studies on asymptotically compatible schemes may also shed new light
on improving the robustness of numerical methods based on various nonlocal smooth-
ing of the local PDE models such as the Smoothed Particle Hydrodynamics [26, 35].

1This has also been discussed in personal communications with M. Parks and R. Lehoucq.
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